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- ABSTRACT - 

 

Comparison of accuracy and computational performance between 

the latest machine learning algorithms for automated 

cephalometric landmark identification – YOLOv3 vs SSD 

 

Ji-Hoon Park, BS, DDS 

 

Department of Orthodontics, Graduate School, Seoul National University 

(Directed by Professor Shin-Jae Lee, DDS, MSD, PhD, PhD) 

 

 

Introduction: The purpose of this study was to compare two of the latest deep learning 

algorithms for automatic identification of cephalometric landmarks in their accuracy and 

computational efficiency. This study uses two different algorithms for automated 

cephalometric landmark identification with an extended number of landmarks: 1) You-

Only-Look-Once version 3 (YOLOv3) based method with modification, and 2) the Single 

Shot Detector (SSD) based method. 

Materials and methods: A total of 1,028 cephalometric radiographic images were selected 

as learning data that trained YOLOv3 and SSD methods. The number of target labelling 

was 80 landmarks. After the deep learning process, the algorithms were tested using a new 

test data set comprised of 283 images. The accuracy was determined by measuring the 



 

 

 

mean point-to-point error, success detection rate (SDR), and visualized by drawing 2-

dimensional scattergrams. Computational time of both algorithms were also recorded. 

Results: YOLOv3 algorithm outperformed SSD in accuracy for 38/80 landmarks. The 

other 42/80 landmarks did not show a statistically significant difference between YOLOv3 

and SSD. Error plots of YOLOv3 showed not only a smaller error range, but also a more 

isotropic tendency. Mean computational time spent per image was 0.05 seconds and 2.89 

seconds for YOLOv3 and SSD, respectively. YOLOv3 showed approximately 5% higher 

accuracy compared with the top benchmarks in the literature. 

Conclusions: Between the two algorithms applied, YOLOv3 seems to be promising as a 

fully automated cephalometric landmark identification system for use in clinical practice. 
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`I. INTRODUCTION 

The use of machine learning techniques in the field of medical imaging is rapidly 

evolving.1-4 Attempts to apply machine learning algorithms in orthodontics are also 

increasing. Some of the major applications currently utilized are automated diagnostics,5 

data mining,6,7 and landmark detection.8-10 Inconsistency in landmark identification has 

been known to be a major source of error in cephalometric analysis.11-13 The diagnostic 

value of analysis depends on the accuracy and the reproducibility of landmark 

identification.14-17 The most recent studies in orthodontics, however, still rely on 

conventional cephalometric analysis depending on human tasks.8,18-20 A completely 

automated approach has thus gained attention with the aim of alleviating human error due 

to the analyst’s subjectivity and reducing the tediousness of the task.21-27  

Since the first introduction of an automated landmark identification method in the mid-

1980s,28 numerous methods of artificial intelligence techniques have been suggested. 

However, in the past, the various approaches did not seem to be accurate enough for use 

in clinical practice.24 Rapidly evolving newer algorithms and increasing computational 

power are providing improved accuracy, reliability, and efficiency. Recent approaches for 

fully automated cephalometric landmark identification have shown significant 

improvement in accuracy and are raising expectations for daily use of these automatic 

techniques.21,25,27 According to preceding research, the random forest technique was one 

of the most popular machine learning methods. Recently, an advanced machine learning 

method called “deep learning” has been receiving the spotlight.23 However, the first step 

towards applying this latest method to the automated cephalometric analysis system is 
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just recently being taken.21  

Currently available automated landmark detection solutions previously focused on a 

limited set of skeletal landmarks, less than 20, limiting its application either in 

determining precise anatomical structures or in providing soft-tissue information.21,25-27 

Cephalometric landmarks are not solely used for cephalometric analysis for skeletal 

characteristics. A much greater number of both skeletal- and soft-tissue landmarks are 

necessary for evaluation, treatment planning, and predicting treatment outcomes. It has 

repeatedly been emphasized that when a greater number of anatomic landmark locations 

are used, a more accurate prediction of treatment outcome will result.19,29-32 In order to 

effectively apply automatic cephalometrics in clinical practice, the computational 

performance would also be an important factor, especially when the system has to deal 

with a large number of landmarks to be identified. Previous research revealed that the 

systems based on the random forest method detected 19 landmarks in several seconds.27 

Recently, one of the deep learning methods, You-Only-Look-Once (YOLO) has shown to 

require shorter time in detecting objects.33 A comparison among the latest machine 

learning algorithms in terms of computational efficiency might be of interest to clinical 

orthodontists. 

