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Abstract 

 

Statistical Method Development for Rare 

Variant Association Tests in Family-based Designs 

 

Longfei Wang 

Interdisciplinary Program in Bioinformatics 

The Graduate School 

Seoul National University 

 

Despite of tens of thousands of genome wide association studies (GWASs), 

the so-called missing heritability reveals that analyses of common variants 

identified only a limited number of disease susceptibility loci and a substantial 

amount of causal variants remain undiscovered by GWASs. Sequencing 

technology was expected to supply this additional information by obtaining 

large stretches of DNA spanning the entire genome, and improvements in this 

technology have enabled genetic association analysis of rare/common causal 

variants. However, single variant association tests commonly used by GWAS 

result in false negative findings unless very large samples are available. 

Alternatively, aggregation of association signals across multiple genetic 

variants in a biology relevant region is expected to boost statistical power for 

rare variant analysis. Numerous statistical methods have been proposed for 
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region-based rare variant association studies, such as burden, variance 

component, and combined omnibus tests. 

Region-based association tests are expected to substantially improve 

statistical power for rare variant analyses and to identify additional disease 

susceptibility loci. However, very few significant results have been identified 

due to genetic heterogeneity and relatively small sample sizes. To address the 

limitations, various approaches have been developed. First, family-based 

designs play an important role in controlling genetic heterogeneity and 

population stratification. Second, disease status are often diagnosed by the 

outcomes of different but related phenotypes, and thus multiple phenotype 

analysis is supposed to provide additional information and increase power. 

Third, for the small sample issue, combining results from multiple studies using 

meta-analysis has been repeatedly addressed as an effective strategy. 

In this study, I compared the performance of a selection of the popular 

family-based rare variant association tests and found FARVAT is the most 

statistically robust and computationally efficient method. Besides, I extended 

FARVAT for multiple phenotype analysis (mFARVAT), and meta-analysis 

(metaFARVAT). mFARVAT is a quasi-likelihood-based score test for rare variant 

association analysis with multiple phenotypes, and tests both homogeneous and 

heterogeneous effects of each variant on multiple phenotypes. metaFARVAT 

combines quasi-likelihood scores from multiple studies and generates burden, 

variable threshold, variance component, and combined omnibus test statistics. 

metaFARVAT tests homogeneous and heterogeneous genetic effects of variants 
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among different studies and can be applied to both quantitative and 

dichotomous phenotypes. With extensive simulation studies under various 

scenarios, I found that the proposed methods are generally robust and efficient 

with different underlying genetic architectures, and I identified some promising 

candidate genes associated with chronic obstructive pulmonary disease, 

including DLEC1. 

Key words: rare variant association test, family-based designs, multiple 

phenotypes, meta-analysis, chronic obstructive pulmonary disease 

 

Student number: 2015-30742  
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Chapter 1  

 

Introduction 

 

1.1 The background on rare variant association studies 

1.1.1 Overview of rare variant association studies 

According to genome wide association study (GWAS) Catalog, until 2018 

April, 69,885 single nucleotide polymorphism (SNP)-trait associations have 

been identified by 5,152 GWASs from 3,378 publications. In spite of their 

success in discovering disease susceptibility loci (DSL), the DSL identified by 

GWAS have modest effects on disease risk and only partially explain disease 

heritability. For example, over 70 loci at genome-wide significance only 

explain 11% of type 2 diabetes heritability (Morris et al. 2012). Rare variants 

have been implicated as one contributor to this missing heritability (Manolio et 

al. 2009, Eichler et al. 2010) and have been reported functionally more related 
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to diseases than common variants (Nejentsev et al. 2009, Price et al. 2010, 

Genomes Project et al. 2012, Gibson 2012, MacArthur et al. 2012). Recent 

improvements in DNA sequencing technologies have enabled whole genome 

sequencing (WGS) studies and more complete assessments of rare genetic 

variants for modest cost (Cirulli and Goldstein 2010). 

However, single variant association analysis under an additive genetic 

model commonly used by GWAS leads to large false negative findings since 

the marginal effect of a rare variant cannot be detected unless very large 

samples are available (Asimit and Zeggini 2010). Moreover, p-values estimates 

based on regression models might be not accurate if the minor allele count 

(MAC) is very small (Ma et al. 2013). Alternatively, aggregation of association 

signals across multiple genetic variants in a biology relevant region, such as a 

gene, was expected to boost statistical power for rare variant analysis. 

Numerous methods have been proposed for region-based rare variant 

association studies and have successfully identified the genetic association of 

rare variants. These tests can be generally divided into three categories based 

on the assumptions of the underlying genetic models. The general principles 

behind these tests are briefly described in Table 1.1. 

Most statistical methods for rare variant association tests were propose in 

a regression framework. Assume M markers in a gene are tested with N subjects. 

For subject i, the mean of phenotype yi can be modeled by generalized linear 

model, 

𝑔(𝜇𝑖) = 𝐗𝑖
𝑡𝜶+ 𝐆𝑖

𝑡𝜷, 
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where Xi is a vector of covariates, Gi is allele counts, coded by {0, 1, 2}; 𝜶 

and 𝜷 are the regression coefficient vectors for Xi and Gi, respectively. The 

score statistic of the marginal model for variant m can be defined as 

𝑆𝑚 =∑𝐺𝑖
𝑚(𝑦𝑖 − 𝜇̂𝑖)

𝑁

𝑖=1

, 

where 𝜇̂𝑖 is estimated under the null hypothesis 𝐻0: 𝛽1 = ⋯ = 𝛽𝑀 = 0. 𝑆𝑚 

is positive when variant m is deleterious and negative when it is protective. 

Burden Tests 

If we assume that the multiple genetic variants in a region are associated 

with a trait in the same direction, for instance, all deleterious, we can simply 

collapse their information into a single genetic score Ci and test the association 

between Ci and the trait of interest with the simplified model 𝑔(𝜇𝑖) = 𝛂
𝑡𝐗𝑖 +

𝛽𝑐𝐶𝑖. There are different approaches to define Ci: 1) the cohort allelic sums test 

(CAST) (Morgenthaler and Thilly 2007) denoted Ci = 0 given no minor alleles 

in a region and Ci = 1 otherwise; 2) the combined multivariate and collapsing 

(CMC) method (Li and Leal 2008) collapsed rare variants into different minor 

allele frequency (MAF) groups in the same way as CAST; 3) Morris and 

Zeggini (Morris and Zeggini 2010) assumed a dominant genetic model, in 

which 𝐶𝑖 = ∑ I(𝐺𝑖
𝑚 ≥ 1)𝑀

𝑚=1 ; 4) the other methods assume an additive genetic 

model with or without weights in which 𝐶𝑖 = ∑ 𝑤𝑚𝐺𝑖
𝑚𝑀

𝑚=1 . Basically, we can 

define that wm =1 when MAF less than a fixed threshold and wm = 0 otherwise. 

Madsen and Browning (Madsen and Browning 2009) proposed 𝑤𝑚 =
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1/[𝑝𝑚(1 − 𝑝𝑚)]
1/2, where pm is the MAF of variant m. Wu et al. (Wu et al. 

2011) assumed wm follows the family of beta densities 𝑤𝑚 = 𝑏𝑒𝑡𝑎(𝑝𝑚, 𝑎1, 𝑎2). 

