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Abstract 

The conduction in the dielectric materials has been regarded as an 

important issue for electronic devices. Recently, the operating 

condition of devices that employing oxides has expanded to wet 

condition such as in batteries, energy conversion devices, and 

electrochemical field effect transistors. For enhanced device 

performance, a deeper understanding of its conduction and breakdown 

mechanism should be preceded. In this dissertation, therefore, the 

electrical and ionic conduction of oxide dielectrics in contact to the 

electrolyte is understood in the electrolyte/oxide/semiconductor 

system. Especially, the role of chemical species which are dissolved in 

the electrolyte is revealed, focusing on their effect on the physical and 

chemical nature of the oxide-electrolyte interface. Not only the basic 

principles of conduction in dielectric oxides but also a new application 

field of cation conductive oxide is suggested in this dissertation. When 

dielectrics or large bandgap semiconductors allow the introduction of 

ionic species from electrolyte to the matrix by means of the electrical 

potential applied on the underlying electrode, their optical properties 

are changed, which is called electrochromism. There are numerous 

studies regarding on electrochromism, however, the scope of 
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application is limited because the wide color expression and the 

dynamic color tunability has not been achieved. To overcome these 

problems, the structure around the electrochromic oxide, WO3, is 

thoroughly designed for tunability in the visible regime. By employing 

nanometer-thick WO3 film in the structure, full-color tunable 

reflective- and transmissive- type devices are achieved with the 

advantages of reversibility and low energy consumption. 

Keywords: electrode/oxide/semiconductor system, dielectric 

breakdown, dielectric thin film, electrochromism, WO3, nano optics 
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1. Introduction 

Metal and semiconductor oxides have been imperative material for modern 

technology. They not only serve as important components in electronic device,1 

optical materials,2,3 and passivation layers4–8 but also are considered to be 

prominent materials for future technology such as resistive random access memory 

devices,9,10 batteris11–14 and transistors gated by electrochemical principles15. These 

technologies require the deeper understandings of the chemical nature of the oxides, 

because their key phenomena are complex chemical reactions in the oxide such as 

the formation of defects in the oxide lattice and the mass transport of O2-, 16,17 H+, 

18–22 alkali cations23–25 etc. In general, the devices using the oxide normally operate 

in contact to other solid or gas phase, however, batteries and electrochemical 

transistors operate in the electrochemical environment where they are working in 

contact to electrolyte. The difference in working condition offers significant 

chances to interact with chemical species present in the liquid phase, electrolyte. 

These species are possibly get involved in the device operation by changing the 

character of oxide-electrolyte interface or by exchanging charge through 

electrochemical reactions. 

There have been numerous reports to address electronic and ionic conduction 

in the insulating oxide films.26–28 For the ionic conduction, the transportation of 

oxygen anion has received a lot of attentions because of the switching conductivity 

of the film arises from the partial reduction of oxides accompanied with O2- 

diffusion.16,17 Cations which reside and diffuse inside the oxide have been regarded 
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as a main reason of device failure.18,24,29 The origin of cationic species are 

considered to be alkali metal impurity implanted during the fabrication process, or 

the cations intercalated from outside by the potential gradient or thermal energy 

applied to the oxide.30 

 

Among the cations, the existence of mobile protons in the insulating oxide has 

been reported with experimental31–34 and computational evidences.19,20 One 

important issue on the cationic transport is a role of protons in ionic conduction. 

The ambiguity of the role of protons is resulted from the complexity of the 

amorphous insulating film, which varies greatly in physical and chemical 

properties depending on each manufacturing method. For example, some literatures 

regard the proton diffusion as natural in SiO2,31,32,35 otherwise others rarely 

consider proton due to its small diffusivity compared to the diffusion of other alkali 

metal cations.30 

Another aspect that is missing during discussing the cation transport property 

of various insulating film is their interface. The interface of oxides is comprised of 

inhomogeneous chemical structure different from that of bulk phase, thus they 

show unique characteristics of surface. One of them is surface potential built on the 

interface.36 The surface potential at electrolyte-oxide interface is built by the dipole 

induced by the protonation of surface functional group, and this dipole could 

highly affect not only the interfacial mass transport of charged species but also the 

overall electric field applied across the oxide film. 

Not only the ionic conduction, but also the electronic conduction of oxide 
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immersed in electrolyte requires further understanding. When the charge carriers 

injected to the oxide are flow to the adjacent solid phase such as metal and 

semiconductor, the resistance of interfacial charge transfer would be negligible 

because of the large density of states in metals and semiconductor. On the other 

hand, the rate of charge transfer would be rather slower at the oxide/electrolyte 

interface because the hot carriers in the oxide should be ejected through 

electrochemical reaction of molecules in the electrolyte or adsorbates in the 

oxide/electrolyte interface. Thus the overall conductivity would be modulated by 

modifying the electrochemical environment of electrolyte, however there is little 

number of researches regarding on this phenomena. 

Therefore, in this dissertation, the conduction of 

electrolyte/oxide/semiconductor (EOS) system under electric field will be 

discussed. In chapter 2, the factors which can possibly affect the electrical behavior 

of EOS system are analyzed experimentally, including dielectric breakdown 

kinetics. The existing theories and related issues when oxide film is contained in 

solution are summarized. The electrode of insulating film on highly doped Si was 

used, incorporating widly used dielectric materials, SiO2 and Si3N4 which are 

known to be good dielectric materials. An experimental methodology for obtaining 

reliable data will be proposed. The effect of the chemical environment of the 

solution on EOS system is experimentally confirmed and theoretically explained. 

The pH, the ion environment and the electrochemical reactant of the electrolyte 

were varied and the roles of them are evaluated both in quantitative and qualitative 

manners. To achieve this goal, breakdown potential (Vdb), charge flowed until 
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breakdown (Qdb) and time for breakdown (tdb) under voltage bias are precisely 

measured and analyzed. The experimental results and the explanation on them are 

supported with the aid of computational methods, density functional theory and 

molecular dynamic calculations. 

In chapter 3, an oxide material which allows both ionic conduction and 

electric conduction are employed. The well-known cation conductor, WO3, has 

drawn a lot of interest due to its promising applicability such as electrochromic 

devices,3 photocatalysts,37 electrochemical gating devices15 and batteries. Most 

works used thick WO3 film to achieve electrochromic devices which show enough 

light tunability when cations are intercalated. For the thickness of the film, they 

could switch the transparency with two modes, pale and dark modes. However, 

they cannot express various colors, losing the color dynamicity. In this thesis a 

nanometer-thick WO3 film is placed in the uniquely designed structures not only to 

express wide color in visible but also to tune and switch their optical property. A 

reflective- and a transmissive-type devices are suggested and their light tunability 

is evaluated quantitatively. Before the device fabrication, fundamental 

understandings are preceded for the reasonable design of devices. 
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2. Conduction of Dielectric Material in Contact to 

Electrolyte 

2.1. Introduction: Related issue on Charge Conduction of 

SiO2 and Si3N4 in Contact to Electrolyte 

SiO2 and Si3N4 are a widely used material due to its earth abundance and its 

electrical property. The conductivity of SiO2 and Si3N4 has been studied mainly in 

terms of the stability and reliability of electronic devices.38,39 Therefore, most of the 

studies have been conducted for solid-state devices. However, the deeper 

understanding of conduction on these systems is required because many systems 

incorporating dielectric materials that have been studied these days operate in 

contact with vapor and liquid phase. Especially for ionic conduction inside SiO2, 

the experimental model systems of previous reports have been made forcibly by 

ion implantation, i.e. Na+ or K+, during the fabrication process.24,25,40,41 Therefore, 

such ion conduction in the model systems would not represent the ion conduction 

in intrinsic SiO2. 

As far as I know, the understandings on conductivity of dielectric oxide when 

it has an interface with solution are as follows. It is known that current hardly flows 

at as-prepared-dry SiO2
42, but it becomes conductive after being exposed to acidic 

solution for a long time, or its conductivity depends on the quality of the film.32,43–
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45 Other insulating films such as Si3N4, HfO2
35,46 and Al2O3

11,12,47,48 in contact with 

the solution have been studied, and these studies have some insights into the 

conduction of SiO2. They have reported the correlation between the solution 

environment and the conduction of the insulating film, but the exact mechanism 

has not been analyzed in detail. 

From this point of view, the following issues need to be addressed. Can the 

ions in the solution enter the oxide membrane and be conducted? What is the exact 

role of proton in the conduction of the oxide film? How important is the charge 

transfer rate at the interface for the conduction of the EOS system? In order to 

answer these questions, in this dissertation, the dielectric breakdown of SiO2 is 

investigated in the system composed of highly doped Si-SiO2-electrolyte with 

negative potential applied to the Si side. Dielectric breakdown is a phenomenon 

that an insulator loses insulation when an electric field is applied. The chemical 

structure of the insulator is irreversibly destroyed after the dielectric breakdown.38 

The kinetics of dielectric breakdown is closely related to the electric charge flowed 

through the insulator. Therefore, by studying dielectric breakdown, it is possible to 

figure out electron and ion conduction, and electric field distribution in an 

insulating film. 
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2.2. Theoretical Background 

2.2.1. Conduction of thin dielectric film in solid state device 

There are multiple mechanisms which describe electrical conduction of 

dielectric films. The mechanisms can be categorized into two types; electrode-

limited and bulk-limited conduction. The electrode-limited conduction postulates 

ideal dielectric materials, whose chemical structure is homogeneous thus has no 

defect in the material. Because the charge carrier injection is carried out by 

overcoming the energy barrier between dielectrics and adjacent electrode, the 

conduction is dominated by the electrode-dielectric junction. Current is delivered 

by the charge carriers in the dielectrics which are electrons for the conduction band 

and holes for the valence band, and these carriers are injected from the metals or 

semiconductors nearby. Current can also be flowed by the direct tunneling through 

the dielectric film. Bulk-limited conduction is happened when there are defects in 

chemical structure, which can trap the charge carriers, electrons, holes and ions. 

Rather than charge is directly injected to the conduction and valence band, the 

current flow is mediated by defect states which are located in between conduction 

and valence band of dielectrics. 

These mechanisms are well evidenced by numerous studies. Equations which 

describe each mechanism are constructed and the equations are successfully fit the 
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experimental results. Among the reported mechanisms, four mechanisms listed 

below are expected to happen in the n+-Si/SiO2(or Si3N4)/electrolyte system which 

is model system in this thesis. Here the brief summary of each conducting 

mechanism is presented based on the review reported by Chiu et al.26 

 

 

Figure 1. Schematic diagrams of conduction model of (a) Fowler-Northernheim 

tunneling, (b) hopping conduction, (c) Poole-Frenkel emission and (d) ionic 

conduction which are summarized in section 2.2.1. 
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Fowler-Northernheim (FN) tunneling 

Among the electrode-limited conduction mechanisms, FN tunneling addresses 

the conduction of thick oxide where direct tunneling hardly happens. Thus FN 

tunneling requires large potential difference in general. The electrons in the 

electrode tunnel through the triangular quantum barrier, and they are injected to the 

conduction band (Figure 1a). The equation which describes this mechanism is 

𝐽 =
𝑞3𝐸2

8𝜋ℎ𝑞𝜙𝐵
exp [

−8𝜋(2𝑞𝑚𝑇
∗ )1/2

3ℎ𝐸
𝜙𝐵

3/2
]……………………..(eq.1) 

where J is the current density, E is the electric field applied to the dielectric, h is he 

Plank’s constant, 𝑞𝜙𝐵 is the Schottky barrier height, 𝑚𝑇
∗  is the effective 

tunneling mass in dielectric , q is the electronic charge. 

The major characteristic of this conduction mechanism is its temperature 

independency and linear relationship between ln(J/E2) and 1/E. This plot is called 

F-N plot which is useful method to extract the electron effective mass in dielectric. 

When temperature is high enough for the electrons to overcome the energy barrier 

at the metal-dielectric interface and to be injected into the conduction band of 

dielectric by thermal energy, the conduction mechanism is changed to so-called 

Schottky emission, whose current density shows a positive correlation to 

temperature. 
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Hopping conduction and Poole-Frenkel emission 

These two conduction mechanisms are categorized in bulk-limited conduction. 