The purpose of this study was to compare accuracy and computational performance of two 

latest machine learning methods for automatic identification of cephalometric landmarks. 

This study applied two different algorithms in identifying 80 landmarks: 1) YOLO version 

3 (YOLOv3) based method with modification,33,34 and 2) the Single Shot Detector (SSD) 
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based method.35 The null hypothesis was that there would be no difference in accuracy and 

computational performance between the two automated landmark identification systems. 
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II. MATERIALS AND METHODS 

1. Subjects 

A total of 1,311 lateral cephalometric radiograph images were selected and downloaded 

from the archive of Seoul National University Dental Hospital Picture Aided 

Communication System Server (INFINITT Healthcare Co., Ltd., Seoul, Korea). In later 

stages, 1,028 images were randomly selected as learning data, and the remaining 283 

images played a role as new test data. Images of patients with growing capacity, fixed 

orthodontic appliances, massive dental prostheses, and/or surgical bone plates were all 

included. The exclusion criteria were only limited to extremely poor quality images that 

made landmark identification practically impossible. Table 1 provides further information 

of study subjects. The institutional review board for the protection of human subjects 

reviewed and approved the research protocol (institutional review board numbers, S-D 

2018010 & ERI 19007). 

 

2. Manual identification of cephalometric landmarks  

Out of 1,311 lateral cephalometric images, a total of 80 landmarks including 2 vertical 

reference points that were located on the free-hanging metal chain on the right side, 46 

skeletal, and 32 soft-tissue landmarks (Figure 1) were manually identified by a single 

examiner with over 28 years of clinical orthodontic experience. A modification of a 

commercial cephalometric analysis software (V-Ceph version 8, Osstem Implant Co. Ltd, 

Seoul, Korea) was used to digitalize the records for the 80 landmarks. Among them, 27 
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were arbitrary landmarks to render smooth line drawing of anatomic structures, and 53 

were conventional landmarks which have been well-accepted in clinical orthodontic 

practice (Table 2). A 30×30 pixel region was used as the label during the annotation 

process. 

 

3. Two Deep Learning Systems  

Two systems were built on a server running Ubuntu 18.04.1 LTS OS with a Tesla V100 

GPU acceleration card (NVIDIA Corp., Santa Clara, CA). One system was based on 

YOLOv3,34 the other one was based on SSD.35 Learning data (N = 1,028) trained the two 

machine learning algorithms. Manually recorded location data of 80 landmarks served as 

standardized inputs in this learning process.  

The target image was resized to 608×608 pixels from the original size of 1,670×2,010 

pixels for optimal deep learning. One millimeter was equal to 6.7 pixels. While learning, 

each image along with its corresponding landmark labels was then passed through 

convolutional neural network (CNN) architecture for both YOLOv3 and SSD. When a 

previously unseen image was tested, the trained algorithms would automatically find each 

landmark with the highest probability through 3 different detections. Through the process 

of merging and selection of the highest probability of a location, most of the 80 

landmarks were successfully identified. When the system failed to detect the most 

probable point for a landmark, the supplementary function used the pre-recorded relative 

coordinate information to automatically identify the missing landmark. The process was 

applied equally for both algorithms.  
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4. Test Procedures and Comparisons between the two systems 

To test accuracy and computational efficiency between the two systems, 283 test data that 

were not included in the learning data were used.  

The accuracy of the two systems are reported as point-to-point errors that were calculated 

as the absolute distance value between the reference position and the corresponding 

automatically identified landmarks.  

