creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

%) 9] SPUPALE 9] i

Comparison of accuracy and computational
performance between the latest machine
learning algorithms for automated

cephalometric landmark identification

—YOLOvV3 vs SSD

FRAZYAA A ASY AHE AEe] Aa 71

!
g,

~

— YOLOv3 vs SSD

2019d 8¢



%] o] BHHkAL S} ] =
Comparison of accuracy and computational performance
between the latest machine learning algorithms for
automated cephalometric landmark identification

—YOLOvV3 vs SSD

A o] Al A

o] =EE AojstuAl 9RO AEF
2019 d 6 €

9 9 (a)
9] 914 (a)
4 9 (a)
4 9 (a)




- ABSTRACT -

Comparison of accuracy and computational performance between
the latest machine learning algorithms for automated

cephalometric landmark identification — YOLOv3 vs SSD

Ji-Hoon Park, BS, DDS

Department of Orthodontics, Graduate School, Seoul National University

(Directed by Professor Shin-Jae Lee, DDS, MSD, PhD, PhD)

Introduction: The purpose of this study was to compare two of the latest deep learning
algorithms for automatic identification of cephalometric landmarks in their accuracy and
computational efficiency. This study uses two different algorithms for automated
cephalometric landmark identification with an extended number of landmarks: 1) You-
Only-Look-Once version 3 (YOLOV3) based method with modification, and 2) the Single

Shot Detector (SSD) based method.

Materials and methods: A total of 1,028 cephalometric radiographic images were selected
as learning data that trained YOLOv3 and SSD methods. The number of target labelling
was 80 landmarks. After the deep learning process, the algorithms were tested using a new

test data set comprised of 283 images. The accuracy was determined by measuring the



mean point-to-point error, success detection rate (SDR), and visualized by drawing 2-
dimensional scattergrams. Computational time of both algorithms were also recorded.

Results: YOLOv3 algorithm outperformed SSD in accuracy for 38/80 landmarks. The
other 42/80 landmarks did not show a statistically significant difference between YOLOvV3
and SSD. Error plots of YOLOv3 showed not only a smaller error range, but also a more
isotropic tendency. Mean computational time spent per image was 0.05 seconds and 2.89
seconds for YOLOv3 and SSD, respectively. YOLOv3 showed approximately 5% higher

accuracy compared with the top benchmarks in the literature.

Conclusions: Between the two algorithms applied, YOLOvV3 seems to be promising as a

fully automated cephalometric landmark identification system for use in clinical practice.

Key Words: Automated identification, cephalometric landmark, deep learning, machine
learning, artificial intelligence, YOLO, SSD
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|. INTRODUCTION

The use of machine learning techniques in the field of medical imaging is rapidly
evolving.!* Attempts to apply machine learning algorithms in orthodontics are also
increasing. Some of the major applications currently utilized are automated diagnostics,’
data mining,®’ and landmark detection.®!° Inconsistency in landmark identification has
been known to be a major source of error in cephalometric analysis.!!"!* The diagnostic
value of analysis depends on the accuracy and the reproducibility of landmark
identification.'*!” The most recent studies in orthodontics, however, still rely on
conventional cephalometric analysis depending on human tasks.®!3-2° A completely
automated approach has thus gained attention with the aim of alleviating human error due

to the analyst’s subjectivity and reducing the tediousness of the task.?!-%’

Since the first introduction of an automated landmark identification method in the mid-
1980s,%® numerous methods of artificial intelligence techniques have been suggested.
However, in the past, the various approaches did not seem to be accurate enough for use
in clinical practice.?* Rapidly evolving newer algorithms and increasing computational
power are providing improved accuracy, reliability, and efficiency. Recent approaches for
fully automated cephalometric landmark identification have shown significant
improvement in accuracy and are raising expectations for daily use of these automatic
techniques.?!?>27 According to preceding research, the random forest technique was one
of the most popular machine learning methods. Recently, an advanced machine learning
method called “deep learning” has been receiving the spotlight.”> However, the first step

towards applying this latest method to the automated cephalometric analysis system is



just recently being taken.?!