Current is mediated by the defects that can trap charge with a lower barrier height 

than that of the direct charge injection to the conduction bands. The trapped charge 

carrier in the defect can be migrated by quantum tunneling or thermal emission, 

and can be trapped again by the neighbor defect. Hopping conduction means the 

defect-mediated conduction when the hopping is drived by quantum tunneling 

(Figure 1b), and Poole-Frenkel Emission decribes the transition between defects as 

a thermal emission (Figure 1c). 

Although the chemical formula of the material is the same, the amount of 

intrinsic defects whose presence is inevitable varies according to the fabrication 

methods. Current density is a function of the defect density, because the probability 

of charge carrier hopping depends on the distance between the defects. The 

equation for hopping conduction is  

𝐽 = 𝑞𝑎𝑛𝑣 exp [
𝑞𝑎𝐸

𝑘𝑇
−

𝐸𝑎

𝑘𝑇
]………..……..…………….(2) 

where a is the mean hopping distance, n is the electron concentration, v is the 

frequency of thermal vibration of electrons at defect sites, and Ea is the activation 

energy for hopping between defect sites. 

The relationship between current density and temperature of Poole-Frenkel 

emission shows similarity to that of hopping conduction, whose equation is 
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𝐽 = 𝑞𝜇𝑁𝐶𝐸 𝑒𝑥𝑝 [
−𝑞(𝜙𝑇−√

𝑞𝐸

𝜋𝜀𝑖𝜀0
)

𝑘𝑇
]………………..….…………(3) 

where μ is the mobility of electron in dielectric, NC is the density of states in the 

conduction band, 𝑞𝜙𝑇 is the defect energy level. There are relationship between 

ln(J/E) and E1/2 for Poole-Frenkel emission, whereas hopping conduction shows 

linear relationship between ln(J) and E. 

 

Ionic conduction 

Ionic conduction is the flux of ionic species in dielectrics (Figure 1d). Usually, 

the ionic species is a contaminant during the fabrication process such as alkali and 

alkali earth metal cations.24,25,49 When large electric field or high radiative energy is 

applied, chemical chain is locally destructed, and ions such as O2- can be 

generated.38 These ionic species are located in the chemical structure of dielectric 

materials, and the chemical structure is distorted locally to stabilize excess charge. 

There is an energy barrier between each ion trap site, so the equation describes this 

mechanism is similar to the one for hopping conduction. 

𝐽 = 𝐽0𝑒𝑥𝑝 [− (
𝑞𝜙𝐵

𝑘𝑇
−

𝐸𝑞𝑑

2𝑘𝑇
)]…………………..……….…..(4) 

where J0 is the proportional constant, 𝑞𝜙𝐵 is the barrier height of ion trap site, and 

d is the mean distance between each ion trap site. 
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2.2.2. Dielectric breakdown 

In dielectric films, current is allowed under the electric field by the 

mechanisms mentioned in the previous section. However, due to the dynamicity of 

the dielectric material, it loses its insulating property over time, or by the strong 

external stress. This phenomenon is called dielectric breakdown. After dielectric 

breakdown happens, considerable increase in conductivity is observed, and usually 

the change in conductivity is irreversible. 

Dielectric breakdown induced by electrical stress have been deeply 

understood for decades, and these effort contributed to the rapid progress in 

sophisticated electronic devices.38,50–53 There are several physical models which 

successfully address the dielectric breakdown phenomena, however, the chemical 

nature of dielectric breakdown is still debatable. The ambiguity is resulted from its 

complex nature. Firstly, it happens at the localized area of dielectric material thus 

the in-situ analysis has been limited. However, analysis using in-situ and ex-situ 

electron microscopy have been conducted to elucidate the microscopic nature of 

dielectric breakdown recently, the chemical change around the breakdown spot was 

being revealed.9,10,54 The second reason is its suddenness. Breakdown happens at 

unpredictable time, and the change in dielectric film is usually completed in an 

instant, thus the high temporal resolution is required. 

Although the chemical nature is still unclear, the kinetics of dielectric 

breakdown is well understood based on statistical analysis. Varying electrical bias, 

temperature and thickness, the indicators of breakdown kinetics such as Vdb, tdb and 
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Qdb were measured and analyzed. Breakdown models have been suggested to fit the 

statistical distribution of the indicators, and the brief introduction of them is 

presented below. 

Briefly speaking, dielectric breakdown is an energy conversion process from 

applied electric potential energy to chemical rupture of the dielectrics.38 The charge 

conduction of dielectrics starts with the electron injection to the conduction band of 

the dielectrics. The electron is then further accelerated and gains energy by the 

strong field. The energy of electron can be dissipated via various pathways, which 

drives the damage on the chemical structure of dielectric materials. Firstly, the 

electron loses its energy via scattering when they flow along the conduction band 

of the dielectrics. When they reach to the anode-side interface, the electron donates 

its energy to the surroundings during their relaxation to the fermi energy of the 

anode, and the energy can break the chemical bonds and induce breakdown. Or the 

transition energy generates electron hole pair at the anode side and the hole can be 

injected to the dielectric’s conduction band, making secondary damage. Lastly, 

hydrogen species are major suspects which are responsible for SiO2 

breakdown.18,55,56 In SiO2, there can be hydrogen species in the bulk SiO2 or the 

interface in forms of defects like silanol (SiOH) or hydrogen bridge.57,58 The 

hydrogen species serve as the trap sites for electrons and holes which increase the 

conductivity of SiO2. Moreover, the electrical energy induces these hydrogen 

species to release in form of atomic hydrogen, which is not only highly diffusible 

in SiO2 but also chemically reactive to induce secondary chemical reaction that 

could change the structure of SiO2 chain. 
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All the models mentioned above were suggested to address the possible 

converting pathway of electric potential energy to chemical energy that induces the 

destructive reaction for breakdown. Therefore the amount of charge that flows 

through the dielectric materials and the potential applied to the film are the most 

important factors which determine the breakdown for most cases, although it is 

hard to define the exact dielectric breakdown mechanism that actually fit for given 

experimental system. Conversely speaking, conduction through the dielectric 

materials can be indirectly evaluated by measuring dielectric breakdown kinetics, 

when the current is too small to be precisely measured. 
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2.2.3. Electrolyte/oxide/semiconductor (EOS) system 

 

Figure 2. A schematic diagram of EOS system under cathodic bias. 

When oxide-deposited electrode is immersed in electrolyte, which is named 

EOS systems, there are additional factors to be considered when compared to 

metal/oxide/semiconductor (MOS) systems. The schematic cartoon is presented in 

Figure 2 which represents the additional factors. The first one is the interface of 

oxide and electrolyte. In MOS system, the interface of metal and oxide defines the 

potential difference between the fermi level of metal and the bands of oxide. The 

interfacial potential is built according to the chemical nature of the interface.36,59,60 

However, the interface between oxide and electrolyte has more diversity according 

to the chemical environment of electrolyte. The ions in the electrolyte can modulate 

the surface potential of oxide, changing the net electrical potential difference 

between semiconductor and electrolyte.61 The pH of electrolytes changes the 
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surface terminal group of the oxide by acid-base reaction. Ion sensitive field effect 

transistor (ISFET) is a kind of pH sensor where this principle is applied. The 

relationship between surface potential and pH is ideally Nernstian, however, the 

deviation is observed due to the wet oxide region and the adsorption of other 

species.30,61–63 

The second factor that should be considered is the mass transport of chemical 

species between electrolyte and oxide. Mass transport is also possible in all-solid 

state devices, such as the alkali metal cation’s diffusion25,27,41 where the cations are 

introduced as contaminants during the fabrication process and Cu2+ diffusion from 

the anode side.64 These metallic cation’s diffusions have been regarded to be 

responsible for the performance degradation of devices since they shift the gate 

voltage. The presence of cations also weakens the dielectric strength of the oxide 

by enhancing the local electric field.24,40 At the oxide-solution interface the 

concentration of the possible intercalating species is rich because alkali metal 

cations and protons are present in electrolyte. However, the role of these ionic 

species and their permeability in EOS system have not been experimentally 

examined precisely. In addition, the solvent molecules in the electrolyte phase 

sometimes can penetrate into the oxide matrix, developing wet oxide region near 

the interface. Especially for aqueous interface, the diffusion of water is typical in 

various glass materials.30,32 These solvent molecules change the chemical nature of 

the oxide, modifying diffusion characteristics in the oxide. 

The third factor is the charge transfer reaction at the oxide-electrolyte 

interface. When electrons are transferred from oxide to metal, the electrons are 
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injected to the empty states of the metal. Thus the charge transfer kinetics at the 

interface would rarely affect the overall conduction of MOS systems. However, the 

density of state of electrolyte is much lower than metal, thus the interfacial charge 

kinetics would cause significant difference in conductivity. Although the exact 

interfacial charge transfer reaction has not been revealed yet, there can be four 

kinds of electrochemical reactions expected at the interface. The first reaction is the 

reaction of adsorbates on the surface terminal groups. For example, surface 

adsorbed protons could be reduced. The second type of reaction is outer-sphere 

electron transfer to the redox species dissolved in electrolyte. Such molecules like 

ferrocene, ruthenium hexamine, electrochemically react very fast, thus the 

conduction would be increased. The third type would be the generation of solvated 

electrons.65,66 Due to the large band gap of dielectric materials, the conduction band 

of them locates close to the vacuum level. The energy of electrons in the 

conduction band is large enough to generate the solvated electrons, which have 

great reducing power. Successive and unpredictable electrochemical reaction which 

cannot be expected at conventional electrodes would occur. The aforementioned 

three types of electrochemical reactions are conducted by electrons flow through 

the oxide dielectrics, however, the last type is about the electrochemical reaction of 

foreign species or defects in the oxides. Because the dielectric materials are in 

contact to electrolytes, the mass transport of chemical species from electrolytes to 

dielectrics would be possible. These foreign chemical species not only can serve as 

charge carriers, but also can generate intermediates by the electrochemical reaction 

of themselves. Lee et al. reported that the possibility of electrochemical reaction 
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mediated by hydrogen species which can transferrable in thermally grown SiO2.31 

Because the nature of the oxide film is largely different from that of electrolyte, 

intermediate species which are highly unstable in conventional solvent could be 

stabilized in the chemical structure of dielectrics. Atomic hydrogen is suggested to 

be one of the possible intermediates in SiO2 which can induce unique 

electrochemical reaction when it meets the reactant molecules in electrolyte. Some 

reactions with large overpotential such as CO2 reduction and other electrocatalytic 

reactions are expected, if the generation of these intermediates is controlled. 

The additional factors of EOS system are plausible in a qualitative manner, 

however, the detailed understanding has not been achieved. For instance, the 

acceleration of breakdown kinetics in acidic electrolyte was observed where the 

dielectric film placed in between electrolytes, although the exact mechanism which 

describes the acceleration was not clarified.35,67 Previous researches regarding on 

ionic conduction in oxides have been mainly reported by solid state physics 

community and ISFET community. The reported diffusivity from literatures differs 

by a couple of order,30 thus it is hard to tell whether the ion of interests can actually 

intercalate and diffuse in the dielectrics and resultantly make significant difference 

in conduction and breakdown kinetics. Especially, protons’ role is debatable 

because there are numerous works which calculated the diffusivity and activation 

energy of proton hopping in SiO2, but the diffusion of protons is insignificant in 

some experimental works.36 
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2.3. Experimental Section 

2.3.1. Materials 

Phosphate buffer solution (PBS) was made by mixing phosphoric acid 

(Daejung, Korea), KH2PO4 and K2HPO4 (99.9%) from Sigma-Aldrich. 

Hexaammineruthenium(III) chloride (98%) is purchased from Sigma-Aldrich. 

Highly doped n-type silicon wafer (arsenic-doped, <100>-oriented) with a 

resistivity as low as 0.005 Ω cm was obtained from STC (Japan). AZ9260 

photoresist and MIF300 developer were purchased from Merck (USA). 

2.3.2. Preparation of dielectric film-coated Si electrode 

The 6-nm and 10-nm thick thermal SiO2 film was prepared by the dry 

oxidation of the Si wafer in oxygen environment at 950 °C. Briefly, after the wafer 

was cleaned with a mixture of H2SO4 and H2O2, the native oxide was stripped by 

HF dipping. A 20-nm-thick thermal SiO2 layer was produced at 850 °C in a furnace 

with dry O2 blowing followed by HF wet etching. After repetitive cleaning, 10-nm-

thick thermal SiO2 layers were formed at 950 °C in a furnace with dry O2 blowing. 