To visualize and evaluate errors, 2-dimensional scattergrams and 95% confidence ellipses 

based on chi-square distribution36-38 for each landmark were depicted.  

To follow the format of previous accuracy reports, thereby making analogous 

comparisons with previous results possible, the successful detection rates (SDR) for 2, 

2.5-, 3, and 4 mm ranges were calculated for 19 landmarks that were previously utilized 

in the literature.21  

Computational performances were reported as the mean running time required to identify 

80 landmarks of an image under this study’s laboratory conditions. 

Figure 2 summarizes the overall experimental design of the current investigation.  

The differences in the test errors between YOLOv3 and SSD were compared by the t-test 

at the provability of 0.05 with the Bonferroni correction of alpha errors. All of the 

statistical analyses were performed by Language R (Vienna, Austria).39   
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III. RESULTS 

YOLOv3 algorithm outperformed SSD in accuracy for 38/80 landmarks. The other 42/80 

landmarks did not show statistically significant difference between the two methods. 

None of the landmarks were found to be more accurately identified by the SSD method 

(Table 3 and Figure 3). 

When compared with the top benchmark in the literature to date so far,21 YOLOv3 

showed approximately 5% higher SDR in all ranges (Figure 4). 

The error scattergams revealed that plots of YOLOv3 showed not only a smaller error 

range, but also a more isotropic tendency than SSD did. Among the scattergrams, some 

landmarks were detected by YOLOv3 with smaller error range (Figure 5 C, Q, R). Some 

landmarks were detected by YOLOv3 with less biased tendency (Figure 5 E, F, H, I, J, 

K). Some landmarks revealed to have similar error distribution (Figure 5 O, P). 

However, most of the figures show YOLOv3 has not only smaller ellipses in size but also 

a more homogenous distribution of detecting errors irrespective of the direction (Figure 5 

A, B, D, G, L, M, N). The latter can be seen by a more circular shape of the ellipses of 

YOLOv3, while SSD has crushed-shaped ellipses. 

The mean time spent in identification and visualization of the 80 landmarks per an image 

was recorded as 0.05 and 2.89 seconds for YOLOv3 and SSD, respectively.   
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IV. DISCUSSION 

The present study was performed to investigate which kind of latest deep learning method 

would produce the most accurate results in automatically identifying cephalometric 

landmarks. Applying artificial intelligence techniques to routine clinical procedures is 

gaining global attention in medical fields.1-3 Among these, automatic cephalometric 

landmark identification and analysis is the most popular topic in orthodontics. Although 

3-dimensional images have gained popularity these days,6,40-43 2-dimensional 

cephalometric analysis is still a vital tool in orthodontic diagnosis and treatment planning 

since it provides information regarding a patient's skeletal- and soft tissue. Nevertheless, 

until the mid-2000s, the developed algorithms did not seem accurate enough for clinical 

purposes.24 More recently, annual global competitions revealed impressive improvements 

in the accuracy of automated cephalometric landmark identification.21,26,27 In fact, recent 

approaches based on algorithms showed accuracy comparable to an experienced 

orthodontist.25,27 The result of the present study demonstrated that YOLOv3 was better 

than SSD. Furthermore, the accuracy results of the present study showed that YOLOv3 

was better than other top benchmarks to date so far.21,26,27 Among the previous literature, 

the most accurate result was produced after applying convolutional neural networks 

(CNN) which identified 19 landmarks.21 The present study identified significantly more, 

80 landmarks that can readily be extrapolated for clinical use in predicting treatment 

outcomes.29-32 For clinical purposes, data from cephalometric landmark identification 

could readily be extended even to predict and visualize soft tissue changes after the 

treatment. For the aforementioned purposes, the previous international competitions 
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dealing with 19 landmarks might not meet the clinical needs in orthodontic practice.26,27  