Currently available automated landmark detection solutions previously focused on a
limited set of skeletal landmarks, less than 20, limiting its application either in
determining precise anatomical structures or in providing soft-tissue information.*!->>%’
Cephalometric landmarks are not solely used for cephalometric analysis for skeletal
characteristics. A much greater number of both skeletal- and soft-tissue landmarks are
necessary for evaluation, treatment planning, and predicting treatment outcomes. It has
repeatedly been emphasized that when a greater number of anatomic landmark locations
are used, a more accurate prediction of treatment outcome will result.!**-3? In order to
effectively apply automatic cephalometrics in clinical practice, the computational
performance would also be an important factor, especially when the system has to deal
with a large number of landmarks to be identified. Previous research revealed that the
systems based on the random forest method detected 19 landmarks in several seconds.?’
Recently, one of the deep learning methods, You-Only-Look-Once (YOLO) has shown to
require shorter time in detecting objects.** A comparison among the latest machine

learning algorithms in terms of computational efficiency might be of interest to clinical

orthodontists.

The purpose of this study was to compare accuracy and computational performance of two
latest machine learning methods for automatic identification of cephalometric landmarks.
This study applied two different algorithms in identifying 80 landmarks: 1) YOLO version

3 (YOLOV3) based method with modification,*** and 2) the Single Shot Detector (SSD)



based method.*® The null hypothesis was that there would be no difference in accuracy and

computational performance between the two automated landmark identification systems.
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|l. MATERIALS AND METHODS

1. Subjects

A total of 1,311 lateral cephalometric radiograph images were selected and downloaded
from the archive of Seoul National University Dental Hospital Picture Aided
Communication System Server (INFINITT Healthcare Co., Ltd., Seoul, Korea). In later
stages, 1,028 images were randomly selected as learning data, and the remaining 283
images played a role as new test data. Images of patients with growing capacity, fixed
orthodontic appliances, massive dental prostheses, and/or surgical bone plates were all
included. The exclusion criteria were only limited to extremely poor quality images that
made landmark identification practically impossible. Table 1 provides further information
of study subjects. The institutional review board for the protection of human subjects
reviewed and approved the research protocol (institutional review board numbers, S-D

2018010 & ERI 19007).

2. Manual identification of cephalometric landmarks

Out of 1,311 lateral cephalometric images, a total of 80 landmarks including 2 vertical
reference points that were located on the free-hanging metal chain on the right side, 46
skeletal, and 32 soft-tissue landmarks (Figure 1) were manually identified by a single
examiner with over 28 years of clinical orthodontic experience. A modification of a
commercial cephalometric analysis software (V-Ceph version §, Osstem Implant Co. Ltd,

Seoul, Korea) was used to digitalize the records for the 80 landmarks. Among them, 27



were arbitrary landmarks to render smooth line drawing of anatomic structures, and 53
were conventional landmarks which have been well-accepted in clinical orthodontic
practice (Table 2). A 30x30 pixel region was used as the label during the annotation

process.

3. Two Deep Learning Systems

Two systems were built on a server running Ubuntu 18.04.1 LTS OS with a Tesla V100
GPU acceleration card (NVIDIA Corp., Santa Clara, CA). One system was based on
YOLOV3,** the other one was based on SSD.** Learning data (N = 1,028) trained the two
machine learning algorithms. Manually recorded location data of 80 landmarks served as

standardized inputs in this learning process.

The target image was resized to 608xX608 pixels from the original size of 1,670x2,010
pixels for optimal deep learning. One millimeter was equal to 6.7 pixels. While learning,
each image along with its corresponding landmark labels was then passed through
convolutional neural network (CNN) architecture for both YOLOv3 and SSD. When a
previously unseen image was tested, the trained algorithms would automatically find each
landmark with the highest probability through 3 different detections. Through the process
of merging and selection of the highest probability of a location, most of the 80
landmarks were successfully identified. When the system failed to detect the most
probable point for a landmark, the supplementary function used the pre-recorded relative
coordinate information to automatically identify the missing landmark. The process was

applied equally for both algorithms.