10-nm thick Si3N4 was deposited by chemical vapor deposition. 

2.3.3. Protective layer coatings on Si/SiO2 

To define the exposed SiO2 area and reduce unwanted pinholes in the oxide 

film, successive coatings of alumina, photoresist and photolithography were 

performed as follows. 100 nm-thick alumina film was deposited on the whole 
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wafer of Si/SiO2 by SNTEK sputter. AZ9260 photoresist was spin coated on the 

wafer at 6000 rpm for 30 s. Post bake was conducted at 110 °C for 1.5 min. Then 

the wafer was aligned under a pattern-designed chromium mask (50×50 μm2), and 

exposed to UV lamp. Developing was conducted by immersing the wafer into 

AZ400K developer (AZ electronic materials) for 2 min. After judging whether the 

wafer was well developed by optical microscope, hard bake was conducted at 

200 °C for 15 min. Etching of alumina was conducted in 50 ℃, 85% phosphoric 

acid for 5 min. 

2.3.4. Electrochemical characterization 

To minimize mechanical stress, the whole wafer without a dicing process was 

used for all the electrochemical experiments. For the electrical connection to 

Si/SiO2, the oxide layer on the back of the silicon wafer was removed by scratching 

with a diamond point pen by ~1 cm2 and casting a droplet of 48 % hydrofluoric 

acid solution. This area was covered by gallium-indium eutectic (≥ 99.99 % trace 

metals basis from Sigma-Aldrich) and then attached by ~10-cm-long conductive 

adhesive tape. The tape was connected to the working electrode cable of the 

electrochemical analyzer (CHI660, CH Instrument, US). 3 μL of electrolyte were 

dropped onto an exposed SiO2 area to form an electrochemical cell. Pt wire and 

Ag/AgCl reference electrode (3 M NaCl) with a double junction filled with the 

electrolyte of interest were employed as the counter and reference electrodes, 

respectively. All potentials in this paper are referenced to Ag/AgCl reference 

electrode (3 M NaCl). Linear sweep voltammetry (LSV) was carried out to see 
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characteristic dielectric breakdown behavior of Si/SiO2. Potential at which 

dielectric breakdown occurs (Vdb) was determined to the most positive potential 

allowing more than 10 nA during LSV. 

2.3.5. Theoretical calculation 

Total energy calculations were performed by using Vienna ab initio 

Simulation Package (VASP) based on density functional theory (DFT).68 The 

generalized gradient approximation with the Perdew−Burke−Ernzerhof (PBE) 

functional were applied to treat the exchange-correlation energy.69 DFT energy 

calculations were conducted spin-polarized with a kinetic energy cutoff of 800 eV. 

A 2×2×2 k-point grid based on Monkhorst–Pack scheme was used for energy 

calculation.70 For describing SiO2 system, a 2×2×2 supercell of α-cristobalite 

structure (space group: P41212) was adopted and fully relaxed until the residual 

force was less than 0.2 eV/Å . We estimated the relative stability of various alkali 

metal ions in between two mediums. One is in the solution, and the other is in 

interstitial sites in SiO2 structure. The relative stability, 𝛥𝐸, can be expressed as: 

𝛥𝐸(𝑥) = 𝐸𝑥 𝑖𝑛 𝑆𝑖𝑂2
(𝑥) − 𝐸𝑆𝑖𝑂2

− {𝐸𝑥 𝑖𝑛 𝑣𝑎𝑐𝑢𝑢𝑚(𝑥) + 𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛(𝑥)} …….…...(5) 

where 𝑥 is a kind of alkali metal ion such as Li+, Na+, K+, Rb+ and Cs+. To 

determine the most stable interstitial sites in SiO2, we considered seven different 

interstitial sites generated from Voronoi analysis.71Subsequently, the lowest-DFT-

energy structure was selected to estimate 𝐸𝑥 𝑖𝑛 𝑆𝑖𝑂2
(𝑥) that contains one alkali 

metal ion. Only the internal atomic positions were allowed to be relaxed while the 

lattice constants were fixed to those of the fully-relaxed SiO2 structure when we 
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calculate 𝐸𝑥 𝑖𝑛 𝑆𝑖𝑂2
(𝑥). 𝐸𝑆𝑖𝑂2

 is the DFT energy of 2×2×2 supercell of α-

cristobalite structure. The energy of single alkali metal ion in the vacuum, 

𝐸𝑥 𝑖𝑛 𝑣𝑎𝑐𝑢𝑢𝑚(𝑥), was obtained from a 20×24×24 Å 3 tetragonal unit cell with one 

ion in the box. The energy of the single ion was corrected by using solvation energy, 

𝐸𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛(𝑥), to estimate the energy of ion in solvated states (Table S1). Ab initio 

molecular dynamics (AIMD) simulations were carried out by employing VASP 

based on Verlet algorithm.72 The same structures which were used for calculating 

𝐸𝑥 𝑖𝑛 𝑆𝑖𝑂2
(𝑥) were adopted for AIMD simulations except for the Cs+-inserted SiO2 

case where the electronic energy could not be converged in AIMD calculation 

conditions. We used a Γ-point-only k-point grid and a cutoff energy of 400 eV in 

AIMD. The simulations were performed for 100 ps after an equilibrium step of 10 

ps in the canonical (NVT) ensemble with a Nosé–Hoover thermostat.73,74 All AIMD 

simulations were conducted at an elevated temperature of 1,800 K to facilitate the 

ionic motions. 
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2.4. Results 

2.4.1. Electrochemical analysis of large-area dielectrics. Effect of 

unwanted damage and misunderstandings due to the 

inevitable defects 

In this section, the general electrochemical characteristics when the area of 

EOS systems is large will be presented. The electrochemical current and the 

surface area of macroelectrode have linear relationship in general. That is why 

most electrochemists use current density as an important data for their research. 

However, when using dielectric material on the electrode, the surface area and the 

current would not follow the linear relationship. This non-linearity is originated 

from the inhomogeneous conduction pathway of dielectrics which are discussed in 

the previous section. Besides, pinholes which are the physically damaged regions 

offer additional current pathway by allowing the molecules in electrolytes to reach 

the bottom electrode. Thus the current flowed by a little number of pinholes can 

overwhelm the current passed by other conduction pathway. 
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Figure 3. Cyclic voltammograms of Si/6 nm SiO2 electrode at electrolytes 

containing (a) oxidized form of redox molecules and (b) a reduced form of redox 

specie. 

A representative current-voltage relationship of 6 nm SiO2/Si/buffered 

aqueous solution (pH7) is presented via cyclic voltammogram in Figure 3. It 

should be mentioned that the deviation of current is large by samples, thus the 

shape of the voltammogram will be discussed only. At the positive potential region, 

anodic current is observed when the reduced form of redox molecule, i.e. 

ferrocyanide is in the electrolyte (Figure 3b). When the electrode is pre-oxidized 

before measuring the ferrocyanide solution, the current is blocked. Thus it can be 

concluded that the electrode has some weak regions on it, and they can be cured by 

electrochemical oxidation at harsh oxidative potential. The cathodic current onset 

potential locates around -1 V vs. Ag/AgCl reference electrode. The cathodic current 

is also blocked by anodic curing, however it is much easier to flow cathodic current 

than to flow anodic current in terms of overpotential. 
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Figure 4. Cyclic voltammograms of Si/6 nm SiO2 electrode conducted at the 

electrolyte containing (a) ferricyanide and (b) ruthenium hexamine (III) at different 

pH. 

The cathodic current of uncured electrode is related to the electrolyte’s pH and 

the redox molecules in the electrolyte. The current is increased when the oxidized 

form of redox species, i.e. ruthenium hexamine (III), ferricyanide and methyl 

viologen, is presented in Figure 4. The increase of current is affected by pH. When 

the charge of redox molecule is negative, the current is bigger at the lower pH, 

whereas the current is smaller at the lower pH when the redox molecule has 

positive charge. Thus the observed current would be affected by the electrostatic 

force between the surface of SiO2 and the redox molecules. 

However, it was found that the intrinsic conductivity of SiO2-based EOS 

system could not be measured due to the pinholes or chemically weak spots on the 

electrode when the exposed area is large. Therefore, the strategies for minimizing 

the damaged area and ensuring the uniformity in the given exposed oxide surface 
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will be presented in the next section. The comparison of currents from the large 

area- and small area- electrode will be presented in section 2.4.3. and the intrinsic 

electrical behaviors will be discussed after then. 

 

  



36 

 

2.4.2. Methods for minimizing experimental deviation  

 

Figure 5. (a) A schematic diagram and (b) a photograph of the electrochemical cell 

for minimizing chemical and physical damage that possibly applied to SiO2 layer. 

Alumina and photoresist define the exposed area of SiO2 to be 50×50 μm2. Whole 

silicon wafer serves as a working electrode to minimize unwanted physical damage 

during dicing or manual handling. 

In this section, the strategies for preparing reliable electrode are presented. 

The damage in the dielectric oxide film would be categorized into two groups. The 

first one is physically damaged area due to the mechanical stress biased during the 

fabrication process. In this area, the film is thinner, or the underlying conductive 

surface is directly exposed to the electrolyte. The origin of physical damage would 

be sample handling or harsh mechanical process such as sawing. The second 

damaged area would be defect rich region, where the interband states lower the 

resistivity of the film. Thus the electrical response of chemical-defect-rich oxide is 

estimated to be thinner than real thickness. The defects are inevitably generated 

during the deposition process or during the exposure to the chemical such as 
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developer or etcher. Thus the film of interest should be minimally exposed to the 

chemicals. 

When using the diced Si/SiO2 or Si3N4 wafer without any protection method, 

the deviation of the electrochemical response was large. The origin of the large 

deviation was expected to be the defects and pinholes present in the exposed area. 

Generally, the number of physical and chemical defects in given surface area is 

proportional to the area, because the distribution of defects is random. If the area is 

smaller than the critical area, the possibility of an exceptionally weak area in the 

area is less than 1, so the smaller the area of the exposure, the smaller the deviation. 

When the area becomes so small a defect-free or a singular defect behavior can be 

observed. 

Dicing is a useful tool for the ease of sample handling. However the physical 

and chemical damages are inescapable because the strain is applied by dicing saw 

and there are intense spraying of water during dicing. Thus dicing was avoided as 

long as possible for minimizing sample damage. 

From these reasons, new strategies were adopted as follows (Figure 5). Firstly, 

additional protective film was deposited to prevent physical and chemical damages. 

A 100 nm-thick Al2O3 film was employed for this purpose, because its ease of 

etching in mild condition where SiO2 and Si3N4 are hardly damaged. Secondly, 

photolithography was conducted to define the exposed area to be small. By 

reducing the exposed area to be hundreds of square micrometer, the physical defect 

is enough suppressed to analyze the conduction of intrinsic dielectric materials. 
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The etching of SiO2 and Si3N4 when they are exposed to photoresist developer 

whose basic pH could possibly etch the dielectric films also can be prevented by 

Al2O3 layer. Al2O3 is also weak in basic pH, however, the thickness of the Al2O3 

film is enough to stand and protect the SiO2 for developing time. Lastly, the whole 

wafer was used without dicing to minimize physical damage. After taking these 

strategies, the electrochemical behavior of SiO2 and Si3N4 was significantly 

changed as discussed in the following section 
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2.4.3. General electrochemical behavior of defect-suppressed 

dielectrics in contact to solution 

 

Figure 6. Cyclic voltammograms of area confined SiO2 (50×50 μm2) with the 

thickness of (a) 6 nm and (b) 10 nm. 