In addition, functional effects of variants predicted by bioinformatics tools, 

such as, PolyPhen (Adzhubei et al. 2010), can be used for weight construction 

as well. In general, the score statistic to test 𝐻0: 𝛽
𝑐 = 0 is defined as  

𝑄𝑏𝑢𝑟𝑑𝑒𝑛 = (∑ 𝑤𝑚𝑆𝑚

𝑀

𝑚=1

)

2

~𝜒2(𝑑𝑓 = 1). 

In addition to the score test, the weighted-sum statistic (WSS) (Madsen and 

Browning 2009) used the Wilcoxon rank-sum test and calculated p-values by 

permutation, and the CMC method (Li and Leal 2008) evaluated the joint effect 

of common variants and rare variant groups using Hoteling’s t test. Moreover, 

the variable threshold (VT) test (Price et al. 2010) applies an optimal frequency 

threshold instead of a fixed threshold.   

Burden tests are powerful when a large fraction of variants are causal and 

the effects are in the same direction. However, it can lead to a substantial loss 

of power if this strict assumption is violated. To overcome this limitation, a few 

two-step methods have been proposed (Han and Pan 2010, Hoffmann et al. 

2010, Lin and Tang 2011), which estimate the regression coefficient of each 

marker first and then assign the weights based on the estimates. Compared to 

the traditional burden tests, these extensions are more robust, but are unstable 

for rare variants due to the estimation and computationally expensive because 

of estimating p-values by permutation.  
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Variance Component Tests 

Variance component (VC) tests, including the sum of squared score (SSU) 

test (Pan 2009), the sequence kernel association test (SKAT) (Wu et al. 2010), 

and the C-alpha test (Neale et al. 2011), can also address the limitation of the 

original burden tests by assuming that the genetic effects in a set follow an 

arbitrary distribution with mean 0 and variance 𝜏 . Therefore, the null 

hypothesis to be tested becomes 𝐻0: 𝜏 = 0, and the VC score statistic is  

𝑄𝑉𝐶 = ∑ 𝑤𝑚
2 𝑆𝑚

2

𝑀

𝑚=1

𝑑
→ ∑ 𝜆𝑚𝜒𝑚

2 (𝑑𝑓 = 1)

𝑀

𝑚=1

. 

QVC asymptotically follows a mixture chi-square distribution with eigenvalues  

𝜆𝑚 and calculates p-values analytically. For dichotomous traits, this p-value 

calculation can produce high false-positive rates if the numbers of cases and 

controls are imbalance. To overcome this difficulty, Lee et al. proposed a 

moment-based method that adjusts exact small-sample variance and kurtosis of 

the test statistic (Lee et al. 2012). VC tests are robust in the presence of both 

deleterious and protective variants, but less powerful than burden tests when 

effects are in the same direction.  

Combined Omnibus Tests 

In practice, the underlying disease architecture is usually unknown. 

Therefore, it is desirable to propose robust methods for various disease models. 

A few methods have been proposed to address this difficulty by combining the 

statistics or the p-values of burden and VC tests. The optimal SKAT (SKAT-O) 
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(Lee et al. 2012) was proposed as a linear combination of the burden and VC 

test statistics:  

𝑄𝑆𝐾𝐴𝑇𝑂 = 𝜌𝑄𝑏𝑢𝑟𝑑𝑒𝑛 + (1 − 𝜌)𝑄𝑉𝐶, 

where 0 ≤ 𝜌 ≤ 1 can be interpreted as a pairwise correlation among 𝛽𝑚 and 

estimated by minimizing p-value with a grid of 𝜌s. The asymptotic p-value of 

SKAT-O can be calculated with computationally efficient one-dimensional 

numerical integration. 

Another approach is to combine the p-values of the two tests using Fisher’s 

method and calculate its p-value by permutation (Derkach et al. 2013). The 

Fisher statistic is     

Fisher = 2 log(𝑃𝑏𝑢𝑟𝑑𝑒𝑛) − 2 log(𝑃𝑉𝐶), 

where PVC and Pburden are the p-values calculated from burden and VC tests, 

respectively. To reduce the computational intensive, Sun et al. (Sun et al. 2013) 

derived the asymptotic p-value by modifying VC statistic to make it 

independent of burden test statistic.  

Combined omnibus tests are more robust with respect to the unknown 

disease architecture, but can be slightly less powerful than burden or VC tests 

if their assumptions are largely held. 
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Table 1.1 Rare variant association test methods. 

Category Method Reference 

Burden test 

CAST: cohort allelic sums test (Morgenthaler and Thilly 2007) 

CMC: combined multivariate & collapsing (Li and Leal 2008) 

WSS: weighted-sum statistic (Madsen and Browning 2009) 

MZ: Morris and Zeggini (Morris and Zeggini 2010) 

VT: variable threshold (Price et al. 2010) 

aSum: data-adaptive sum test (Han and Pan 2010) 

Step-up: model-selection framework (Hoffmann et al. 2010)  

EREC: estimated regression coefficient (Lin and Tang 2011) 

Variance component tests 

SSU: sum of squared score (Pan 2009) 

SKAT: sequence kernel association test (Wu et al. 2010) 

C-alpha: C-alpha score test (Neale et al. 2011) 

Combined omnibus tests 

SKAT-O: optimal SKAT (Lee et al. 2012) 

Fisher’s method (Derkach et al. 2013) 

MiST: mixed-effects score test  (Sun et al. 2013) 
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1.1.2 Challenges of rare variant association studies 

Aggregation of association signals across multiple genetic variants is 

expected to substantially increase statistical power for rare variant analysis and 

to identify additional DSL. However, the rare variant association tests with 

population-based samples suffer from genetic heterogeneity due to population 

substructure and admixture. Moreover, it can lead to loss of power when a very 

few variants in a region are associated with the trait of interest and result in 

inaccurate type I error (TIE) rates when MACs are very small. Therefore, the 

approaches to control genetic heterogeneity and enrich genetic effects are 

desirable. Here, I discuss three approaches: family-based designs, multiple 

phenotype analysis, and meta-analysis.  

Family-based designs 

Various study designs have been developed to minimize genetic 

heterogeneity, such as selecting individuals with extreme phenotypes, 

(Merikangas et al. 1989, Goldin et al. 1991). In families, Mendelian 

transmission results in family members sharing the same alleles, and thus, 

affected family members have a greater chance to carry the same causal variants 

than unrelated subjects (Shi and Rao 2011). Therefore, genetic heterogeneity 

among affected relatives is expected to be smaller, and family-based designs 

have been repeatedly addressed as an important strategy for rare variant 

association studies. Numerous family-based methods have been proposed, such 

as, the transmission disequilibrium test (TDT) method (Spielman et al. 1993), 

generalized estimating equations (GEE) (Chen and Yang 2010) and mixed 
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models (Slager and Schaid 2001, Bourgain et al. 2003, Thornton and McPeek 

2007, Choi et al. 2009), which will be reviewed in the next chapter.  