Since the random forest method was first introduced,44 the algorithm has become one of 

the most popular for developing automatic cephalometric landmark identification 

systems.25-27,45,46 During developing a prediction algorithm, there could be an issue that 

the algorithm fits well in the training data, but poor in the new testing data. This 

phenomenon is known as overfitting.47 While using the random forest method has 

advantages, such as less overfitting issues, there also exists a limitation: it is difficult to 

predict a response value out of the range of the training set and it is sensitive to the image 

quality and size.44,48 The origin of the deep learning method dates back to 1980s.49 Back 

then, the overall computational performance was so poor that its application to daily life 

was not possible. However, continuous developments in software and hardware made the 

technology evolving.50,51 In 2012, among those deep learning methods, the convolutional 

neural network model (CNN) showed outstanding performance in an image classification 

task.52 Consequently, applications of deep learning models to overall technology are 

becoming reality.23 Papers focusing on one of them, CNN, have been rapidly 

accumulating.1,4,21 Regarding automated cephalometric landmark identification, efforts to 

apply CNN have begun relatively recently.21 Therefore, application and comparison of 

latest deep learning models in automatic landmark identification system might be a 

valuable addition to our knowledge base.  

In 2016, with the aim of real-time object detection in testing images, two novel 

algorithms came out, namely YOLO and SSD.33,35 While both of them had CNN 

architectures, additional simplifying mechanisms shortened the detecting process and 
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outperformed region-based convolutional neural network (R-CNN) based methods in 

computational performance. YOLO uses CNN to reduce the spatial dimension detection 

box. It performs a linear regression to make boundary box prediction. The purported 

advantage of YOLO is fast computation and generalization. YOLO based machines can 

detect objects on artwork samples even if they were trained by a natural image set. We 

expected this same characteristic to be advantageous for automated cephalometric 

analysis when applied to radiographs with various image size and quality. YOLO needs 

GPUs, but due to its inherent ability to extract features automatically for learning, it is 

very robust.33,34  

The accuracy measured by point-to-point errors showed that none of the landmarks was 

identified more accurately by SSD than by YOLOv3. On the other hand, the SSD system 

revealed to have accuracy inferior to pre-existing state-of-the-art works.21,27 In the case of 

SSD, the size of the detecting box is usually fixed and used for simultaneous size 

detection. Therefore, the purported advantage of SSD is known to be the simultaneous 

detection of objects with various sizes. However, in landmark identification of 

cephalometric radiographs, the size of the detecting box is generally fixed. This was 

conjectured to be one reason for the poorer detection performance of SSD. A well-known 

limitation of both YOLO and SSD was that their accuracy was inferior to other methods 

when the size of objects is small. However, in the latest version of YOLO (YOLOv3) 

claimed to improve its accuracy to the level of other pre-existing methods while keeping 

the aforementioned advantages.34 

Some of the landmarks are prone to error in the vertical direction while others show 
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greater errors in the horizontal direction.24,53 Hence evaluating the accuracy based only on 

the linear distance might not be informative enough. Therefore, 2-dimensional 

scattergrams and 95% confidence ellipses of 80 landmarks were depicted. As shown in 

Figure 5 A~R, YOLOv3 revealed to have ellipses with smaller sizes and more circular 

shapes. In other words, YOLOv3 was not just more accurate but also resulted in a more 

isotropic shape of error patterns than SSD. This feature might be another advantage of 

YOLOv3. 

YOLOv3 showed approximately 5% higher accuracy compared with the top benchmarks 

in the literature.21 There could be an argument that the testing set was different from the 

pre-existing research. In this study, however, the test images were selected from patients 

who had severe type of either mandibular deficiency, prognathism, or facial asymmetry. 

They had undergone orthognathic surgeries eventually. The descriptive summary in Table 

1 reflect and match well with the current trend of patients seeking a university affiliated 

dental healthcare institution that has a high proportion of orthodontic patients with severe 

skeletal discrepancies.54,55 Even with a more difficult condition rather than good looking 

subjects, the result seemed satisfactory. 