A representative current-voltage characteristic of the Si/6 nm SiO2/buffer 

electrochemical system measured in 0.1 M phosphate-buffered solution (PBS, pH 3) 

is shown in Figure 6. During the cathodic sweep, the current slightly or hardly 

increased before the explosive increment of current at ~−4 V was observed. The 

abrupt increase of current is a typical behavior of dielectric breakdown. Before the 

dielectric breakdown, slight current increase was observed, which reflect the 

tunneling current between electrode and electrolyte. A thicker, 10 nanometer-thick 

SiO2 was formed by the same method as 6 nm SiO2. Vdb shifted to the more 

negative value of ~−7 V which was ~−4 V for 6 nm SiO2. In the thicker oxide, no 

current increase before the dielectric breakdown is observed in the LSV which 

means the reduced tunneling probability between electrode and electrolyte. 
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When a large amount of charge injection was not allowed during preceding 

potential sweep by stopping the sweep manually, and conducted cathodic scan 

again, current-voltage behavior was very similar to the first one (orange curve in 

Figure 6a). To rule out the possibility of recovery of the dielectric property at the 

beginning of the cathodic sweep, the subsequent scan started as shown by the blue 

curve starting from -3 V, which resulted in similar voltammogram to the former 

ones. However, after the large current, whether by constant voltage stress or further 

voltage sweep (data not shown), the current-voltage relationship was permanently 

changed, implying that an irreversible chemical or physical change on the Si/SiO2 

electrode surface took place (red curve in Figure 6a). This cannot be explained by 

peeling-off of the oxide from the underlying conductive Si because the shape of the 

linear sweep voltammogram after breakdown is different from the voltammogram 

obtained when bare Si is directly exposed to the solution by HF chemical etching 

(data not shown). For the bare Si electrode, a hydrogen evolution reaction (HER) 

started to appear at a mild overpotential, −0.7 V. However, the cathodic current 

onset potential of Si/SiO2 electrodes, which had experienced breakdown, is around 

−2.3 V. The sluggish HER will be discussed in the later section. The current-

voltage response before the breakdown implies that the conducting pathway did not 

changed by the repetitive voltage sweeps. The number density of defects in the 

dielectric film is known to be increased under voltage stress,38 however, the short-

period voltage stress did not induce the defect creation. 
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Figure 7. (a) A current-time curve of Si/6nm SiO2 electrode under constant voltage 

(−4 V) stress and (b) its magnification of low current region. 

A graph of time-dependent dielectric breakdown under constant voltage stress 

also showed a stepwise current increment (Figure 7a). A constant voltage stress, −4 

V, induced the breakdown in the pH 3 buffer solution for the 6 nm-thick SiO2 

electrodes. Under the electrical bias, a small leakage current known as the stress-

induced leakage current (SILC) was observed (the leakage current measured until 

55 s is presented in Figure 7b). Unlike the current response during the voltage 

sweep, the increase in leakage current might result from the increase of the defect 

concentration. The number of defect is increased when the dielectric is exposed to 

an electrical stress by the chemical mechanisms as introduced in the previous 

section. Due to the increasing number of conduction pathways that comprise of 

defects, the resistance of the film is reduced in this period. After a sudden current 

rise, an indicator for the dielectric breakdown, the current kept increasing 

irregularly. 
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2.4.4. Cation effect on dielectric breakdown characteristics: 

sodium intercalation and accelerated breakdown kinetics 

 

Figure 8. Breakdown potential (Vdb) of Si/10 nm SiO2 electrode obtained at the 

electrolytrytes varying (a) cations, (c) Na+ concentration and (d) anions. 

Breakdown potential of Si3N4 with different cation is presented in (b) 
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Figure 9. Vdb-pH dependence of Si/10 nm SiO2 electrode obtained at aqueous 

electrolytes containing (a) 0.5 M NaCl, (b) 1 mM NaCl, and (c) 0.5 M KCl. (d) Vbd-

pH dependence of Si/10 nm Si3N4 electrode at aqueous buffer containing 0.5 M 

NaCl. 

In this section, the effect of electrolyte will be discussed. The electrolytes 

containing 500 mM of alkali metal chloride salt buffered by 50 mM potassium 

phosphate buffer were used for the dielectric breakdown experiments in aqueous 

system. The effect of cations on dielectric breakdown potential (Vdb) is presented in 

Figure 8. Among the alkali metal chloride solutions, only the solution containing 

NaCl affected the breakdown of SiO2. Vdb shifted positively when the solution 

contained sodium ions, and the deviation of Vdb is reduced as well. Little changes 
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in Vdb were observed with varying anions (Figure 8d). The effect of sodium cations 

on breakdown potential cannot be observed for the breakdown of Si3N4 (Figure 8b), 

which means the effect is originated from the chemical nature of the SiO2. The 

sodium effect was enhanced with the increased sodium concentration, whose slope 

is −190 mV/pNa (Figure 8c). 

According to the previous papers,46 the pH of electrolyte significantly affects the 

kinetics of dielectric breakdown. They conducted the dielectric breakdown 

experiment of thin Si3N4 film of which the both sides make interfaces with 

electrolyte. When the pH of both electrolytes was identical, dielectric breakdown 

was faster at the more acidic electrolyte. If the pH of each side was different across 

the film, the faster dielectric breakdown was observed when the electrolyte of 

oxidative applied potential was more acidic than the electrolyte of reductive 

potential. From these observations, they suggested that the proton conduction in the 

film and interfacial charge transfer reaction in which protons are involved was the 

key factors to understand the dielectric breakdown phenomena in electrolyte-solid 

interface. 

To confirm whether the effect of pH on the dielectric breakdown of SiO2 in the 

Si/SiO2/electrolyte system has the same tendency, we varied the pH for each 

electrolyte. Vdb shifted positively with the decrease in pH of the electrolyte 

containing KCl (Figure 9c, −160 mV/pH), which was expectable from the previous 

reports. However, the inverted tendency was observed when the electrolyte 

contained Na+, and the slope was ~59 mV/pH (Figure 9a and 9b). The tendency 

didn’t change when the sodium concentration was reduced to 1 mM. For Si3N4 film, 
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the slope of −70 mV/pH was observed (Figure 9d). 

The inverted tendency of Vdb to pH when Na+ is presented can be addressed by 

the surface charge changed by protonation. When Na+ is transferred from aqueous 

phase to SiO2, it would interact with the SiO2 surface first. Because the charge of 

SiO2 surface is changed according to the solution’s pH, the degree of sodium 

transference would be affected by pH. At the acidic solution, the surface charge of 

SiO2 becomes positive, which makes the mass transport of cation unfavorable.63,75 

The slope of Vdb lowering versus pH when sodium cations are presented, −60 

mV/pH, infers that mass transport of Na+ is affected by surface potential built by 

protonation. On the other hand, when there is no cations that can transfer through 

the interface, breakdown occurs at lower potential at acidic solution. There are 

numerous studies reporting the proton conductivity of silica.19,44,76,77 Thus, it is 

reasonable that protons could transport from solution phase to SiO2, and then they 

lower Vdb. However, the probability of proton transport into the dry SiO2 matrix 

from the solution phase would be less persuasive considering the large hydration 

energy of protons and its slow diffusion in SiO2.30 Nevertheless, protons are still 

expected to penetrate inside the oxide because there are adsorbed protons on the 

surface and the sub-surface region in the form of silanol whose solvation shell is 

partially peeled off. The probability of proton intercalation is evidenced by the pH 

dependence of Si3N4 breakdown. When SiO2 is substituted to Si3N4 film which is 

known to suppress electrolyte induced hysteresis in ISFET,30 there are relatively 

weak correlation to pH, −70 mV/pH. As the protonation changes the effective bias 

applied on dielectric film by 59 mV/pH (Figure 9d), this correlation infers that the 
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protons hardly diffuse in Si3N4. On the other hand, SiO2 has the stronger correlation 

between pH and Vdb, thus the contribution of protons by mass transport would be 

highly reasonable, lowering the Vdb by intercalation. 

 

Figure 10. Expected potential gradient of EOS system (left) without and (middle, 

right) with cation species that can transport to SiO2 from electrolyte. 

The breakdown lowering ability of cation species can be found in the previous 

research of solid state device. They reported that Vdb is lowered by mobile cations 

in dielectric films by increasing effective electric field in the film (Figure 10).24,40 

Like electric double layer built at the vicinity of electrode surface, mobile cations 

in the dielectric film accumulate near the Si/dielectric interface, steepening the 

potential gradient. Resultantly, the chance of electron injection to the conduction 

band of dielectric is increased by locally enhanced electric field, lowering Vdb. In 

this system, it is expected that Na+ could be transferred from the aqueous phase to 

the SiO2 matrix. 
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With the same method that was used to calculate the number of cations 

introduced to hydrogenated silicon carbon nitride film in the literature,40 we 

estimated the number of sodium ion in SiO2. Briefly, assuming that the injected 

Na+ is positioned on a plane, the effective electric field can be calculated simply 

from the sum of the applied field and the field generated by Na+ ions (Figure 10c). 

The potential differences at Si-SiO2 and SiO2-electrolyte are not considered 

because the applied potential is significantly larger, so the magnitude of applied 

field EA would be VA/d, where VA is applied potential between reference and Si and 

d is the oxide thickness. By the gauss law, electric field is made by sodium ion 

plane in the film with the magnitude of ENa = qNNa/2ε where q is the charge of 

electron, NNa is the area density of Na+, ε is the permittivity of free space. Thus, the 

electric field applied between Si and Na+ plane is Etotal = EA + ENa = VA/d + qNNa/2. 

When Etotal exceeds the dielectric strength of SiO2, which is Vdb/d without Na+, 

breakdown would happen. Using the measured Vdb, the estimated number of 

sodium ions per unit area of 10 nm-thick film is 1.26×1016 m-2, one sodium ion per 

3,000 SiO2, or 20 mM. 
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Figure 11. (a) Normalized free energy required to cation transport from aqueous to 

SiO2 phase. (b) Mean displacement of cations versus time for different alkali metal 

cations calculated by molecular dynamic simulation. 

The cations transportation between two different phases would be divided to 3 

steps. (1) The solvation shell that stabilizes cations in solution phase should be 

peeled off completely or partially before the cations enter the oxide. (2) In the 

oxide, the lattice is distorted or locally reduced to stabilize the local excess charge. 

(3) On the interface, the adsorption of the cation on the terminal group of the oxide 

can catalyze the transport process by lowering activation energy. In order to further 

elucidate the cation selectivity of SiO2/aqueous system, we conducted theoretical 

calculations based on DFT, by estimating the relative stability of alkali metal 

cations. In Figure 11a, the normalized relative stability of alkali metal cations in 

SiO2 against in water is plotted as a function of the cation species. We normalized 

the values based on the minimum, specifically the value of Na+, to present the 

effect of cation species clearly. The positive values for Li+, K+, Rb+, and Cs+ imply 
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that they have less preference for residing in SiO2 matrix than Na+, indicating that 

Na+ ions have the highest driving force for the insertion from water to SiO2. 

Nevertheless, it should be noted that the results do not demonstrate only Na can be 

inserted into SiO2 structure. We also investigated transportability of alkali ions in 

SiO2 structure by AIMD simulations. The calculated mean square displacement of 

each alkali ion is depicted in Figure 11b as a function of simulation time. It is 

observed that alkali ions bigger than Na+ ion can barely migrate in SiO2 matrix, 

implying that they are less likely to contribute the breakdown enhancement even if 

the cations intercalate into the first layer of the matrix. In contrast, the ionic motion 

of Li+ shows much faster than others. Yet, it is expected that the role of Li+ on Vdb 

seems less significant than Na+ because its insertion from water to SiO2 is 

energetically less favorable than Na+. The adsorption of alkali metal ions on SiO2 

surface is affected by the anions and strongest adsorption of Na+ was made when 

Cl- is presented,61 however, no significant change in Vdb experiment was observed 

(Figure 8d). 
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Figure 12. (a) Vbd of Si/10 nm SiO2 electrode obtained at organic solvent 

(acetonitrile) based electrolyte containing 0.1 M of LiClO4, NaClO4, TBAClO4 

electrolytes. The saturated KClO4 electrolyte was used due to its low solubility. (b) 

Calculated normalized relative stability of when alkali cation is transferred from 

acetonitrile to SiO2. Data obtained from SiO2-water system is also presented for 

comparison. 