Multiple phenotype analysis 

Genetic association analyses simultaneously test a large number of 

variants, and stringent significance levels imposed by the multiple testing 

problem highlight the importance of powerful strategies. Multiple 

measurements can be obtained from different but related phenotypes, or from 

repeated measurements of a single phenotype at different time points. In 

particular, disease diagnose is usually based on a number of different 

phenotypes. Association analyses with multiple phenotypes often lead to 

substantial improvements in statistical power (Schifano et al. 2013) and such 

improvements are inversely related to correlations between phenotypes (Lee et 

al. 2014). A few different methods have been proposed, including the scaled 

marginal model (Schifano et al. 2013) and the extended Simes procedures for 

population-based samples (van der Sluis et al. 2013). The statistical power of 

these methods depends on the underlying genetic architectures between the 

causal variants and the multiple phenotypes, either homogeneous or 

heterogeneous (van der Sluis et al. 2013). Won et al. proposed an omnibus 

family-based association test for the joint analysis of multiple genotypes and 

multiple phenotypes (MFQLS) for common variant analysis (Won et al. 2015) 

and identified intronic variant pair on SIDT2 associated with metabolic 

syndrome in a Korean population (Moon et al. 2018). However, a very few 

multiple phenotype analyses have been developed for rare variant studies. 



10 

 

Meta-analysis 

When the sample sizes are small, statistical analyses suffer from high false 

negative error rates, and this limitation can be avoided by combining data from 

multiple studies via mega- or meta-analysis. Mega-analysis assumes that 

subjects’ genotypes and phenotypes from different studies are available, and 

these are pooled for genetic association analyses. Meta-analysis directly utilizes 

test statistics from separate studies and combines them into a single test statistic. 

The choice between mega- and meta-analysis depends on the heterogeneity 

among studies and the availability of individual genotype and phenotype data 

from all studies. Particularly, if there are systematic differences in phenotype 

diagnosis or sequencing platforms, meta-analysis is often preferred. 

Furthermore, it has been proved meta-analysis can be as powerful as mega-

analysis (Lee et al. 2013, Liu et al. 2014). Recently, several meta-analysis 

methods for rare variant association tests have been proposed (Table 1.4), such 

as MASS (Tang and Lin 2013, Tang and Lin 2014), RAREMETAL (Feng et al. 

2014), seqMeta (Chen et al. 2014), and metaSKAT (Lee et al. 2013). However, 

the available statistical methods for family-based samples or dichotomous 

phenotypes are limited, and thus, it is worthwhile to provide a method that can 

be applied to both quantitative and dichotomous phenotypes under 

homogeneous (hom) and heterogeneous (het) genetic effect models. 
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Table 1.2 Meta-analysis for rare variant association tests 

Method 
Phenotype Study design Test 

Reference 
quantitative dichotomous unrelated families homogenous heterogeneous 

MASS √ √ √  √ √ (Tang and Lin 2013) 

metaSKAT √ √ √ quantitative √ √ (Lee et al. 2013) 

seqMeta √ √ √  √  (Chen et al. 2014) 

RAREMETAL √  √ quantitative √  (Feng et al. 2014) 

The definition of the acronyms in Table 1.2: 1) MASS: the meta-analysis of score statistics for sequencing studies; 2) metaSKAT: the meta-

analysis for SNP-set (sequence) kernel association test; 3) seqMeta: the meta-analysis of region-based tests of rare DNA variants; 4) 

RAREMETAL: a tool for meta-analysis of rare variants using sequencing or genotyping array data. 
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1.2 Purpose of this study 

The main purpose of this thesis is to develop statistical methods for 

detecting rare variant associations and enriching genetic effects by using 

family-based designs, multiple phenotypes, and meta-analysis. In this thesis, 

first I compared the existing family-based rare variant association studies and 

found FARVAT (Choi et al. 2014) is the most powerful, robust, computationally 

efficient method.  

Second, I proposed a multivariate family-based rare variant association 

tool (mFARVAT). Human diseases are often defined by the outcomes of multiple 

phenotypes, and thus I expect multivariate family-based analyses may be very 

efficient in detecting associations with rare variants. However, few statistical 

methods implementing this strategy have been developed for family-based 

designs. Therefore, I proposed the mFARVAT, which is a quasi-likelihood-based 

score test for rare variant association analysis with multiple phenotypes, and 

tests both homogeneous and heterogeneous effects of each variant on multiple 

phenotypes. Simulation results show that the proposed method is generally 

robust and efficient for various disease models, and I identify some promising 

candidate genes associated with chronic obstructive pulmonary disease 

(COPD).  

Third, I proposed a family-based rare variant association test for meta-

analysis (metaFARVAT). Although, family-based designs have been shown to 

be powerful in detecting the significant rare variants associated with human 



13 

 

diseases, very few significant results have been found owing to relatively small 

sample sizes and the fact that statistical analyses often suffer from high false-

negative error rates. These limitations can be overcome by combining results 

from multiple studies via meta-analysis. However, statistical methods for meta-

analysis with rare variants are limited for family-based samples. Therefore, I 

proposed metaFARVAT. By combining the scores calculated from each study 

using FARVAT, metaFARVAT generates burden test, VT test, SKAT, and SKAT-

O statistics. The proposed method tests homogeneous and heterogeneous 

effects of variants among different studies and can be applied to both 

quantitative and dichotomous phenotypes. Simulation results demonstrated the 

robustness and efficiency of the proposed method in different scenarios. By 

applying metaFARVAT to data from a family-based study and a case-control 

study, I identified a few promising candidate genes, including DLEC1, which 

is associated with COPD.  

Last, both of the proposed methods were applied to chronic obstructive 

pulmonary disease (COPD) data. COPD is a type of obstructive lung disease 

characterized by long-term breathing problems and poor airflow. There are two 

main measurements for diagnosis, the forced expiratory volume in one second 

(FEV1), which is the greatest volume of air that can be breathed out in the first 

second of a breath, and the forced vital capacity (FVC), which is the greatest 

volume of air that can be breathed out in a single large breath. Normally, 75–

80% of the FVC comes out in the first second and a FEV1/FVC ratio <70% in 

someone with symptoms of COPD defines a person as having the disease. The 
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Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines 

suggest dividing people into four categories based on symptoms assessment and 

airflow limitation: 1) Mild: GOLD = 1 if FEV1 ≥80%; 2) Moderate: GOLD = 

2 if 50% ≤ FEV1 ≤ 79%; 3) Servere: GOLD = 3 if 30% ≤ FEV1 ≤ 49%; 4) Very 

severe: GOLD = 4 if FEV1 < 30%. As of 2018, COPD affected about 328 

million of the global population. In 2018 only, it resulted in about 4 million 

deaths. In the United States, COPD is estimated to be the third leading cause of 

death, approximately 6.3% of the adult population, totaling approximately 15 

million people, have been diagnosed with COPD. Smoking is the main risk 

factor of COPD. Genetics play a role in the development of COPD. Alpha 1-

antitrypsin deficiency has been proven as a genetic factor. The disease risk is 

particularly high if someone who is deficient in alpha 1-antitrypsin also smokes. 

Therefore, it is worth to investigate other possible genetic factors.  
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1.3 Outline of the thesis 

This thesis is organized as follows. Chapter 1 is an introduction to this 

study with an overview of the existing rare variant association studies, the 

challenges and the approaches to enrich genetic effects. Chapter 2 consist of an 

overview of family-based association studies and a comparison of the existing 

family-based rare variant association methods with GAW19 data. Chapter 3 is 

an extension of FARVAT for multiple phenotype analysis. Chapter 4 is an 

extension for meta-analysis. Chapters 3 and 4 contain introductions to the 

statistical methods, simulation studies, and the applications to COPD data. 