4. Test Procedures and Comparisons between the two systems

To test accuracy and computational efficiency between the two systems, 283 test data that

were not included in the learning data were used.

The accuracy of the two systems are reported as point-to-point errors that were calculated
as the absolute distance value between the reference position and the corresponding

automatically identified landmarks.

To visualize and evaluate errors, 2-dimensional scattergrams and 95% confidence ellipses

based on chi-square distribution***® for each landmark were depicted.

To follow the format of previous accuracy reports, thereby making analogous
comparisons with previous results possible, the successful detection rates (SDR) for 2,
2.5-, 3, and 4 mm ranges were calculated for 19 landmarks that were previously utilized

in the literature.?!

Computational performances were reported as the mean running time required to identify

80 landmarks of an image under this study’s laboratory conditions.

Figure 2 summarizes the overall experimental design of the current investigation.

The differences in the test errors between YOLOvV3 and SSD were compared by the #-test
at the provability of 0.05 with the Bonferroni correction of alpha errors. All of the

statistical analyses were performed by Language R (Vienna, Austria).*
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lll. RESULTS

YOLOV3 algorithm outperformed SSD in accuracy for 38/80 landmarks. The other 42/80
landmarks did not show statistically significant difference between the two methods.
None of the landmarks were found to be more accurately identified by the SSD method

(Table 3 and Figure 3).

When compared with the top benchmark in the literature to date so far,! YOLOv3

showed approximately 5% higher SDR in all ranges (Figure 4).

The error scattergams revealed that plots of YOLOvV3 showed not only a smaller error
range, but also a more isotropic tendency than SSD did. Among the scattergrams, some
landmarks were detected by YOLOvV3 with smaller error range (Figure 5 C, Q, R). Some
landmarks were detected by YOLOvV3 with less biased tendency (Figure 5 E, F, H, 1, J,
K). Some landmarks revealed to have similar error distribution (Figure 5 O, P).
However, most of the figures show YOLOV3 has not only smaller ellipses in size but also
a more homogenous distribution of detecting errors irrespective of the direction (Figure 5
A, B, D, G, L, M, N). The latter can be seen by a more circular shape of the ellipses of

YOLOV3, while SSD has crushed-shaped ellipses.

The mean time spent in identification and visualization of the 80 landmarks per an image

was recorded as 0.05 and 2.89 seconds for YOLOV3 and SSD, respectively.



IV. DISCUSSION

The present study was performed to investigate which kind of latest deep learning method
would produce the most accurate results in automatically identifying cephalometric
landmarks. Applying artificial intelligence techniques to routine clinical procedures is
gaining global attention in medical fields.!* Among these, automatic cephalometric
landmark identification and analysis is the most popular topic in orthodontics. Although
3-dimensional images have gained popularity these days,®** 2-dimensional
cephalometric analysis is still a vital tool in orthodontic diagnosis and treatment planning
since it provides information regarding a patient's skeletal- and soft tissue. Nevertheless,
until the mid-2000s, the developed algorithms did not seem accurate enough for clinical
purposes.?* More recently, annual global competitions revealed impressive improvements
in the accuracy of automated cephalometric landmark identification.?!*¢?7 In fact, recent
approaches based on algorithms showed accuracy comparable to an experienced
orthodontist.”>*” The result of the present study demonstrated that YOLOv3 was better
than SSD. Furthermore, the accuracy results of the present study showed that YOLOv3
was better than other top benchmarks to date so far.?"*¢?” Among the previous literature,
the most accurate result was produced after applying convolutional neural networks
(CNN) which identified 19 landmarks.?! The present study identified significantly more,
80 landmarks that can readily be extrapolated for clinical use in predicting treatment
outcomes.?**? For clinical purposes, data from cephalometric landmark identification
could readily be extended even to predict and visualize soft tissue changes after the

treatment. For the aforementioned purposes, the previous international competitions



dealing with 19 landmarks might not meet the clinical needs in orthodontic practice.?*?’