Because the solvation energy of each phase is important factors for the 

selectivity of ion intercalation, the assumption was made that the selectivity 

becomes different at other solvent environment. We modified the solvation energy 

by changing solvent to acetonitrile.78 However, there are relatively small changes in 

the difference of solvation energy of cations between typical solvents, so in most 

cases the selectivity would not change significantly. (Figure 12) 

Therefore, it can be concluded that protons play multiple role in the 

conduction of dielectric film. Firstly, surface protonation would affect the effective 

field applied to SiO2 film, thus the electronic conduction and the ionic conduction 
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rate would be changed. pH modifies the potential difference by 59 mV/pH, so Vdb 

would shift by 59 mV/pH for ideal dielectric material. When there are ions that can 

be transferred to dielectric material such as Na+ into SiO2, interfacial protonation 

interferes with the introduction of Na+, making it difficult to cause dielectric 

breakdown. In the absence of transferrable species, the injection of the proton itself 

contributes to dielectric breakdown.  
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2.4.5. Electron scavenger effect on dielectric breakdown 

characteristics: non-destructive conducting pathway by 

electron scavenger 

 

Figure 13. (a) Vbd and (b) Weibull plot of Si-SiO2 Si/10 nm SiO2 electrode broken 

down at aqueous electrolyte with or without 10 mM ruthenium hexamine (III) in 

0.5 M KCl buffered by 50 mM phosphate buffered solution (pH 3). 

 

In the literature reported by K.Briggs et. al., they suggested that the protons 

and hydroxides were the reactant for the charge transfer reactions which should 

occur at the electrolyte-oxide interface for charge balance. Thus the dielectric 

breakdown kinetics is accelerated when pH is lower at anode side. In this thesis, 

this assumption is generalized as follows; if the interfacial charge transfer reaction 

is facilitated by the chemical species in the electrolyte, the faster dielectric 

breakdown kinetics will be observed. 
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Ruthenium hexamine is a well-known redox species with a standard reduction 

potential of 0.1 V vs. NHE which is comparable to that of hydrogen evolution 

reaction that would most likely occur at the interface. If the assumption is correct, 

the presence of 10 mM ruthenium hexamine (III) will accelerate the dielectric 

breakdown because its reduction reaction to ruthenium hexamine (II) would be 

much faster than HER in pH3. However, both potential sweep- (Figure 13a) and 

constant potential- (Figure 13b) dielectric breakdown experiments show little 

difference by the presence of ruthenium hexamine (III). The time for breakdown, 

tdb, is analyzed by Weibull analysis which is a widely accepted statistical analysis 

for breakdown. According to the Weibull analysis, the probability of breakdown is 

increased over time, inferring that the breakdown kinetics is accelerated under 

voltage stress. The acceleration would be originated from the increasing 

concentration of defect in the dielectric film as shown in Figure 7b. tdb showed 

wide variations, from a couple of seconds to several hundreds of seconds. 

According to the percolation model, the large deviation of breakdown is a general 

characteristic of thin dielectric films. Although the deviation of tdb is large, the 

Weibull plot clearly shows the irrelevance of redox species to the breakdown 

kinetics. 

The little effect of electron scavengers in solution phase refers to that charge 

transfer reaction at electrolyte-oxide interface is not a significant factor for 

dielectric breakdown. There are two possible reasons which could address this 

phenomenon. The first one is that the electron scavenger does not enhance the 

electron transfer rate at the oxide/electrolyte interface. When the conduction occurs 
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in dielectrics, electrons should be injected to the conduction band first. The 

electrical potential energy of electron in the conduction band of SiO2 is high, which 

is only 0.9 eV lower than vacuum level. This high-energy electron should be 

ejected to the solution phase. We suspected that the reaction accompanying this 

charge flow would be the common electrochemical reactions of reducible species 

such as the reduction of proton or ruthenium hexamine. However, it can be 

deduced from the result that the charge imbalance in SiO2 would be solved by other 

ways. We guess that the electrons in conduction band would be released in the form 

of solvated electrons.66 The reactivity of solvated electron is strong, so they cause 

electrochemical reaction with not only protons or redox species, but also solvents 

nearby. Therefore, even though the redox species were ready to accept electrons, 

the effect was insignificant if the dominant reaction would be the reaction between 

solvated electrons and solvent molecules. 
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Figure 14. 3D-scatter plot of sampled current obtained at -7 V during negative 

potential sweep of Si/10 nm Si3N4 electrode varying temperature (x-axis) and pH 

(y-axis)  

The second possible scenario is as follows. The presence of electron 

scavenger facilitates the charge transfer reaction at the interface, however the 

excess charge flowed in this pathway does not contribute to the acceleration of 

breakdown. To support this assumption, the Qdb of Si3N4 was analyzed. As shown 

in Figure 14, current is significantly increased when there is ruthenium hexamine 

(III) in the electrolyte. Thus, it seems that the electron scavengers facilitate the 

current flow in EOS system. The current attributed to redox species was affected 

by the potential profile of the double layer region, where the current is smaller at 
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the lower pH due to the coulombic repulsion of oxide surface and redox molecules. 

This is the third role of protons for the conduction of EOS system. 

 

Figure 15. (a) Mean flowed charge until breakdown during the potential sweep at 

each condition. (b) Mean breakdown potential measured at each condition. 

Analyzing Qdb offers the additional information of breakdown nature. Figure 

15a presents the Qdb under various experimental conditions. It is shown that the 

bigger amount of charge is allowed in the presence of ruthenium hexamine (III). 

Interestingly, Qdb shows drastic change at the presence of electron scavenger when 

the pH of the electrolyte is varied. However, the little increase in Qdb at the lower 

pH was observed in the absence of ruthenium hexamine (III). Vdb shifted to the 

positive potential at the lower pH with the slope closed to 60 mV/pH. The 

breakdown of EOS system containing ruthenium hexamine requires slightly more 

harsh potential compared to the system without ruthenium hexamine. 

Thus the contribution of electron scavenger to the observed conductivity of 

EOS system is confirmed to be significant. However, the little effect of electron 
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scavengers on dielectric breakdown refers to that the observed charge transfer rate 

at electrolyte-oxide interface could not simply become an indicator for dielectric 

breakdown kinetics. Dielectric breakdown is originated from the electrochemical 

decomposition of molecular chain of insulator due to the charge carrier with high 

energy. Especially, the injection of hole and the release of hydrogen from the anode 

side are the main culprits responsible for dielectric breakdown. In solid state 

devices, the generation of these reactive species is known to be followed by 

electron transfer from the conduction band of insulator to the unoccupied state of 

anode. Thus the dielectric breakdown kinetics is accelerated at the condition of 

higher measured current. When the one side of the insulator is substituted with 

solution phase, however, two types of interfacial electrochemical reaction which 

have different contribution to dielectric breakdown seem to exist. Electrochemical 

reaction of non-adsorbate as in case of ruthenium hexamine (III) seems to have 

negligible contribution to dielectric breakdown, which means that this type of 

reaction would not drive hole injection or hydrogen release. Instead, the generation 

of hole and hydrogen would be attributed to the electrochemical reaction of surface 

states such as –Si-OH or –(SiOH2)+ at the surface of SiO2. Electron scavenger in 

electrolyte would draw the high-energy electrons before they trapped to the surface 

state and make destructive species.79 Consequentially, dielectric breakdown 

kinetics is unaffected in spite of the bigger current. 
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2.4.6. Post-breakdown phenomena  

 

Figure 16. SECM images for a 200×200 μm2 Si/6 nm SiO2 substrate electrode 

obtained in a SG-TC mode, monitoring the [Ru(NH3)6]2+ oxidation current of a tip 

with a tip potential (Etip) held at −0.5 V in 10 mM [Ru(NH3)6]Cl3/0.1 M PBS (pH 3) 

applying −1 V to the Si/SiO2 substrate. Distance of tip to substrate is 10 μm. Scan 

rate is 50 μm s−1. The unit of tip current is nA. (a) Before breakdown and (b) right 

after breakdown at −4 V in 0.1 M PBS (pH 3). After additional (c) 750-s and (d) 

800-s voltage of −4 V application to the Si/SiO2 substrate of (b) in 0.1 M PBS. (e) 

A SECM image for 200×200 μm2 Si/SiO2 substrate electrode obtained in a normal 

feedback mode, monitoring the [Ru(NH3)6]3+ reduction current of a tip with a tip 

potential (Etip) held at −0.5 V (vs. SCE) in 10 mM [Ru(NH3)6]Cl3 dissolved in 0.1 

M PBS (pH 3) without applying any potential to the Si/SiO2 substrate. Distance of 

tip to substrate = 10 μm. Scan rate = 50 μm s−1. The tip current scale is nA. 
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According to the literature dealing with solid electronics, the breakdown of 

various oxide materials is generally known to occur locally at a relatively weak 

region of the oxide, whose exact physical and chemical features are still under 

debate.10 SECM results show the similar characteristics to the previous literature 

from solid electronics. A SECM image of 6 nm-SiO2/Si substrate electrode 

obtained in a normal feedback mode confirms the smooth substrate surface, 

without any physical defects (Figure 16e). For this 200×200 µm2 Si/SiO2 area, 

SECM substrate generation-tip collection (SG-TC) images were obtained in 10 

mM [Ru(NH3)6]Cl3/PBS solution (pH 3) before and after breakdown (Figure 15). 

The images are displaying tip currents with Etip = +0.1 V, when [Ru(NH3)6]2+ 

generated at the substrate with Esub = −1 V can be collected and re-oxidized. As 

shown in Figure 16b, a local conduction spot is generated after breakdown, denoted 

as C1, around which a large tip current flows. COMSOL simulation tells that a tip 

electrode (10 μm dia.) can collect ~56.17 % of products generated from disk-

shaped sources (~100 nm dia. and 2.5 μm dia.) located at a distance of 10 μm. 

Assuming the conduction spot to be a disk-type ultramicroelectrode (UME), its size 

could be inferred from the current using equation (2).  

ilim = 4nFDCa …………………………….……  (6) 

where ilim is the measured limiting current value, n is the number of electrons, F is 

the Faraday constant, D is the diffusion coefficient of [Ru(NH3)6]2+ (9.12 × 10-6 

cm2 s−1, calculated from the literature), C is the concentration of [Ru(NH3)6]Cl3, 

and a is the radius of the electrode. The greatest tip current measured was ~55.5 pA, 
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corresponding to 56.14 nm in diameter. To investigate the change of the conduction 

spot and Si/SiO2 during the breakdown process, −4 V was further applied to the 

same substrate in PBS solution. After the further voltage application for 750 s, two 

more conduction spots (C2 and C3) appeared, while the size of C1 increased by 4 

times (226.6 nm in dia.) (Figure 16c). With the assumption of a disk-shape 

conduction spot, the local conduction spot sizes of C2 and C3 are estimated to be 

~83.56 and ~102.5 nm in diameter, respectively. Another 50 s with −4 V 

application to the same substrate produced no additional conduction spots, but the 

tip collection currents increased greatly, indicating widening of the local 

conduction spots previously created: 1.75 nA (1.770 µm in dia.) for C1, 1.21 nA 

(1.224 µm in dia.) for C2, and 1.20 nA (1.214 µm in dia.) for C3 (Figure 16d). 

According to these results, it is expected that a generated conduction zone becomes 

larger along with continuous charge flow to the substrate at −4 V. 
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Figure 17. Representative SEM and TEM images of the inverted pyramid structure 

resulted from cathodic breakdown and post breakdown etching. SEM images of (a) 

top-view and (b) cross-sectional-side-view of the yellow dotted line in (a). Cross 

sectional TEM image of (c) undamaged Si(100) surface (yellow-dotted circle in (b)) 

and (d) sidewall of the inverted pyramid structure which has Si(111) surface with 

many steps (red-dotted circle in (b)). 
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The morphology of the conduction spots is like an inverted pyramid structure 

as shown in Figure 17. The angle between the sidewalls and the {100} surface of 

the wafer is 55° (Figure 17b), suggesting that the newly generated crystalline 

surfaces are Si{111} (Figure 17b). TEM analysis shows that the {111} sidewall is 

atomically rough with many steps (Figure 17d), whereas undamaged Si(100) 

surface is atomically smooth (Figure 17c). 