Finally, the summary and conclusions are presented in Chapter 5. 
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This chapter was published in BMC proceedings  

as a partial fulfillment of Longfei Wang’s PhD program. 

 

 

Chapter 2  

 

Overview of family-based rare variant association 

tests 

 

2.1 Overview of family-based association studies 

Family-based design is commonly used in genetic association studies. The 

current statistical methods for family samples can be grouped into two major 

categories referred to as conditional methods and unconditional methods.  

Conditional methods 

The conditional family-based design is based on evaluating the association 

between a phenotype and the transmission of marker alleles within family 

members. The popular methods for single SNP analysis are the transmission 

disequilibrium test (TDT) method (Spielman et al. 1993) and its extensions, 
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such as family-based association test (FBAT) (Laird and Lange 2006). These 

tests compare the observed number of alleles of type 1 that are transmitted to 

the affected offspring with those expected from Mendelian transmissions. An 

excess of type 1 alleles among the affected indicates that a DSL for the trait is 

linked and associated with the marker locus. Therefore, the test statistics model 

the offspring genotypes conditional on informative/heterozygous parental 

genotypes within each trio, and preserve inherent robustness against population 

heterogeneity. TDT has been extended for rare variant analysis (Derkacheva 

and Hennig 2014). FBAT statistics also have been extended for joint analysis 

of multivariate phenotypes and genotypes (Gray-McGuire et al. 2009), and for 

rare variants (Yip et al. 2011). However, they do not fully use the information 

in the parental phenotypes, and loss of power can be substantial if the number 

of founders is relatively large. 

Unconditional methods 

Unconditional methods directly model the associations between 

phenotypes and genotypes of all individuals and incorporate both population 

and pedigree structure using a covariance matrix, which can be constructed with 

known structure or estimated from genome-screen data. The pedigree 

information is defined as the kinship matrix. For instance, in family i,  

𝚽𝑖 = [
1 + ℎ𝑖1 ⋯ 2𝜙𝑖1𝑛

⋮ ⋱ ⋮

2𝜙𝑖𝑛1 ⋯ 1 + ℎ𝑖𝑛

], 
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where hij is the inbreeding coefficient of individual j in family i, and 𝜙𝑖𝑗𝑘 is 

the kinship coefficient between individuals j and k in family i. 

The correlation among family members can be taken into account in GEE 

(Chen and Yang 2010). 𝜇𝑖𝑗, the mean of the phenotype 𝑦𝑖𝑗 of individual j in 

family i, was modeled using the marginal generalized linear model  

𝑔(𝜇𝑖𝑗) = 𝐗𝑖𝑗
𝑡 𝜶 + 𝐆𝑖𝑗

𝑡 𝜷. 

The link function 𝑔(∙) is 𝜇𝑖𝑗 for continuous phenotype and is logit(𝜇𝑖𝑗) for 

dichotomous phenotypes. The GEE for the parameters can be written as  

U(𝜽) = U(𝜶,𝜷) =∑𝐃𝑖
𝑡𝐕𝑖

−1(𝒚𝑖 − 𝝁𝑖)

𝑛

𝑖=1

=∑(
𝐗𝑖
𝐆𝑖
)
𝑡

𝚫𝑖𝐕𝑖
−1(𝒚𝑖 − 𝝁𝑖)

𝑛

𝑖=1

, 

where 𝐃𝑖 = 𝜕𝝁𝑖/𝜕𝜽
𝑡; 𝐕𝑖 = 𝐀𝑖

1/2
𝐑𝑖(𝛿)𝐀𝑖

1/2
 is a working covariance matrix 

of yi; A𝑖 = diag{𝜐(𝜇𝑖1), … , 𝜐(𝜇𝑖𝑚)} , where 𝜐(𝜇𝑖𝑗)  is a variance function.  

𝐑𝑖(𝛿) is a working correlation matrix with the theoretical kinship coefficient 

𝚽𝑖  and a scale parameter 𝛿 . 𝚫𝑖 = diag{𝜇̇𝑖1, … , 𝜇̇𝑖𝑚}, where 𝜇̇  is the first 

derivative of 𝑔−1(∙). The GEE method was extended for rare variant analysis 

with variance component test (Wang et al. 2013).  

The unbalanced nature of family-based samples can lead to bias of 

sandwich estimators for the variance-covariance matrix, and results from GEE 

can be invalid (Aaij et al. 2013). An alternative approach is to take the 

covariance matrix into a generalized linear mixed model (GLMM) framework 

by including a random polygenic effect b, 
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𝑔(𝜇𝑖𝑗) = 𝐗𝑖𝑗
𝑡 𝜶 + 𝐆𝑖𝑗

𝑡 𝜷 + 𝒃𝑖𝑗. 

where 𝒃~𝑀𝑉𝑁(0, 𝜎2𝚿) , where 𝜎  is the variance of G for an outbred 

individual in the absence of population structure and 𝚿  accounts for 

relatedness, inbreeding, and population structure. When structure is known, the 

estimator of 𝜎2  is 𝜎̂1
2 = (𝑛 − 1)−1[𝐆𝑡𝚿−1𝐆− (1𝑡𝚿−11)−1(1𝑡𝚿−1𝐆)2] 

or 𝜎̂2
2 = 2𝑝̂(1 − 𝑝̂)  if Hardy-Weinberg equilibrium (HWE) holds at the 

marker, where 𝑝̂ is a suitable estimator of MAF, such as the sample frequency 

𝑝̂ = 𝐆, or the best linear unbiased estimator 𝑝̂ = (1𝑡𝚿−11)−11𝑡𝚿−1𝐆.  

Several methods have been propose for association testing in related 

samples with the assumption of no additional population structure, which is 

𝚿 = 𝚽, including the corrected Pearson 𝜒2 test, the Armitage trend test, the 

WQLS test, and the MQLS test. (Slager and Schaid 2001, Bourgain et al. 2003, 

Thornton and McPeek 2007, Choi et al. 2009) and their test statistics can be 

generalized as 

(𝐓𝑡𝐆)2

(𝜎̂2𝐓𝑡𝚽𝐓)
~𝜒2(𝑑𝑓 = 1), 

where T is a fixed, nonzero column vector including phenotype information, or 

additionally including pedigree or covariate information or both. Specifically, 

1) in the corrected Pearson 𝜒2 and the Armitage trend test: 𝐓 = 𝟏𝑐 −
𝑛𝑐

𝑛
𝟏, 

where 𝟏𝑐 is 1 if individual i is a case and 0 if a control, nc is the number of 

cases; 2) in WQLS test: 𝐓 = 𝚽−1𝟏𝑐 − 𝟏𝑐
𝑡𝚽−1𝟏(𝟏𝑡𝚽−1𝟏)−1𝚽−1𝟏; 3) in MQLS 

test: 𝐓 = 𝐀𝑁 +𝚽
−1𝚽𝑁,𝑀𝐀𝑀 − (𝐀𝑁 +𝚽

−1𝚽𝑁,𝑀𝐀𝑀)
𝑡
𝟏(𝟏𝑡𝚽−1𝟏)−1𝚽−1𝟏 , 
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where 𝐀𝑁 is the phenotype vector with non-missing genotype and 𝐀𝑀 is the 

one with missing genotype; the phenotype vector is coded as 𝐴𝑖 = 1 if i is 

affected, 𝐴𝑖 = −𝑘/(1 − 𝑘) if i is unaffected, where k is prevalence; 𝐴𝑖 = 0 

if i is missing. However, these tests tend to have inflated TIE in the presence of 

population heterogeneity. Thornton and McPeek proposed ROADTRIPS 

(Thornton and McPeek 2010) to extend the above tests with the estimator 𝚿̂ 

from genome-screen data to simultaneously correct for both population and 

pedigree structure, 

𝚿̂𝑖𝑗 =

{
 
 