The computational time of an automated cephalometric landmark identification system 

might be a concern to clinicians. The mean time spent per image was 0.05 seconds for 

YOLOv3 and 2.89 seconds for SSD under this study’s laboratory conditions. Even with 

an extensive number of landmarks to be identified, both algorithms showed excellent 

speed. Based on these evaluations, YOLOv3 seemed to be promising as a fully automated 

cephalometric landmark identification system for use in clinical practice.  
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The application of artificial intelligence in automated cephalometric landmark 

identification has gained global attention and is certainly not confined to orthodontics 

only. Machine learning systems may lessen the burden of the clinician and alleviate 

human errors in cephalometric landmark detection and reduce the time required for 

preparing orthodontic diagnosis. By gathering radiographic data automatically, the 

YOLOv3 method may also help reduce human tasks and the time required for both 

research and clinical purposes.  

One strength of the present study is that the data included the largest number of learning 

(n = 1,028) and test data (n = 283) ever investigated. The number of cephalometric 

landmarks was also the greatest, 80 landmarks that included those on the soft tissue from 

glabella to the terminal point on the neck. 
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VI. CONCLUSIONS 

1. YOLOv3 showed higher accuracy in automated cephalometric landmark 

identification and the accuracy was approximately 5% higher accuracy compared with 

top benchmarks in the literature. 

2. YOLOv3 outperformed SSD in the accuracy and computational time. 

3. YOLOv3 also demonstrated a more isotropic form of detection errors than SSD did. 

4. Between the two algorithms applied, YOLOv3 seemed to be a promising method for 

used as an automated cephalometric landmark identification system. 
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Table 1.  Descriptive Summary of Study Data 

Study Variables  
N (%) 

Learning data  1,028 (100%) 

   

     Gender Female 507 (49.3%) 

   

     Skeletal classification Class II 178 (17.3%) 

 Class III 719 (70.0%) 

   

Test data  283 (100%) 

   

     Gender Female 146 (51.6%) 

   

     Skeletal classification Class II 32 (11.3%) 

 Class III 251 (88.7%) 

   

     Image quality Good 248 (87.6%) 

 Fair 13 (4.6%) 

 Poor 22 (7.8%) 

   

     Fixed Orthodontic appliances Yes 140 (49.5%) 
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Table 2.  List of 80 Cephalometric Landmarks Identified in the Present Study 

 