Since the random forest method was first introduced,* the algorithm has become one of
the most popular for developing automatic cephalometric landmark identification
systems.?>-274346 During developing a prediction algorithm, there could be an issue that
the algorithm fits well in the training data, but poor in the new testing data. This
phenomenon is known as overfitting.*’ While using the random forest method has
advantages, such as less overfitting issues, there also exists a limitation: it is difficult to
predict a response value out of the range of the training set and it is sensitive to the image
quality and size.**** The origin of the deep learning method dates back to 1980s.*’ Back
then, the overall computational performance was so poor that its application to daily life
was not possible. However, continuous developments in software and hardware made the
technology evolving.’®>! In 2012, among those deep learning methods, the convolutional
neural network model (CNN) showed outstanding performance in an image classification
task.>? Consequently, applications of deep learning models to overall technology are
becoming reality.® Papers focusing on one of them, CNN, have been rapidly
accumulating.'*?*! Regarding automated cephalometric landmark identification, efforts to
apply CNN have begun relatively recently.?! Therefore, application and comparison of
latest deep learning models in automatic landmark identification system might be a

valuable addition to our knowledge base.

In 2016, with the aim of real-time object detection in testing images, two novel
algorithms came out, namely YOLO and SSD.**** While both of them had CNN

architectures, additional simplifying mechanisms shortened the detecting process and



outperformed region-based convolutional neural network (R-CNN) based methods in
computational performance. YOLO uses CNN to reduce the spatial dimension detection
box. It performs a linear regression to make boundary box prediction. The purported
advantage of YOLO is fast computation and generalization. YOLO based machines can
detect objects on artwork samples even if they were trained by a natural image set. We
expected this same characteristic to be advantageous for automated cephalometric
analysis when applied to radiographs with various image size and quality. YOLO needs
GPUs, but due to its inherent ability to extract features automatically for learning, it is

very robust.***

The accuracy measured by point-to-point errors showed that none of the landmarks was
identified more accurately by SSD than by YOLOvV3. On the other hand, the SSD system
revealed to have accuracy inferior to pre-existing state-of-the-art works.?!?” In the case of
SSD, the size of the detecting box is usually fixed and used for simultaneous size
detection. Therefore, the purported advantage of SSD is known to be the simultaneous
detection of objects with various sizes. However, in landmark identification of
cephalometric radiographs, the size of the detecting box is generally fixed. This was
conjectured to be one reason for the poorer detection performance of SSD. A well-known
limitation of both YOLO and SSD was that their accuracy was inferior to other methods
when the size of objects is small. However, in the latest version of YOLO (YOLOV3)
claimed to improve its accuracy to the level of other pre-existing methods while keeping

the aforementioned advantages.*

Some of the landmarks are prone to error in the vertical direction while others show

10



greater errors in the horizontal direction.?*> Hence evaluating the accuracy based only on
the linear distance might not be informative enough. Therefore, 2-dimensional
scattergrams and 95% confidence ellipses of 80 landmarks were depicted. As shown in
Figure 5 A~R, YOLOV3 revealed to have ellipses with smaller sizes and more circular
shapes. In other words, YOLOvV3 was not just more accurate but also resulted in a more
isotropic shape of error patterns than SSD. This feature might be another advantage of

YOLOV3.