 
 1

𝑀
∑

(𝐺𝑖
𝑚 − 2𝑝̂𝑚)(𝐺𝑗

𝑚 − 2𝑝̂𝑚)

2𝑝̂𝑚(1 − 𝑝̂𝑚)

𝑀

𝑚=1

, 𝑖 ≠ 𝑗

1 +
1

𝑀
∑

𝐺𝑖
𝑚2 − (1 + 2𝑝̂𝑚)𝐺𝑖

𝑚 + 2𝑝̂𝑚
2

2𝑝̂𝑚(1 − 𝑝̂𝑚)

𝑀

𝑚=1

, 𝑖 = 𝑗

 

where 𝑝̂𝑚 = 𝐆𝑚 . Accordingly, the estimator of 𝜎2  becomes 𝜎̂1
2 = (𝑛 −

1)−1𝐆𝑡𝚿̂−𝐆, where 𝚿̂− is the Moore-Penrose generalized inverse of Ψ̂. An 

alternative way to estimate 𝚿̂𝑖𝑗 is based on estimated probabilities of identical 

by descent (IBD) sharing using moment-based (Purcell et al. 2007) or 

maximum likelihood estimation (Sun et al. 2002, Weir et al. 2006). The mixed 

model methods have gained increasing popularity recently because they are 

computationally efficient and easy to integrate data with both family and 

unrelated individuals. Numerous methods have been proposed for rare variant 

association tests based on this mixed model framework (Schaid et al. 2013, 

Choi et al. 2014).  
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2.2 Comparison of the selected family-based rare variant 

association tests 

I selected a number of family-based rare variant association methods from 

different categories (Table 2.2) and compared their performance for 

dichotomous phenotype analysis using Genetic Analysis Workshop 19 

(GAW19) simulated data. I considered five different methods: the Rare Variant 

Transmission Disequilibrium Test (RV-TDT) (Derkacheva and Hennig 2014), 

the GEE-based Kernel Association (GEE-KM) test (Wang et al. 2013), an 

extended Combined Multivariate and Collapsing test for Pedigrees (PedCMC) 

(Zhu and Xiong 2012), the Gene-level kernel and burden tests for Pedigrees 

(PedGene) (Schaid et al. 2013), and the FAmily-based Rare Variant Association 

Test (FARVAT) (Choi et al. 2014). These methods were utilized to identify 

causal genes for hypertension, and the results were compared in regard to their 

statistical and computational efficiency. Our results showed that PedGene and 

FARVAT are usually the most statistically powerful, and with regards to the 

computational intensity, FARVAT is the most efficient. 
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Table 2.1 Family-based common variant association tests. 

Category Method Reference 

Conditional TDT 
TDT: transmission disequilibrium test (Spielman et al. 1993) 

FBAT: family-based association test (Laird and Lange 2006) 

Unconditional 

GEE GEE: generalized estimating equations (Chen and Yang 2010) 

GLMM 

Armitage trend test (Sasieni 1997) 

corrected Pearson 𝜒2 test (Slager and Schaid 2001) 

WQLS test: quasi-likelihood score test (Bourgain et al. 2003) 

MQLS test: quasi-likelihood score test (Thornton and McPeek 2007) 

ROADTRIPS: robust association-detection test for related 

individuals with population structure 
(Thornton and McPeek 2010) 
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Table 2.2 Family-based rare variant association tests. 

Category Method Reference 

Conditional TDT 
RV-TDT: Rare Variant Transmission Disequilibrium Test (Derkacheva and Hennig 2014) 

RVGDT: Rare Variant Generalized Disequilibrium Test (He et al. 2017) 

Unconditional 

GEE 
GEE-KM: Generalized Estimating Equations based Kernel 

Machine test 
(Wang et al. 2013) 

GLMM 

PedCMC: Combined Multivariate and Collapsing test for 

Pedigrees 
(Zhu and Xiong 2012) 

PedGene: Gene-level kernel and burden tests for Pedigrees (Schaid et al. 2013) 

FARVAT : FAmily-based Rare Variant Association Test (Choi et al. 2014) 

FSKAT: Sequence Kernel Association Tests for families (Yan et al. 2015) 
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2.2.1 Rare Variant Transmission Disequilibrium Test (RV-TDT) 

RV-TDT (Derkacheva and Hennig 2014) is an extension of TDT 

(Spielman et al. 1993) to analyze parent-child trio data for rare variant 

associations, which can adequately control for population admixture. RV-TDT 

is implemented with C and can calculate four burden test methods: CMC, WSS, 

burden of rare variants (BRV), and VT. 

For parent i with variant m, the indicator variables 𝑐𝑖
𝑚 = 1 if a minor-

allele-transmitted event occurs, and 𝑏𝑖
𝑚 = 1  if a major-allele-transmitted 

event occurs and otherwise 0. For a genetic region L, the total minor-allele-

transmitted events and major-allele-transmitted events for parent i are given by 

𝑐𝑖 = ∑ 𝑐𝑖
𝑚

𝑚∈𝐿

, 𝑏𝑖 = ∑ 𝑏𝑖
𝑚

𝑚∈𝐿

. 

With n trios, for the TDT-CMC test, each informative parent contributes a score 

of 1 to the McNemar’s test. The statistics are given by 

𝑐 =∑𝑐𝑖/(𝑏𝑖 + 𝑐𝑖)

2𝑛

𝑖=1

, 𝑏 =∑𝑏𝑖/(𝑏𝑖 + 𝑐𝑖)

2𝑛

𝑖=1

. 

For the TDT-BRV method, each informative parent contributes a score that 

equals to the number of informative sites within the region and thus c and b are 

given in the form of 

𝑐 =∑𝑐𝑖

2𝑛

𝑖=1

, 𝑏 =∑𝑏𝑖

2𝑛

𝑖=1

. 
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For the TDT-WSS, each variant site is weighted by 𝑤̂𝑚 = √𝑛𝑚𝑞𝑚(1 − 𝑞𝑚), 

where qm is the allele frequency of variant m in parental haplotypes that are not 

transmitted to the offspring. c and b are given by  

𝑐 =∑∑
𝑐𝑖
𝑚

𝑤̂𝑚
𝑚∈𝐿

2𝑛

𝑖=1

, 𝑏 =∑∑
𝑏𝑖
𝑚

𝑤̂𝑚
𝑚∈𝐿

2𝑛

𝑖=1

. 

For the TDT-VT test, the test statistic is maximized over allele frequencies and 

therefore, a variable allele frequency threshold is applied, instead of a fixed 

MAF cut-off. 

 

2.2.2 Generalized Estimating Equations based Kernel Machine test 

(GEE-KM) 

Wang et al. (Wang et al. 2013) proposed a family-based kernel machine (KM) 

(Wu et al. 2010) SNP set test in the GEE framework for both continuous 

and dichotomous phenotypes. In addition, Wang et al. developed analytical 

methods to calculate the p-values and proposed a resampling method for 

correcting for small sample size bias in family studies. GEE-KM can adjust 

for the effect of covariates aFnd was implemented in the gskat R package. 