Post-breakdown damages are often explained by Joule-heating of the local 

conduction path of the oxide because of large current through very narrow 

percolation path. In our experiment, however, the inverted pyramid structure seems 

to be created by the dissolution reaction of Si as indicated by the flat-etched 

crystalline surface. The possibility of the dissolution is supported by the oxide film 

which partially covers the dissolved region (Figure 17a). In contrast to the 

immense research effort focused on anodic dissolution, a few papers reported 

cathodic dissolution of Si. According to these reports, cathodic dissolution occurs 

when the cathode is much smaller than the anode, in a humid atmosphere, under 

tens to hundreds of volts as an external stress. They suggest that cathodic 

dissolution is originated from the pH increase which results from the HER near the 

cathode. According to our results in this study, the initial area of the conduction 

spot, a cluster of defects, should be very small, probably on the sub-nanometer 

scale. Electron transfer through this conduction spot and the local pH increase due 

to HER around it trigger the dissolution of underlying Si. It is no wonder that larger 

conduction zone leads to more vigorous HER, thus the thin oxide film over the 

conduction region could not hold out against rapid HER. 
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As aforementioned, a sluggish HER rate is characteristic electrochemical 

behavior at the conduction spots. HER requires a higher overpotential at the 

conduction spots than at the Si electrode covered with native oxide. The suppressed 

HER can be ascribed to the {111} surface of the sidewalls. At the cathodic 

potential, hydrogen atoms terminate the Si surface. We surmise that the Si{111} 

could be generated in our cathodic etching condition because it forms a stable 

hydrogen-terminated surface than other crystalline surfaces. Referring to the 

literature,80 the {111} surface forms the most stable hydrogen-terminated surface 

among the crystalline surfaces of Si. The energy required for complete removal of 

1 ML of hydrogen atoms from the hydrogen terminated Si {111} surface is 1.15 J 

m−2, which is greater than the 1.04 J m−2 required for the {100} surface. In addition, 

the {100} surface has a less stable, 2 ML dihydride configuration compared to the 

4/3 ML and the 1 ML surface. Therefore, HER at the {100} surface passivated with 

2 ML hydrogen would be thermodynamically favorable. In conclusion, the sluggish 

HER at −1 V after the breakdown and the following cathodic etching might result 

from the stable hydrogen terminated surface of the newly generated crystalline 

sidewalls. 

 

Figure 18. A schematic of Si/SiO2 breakdown mechanism in acidic condition. 
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Based on our findings, a breakdown and post-breakdown mechanism of 

Si/SiO2 in acidic conditions is proposed, as shown in Figure 18. First, defects are 

generated by applying a cathodic potential and thereafter the conduction path 

connecting the Si and the solution, which was described as a conduction spot, is 

created within the SiO2 film. Second, cathodic dissolution of Si occurs as HER on 

Si induces augmentation of local pH; meanwhile, the exposed Si {111} surface is 

terminated by hydrogen. Finally, vigorous HER peels off the covering SiO2 film, 

leading to an inverted-pyramid-shaped breakdown spot. 
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2.5. Summary 

In chapter 2, the electrical conduction and the breakdown of EOS systems 

consisting of SiO2 and Si3N4 as dielectrics were discussed. The current-voltage 

relationship of large-area-exposed EOS systems shows diode like behavior, which 

were previously interpreted as an evidence of hydrogen atom mediated 

electrochemical reaction. However, when the exposed area was shrunk, the 

voltammogram followed the typical behavior of dielectric breakdown. Therefore, 

the possible electrochemical pathway of hydrogen is not allowed by the bulk 

property of SiO2, but allowed by the local chemical nature of SiO2 which is 

expected to be the weaker region of oxide. 

For the dielectrics where the number of weak spots is suppressed enough to 

conduct experiments for understanding bulk characteristics of dielectrics, the role 

of chemical species in electrolyte phase for the conduction of EOS systems is 

revealed. Firstly, Na+ is transferrable to SiO2 and reduces the dielectric strength, 

whereas other cations cannot. This is explained by the thermodynamic selection 

rule of alkali metal transfer from liquid phase to SiO2. The selectivity measured in 

the aqueous solution would be valid for other solvent, because the hydration energy 

of alkali metals is largely split for common solvents. 

Protons in electrolyte have multiple roles for the conduction of EOS system 

by modifying the surface potential built on the oxide/electrolyte interface. Firstly, 

they changes the barrier height for the mass transport of various charged species. 
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The shift of Vdb by pH in Na+ containing electrolytes shows that the barrier height 

is changed following Nernstian trend. Protons also gate the approach of redox 

species to the oxide/electrolyte interface or underlying electrolyte via changing the 

potential gradient near the interface and pinholes. Thus the conduction is affected 

by the pH of the electrolyte in the presence of redox molecules. Secondly, the 

generation of surface potential changes the net potential applied to the oxide in 

EOS systems, which shift the observed Vdb. Lastly, protons can intercalate into the 

dielectric matrix. Although there are some reports that the diffusion of protons is 

limited in the sub-oxide region near the electrolyte due to the slow diffusivity of 

proton compared to the diffusivity of alkali metals, the diffusion of protons in SiO2 

is ascertained by the off-nernstian slope of pH-Vdb plot obtained at K+ based 

electrolyte. 

Lastly, the role of redox species in the conduction of EOS system is intuitive 

in terms of conductivity. It lowers the charge transfer resistance at the 

oxide/electrolyte interface. However, the increase in conductivity did not 

accompany the acceleration of dielectric breakdown. Thus it seems that the 

conduction mediated via the outer sphere electron transfer reaction at 

oxide/electrolyte interface hardly generates the destructive species such as atomic 

hydrogen and hole. Therefore, the breakdown of EOS system would be attributed 

to the interfacial electrochemical reaction of surface adsorbed species. 

Based on our findings, the reported breakdown kinetics from other researchers 

can be explained clearly. Considering that the penetration of protons was 
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irresponsible for the breakdown of Si3N4 in this work, the argument in the previous 

literatures which addresses the enhanced breakdown kinetics at acidic environment 

as an ionic conduction of protons seems to be less convincing. Instead, the pH of 

electrolyte not only changes the surface concentration of surface-adsorbed 

reactants for electrochemical reaction, but also modifies the net electric field 

applied to the oxide, changing the observed breakdown kinetics. It was confirmed 

that not every conduction pathway contributes the dielectric breakdown. The outer-

sphere pathway reduces the resistance at oxide/electrolyte interface, but the 

increasing current doesn’t change the observed behavior of dielectric breakdown. 

In addition, these findings are expected to contribute to the deeper 

understanding of EOS systems failure. For the advanced performance, the devices 

incorporating EOS system employ thinner dielectrics. The dielectrics are supposed 

to be exposed to high electric field stress under operation condition, which have 

similar condition with this work. Although this study deals only with SiO2 and 

Si3N4, further analysis of other dielectric materials can provide useful criteria for 

material selection in EOS device implementations. 
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3. Full-color-tunable Electrochromic Device Using 

Tungsten Trioxide Thin Film 

3.1. Introduction: Electrochromic Device and 

Nanostructure for Better Optical Performance 

Ion conductive oxides generally show unique changes in material property 

when the ions are intercalated. Electrical and optical property can be easily and 

reversibly modulated by applying electrical energy because the ion intercalation 

changes the electronic structure of the material. This switchable characteristic 

expands the possible application fields to the various devices such as 

electrochemical gating field effect transistors, electrochromic devices, etc. 

Among the application fields, electrochromism utilizes the change in optical 

property. The reflectance and transmittance can be modulated, and researches are 

being conducted to construct efficient optical products such as electronic paper, 

smart glass and the electrochromic dye for the indicator of sensor. Numerous works 

have been reported which exploited various oxide materials such as VO2, WO3 and 

NiO2, and polymers. 

Tungsten trioxide (WO3) is not only a well-known electrochromic material, 

but also a candidate for the anode of the lithium-ion (Li) battery of the next 

generation due to its electron conductivity and ionic capacity, which operates in 
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mixed-conduction mode.14,81 In particular, optical tuning with WO3 has been 

studied for decades as a potential candidate to implement electronic paper, since 

the color of the WO3 immersed in electrolyte containing H+, Li+ or Na+ changes 

largely from transparent (pale yellow) to dark (deep blue) by the intercalation of 

cations. To my knowledge, most devices have used WO3 films of micrometric 

thickness for the sufficient color change,3 resulting in the range of application to be 

restricted due to their unique monochromatic color adjustment. 

The light tunability in the wide frequency domain from visible to far IR is one 

of the great opportunities that nanophotonics can offer. After the generation of 

color was achieved by means of plasmonic nanostructures or metasurfaces with 

well-designed structure,82–85 significant efforts have been made towards the tuning 

of the spectrum in the visible with diverse physical and chemical mechanisms such 

as the modulation enabled with liquid crystal, reversible electrodeposition,86,87 

electrochromism,88,89 chemical catalysis,90 and the Purcell effect.91 However, all 

these techniques still cannot meet the requirements for commercial display due to 

the difficulties in improving the purity of color, expanding the range of colors and 

manufacturing large areas from unavoidably complicated configurations. 

Electrochromism have been suggested as a possible strategy to enable the 

tunability to nanophotonic deivices. Given that apparent but monochromic color 

tuning of WO3, nanophotonics seems to be able to synergistically combine with 

WO3. However, dynamic light tuning of nanophotonic device using WO3 has not 

reported yet. 
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Therefore, in this chapter, electrically adjustable color devices based on WO3 

thin film are demonstrated. Strategic approaches are provided to generate various 

color and high-contrast color tuning with simple structures which do not require 

tricky fabrication techniques. Large frequency shift and intensity modification 

observed by reflective and transmissive type devices are presented and their 

performance is evaluated. 
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3.2. Experimental Section 

3.2.1. Reagent and Appartus 

WO3, LiClO4, AgNO3, and gallium-indium eutectic (≥99.99% trace metals basis) 

purchased from Sigma Aldrich (US), acetonitrile purchased from Daejung (Korea), 

were used without further purification. WO3 was deposited by homemade 

radiofrequency magnetron sputter. Electrochemical analysis was conducted with 

commercial electrochemical analyzer, Reference 600 (Gamry, US). For ex-situ and 

in-situ optical measurement under potential bias, mobile potentiostat, Compactstat 

(Ivium Technologies, The Netherlands), was employed. Optical analysis was 

conducted with Cary 60 uv-vis spectromer (Cary, US), V-VASE spectroscopic 

ellipsometer system (J. A. Woollam, US), homemade optical analyzer incorporating 

Acton SP2300 spectromer, PIXIS 1300B CCD (Princeton Instrument, US) and 

10500 solar simulator (ABET, US). Photolithography was conducted with MDA-

400s mask aligner (Midas System, Korea) and Hexamethyldisilazane (HMDS; 

Clariant, Switzerland), AZ5214 and AZ 300 MIF (Merck, US) as chemical reagents. 

3.2.2. Deposition of WO3 films 

The WO3 sputter target was made with WO3 powder. The WO3 powder was 

placed on Cu back plate and pressed with ~6.5 Mpa pressure. The base pressure in 

the sputter chamber was set to below 1×10-5 Torr. The partial pressure during 

sputtering was set to 7 mTorr for Ar and 1.3 mTorr for O2. RF power was 100 W. 

The distance between target and substrate was varied with substrate materials to 
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protect the substrate from a possible damage. The distance was 10 cm for Si 

substrate and 14 cm for Ag substrate. 

3.2.3. Preparing WO3 coated Si electrode for optical and 

electrochemical analysis 

Firstly, the deposition rate of WO3 on Si substrate under the given sputtering 

condition was found. The thickness of WO3 film was extracted from the 

ellipsometry result whose detailed method is presented in section 3.2.5. The 

deposition rate was 3.4 nm/min. The thickness of the samples used for 

understanding the electrochemical behavior and the optical property of WO3 film 

was 92 nm. 

3.2.4. Electrochemical analysis 

The electrochemical experiment was conducted by employing three-electrode 

cell with an Ag quasi reference electrode (Ag wire in 10 mM AgNO3 and 100 mM 

LiClO4 dissolved in acetonitrile) and a Pt plate as a counter electrode. 100 mM of 

LiClO4 in acetonitrile solvent was used for electrolyte. For electrical contact of 

WO3/Si electrode, the backside of Si was scratched by diamond point pen, and 

gallium-indium eutectic was applied to the scratched region. Finally a 10-cm-long 

conductive adhesive tape was attached on the gallium-indium eutectic. For 

galvanostatic intermittent titration experiment, −1.78 mA/cm2 was applied to 

intercalate Li+ for 5 s, and then system was rested in open circuit condition for 55 s 

to achieve steady state potential. Cyclic voltammogram was obtained with varying 
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scan rate from 5 to 500 mV/s. 