Landmark 

number 
Name 

Landmark 

number 
Name 

1 Vertical reference point 1 (arbitrary) 41 Pterygoid 

2 Vertical reference point 2 (arbitrary) 42 Basion 

3 Sella 43 U6 crown mesial edge 

4 Nasion 44 U6 mesiobuccal cusp 

5 Nasal tip  45 U6 root tip 

6 Porion 46 L6 crown mesial edge 

7 Orbitale 47 L6 mesiobuccal cusp 

8 Key ridgea 48 L6 root tip 

9 Key ridge contour intervening point 1a 49 glabella 

10 Key ridge contour intervening point 2a 50 glabella contour intervening pointa 

11 Key ridge contour intervening point 3a 51 nasion 

12 Anterior nasal spine 52 nasion contour intervening point 1a 

13 Posterior nasal spine 53 nasion contour intervening point 2a 

14 Point A 54 supranasal tip 

15 Point A contour intervening pointa 55 pronasale 

16 Supradentale 56 columella 

17 U1 root tip  57 columella contour intervening pointa 

18 U1 incisal edge 58 subnasale 

19 L1 incisal edge 59 cheekpoint 

20 L1 root tip 60 point A 

21 Infradentale 61 superior labial sulcus 

22 Point B contour intervening pointa 62 labiale superius 

23 Point B 63 upper lip 

24 Protuberance menti 64 upper lip contour intervening pointa 

25 Pogonion 65 stomion superius 

26 Gnathion 66 stomion inferius 

27 Menton 67 lower lip contour intervening pointa 

28 Gonion, constructed 68 lower lip 

29 Mandibular body contour intervening point 1a 69 labiale inferius 

30 Mandibular body contour intervening point 2a 70 inferior labial sulcus 

31 Mandibular body contour intervening point 3a 71 point B 

32 Gonion, anatomic 72 protuberance menti 

33 Gonion contour intervening point 1a 73 pogonion 

34 Gonion contour intervening point 2a 74 gnathion 

35 Articulare 75 menton 

36 Ramus contour intervening point 1a 76 menton contour intervening pointa 

37 Ramus contour intervening point 2a 77 cervical point 

38 Condylion 78 cervical point contour intervening point 1a 

39 Ramus.tip 79 cervical point contour intervening point 2a 

40 Pterygomaxillary fissure 80 terminal point 

a arbitrary landmarks to render smooth line drawing of anatomic structures. Landmarks #3 - #48 are 

skeletal landmarks and #49 - #80 are soft tissue landmakrs. 
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Table 3.  Comparison of Accuracy in Terms of the Point-to-Point Errors between the 

You-Only-Look-Once version 3 (YOLOv3) and Single Shot Detector (SSD) methods 

Landmarks  YOLOv3  SSD P valuea More Accurate 

Method Mean (pixel) SD (pixel)  Mean (pixel) SD (pixel) 

Sella 14.9  79.4   25.6  76.6  ~1.0000  

Nasion 9.0  7.7   40.9  159.5  .0698  

Nasal tip  8.9  6.1   94.3  316.9  < .0001 YOLOv3 

Porion 11.3  8.7   33.1  69.3  < .0001 YOLOv3 

Orbitale 8.6  5.3   31.1  133.0  .3900  

ANS 15.8  13.2   366.2  497.6  < .0001 YOLOv3 

PNS 9.1  7.3   29.0  86.1  < .0001 YOLOv3 

Point A 13.3  9.2   244.7  458.9  < .0001 YOLOv3 

U1 root tip  15.6  9.6   164.4  414.0  < .0001 YOLOv3 

U1 incisal edge 7.8  4.9   396.5  584.8  < .0001 YOLOv3 

L1 incisal edge 6.8  4.9   27.1  142.5  ~1.0000  

L1 root tip 15.2  8.9   42.9  158.6  .2956  

Point B 14.8  10.3   83.2  260.3  .0012 YOLOv3 

PM 11.9  8.9   45.1  181.6  .1912  

Pogonion 7.9  6.9   46.9  209.0  .1511  

Gnathion 8.0  5.6   50.7  259.3  .4766  

Menton 8.3  5.0   29.5  109.8  .1049  

Gonion c 15.8  8.7   88.2  111.0  < .0001 YOLOv3 

Gonion a 12.7  8.4   102.9  135.9  < .0001 YOLOv3 

Articulare 6.7  4.7   14.9  11.3  < .0001 YOLOv3 

Condylion 11.2  8.3   22.7  56.2  .0591  

Pterygoid 13.1  36.3   18.7  49.1  ~1.0000  

Basion 11.8  9.0   18.0  20.3  < .0001 YOLOv3 

glabella 11.1  8.7   59.5  243.0  .0738  

nasion 10.8  7.8   54.7  208.7  < .0001 YOLOv3 

supranasal tip 10.0  7.4   74.9  300.1  < .0001 YOLOv3 

pronasale 7.4  5.6   40.5  187.6  .2559  

columella 9.2  7.5   33.7  103.3  < .0001 YOLOv3 

subnasale 8.0  8.7   360.4  613.8  < .0001 YOLOv3 

point A 10.0  6.7   71.2  311.5  .0856  

superior labial 

sulcus 

11.4  8.9   64.7  278.0  .1133  

labium superius 9.2  6.5   46.6  211.1  .2518  

upper lip 6.3  4.6   33.3  133.7  .0619  

stomion 

superius 

10.4  7.6   425.6  648.8  < .0001 YOLOv3 

stomion inferius 11.0  10.1   24.4  78.5  .3807  

lower lip 5.9  3.8   86.5  132.2  < .0001 YOLOv3 

labium inferius 8.3  5.9   51.0  136.5  < .0001 YOLOv3 

point B 8.8  6.2   27.0  114.1  .6244  

Protuberance 

menti 

10.0  8.0   39.1  172.9  .4017  

pogonion 10.6  11.8   57.7  254.9  .1648  

gnathion 16.3  15.6   35.2  91.3  .0525  

menton 13.5  14.3   52.6  250.1  .7347  
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a results from t-tests with the Bonferroni correction of alpha errors. SD, standard deviation. The 