With the assumption that 𝛽𝑚 (𝑚 = 1,… ,𝑀)  follow an arbitrary 

distribution with mean 0 and common variance 𝜏 , the null hypothesis is 

𝐻0: 𝜏 = 0. Therefore, based on the GEE framework introduced in the previous 

section, the KM test is 
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𝑄𝑆 = 𝐔̃𝐺
𝑡 𝐔̃𝐺

𝑑
→ ∑ 𝜆𝑚𝜒𝑚,1

2  

𝑀

𝑚=1

, 

where 𝐔̃𝐺 = ∑ 𝐆𝑖
𝑡∆𝑖𝐕𝑖

−1(𝒚𝑖 − 𝝁̃𝑖)
𝑛
𝑖=1 , where 𝝁̃𝑖 = 𝑔

−1(𝐗𝑖
𝑡𝜶̃) ; 𝜒𝑚,1

2  are 

independent 𝜒2(𝑑𝑓 = 1) random variables; and 𝜆𝑚 are eigenvalues. The p-

value adjusted for small samples can be calculated as  

1 − 𝐹 ((𝑄𝑆 − 𝜇̂𝑄)√2𝑑𝑓/√𝑣̂𝑄 + 𝑑𝑓|𝜒𝑑𝑓
2 ), 

where 𝐹((∙ |𝜒𝑑𝑓
2 ) is the distribution of 𝜒𝑑𝑓

2  and 𝑑𝑓 = 12/𝛾; 𝜇̂𝑇, 𝑣𝑄 and 𝛾 

are the estimated small sample mean, variance and kurtosis of the statistic QS 

under the null, respectively. 

 

2.2.3 Combined Multivariate and Collapsing test for Pedigrees 

(PedCMC) 

PedCMC (Zhu and Xiong 2012) was proposed as an combination of the 

collapsing test (Li and Leal 2008) and the population-based generalized T2 test 

(Xiong et al. 2002) for pedigrees. The genotypes for rare variants in each gene 

are coded as either 0 or 1 according to the presence of rare alleles, and the sums 

of coded genotypes are compared between affected and unaffected individuals. 

The indicator variable 𝑣𝑖
𝑠 = 1 if rare variants in group s of individual i is 

present. M variants G are consist of k groups of rare variants X and m individual 

variant sites Z, 𝐆 = [𝐗, 𝐙]𝑡.  

𝐇𝐶𝑀𝐶 = 𝐈(𝑘+𝑚)⨂𝐓
𝑡, 



27 

 

where 𝐓 = 𝟏𝑐 −
𝑛𝑐

𝑛
𝟏 and ⨂ denotes the Kronecker product. 

𝚪𝐶𝑀𝐶 = 𝐓
𝑡𝚽𝐓𝚺, 

where 𝚽 is the estimated kinship matrix proposed by Thornton (Thornton and 

McPeek 2010) and 𝚺 is the covariance matrix of genotypes, which is define as 

 𝚺 = [
𝚺𝑥 𝚺𝑥𝑧
𝚺𝑧𝑥 𝚺𝑧

]. 

Therefore, the family-based CMC statistic can be defined as 

𝑇𝐶𝑀𝐶𝐹
2 = (𝐇𝐶𝑀𝐶𝐆)

𝑡𝚪𝐶𝑀𝐶
−1 (𝐇𝐶𝑀𝐶𝐆)

=

𝑛𝑐(𝑛 − 𝑛𝑐)
𝑛

[(𝐗̅𝐴 − 𝐗̅𝐵)
𝑡𝚺𝑣
−1(𝐗̅𝐴 − 𝐗̅𝐵) + (𝐙̅𝐴 − 𝐙̅𝐵)

𝑡𝚺𝑧
−1(𝐙̅𝐴 − 𝐙̅𝐵)]

𝑛
𝑛𝑐(𝑛 − 𝑛𝑐)

𝐓𝑡𝚽𝐓

=
𝑇𝐶𝑀𝐶
2

𝑃𝑐𝑜𝑟𝑟
~𝜒2(𝑑𝑓 = 𝑘 +𝑚). 

where 𝐗̅𝐴, 𝐗̅𝐵  are the average of the indicator variables for the rare variant 

groups in cases and controls, respectively; 𝐙̅𝐴, 𝐙̅𝐵  are the average of the 

indicator variables for the genotypes in cases and controls, respectively; 𝑇𝐶𝑀𝐶
2  

is the CMC statistic for the population-based association test; and Pcorr is the 

correlation factor to be applied to the generalized T2 statistic to have a valid test 

in the presence of pedigree structures.  

 

2.2.4 Gene-level kernel and burden tests for Pedigrees (PedGene) 

Schaid D.J. et al (Schaid et al. 2013) proposed burden and kernel statistics 

for extended families, and it was implemented in the PedGene R package. This 
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approach views the sample collection as a retrospective study, which means 

conditioning on phenotypes and treating the genotype data random.  

The covariance of the genotype for subject j and j’, and markers m and m’, 

can be expressed as  

𝐶𝑜𝑣𝑜(𝑔𝑗,𝑚, 𝑔𝑗′,𝑚′) = 𝜎𝑚𝑚′𝚽𝑗𝑗′ = 2𝜌𝑚𝑚′√𝑝𝑚(1 − 𝑝𝑚)𝑝𝑚′(1 − 𝑝𝑚′)𝚽𝑗𝑗′, 

where p is the MAF for the markers, 𝜌 is the correlation of genotype. 𝚽 is 

the estimated kinship matrix proposed by Thornton (Thornton and McPeek 

2010). The kernel statistic is  

𝑄𝑘𝑒𝑟𝑛𝑒𝑙 = (𝐘 − 𝐘)
𝑡
𝐆𝐖𝐖𝐆𝑡(𝐘 − 𝐘), 

where Y is a vector of disease status indicators of n subjects; 𝐘 − 𝐘 is the 

vector of residuals after adjusting for covariates by use of logistic regression 

models; and W is a diagonal matrix with weights for each markers. The 

distribution of Qkernel was estimated by a scaled distribution with the scale 𝛿 =

𝑉𝑎𝑟[𝑄𝑘𝑒𝑟𝑛𝑒𝑙]/(2𝐸[𝑄𝑘𝑒𝑟𝑛𝑒𝑙]) and the 𝑑𝑓 = 2𝐸[𝑄𝑘𝑒𝑟𝑛𝑒𝑙]
2/𝑉𝑎𝑟[𝑄𝑘𝑒𝑟𝑛𝑒𝑙] . P-

values were computed by assuming 𝑄𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑄𝑘𝑒𝑟𝑛𝑒𝑙/𝛿~𝜒𝑑𝑓
2 .  

The statistic for burden test is  

𝑄𝑏𝑢𝑟𝑑𝑒𝑛 ==
[(𝐘 − 𝐘)

𝑡
𝐆𝐖𝟏𝑀]

2

(𝟏𝑀
𝑡 𝐖𝚺𝐖𝟏𝑀)(𝐘 − 𝐘)

𝑡
𝚽(𝐘 − 𝐘)

~ 𝜒2(𝑑𝑓 = 1). 