YOLOV3 showed approximately 5% higher accuracy compared with the top benchmarks
in the literature.?! There could be an argument that the testing set was different from the
pre-existing research. In this study, however, the test images were selected from patients
who had severe type of either mandibular deficiency, prognathism, or facial asymmetry.
They had undergone orthognathic surgeries eventually. The descriptive summary in Table
1 reflect and match well with the current trend of patients seeking a university affiliated
dental healthcare institution that has a high proportion of orthodontic patients with severe
skeletal discrepancies.***> Even with a more difficult condition rather than good looking

subjects, the result seemed satisfactory.

The computational time of an automated cephalometric landmark identification system
might be a concern to clinicians. The mean time spent per image was 0.05 seconds for
YOLOV3 and 2.89 seconds for SSD under this study’s laboratory conditions. Even with
an extensive number of landmarks to be identified, both algorithms showed excellent
speed. Based on these evaluations, YOLOV3 seemed to be promising as a fully automated

cephalometric landmark identification system for use in clinical practice.

11
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The application of artificial intelligence in automated cephalometric landmark
identification has gained global attention and is certainly not confined to orthodontics
only. Machine learning systems may lessen the burden of the clinician and alleviate
human errors in cephalometric landmark detection and reduce the time required for
preparing orthodontic diagnosis. By gathering radiographic data automatically, the
YOLOV3 method may also help reduce human tasks and the time required for both

research and clinical purposes.

One strength of the present study is that the data included the largest number of learning
(n=1,028) and test data (n = 283) ever investigated. The number of cephalometric
landmarks was also the greatest, 80 landmarks that included those on the soft tissue from

glabella to the terminal point on the neck.

12



VI. CONCLUSIONS

YOLOvV3 showed higher accuracy in automated cephalometric landmark
identification and the accuracy was approximately 5% higher accuracy compared with

top benchmarks in the literature.

YOLOV3 outperformed SSD in the accuracy and computational time.

YOLOV3 also demonstrated a more isotropic form of detection errors than SSD did.

Between the two algorithms applied, YOLOvV3 seemed to be a promising method for

used as an automated cephalometric landmark identification system.

13
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Table 1. Descriptive Summary of Study Data

Study Variables

N (%)

Learning data

Gender

Skeletal classification

Test data

Gender

Skeletal classification

Image quality

Fixed Orthodontic appliances

Female

Class 11
Class 1l

Female

Class Il
Class 1l

Good

Fair

Poor

Yes

1,028 (100%)

507 (49.3%)

178 (17.3%)
719 (70.0%)

283 (100%)

146 (51.6%)

32 (11.3%)
251 (88.7%)

248 (87.6%)
13 (4.6%)

22 (7.8%)

140 (49.5%)
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Table 2. List of 80 Cephalometric Landmarks Identified in the Present Study

Landmark Landmark
Name Name
number number

1 Vertical reference point 1 (arbitrary) 41 Pterygoid

2 Vertical reference point 2 (arbitrary) 42 Basion

3 Sella 43 U6 crown mesial edge

4 Nasion 44 U6 mesiobuccal cusp

5 Nasal tip 45 U6 root tip

6 Porion 46 L6 crown mesial edge

7 Orbitale 47 L6 mesiobuccal cusp

8 Key ridge* 48 L6 root tip

9 Key ridge contour intervening point 1* 49 glabella

10 Key ridge contour intervening point 2* 50 glabella contour intervening point®
11 Key ridge contour intervening point 3* 51 nasion

12 Anterior nasal spine 52 nasion contour intervening point 1*
13 Posterior nasal spine 53 nasion contour intervening point 2*
14 Point A 54 supranasal tip