3.2.5 Optical analysis 

Optical analysis to find out the n and k was carried out with V-VASE 

spectroscopic ellipsometer system (J. A. Woollam, US) at the wavelength region 

from 400 to 800 nm. The transmisstion and absorption of WO3 film was measured 

with Cary 60 uv-vis spectromer (Cary, US), and homemade optical analyzer 

incorporating Acton SP2300 spectromer and PIXIS 1300B CCD (Princeton 

Instrument, US) and 10500 solar simulator (ABET, US). 

3.2.6. Fabrication of reflective- and transmissive- type device 

Reflective type device has the simple structure of WO3/Si which was used for 

understanding the property of WO3 film. For the color of red, green, and blue, the 

165, 230, 205 nanometer-thick WO3 films were deposited, respectively. 

For the device of transmissive type, a 40 nanometer-thick Ag film was 

deposited on ITO coated glass with the deposition rate of 0.1 nm/s. Then the 

atomic layer deposition of Al2O3 (30 cycles) was conducted to prevent the 

sputtering damage. WO3 with the thickness of 100, 70 and 48 nm was deposited for 

red, green and blue device, respectively. Finally, 40 nanometer-thick Ag film was 

deposited again. 

Photolithography was conducted to reduce the area of transmissive type 

devices. After thorough rinsing with acetone and isopropanol, samples were dried 

by N2 blowing followed by dehyadration for 5 min on 150 °C hotplate. 
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Hexamethyldisilazane was spincoated (4000 rpm, 30 s) and baked for 3 min at 

120 °C. AZ5214 photoresist was spincoated at 4000 rpm for 30 s, and softbake was 

conducted at 100 °C. After UV exposure (4 s, 15 mW/cm2) with MDA-400s mask 

aligner, developing was conducted by immersing the wafer into AZ300MIF 

developer for 40 s. Finally Ar ion beam milling was conducted for 1 min to 

partially remove the top Ag film. 

 

 

 

  



75 

 

3.3. Results and discussion 

3.3.1. Analysis on tungsten trioxide thin film 

The ionic conductivity of WO3 is originated from their ReO3-type structure 

(empty perovskite). It has pores and voids between corner-sharing WO3-octahedras, 

and the ion intercalation are possible by the following reaction. 

𝑥𝐿𝑖+ + 𝑥𝑒− + 𝑊𝑂3 → 𝐿𝑖𝑥𝑊𝑥
5+𝑊1−𝑥

6+ 𝑂3 

The change in crystalline structure was reported during the charging and 

discharging. At lower charged state (x < 0), cations intercalate without changing 

monoclinic WO3 structure. Then it is changed to orthorhombic, tetragonal, and 

cubic structure together with the increase of x. Not only the crystal structure, but 

also the electronic conductivity is changed along with the charging state: insulator 

to semiconductor (x = 0.25), and semiconductor to metal (x = 0.4). 

In this work, the WO3 film is used without further thermal annealing after 

sputtering. Therefore, it is expected that the WO3 has amorphous structure which 

allow faster Li+ diffusion compared to crystal phase. The WO3 film is deposited on 

highly doped n-Si substrate for electrochemical and optical analysis due to its 

flatness and high conductivity. Before the electrochemical analysis, potential was 

cycled from 1 V to −1.5 V for making electrical connection between the WO3 film 

and the underlying Si electrode because SiOx layer generated during sputtering act 

as an electrical barrier. Oxygen supply is necessary to make oxygen-saturated WO3 
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film, however, it induce thin dielectric SiOx between WO3 and Si. After several CV 

cycles, voltammograms became indistinguishable to each other and the color 

change became uniform over the exposed area, confirming sufficient conduction 

paths were made between WO3 and underlying Si by dielectric breakdown of SiOx . 

 

Figure 19. Cyclic voltammograms of WO3 film deposited on highly doped Si 

substrate in 100 mM LiClO4 electrolyte (acetonitrile) varying (a) thickness and (b) 

scan rate. 

The WO3 film shows the reversible charging and discharging of Li+ as shown 

in the cyclic voltammetry (CV) conducted at 5 mV/s (Figure 19a). The current 

density and the thickness of the film show positive relationship, because the Li+ 

charging capacity is proportional to the thickness of the film. At the film thickness 

of 364 nm, Li charging/discharging characteristics deviates more from ideal 

capacitor behavior. It would be resulted from the increasing resistance of the film. 

CVs obtained at higher scan rates (100 to 500 mV/s) are presented in Figure 19b, 

which show ohmic behavior with a scan rate dependence of current, b=0.099 in 
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i=a(dV/dt)b. Moreover, additional overpotential is required for the de-intercalation 

of Li+ at higher scan rate. This quasi-capacitive character would be resulted from 

the slow diffusivity of Li+ in WO3. Phase change of Li+ conducting oxides was 

observed via CVs in previous literatures, however, no obvious feature was 

observed, showing that the amorphous nature of WO3. The reduced overpotential is 

observed after the 2nd cycle at higher scan rates, which infers the residual Li that 

could not escape from the film facilitates the Li intercalation kinetics. 
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Figure 20. Steady state potential and diffusion coefficient of Li in LixWO3 obtained 

via galvanostatic intermittent titration technique (GITT). 

The steady state potential versus the stoichiometry, x, of LixWO3 and the 

diffusivity of Li+ at various Li+ content were obtained by galvanostatic intermittent 

titration technique (GITT) conducted at various compositions (Figure 20). GITT is 

a useful technique to find out the diffusivity of foreign species that can intercalate 

into the thin layer. In GITT experiment, current ramp is applied for short time 

period to intercalate the species, Li+ in this work. By relaxing the system at open 

circuit condition for a sufficiently long time, the steady state potential for certain 

stoichiometry can be obtained. The steady state potential shows linear relationship 
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to x, utilizing the voltage ramp to modulate the amount of Li+ in device operation. 

The detailed method for extracting diffusion coefficient by GITT was established 

by Weppner et al..92 Briefly, the diffusion coefficient is extracted from the slope of 

coulometric titration curve at open circuit relaxing condition (steady state potential 

versus Li content) and chronopotentiometric curve at current ramp period (cell 

potential versus square route of time). Then the equation for chemical diffusion 

constant (D) is derived to be 

D =
4

𝜋
(

𝑚𝐵𝑉𝑀

𝑀𝐵𝑆
)

2

[
∆𝐸𝑠

𝜏(𝑑𝐸 𝑑√𝑡⁄ )
]

2

………………………(7) 

where mB, MB and VM is the mass, the atomic mass and molar volume of WO3, S is 

the area of the WO3 film, Es is the slope of coulometric titration curve, τ is the time 

of current ramp, and E is the cell potential during the current ramp period. D was 

calculated to be 4.91×10-11 cm2s-1 at x=0.03 and D decreased with x. When the Li+ 

content increases, there must be the electrostatic repulsion between Li cations, 

which results in slow diffusion in higher Li content as found in other literatures. 

According to the literature, the maximum intercalation capacity is 0.5 Li per 

formula unit for bulk (crystal structure) WO3 and 1.12 for WO3 nanorod.14 

However Li+ capacity of our WO3 film was ~0.9, and the voltammetric response 

was reversible despite the high electrochemical stress induced to the film. 
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Figure 21. X-ray photoelectron spectra of (left) as-prepared WO3 film in the region 

of W (upper-left) and O (bottom-left). X-ray photoelectron spectra of WO3 after Li 

intercalation are presented on the right column in the region of W (upper-right) and 

O (bottom-right). 

Because no further annealing after deposition was made, the amorphous film 

was expected to be obtained. The structure of WO3 film is characterized by X-ray 

photoelectron spectroscopy (XPS) (Figure 21) and X-ray diffraction (XRD) (Figure 

22). XPS spectra clearly confirms the identity of film to be tungsten trioxide, which 

has a little oxygen deficiency (WO2.7).93 The deficiency would be originated from 

the insufficient amount of oxygen gas in the sputter chamber, however, oxygen 
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partial pressure is set to be below 1.5 mTorr for preventing a possible oxidation 

damage of substrates. A shoulder arises on the O1s band obtained at the surface of 

WO3 after the Li intercalation in acetonitrile, which infers that the surface oxygen 

is reduced to hydroxyl group. The surface hydroxyl group would be resulted from 

the inevitable water content in organic solvents, however the wetting was not 

observed at the bulk region. XRD pattern of WO3 film shows broad peaks of (200), 

(022), (202) which show its amorphous nature.94 

 

Figure 22. X-ray diffraction spectrum of WO3 thin film deposited on highly doped 

Si wafer. 



82 

 

 

Figure 23. Scanning electron microscopy image of (a) as-sputtered WO3 film and 

(b) WO3 after Li intercalation/de-intercalation cycle. 

Morphology analysis was conducted with scanning electron microscopy 

(SEM). As shown in Figure 23, as prepared amorphous WO3 film has flat and 

smooth surface. Cracks were generated after repetitive charging and discharging, 

however, the roughness of single domain divided by cracks did not change. This 

topological change would be resulted from the mechanical strain applied to WO3 

film. During the charging/discharging processes, the volumetric change of 

monoclinic WO3 crystal structure is known to be 17%. Considering the amorphous 

WO3 film comprised of the locally crystalline WO3 clusters, the topological strain 

due to the ion intercalation would be less than that of crystalline WO3. The 

generated cracks are the result of deformation, which is a stabilized structure that 

compensates for mechanical stress. 
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Figure 24. Optical properties of WO3 thin film as a function of the amount of Li+ 

injection. (a) Refractive index and (b) absorption coefficient measured with a range 

of wavelength between 350 nm to 1650 nm. 

To obtain optical properties of WO3 thin films incorporated in the proposed 

device, ellipsometry measurement was conducted using WO3/Si. The WO3 films 

with various charged states from bleached to charged state are characterized. The 

refractive index (n) and absorption coefficient (k) are measured at states 

corresponding to injected volumetric charge densities of 0, 6, 22, 38, 46, and 80 

mC cm-2 μm-1 which correspond to the Li content, x, of 0.025, 0.088, 0.15, 0.18 

and 0.32, respectively (Figure 24). Each state is called state 1 to 6 for convenience. 

One can see the apparent change of n and k, and this change is sufficient to be 

exploited as color display. In the visible regime, the measured results show a 

tendency of decreasing n and increasing k at the higher charge-injected state. In 

particular, the change of k by ion injection becomes much larger at the longer 

wavelength. This property is directly related to the fact that the dark state of WO3 
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achieved by sufficient charge injection is deep blue. 

Although there is topological change after Li+ intercalation/de-intercalation 

cycles, the voltammetric response and optical properties are reversible during the 

repetitive Li+ transportation. This reversibility, which would be ascribed to the 

structural stabilization by micrometer-scale domains created after the Li+ 

intercalation/de-intercalation cycles, is a critical advantage for practical device 

operation. Therefore, we could conclude that the amorphous WO3 film is suitable 

for electrochemically tunable optical device which employs sophisticated structure 

for better optical performance. 
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3.3.2. Reflective type display using WO3 thin film 

 

Figure 25. Schematic illustration of color generation and tuning mechanism of 

reflection-type device. 
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Figure 26. (a) Reflectance of WO3 thin film on Si as a function of the incident 

wavelength and the thickness of WO3. (b) Photographic image of fabricated red, 

green, and blue samples with target thickness. (c) Calculated (top) and 

experimental (bottom) spectra of reflected light. Color variation corresponding to 

each same colored spectrum from state 1 through 4 to 6 (inset). 