 

2.2.5 FAmily-based Rare Variant Association Test (FARVAT) 
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FARVAT (Choi et al. 2014) is a family-based rare variant association test 

based on the quasi-likelihood (Thornton and McPeek 2007) and provides 

burden, C-alpha and SKAT-O type statistics (Lee et al. 2012) for quantitative 

and dichotomous phenotypes. FARVAT was implemented with C++.  

The score for the quasi-likelihood (Thornton and McPeek 2007) is 

𝐓𝑡𝐕−1 (𝐆 − 𝐸̂(𝐆)) = 𝐓𝑡(𝐈𝑁 − 𝟏𝑁(𝟏𝑁
𝑡 𝚽−1𝟏𝑁)

−1𝟏𝑁
𝑡 𝚽−1)𝐆. 

where T is the phenotype adjusted by offset which can be prevalence, which is 

equivalent to 𝐓 = 𝟏𝑐 −
𝑁𝑐

𝑁
𝟏, or best linear unbiased prediction (BLUP) 𝐓 =

𝐘 − 𝐘; Φ is the estimated kinship matrix proposed by Thornton (Thornton and 

McPeek 2010). Therefore, I have 

1

√𝐓𝑡𝐀𝐓
𝐓𝑡𝐀𝚽−1𝐆𝚺1/2~𝑀𝑉𝑁(0, 𝐈𝑀) under 𝐻0. 

where 𝐀 = 𝚽− 𝟏𝑁(𝟏𝑁
𝑡 𝚽−1𝟏𝑁)

−1𝟏𝑁
𝑡  and 𝚺 is the covariance matrix of 

genotypes. If the weight for variant m is denoted as wm, the null hypotheses 

for the burden test and the C-alpha test are respectively: 

𝐻0
1:𝑤1𝛽1 +⋯+𝑤𝑀𝛽𝑀 = 0,    

𝐻0
2: 𝑤1

2𝛽1
2 +⋯+𝑤𝑀

2 𝛽𝑀
2 = 0.  

Therefore, both score tests for rare variant analysis can be generalized to 

𝑆𝜌 =
1

𝐓𝑡𝐀𝐓
𝐓𝑡 (𝐆 − 𝐸̂(𝐆))𝐖[(1 − 𝜌)𝐈𝑀 + 𝜌𝟏𝑀𝟏𝑀

𝑡 ]𝐖(𝐆 − 𝐸̂(𝐆))
𝑡
𝐓, 
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where 𝜌 ∈ [0,1], when 𝜌 = 1, S1 is the score for burden test, while 𝜌 = 0, S0 

is the score for C-alpha test. The eigenvalues for Σ1/2WWΣ1/2 is written as λm. 

Therefore, 

𝑆1~(𝟏𝑀
𝑡 𝐖𝚺𝐖𝟏𝑀)𝜒

2(𝑑𝑓 = 1) under 𝐻0
1,  

𝑆0~ ∑ 𝜆𝑚𝜒𝑚
2 (𝑑𝑓 = 1)

𝑀

𝑚=1

 under 𝐻0
2. 

For 𝜌0 = 0 < 𝜌1 < ⋯ < 𝜌𝐿 = 1, The observed value for 𝑆𝜌𝑙  is denoted by 

𝑠𝜌𝑙, and their corresponding p-values are denoted by 𝑝𝜌𝑙 . Furthermore, the (1 

– p)th quantile for 𝑆𝜌𝑙 is written as Q
𝜌l

(p). Therefore, the SKAT-O statistic 

(Lee et al. 2012) is 

𝑝𝑚𝑖𝑛 = min{𝑝𝜌0 , 𝑝𝜌𝑙 , … , 𝑝𝜌𝐿}, 

and its p-value is obtained by 

1 − 𝑃 (𝑆𝜌0 < 𝑄𝜌0(𝑝𝑚𝑖𝑛),… , 𝑆𝜌𝐿 < 𝑄𝜌𝐿(𝑝𝑚𝑖𝑛)). 

 

2.2.6 Comparison of the methods with GAW19 data 

To access performance of methods, a simulated data set of 200 phenotype 

replicates was provided for the family data sets. It was based on the real data, 

with the family structure, sex, and age taken from the real data. Blood pressure, 

medication use, and tobacco smoking were generated for each replicate, using 

the distributional structure found in the real data. The simulated values of 

systolic (SBP) and diastolic blood pressure (DBP) were influenced by over 
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1000 variants in over 200 genes. Individuals with SBP<140 or DBP>90 were 

assigned to be affected by hypertension. In addition, a normally distributed trait, 

Q1, was simulated that was not influenced by any genetic variants, but was 

correlated between family members (Engelman et al. 2016). Genotypes for 959 

individuals imputed from 464 sequenced subjects were used in our analysis, 

and I considered rare variants of which MAF <0.05. Rare variants were 

annotated with High, Moderate, and Low risk effect by using SnfEff software 

(Cingolani et al. 2012), and those variants were used for gene-set analysis. The 

set file included 58,969 SNPs in 7,210 genes, which was used to evaluate the 

statistical validity for all the methods.  

For the evaluation of statistical validity, the empirical TIE estimates for all 

the methods were calculated at various significance levels with 200 replicates. 

I used Q1 as the phenotype and converted it to binary phenotype with a 

prevalence 22.6%. There were 7,210 genes in each replicate, and thus 

71,442,000 p-values were utilized to calculate the empirical sizes. Table 2.3 

shows the empirical TIE estimates for all methods at various significance levels. 

Results showed that RV-TDT methods have obvious deflated TIE rates, and 

GEE-KM test has an inflated TIE rate. The other methods seem to preserve the 

nominal significance levels. Figure 2.1 shows quantile-quantile (QQ) plots, and 

the estimated genomic inflation factor, 𝜆, for all methods. All results from 200 

replicates were combined and were utilized to build QQ plots. Figure 2.1 shows 

that PedCMC, PedGene, and FARVAT seem to control the TIE rates well, but 

the estimated inflation factors of C-alpha and SKAT-O tests from FARVAT show 
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some inflation. QQ plots of results from RV-TDT show obvious deflation, and 

the extent of deflation is substantial for VT-BRV, VT-CMC, and WSS. Statistics 

in RV-TDT handle only trio data, and it may be the main reason of the deflation. 

The results for GEE-KM appear to be invalid. GEE-KM used the sandwich 

estimators for the correlation matrix between family members, and its results 

can be biased if the number of repeated measurement is not sufficient (Morel et 

al. 2003). In our case, family sizes are different, and thus the sandwich estimator 

was estimated with a single observation, which may be the main reason of the 

invalid results from GEE-KM. 

Genes with the top 6 largest effects on both simulated SBP and DBP were 

selected to evaluate the empirical powers for all the methods. Rare variants in 

the selected genes with causal effects on SBP and DBP are all included for each 

gene-set file, and a certain number of rare variants with no effect in each gene 

were randomly selected to make the proportion of causal variants 10%, 25% 

and 50%. The empirical powers for RV-TDT are all zero, and thus are not 

presented in Table 2.4. Table 2.4 shows that the FARVAT method seems to be 

the most efficient and it is followed by PedGene, though the differences are 

small. In particular, the statistical efficiency of burden and C-alpha/kernel 

statistics depends on the unknown disease model, and the empirical power 

estimates of the SKAT-O-type FARVAT are usually close to the most efficient 

approaches. Therefore, the robust statistic against unknown genetic 

distributions of causal variants is uniquely provided by FARVAT. Power when 

50% of rare variants are causal are less than those when 10% are causal, which 
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might be attributed to insufficient number of replicates. Overall, I can conclude 

that FARVAT and PedGene are usually the most efficient methods for the rare 

variant analysis with extended families, and the SKAT-O test provided by 

FARVAT is a robust method under different disease models.  