15 Point A contour intervening point® 55 pronasale

16 Supradentale 56 columella

17 U1 root tip 57 columella contour intervening point*
18 Ul incisal edge 58 subnasale

19 L1 incisal edge 59 cheekpoint
20 L1 root tip 60 point A
21 Infradentale 61 superior labial sulcus
22 Point B contour intervening point* 62 labiale superius
23 Point B 63 upper lip
24 Protuberance menti 64 upper lip contour intervening point*
25 Pogonion 65 stomion superius
26 Gnathion 66 stomion inferius
27 Menton 67 lower lip contour intervening point®
28 Gonion, constructed 68 lower lip
29 Mandibular body contour intervening point 1* 69 labiale inferius
30 Mandibular body contour intervening point 2* 70 inferior labial sulcus
31 Mandibular body contour intervening point 3* 71 point B
32 Gonion, anatomic 72 protuberance menti
33 Gonion contour intervening point 1* 73 pogonion
34 Gonion contour intervening point 2* 74 gnathion
35 Articulare 75 menton
36 Ramus contour intervening point 1* 76 menton contour intervening point*
37 Ramus contour intervening point 2* 77 cervical point
38 Condylion 78 cervical point contour intervening point 1*
39 Ramus.tip 79 cervical point contour intervening point 2*
40 Pterygomaxillary fissure 80 terminal point

*arbitrary landmarks to render smooth line drawing of anatomic structures. Landmarks #3 - #48 are

skeletal landmarks and #49 - #80 are soft tissue landmakrs.
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Table 3.

Comparison of Accuracy in Terms of the Point-to-Point Errors between the

You-Only-Look-Once version 3 (YOLOvV3) and Single Shot Detector (SSD) methods

Landmarks YOLOV3 SSD Pvaluet More Accurate

Mean (pixel) SD (pixel) Mean (pixel) SD (pixel) Method
Sella 14.9 79.4 25.6 76.6 ~1.0000
Nasion 9.0 7.7 40.9 159.5 .0698
Nasal tip 8.9 6.1 94.3 316.9 <.0001 YOLOV3
Porion 11.3 8.7 33.1 69.3 <.0001 YOLOvV3
Orbitale 8.6 53 31.1 133.0 .3900
ANS 15.8 13.2 366.2 497.6 <.0001 YOLOV3
PNS 9.1 7.3 29.0 86.1 <.0001 YOLOV3
Point A 13.3 9.2 2447 458.9 <.0001 YOLOvV3
Ul root tip 15.6 9.6 164.4 414.0 <.0001 YOLOv3
Ul incisal edge 7.8 49 396.5 584.8 <.0001 YOLOvV3
L1 incisal edge 6.8 49 27.1 142.5 ~1.0000
L1 root tip 15.2 8.9 42.9 158.6 2956
Point B 14.8 10.3 83.2 260.3 .0012 YOLOvV3
PM 11.9 8.9 45.1 181.6 1912
Pogonion 7.9 6.9 46.9 209.0 1511
Gnathion 8.0 5.6 50.7 259.3 4766
Menton 8.3 5.0 29.5 109.8 .1049
Gonion ¢ 15.8 8.7 88.2 111.0 <.0001 YOLOv3
Gonion a 12.7 8.4 102.9 1359 <.0001 YOLOvV3
Articulare 6.7 4.7 14.9 11.3 <.0001 YOLOv3
Condylion 11.2 8.3 22.7 56.2 .0591
Pterygoid 13.1 36.3 18.7 49.1 ~1.0000
Basion 11.8 9.0 18.0 20.3 <.0001 YOLOV3
glabella 11.1 8.7 59.5 243.0 .0738
nasion 10.8 7.8 54.7 208.7 <.0001 YOLOV3
supranasal tip 10.0 7.4 74.9 300.1 <.0001 YOLOV3
pronasale 7.4 5.6 40.5 187.6 2559
columella 9.2 7.5 33.7 103.3 <.0001 YOLOV3
subnasale 8.0 8.7 360.4 613.8 <.0001 YOLOv3
point A 10.0 6.7 71.2 3115 .0856
superior labial 11.4 8.9 64.7 278.0 1133
labium superius 9.2 6.5 46.6 211.1 2518
upper lip 6.3 4.6 333 133.7 .0619
stomion 10.4 7.6 425.6 648.8 <.0001 YOLOvV3
stomion inferius 11.0 10.1 24.4 78.5 .3807
lower lip 59 3.8 86.5 132.2 <.0001 YOLOvV3
labium inferius 8.3 59 51.0 136.5 <.0001 YOLOv3
point B 8.8 6.2 27.0 114.1 .6244
Protuberance 10.0 8.0 39.1 172.9 4017
pogonion 10.6 11.8 57.7 254.9 .1648
gnathion 16.3 15.6 35.2 91.3 .0525
menton 13.5 14.3 52.6 250.1 7347
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results from #-tests with the Bonferroni correction of alpha errors. SD, standard deviation. The
landmarks included in this table were chosen to concisely describe the results. Upper case letters
were used to indicate skeletal landmarks, and lower case letters were used to indicate soft tissue