landmarks included in this table were chosen to concisely describe the results. Upper case letters 

were used to indicate skeletal landmarks, and lower case letters were used to indicate soft tissue 

landmarks.  
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Figure 1.  An image composed of the radiograph with the cephalometric landmarks used 

in this study. (Yellow dots) Landmark-specific information are summarized in Table 1. For 

the hard tissue landmarks, upper-case letters were used. For the soft tissue landmarks, 

lower-case letters were used.   
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Figure 2.  Diagram showing the flow of the automated landmark identification system. 

Each images were used for training through the convolutional neural network (CNN) 

architecture. The trained algorithm would automatically find each landmarks with the 

highest probability through 3 different detection size. 
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Figure 3.  Point plots of landmark-specific mean point-to-point error from the You-Only-

Look-Once version 3 (YOLOv3, red) and Single Shot Multibox Detector (SSD, blue) 

methods in automated landmark identification. All the measurements were calculated by 

pixel. The plot indicates that YOLOv3 was more accurate than SSD in general. 
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Figure 4.  Success detection rates (SDR) of precision ranges, including 2 mm (blue), 2.5 

mm (orange), 3 mm (gray) and 4 mm (yellow), comparing with the top accuracy results 

in the previous literature21 and those from the proposed YOLOv3. The proposed YOLOv3 

shows approximately 5% higher success detection rates for all ranges. 
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Figure 5, A. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Articulare”. All 

the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed not only a smaller error range, but also a more isotropic tendency than 

SSD did. 
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Figure 5, B. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Basion”. All the 

measurements were calculated by pixel. The plots clearly indicate that plots of YOLOv3 

showed not only a smaller error range, but also a more isotropic tendency than SSD did. 
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Figure 5, C. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “columella”. All 

the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed a smaller error range than SSD did. 
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Figure 5, D. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Condylion”. All 

the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed not only a smaller error range, but also a more isotropic tendency than 

SSD did. 
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Figure 5, E. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Gonion, 

anatomic”. All the measurements were calculated by pixel. The plots clearly indicate that 

plots of YOLOv3 showed a smaller error range than SSD did. The center of the error of 

SSD was located distant from the origin (0,0). 
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Figure 5, F. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Gonion, 

constructed”. All the measurements were calculated by pixel. The plots clearly indicate 

that plots of YOLOv3 showed a smaller error range than SSD did. The center of the 

ellipse of SSD was located distant from the origin (0,0). 
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Figure 5, G. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “L1 incisor edge”. 

All the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed not only a smaller error range, but also a more isotropic tendency than 

SSD did. 
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Figure 5, H. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “L1 root tip”. All 

the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed a smaller error range than SSD did. The center of the ellipse of SSD 

was located distant from the origin (0,0). 
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Figure 5, I. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “labiale inferius”. 

All the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed a smaller error range than SSD did. The center of the ellipse of SSD 

was located distant from the origin (0,0). 
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Figure 5, J. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “labiale superius”. 