87 

 

The reflective type device employing WO3 thin films is described in this 

section. As shown in the cross-sectional schematic of the reflective devices (Figure 

25), the reflective device is basically WO3/Si which was used to characterize 

electrical and optical behavior. A highly doped Si substrate serves as a reflector and 

an electrode, which lead to the abundant color expression due to the moderate 

reflectance of Si. The reflected light of the bleached-state WO3/Si represents 

specific color, and the color can be tuned as WO3 changes to LixWO3 by Li+ 

intercalation. The optical structure is designed to have resonance mode when the 

reflected light on the interface of electrolyte/WO3 and WO3/Si constructively and 

forms a cavity mode inside WO3 film. This resonance leads to a decrease in 

reflectance due to the energy confinement in cavity. The thickness of WO3 (t) 

determines the resonant wavelength so that a desired color generation can be 

achieved (Figure 26). In this configuration, the goal is to maximize reflectance in 

the desired wavelength region, while to suppress reflectance by placing the 

resonance in the unwanted region. In this respect, most noble metals are 

inappropriate to be utilized for the proposed as a reflector that have extremely low 

refractive indices and high absorption coefficient which result in high reflectivity 

compared to the reflectivity on the electrolyte/WO3 boundary. The reflectivity can 

be simply calculated by Fresnel equation with normal incidence as 

𝑅 = (|𝑛1 − 𝑛2| − |𝑛1 + 𝑛2|)2…………………..…….(8) 

where n1 and n2 correspond to the refractive index of the different media, 



88 

 

respectively. When noble metals are used as a reflector, it is difficult to expect 

nearly zero reflectance under the resonance conditions. Thus the color of reflected 

light is blurred because the light of unwanted wavelength region cannot be 

completely eliminated when using noble metal reflectors. For this reason, a highly 

doped Si is selected as a reflector in the proposed device due to its moderate 

reflectivity and conductivity to be used as an electrode. 

 

Figure 27. The reversibility and stability test of the reflective type devices. The 

spectrum change of a 235 nanometer-thick WO3 on Si at state (a) 1 and (b) 6 for 

different Li+ intercalation cycles. (c) The reflected spectra of a 165 nanometer-thick 

WO3 on Si of state 6 after immersed in electrolyte. 

Three primary colors, red, green, and blue, were expressed with the proposed 

devices and their color tuning by Li+ injection are numerically calculated (top of 

Figure 26c). The thickness of WO3 film are determined as 165 nm, 230 nm, and 

205 nm for red, green, and blue, respectively. For all colors, the resonant dips show 

blue-shift for Li+ intercalation due to decrease of refractive indices of WO3. The 

experimental spectra of RGB devices and their colored states are presented in the 
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bottom of Figure 26c. The spectra show exceptionally good agreement between the 

simulation and experiment for all three colors. Also, its reversibility and stability 

were verified experimentally which showed sufficient reversibility over 80 cycles 

of Li+ charging/discharging (Figure 27a, b). When the electrode was rested under 

open circuit condition after charging, it gradually discharged to its original state in 

24 h (Figure 27c). 
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3.3.3. Transmissive type display using WO3-based thin film 

 

Figure 28. Schematic diagrams representing the working principle of transmissive 

type electrochromic device. 

The reflective type display discussed in previous section has distinct 

advantages of simple structure and a large contact area with the electrolyte, which 

leads to fast response. However, it has a problem of poor color purity. In this 

section, the transmissive type color display based on WO3 thin film is suggested 

which offers better color purity and on/off switching capability. The good color 

purity can be achieved without complex nanofabrication, therefore the centimeter-

scale display applications would become possible using the transmissive type 

device purposed in this chapter. 

Figure 28 shows the cross-sectional schematic of the transmissive type 

devices; the WO3 is placed between two 40 nanometer-thick Ag layers. The 
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transmittance of this metal-insulator-metal configuration with normal incidence is 

well known as  

𝑇 =
1

1+
4𝑅sin2𝑛𝑘0𝑡

(1−𝑅)2

……………………….(9) 

where R is power reflectance at the Ag / WO3 interface, n is the real part of 

refractive index of WO3, and t is the thickness of WO3, respectively. When light is 

incident on the structure, reflected light on each Ag layer causes interference, and 

the Fabry-Pérot (FP) resonance occurs on the condition of constructive interference 

as mλ=2nd in Equation 1, where m is the order of interference, λ is the wavelength 

of incidence. Under the normal incidence, the thickness of WO3 (t) determines the 

resonant wavelength. In particular, the finesse (F) directly related to R is defined as 

𝐹 =
𝜋√𝑅

1−𝑅
…………………………(10) 
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Figure 29. (a) Simulated transmittance of Ag/WO3/Ag on quartz substrate as a 

function of the incident wavelength and the thickness of WO3. (b) Photograph of 

primary devices (R, G and B) operates in transmissive type. (c) Simulated spectra 

tuning of transmitted light for R, G and B (top). Experimental spectra of 

transmissive devices showing switching capability. 
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It can be seen that the full width half maximum (FWHM) of the transmissive 

deivce can be much narrower and the purity of color can be enhanced as the 

reflectance at the WO3/Ag interface increases. The transmission spectrum as a 

function of the thickness of WO3 and the wavelength of incidence is numerically 

calculated (Figure 29a). For three primary color generation, the thickness of WO3 

is determined to be 100, 70 and 48 nm, for red, green and blue respectively (Figure 

29 b). 

The calculated and experimental spectrum of each transmissive device is 

presented in Figure 29c. The FWHM is broadened compared to the simulated 

spectrum. Unlike simulations that only consider vertical incidence to ideally flat 

interface, in experiments, the roughness of interfaces might scatter the light which 

results in the broadening of resonance. Thus the purity of color is poorer than 

expected. 

The switching off of the transmissive device was successfully conducted by 

applying more negative potential than reflective device, to overcome the sluggish 

mass transfer of the horizontal direction in the WO3 layer. Because of its structure, 

the only entrance of Li transport is its side, thus the expected response time is 

hundreds of seconds. By applying the DC voltage with -1 V to -1.7 V, the 

transmissvie device switched off stepwisely as predicted. As shown in the optical 

microscope image of transmissive device, the colored state did not show the color 

gradient, but the spotted pigmentation was observed. This implies the pinholes in 

the top Ag layer would facilitate the Li diffusion by providing vertical pathway. 
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3.4. Summary 

The nanometer-thick WO3 was successfully incorporated to the 

electrochromic nano-optical device, showing wide and rich color expression and 

switching capability. The devices that solely depend on the light absorption of WO3 

film should employ thicker film to lengthen the light path. Thus they have the 

disadvantages of large power consumption and slow response time. On the other 

hand, in this thesis, the weak light modulation capability due to reduced thickness 

of WO3 is overcome by the designed nanostructure with sophisticated material 

selection. Si is generally considered as a poor reflector, however, the WO3/Si 

system was able to represent rich color due to its moderate reflectance. The 

resonance wavelength blue shifted as Li+ was intercalated into the WO3 with 

reduced reflectance and turned back to the uncharged state reversibly. The 

transmissvie device constructed with WO3 thin film showed better color purity 

compared to the reflective type device due to its metal-insulator-metal structure 

which can trap light more efficiently. The Li intercalation turned off the device 

with a diminished-blue-shifted resonance in the intermediated states. The fast 

reversibility has not been achieved due to the dissolution of top Ag layer, however, 

could be implemented by employing thin dielectric layer at WO3/Agtop interface or 

by substituting the top Ag to electrochemically stable metals. The full-colored 

smart window and electronic paper is expected to be developed by further 

optimization of these conceptual devices.  
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4. Conclusion 

In this thesis, the electrochemical systems based on EOS were discussed. In 

chapter 2, the factors affecting the electrochemical behavior of EOS system 

employing dielectric material in the middle was analyzed. It was found that the 

chemical nature of the electrolyte induces significant difference in the conduction 

compared to MOS system. The experimental result was affected significantly by 

the cations in the electrolyte, because the cations in electrolyte modify the local 

electric field by adsorption and intercalation. The role of protons was able to be 

understood in the same manner. The surface potential built by the protonation of 

electrolyte/oxide interface was found to change the net electric field applied to the 

oxide. Thus the conduction and the accompanying dielectric breakdown under 

cathodic bias were accelerated at lower pH. When the ionic species that can 

transport from electrolyte to dielectric were present, the surface potential acted as a 

barrier of mass transport which can result in the inverted tendency of conduction 

versus pH. The electrical resistance of electrolyte/oxide interface was affected by 

the chemical composition of electrolyte. The surface adsorptive redox species 

could affect the resistance, however, only the role of redox species that can be 

reduced via outer sphere electron transfer was discussed. The well-known redox 

molecule, ruthenium hexamine (III), enhanced the electron transfer rate of EOS 

system. Dielectric breakdown, contrary to common knowledge, was not affected by 

the current increase. 
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Further experimental analysis is required regarding on the systems which 

represent the real system better such as electrolyte/metal(catalyst)/oxide 

/semiconductor. In such complex systems, oxides work as a protective layer which 

not only prevent the unwanted behavior or damage due to the electrochemical 

reaction on the underlying electrode, but also allow smooth electron flow between 

electrode and catalysts. Therefore, employing thinner oxide would be advantageous, 

which leads to stronger electric field and more charge conduction applied to the 

oxide. Understanding conduction and breakdown mechanism that can represent the 

electrode for electrocatalyst will contribute to developing stable and efficient 

electrocatalyst. 

In chapter 3, the strategy was proposed to improve the optical performance of 

electrochromic device which operates in EOS system. Nanostructure which 

surrounded the key switchable material, WO3, enabled the wide color expression 

although the amount of WO3 was much smaller than the conventional WO3-based 

electrochromic devices. The devices proposed in this dissertation could not achieve 

the sufficient response time and reversibility during operation. However, the good 

color purity attained without cutting-edge fabrication technique such as e-beam 

lithography or focused ion beam milling opens the possibility for 

commercialization after further optimization in structure and material selection. 
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국문 초록 

산화물의 전기적 특성에 대한 이해는 전자소재 분야에서 중요한 이

슈로 다루어졌다. 최근 들어 산화물이 전해질과 접한 상태에서 작동하도

록 요구하는 시스템이 중요하게 연구되고 있다. 배터리, 전기촉매로 구

성된 에너지 변환 장치, 전기화학적으로 제어되는 장효과 트랜지스터 

(field effect transistor, FET) 등이 그것이다. 이와 같은 장치들의 성능 

및 안정성을 개선하기 위해서는 전해질과 계면을 이루는 산화물의 전기

적 특성을 깊이 있게 이해하는 것이 선행되어야 한다. 이에 본 학위논문

에서는 전해질/산화막/도체로 구성된 시스템의 전도현상에 대해 다루었

다. 전해질에 속한 화학종들이 시스템의 전도도 및 절연파괴에 미치는 

영향에 대해 분석하였으며, 전해질/산화막 계면에서 일어나는 현상을 중

심으로 이를 이해하였다. 양성자를 포함한 이온종 및 전기화학적 반응종

의 역할과 그들간의 상호작용이 계면 및 산화막 내부의 전도 기작에 큰 

영향을 끼침을 실험적으로 밝혔으며 이론적으로 현상을 설명하였다. 이

러한 기초적인 시스템에 대한 이해뿐만 아니라 높은 이온 전도도를 갖는 

산화박막이 활용된 새로운 개념의 전기변색소자에 대해서 학위논문을 통

해 제안하였다. 큰 밴드갭을 가진 산화물이 외부의 이온을 머금게 되면 

전기적 성질이 변함과 동시에 광학적 성질 역시 변한다. 이를 전기변색 

현상이라 하는데, 전자종이, 지능형 창호 개발을 목적으로 연구되고 있
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다. 다양한 개념의 전기변색 소자가 제안되었으나 대부분이 단순히 명암 

제어에 그치고 있으며 특정 색상을 표현하는 경우에도 색의 순도가 낮은 

한계를 가지고 있다. 텅스텐 산화물(WO3)은 대표적인 전기변색물질로써 

앞서 언급된 한계를 갖고 있다. 이에 본 연구에서는 WO3 주위에 효율적

으로 설계된 나노구조체를 도입함으로써 이와 같은 한계를 극복할 수 있

음을 보이고자 한다. 가시광선 대역에서 폭넓은 색 표현이 가능한 투과 

및 반사형의 광소자가 구현되었으며 공진 파장 및 빛의 세기를 전기변색

의 원리에 입각하여 제어할 수 있음을 보였다. 

핵심어: 전해질/산화물/전극 시스템, 절연파괴, 절연피막, 전기

변색, 텅스텐 산화박막, 나노광학 
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