landmarks.
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Figure 1. An image composed of the radiograph with the cephalometric landmarks used
in this study. (Yellow dots) Landmark-specific information are summarized in Table 1. For
the hard tissue landmarks, upper-case letters were used. For the soft tissue landmarks,

lower-case letters were used.
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Comparison between the 2 Latest Deep Learning Methods
in Automated Identification of Cephalometric Landmarks

YOLO version 3 Vs Single Shot Detector
(Redmon and Farhadi, 2018) (Liu et al., 2016)

T l 1y Automated Identification

Learning Data ‘ 80 landmarks New, Test data
(N =1,028) ‘ ‘ & 2 Camce pote Validatioy | (N =283)

+ 46 skeletal landmarks
« 32 soft-tissue landmarks

Ds jon-1
(Small filter) (Medlum ﬁlter), (Big ﬁlter) comp‘"m accuracy measures

v

. * Mean point-to-point errors
+ Success detection rates
« Confidence ellipses
Merge

’ Comparing computational time

Figure 2. Diagram showing the flow of the automated landmark identification system.
Each images were used for training through the convolutional neural network (CNN)
architecture. The trained algorithm would automatically find each landmarks with the

highest probability through 3 different detection size.
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Mean errors in pixel unit
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20

--¢+- Single Shot Detector (SSD)
-®-  You-Only-Look-Once version3 (YOLOv3)
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Landmark identification number

Figure 3. Point plots of landmark-specific mean point-to-point error from the You-Only-

Look-Once version 3 (YOLOV3, red) and Single Shot Multibox Detector (SSD, blue)

methods in automated landmark identification. All the measurements were calculated by

pixel. The plot indicates that YOLOv3 was more accurate than SSD in general.
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Success detectionrates

96.2%
92 0%
88.1%
84 7% 87.4%
81.3% 80.4%
75-6% I I I

Arik et al. (2017) Proposed YOLOv3
E<2mm E<25mm =2<3Imm =<4mm

Figure 4. Success detection rates (SDR) of precision ranges, including 2 mm (blue), 2.5
mm (orange), 3 mm (gray) and 4 mm (yellow), comparing with the top accuracy results
in the previous literature?' and those from the proposed YOLOV3. The proposed YOLOv3

shows approximately 5% higher success detection rates for all ranges.
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Articulare
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Figure 5, A. Error scattergrams and 95% confidence ellipses for the error that were
obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Articulare”. All
the measurements were calculated by pixel. The plots clearly indicate that plots of
YOLOV3 showed not only a smaller error range, but also a more isotropic tendency than

SSD did.
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Figure 5, B. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Basion”. All the

measurements were calculated by pixel. The plots clearly indicate that plots of YOLOvV3

showed not only a smaller error range, but also a more isotropic tendency than SSD did.
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Figure 5, C. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “columella”. All

the measurements were calculated by pixel. The plots clearly indicate that plots of

YOLOV3 showed a smaller error range than SSD did.
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Figure 5, D. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Condylion”. All

the measurements were calculated by pixel. The plots clearly indicate that plots of

YOLOV3 showed not only a smaller error range, but also a more isotropic tendency than