All the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed a smaller error range than SSD did. The center of the ellipse of SSD 

was located distant from the origin (0,0). 
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Figure 5, K. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “lower lip”. All 

the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed a smaller error range than SSD did. The center of the ellipse of SSD 

was located distant from the origin (0,0). 
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Figure 5, L. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Orbitale”. All the 

measurements were calculated by pixel. The plots clearly indicate that plots of YOLOv3 

showed not only a smaller error range, but also a more isotropic tendency than SSD did. 
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Figure 5, M. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Porion”. All the 

measurements were calculated by pixel. The plots clearly indicate that plots of YOLOv3 

showed not only a smaller error range, but also a more isotropic tendency than SSD did. 
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Figure 5, N. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Posterior nasal 

spine”. All the measurements were calculated by pixel. The plots clearly indicate that 

plots of YOLOv3 showed not only a smaller error range, but also a more isotropic 

tendency than SSD did. 
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Figure 5, O. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Posterior nasal 

spine”. All the measurements were calculated by pixel. The plots indicate that plots of 

YOLOv3 showed no significant difference compared to SSD. 
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Figure 5, P. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “Sella”. All the 

measurements were calculated by pixel. The plots indicate that plots of YOLOv3 showed 

no significant difference compared to SSD. 
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Figure 5, Q. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “stomion 

inferius”. All the measurements were calculated by pixel. The plots clearly indicate that 

plots of YOLOv3 showed a smaller error range than SSD did. 
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Figure 5, R. Error scattergrams and 95% confidence ellipses for the error that were 

obtained from the YOLOv3 (red) and SSD (blue) methods of the point “upper lip”. All 

the measurements were calculated by pixel. The plots clearly indicate that plots of 

YOLOv3 showed a smaller error range than SSD did. 
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국문초록 

두부계측방사선 사진 계측점 자동 식별의 최신 기계 학습 알

고리즘 간 정확도 및 연산 성능 비교 연구 – YOLOv3 vs SSD 

박 지 훈 

 

서울대학교 대학원 치의과학과 치과교정학 전공 

(지도교수: 이 신 재) 

 

연구 목적: 본 연구의 목적은 두부계측방사선 사진 계측점 자동 식별에 있어, 

최근 개발된 두 가지 딥 러닝 알고리즘의 정확도와 연산 성능을 비교하는 

것이다. 본 연구에서는 다음 두 가지의 알고리즘을 계측점 자동 식별에 

적용하였다. 1) You-Only-Look-Once version 3 (YOLOv3) 및 2) the Single Shot 

Detector (SSD). 

재료 및 방법: 총 1,028 개의 두부계측방사선 사진 영상이 YOLOv3 와 

SSD 방식의 학습 데이터로 사용되었다. 대상 계측점은 80개였다. 학습 과정을 

거친 후, 각각의 알고리즘을 새로운 283 개의 테스트 영상에서 비교 

분석하였다. 정확도는 1) 평균적인 point-to-point error, 2) success detection rate 

(SDR), 그리고 3) 2 차원 평면에서 시각화한 scattergram 을 기반으로 평가했다. 

각각의 알고리즘의 평균 연산 시간 역시 기록하였다. 

결과: YOLOv3 는 SSD 에 비해 총 38/80 개의 계측점에서 더 높은 정확도를 

보였다. 나머지 42/80 개의 계측점은 두 알고리즘 간에 정확도에 있어 
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통계적으로 유의미한 차이를 나타내지 않았다. Error plot 에서는 YOLOv3 가 

SSD 에 비해서 error 의 범위가 더 작을 뿐 아니라, 2 차원 평면에서 방향성의 

영향을 덜 받는 것으로 나타났다. 하나의 영상에서 계측점을 자동 식별하는데 

소요된 평균 시간은 YOLOv3 와 SSD 가 각각 0.05 초, 2.89 초로 기록되었다. 

본 연구에서 YOLOv3 는 기존 문헌에서 최상의 정확도를 기록했던 연구에 

비해 약 5% 가량 높은 정확도를 보였다. 

결론: 본 연구를 통해 적용된 두 개의 알고리즘 중, YOLOv3 가 

두부계측방사선 사진 계측점 완전 자동 식별의 임상적인 적용에 가능성 높은 

알고리즘임을 확인하였다. 

 

 

 

 

 

 

 

 

 

 

주요어: 자동 식별, 두부계측방사선 사진 계측점, 딥 러닝, 기계 학습, 인공 

지능, YOLO, SSD 
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