SSD did.
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Vertical (y axis) errors in pixel unit
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Figure 5, E. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Gonion,

anatomic”. All the measurements were calculated by pixel. The plots clearly indicate that

plots of YOLOvV3 showed a smaller error range than SSD did. The center of the error of

SSD was located distant from the origin (0,0).
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Vertical (y axis) errors in pixel unit
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Figure 5, F. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Gonion,

constructed”. All the measurements were calculated by pixel. The plots clearly indicate

that plots of YOLOV3 showed a smaller error range than SSD did. The center of the

ellipse of SSD was located distant from the origin (0,0).
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Figure 5, G. Error scattergrams and 95% confidence ellipses for the error that were
obtained from the YOLOV3 (red) and SSD (blue) methods of the point “L1 incisor edge”.
All the measurements were calculated by pixel. The plots clearly indicate that plots of
YOLOV3 showed not only a smaller error range, but also a more isotropic tendency than

SSD did.
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L1 root tip
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Figure 5, H. Error scattergrams and 95% confidence ellipses for the error that were
obtained from the YOLOV3 (red) and SSD (blue) methods of the point “L1 root tip”. All
the measurements were calculated by pixel. The plots clearly indicate that plots of
YOLOV3 showed a smaller error range than SSD did. The center of the ellipse of SSD

was located distant from the origin (0,0).
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labiale inferius
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Figure 5, I. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “labiale inferius”.

All the measurements were calculated by pixel. The plots clearly indicate that plots of

YOLOV3 showed a smaller error range than SSD did. The center of the ellipse of SSD

was located distant from the origin (0,0).
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Figure 5, J. Error scattergrams and 95% confidence ellipses for the error that were
obtained from the YOLOV3 (red) and SSD (blue) methods of the point “labiale superius”.
All the measurements were calculated by pixel. The plots clearly indicate that plots of
YOLOV3 showed a smaller error range than SSD did. The center of the ellipse of SSD

was located distant from the origin (0,0).
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Figure 5, K. Error scattergrams and 95% confidence ellipses for the error that were
obtained from the YOLOV3 (red) and SSD (blue) methods of the point “lower lip”. All
the measurements were calculated by pixel. The plots clearly indicate that plots of

YOLOV3 showed a smaller error range than SSD did. The center of the ellipse of SSD

was located distant from the origin (0,0).
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Figure 5, L. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Orbitale”. All the

measurements were calculated by pixel. The plots clearly indicate that plots of YOLOvV3

showed not only a smaller error range, but also a more isotropic tendency than SSD did.
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Figure 5, M. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Porion”. All the

measurements were calculated by pixel. The plots clearly indicate that plots of YOLOvV3

showed not only a smaller error range, but also a more isotropic tendency than SSD did.
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Figure 5, N. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Posterior nasal

spine”. All the measurements were calculated by pixel. The plots clearly indicate that

plots of YOLOvV3 showed not only a smaller error range, but also a more isotropic

tendency than SSD did.
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Pterygoid
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Figure 5, O. Error scattergrams and 95% confidence ellipses for the error that were
obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Posterior nasal
spine”. All the measurements were calculated by pixel. The plots indicate that plots of

YOLOV3 showed no significant difference compared to SSD.
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Figure 5, P. Error scattergrams and 95% confidence ellipses for the error that were
obtained from the YOLOV3 (red) and SSD (blue) methods of the point “Sella”. All the
measurements were calculated by pixel. The plots indicate that plots of YOLOv3 showed

no significant difference compared to SSD.
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stomion inferius
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Figure 5, Q. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “stomion

inferius”. All the measurements were calculated by pixel. The plots clearly indicate that

plots of YOLOV3 showed a smaller error range than SSD did.
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upper lip
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Figure 5, R. Error scattergrams and 95% confidence ellipses for the error that were

obtained from the YOLOV3 (red) and SSD (blue) methods of the point “upper lip”. All

the measurements were calculated by pixel. The plots clearly indicate that plots of

YOLOV3 showed a smaller error range than SSD did.
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