Furthermore, I compared other features of each method, such as 

computational time, and the summary is provided in Table 2.5. According to 

Table 2.5, GEE-KM is a unique statistic for prospective design, and it compares 

the phenotypic distributions for each coded genotype while the other methods 

compare genetic distributions between affected and unaffected individuals. 

GEE-KM and PedGene can adjust effect of covariates with a logistic link 

function. FARVAT utilizes the linear mixed model to adjust the effect of 

covariates. Work by Crowder (Crowder 1985, Crowder 1987) suggests that the 

choice of a linear mixed model often work reasonably well for dichotomous 

phenotypes. The SKAT-O-type statistic which is robust against the distribution 

of genetic effects is uniquely provided by FARVAT. Last, in our analyses, I used 

Intel (R) Xeon (R) CPU E5-2620 0 @ 2.00GHz with 10 node and 80 gigabyte 

memory, and computational time to complete all analyses is shown. The 

computational time difference is related with the programming language, and 

software implemented with C/C++ is usually fast (Lee et al. 2012). Table 2.5 

shows that FARVAT is the most computationally efficient. 
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Table 2.3 Empirical sizes calculated with 7,210 genes from 200 replicates. 

α 
RV-TDT 

GEE-KM PedCMC 
PedGene FARVAT 

CMC BRV VT-BRV VT-CMC WSS Kernel Burden C-alpha Burden SKAT-O 

0.1 0.0108 0.0130 0 0 0 0.2137 0.0714 0.0895 0.0879 0.0865 0.0888 0.0864 

0.05 0.0040 0.0040 0 0 0 0.1050 0.0357 0.0490 0.0433 0.0445 0.0434 0.0450 

0.01 0.0009 0.0009 0 0 0 0.0163 0.0079 0.0141 0.0098 0.0112 0.0092 0.0115 

0.005 0.0004 0.0004 0 0 0 0.0066 0.0043 0.0086 0.0056 0.0065 0.0050 0.0068 

0.001 0 0 0 0 0 0.0006 0.0011 0.0029 0.0017 0.0020 0.0013 0.0021 

The definition of the acronyms in Table 2.3: 1) 𝛼: significance level; 2) CMC: the combined multivariate and collapsing method; 3) BRV: the 

burden test of rare variants; 4) VT-BRV: the burden test of rare variants with variable threshold; 5) VT-CMC: the combined multivariate and 

collapsing method with variable threshold; 6) WSS: the weighted-sum statistic test; 7) Burden: the burden test; 8) Kernel: the kernel test, a type 

of variance component test; 9) C-alpha: the C-alpha score test, a type of variance component test; 10) SKAT-O: the optimal sequence kernel 

association test. 
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Table 2.4 Empirical power for the top 6 causal genes affecting both simulated SBP and DBP at the 0.05 significant level. 

GENE 
Proportion of 

causal variants 
GEE-KM PedCMC 

PedGene FARVAT 

Kernel Burden C-alpha Burden SKAT-O 

MAP4 
10% 0.005 0.110 0.065 0.015 0.160 0.055 0.105 

50% 0.075 0.165 0.190 0.485 0.270 0.545 0.435 

NRF1 
10% 0.010 0.000 0.005 0.010 0.015 0.020 0.020 

50% 0.005 0.020 0.115 0.065 0.070 0.015 0.055 

TNN 
10% 0.045 0.005 0.005 0.005 0.005 0.010 0.005 

50% 0.085 0.020 0.025 0.020 0.025 0.025 0.025 

LEPR 
10% 0.010 0.075 0.005 0.045 0.010 0.055 0.030 

50% 0.000 0.010 0.020 0.010 0.020 0.020 0.010 

FLT3 
10% 0.000 0.245 0.440 0.160 0.505 0.255 0.450 

50% 0.035 0.040 0.525 0.410 0.450 0.395 0.425 

ZNF443 
10% 0.215 0.005 0.090 0.090 0.060 0.065 0.050 

50% 0.185 0 0.190 0.045 0.125 0.010 0.075 

Mean 
10% 0.048 0.073 0.102 0.054 0.126 0.077 0.110 

50% 0.064 0.043 0.178 0.173 0.160 0.168 0.171 

Median 
10% 0.010 0.040 0.035 0.030 0.038 0.055 0.040 

50% 0.055 0.020 0.153 0.055 0.098 0.023 0.065 

The definition of the acronyms in Table 2.4: 1) Burden: the burden test; 2) Kernel: the kernel test, a type of variance component test; 3) C-alpha: 

the C-alpha score test, a type of variance component test; 4) SKAT-O: the optimal sequence kernel association test. 
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Table 2.5 Summary for the selected methods. 

Method Design 
Phenotype Statistic Covariate 

adjustment 
Language Computing Time (hour) 

quantitative dichotomous Burden VC SKAT-O 

RV-TDT retrospective  √ √    C 20 

GEE-KM prospective √ √  √  √ R 40 

PedCMC retrospective  √ √    C 1.7  

PedGene retrospective  √ √ √  √ R 40 

FARVAT retrospective √ √ √ √ √ √ C 1.7  

The definition of the acronyms in Table 2.5: 1) Burden: the burden test; 2) VC: the variance component test; 3) SKAT-O: the optimal sequence 

kernel association test. 
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Figure 2.1 Quantile–quantile (QQ) plots for all methods 
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2.3 Conclusions 

In this chapter, I evaluated several family-based association tests for 

detecting rare variants using GAW19 data. I found that FARVAT and PedGene 

usually provide similar statistical efficiency, and recommend the SKAT-O 

statistic provided by FARVAT because its power has been robust under various 

disease models. In addition, FARVAT can be applied to both quantitative and 

dichotomous phenotypes and was computationally fast because it was 

implemented with C++. Furthermore, it can load various input file formats, and 

provides additional information about MACs. I concluded that FARVAT is a 

good strategy for rare variant association tests with extended families in terms 

of both computational and statistical efficiency.  
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Chapter 3  

 

Family-based Rare Variant Association Test for 

Multivariate Phenotypes 

 

3.1 Introduction 

mFARVAT is a quasi-likelihood-based score test for rare variant 

association analysis with multiple phenotypes, and tests both homogeneous and 

heterogeneous effects of each variant on multiple phenotypes. The method can 

analyze both quantitative and dichotomous phenotypes, and is robust against 

population substructure if the correlation matrix between individuals can be 

estimated from large-scale genetic data. mFARVAT is implemented in C++, and 

is computationally fast even for extended families. Simulation results show that 

the proposed method is generally robust and efficient for various disease 
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models. Furthermore, mFARVAT was applied to multiple phenotypes 

associated with COPD, and some promising results illustrate its practical value. 

 

3.2 Methods 

3.2.1 Notations and the disease model 

For genetic association analyses either prospective or retrospective 

approaches can be selected and the choice of strategy depends on the sampling 

scheme. However, it has been shown that even for prospectively selected 

samples, retrospective analyses can preserve virtually similar statistical power 

as prospective analyses. Additionally, retrospective strategies are robust against 

non-normality of phenotypes, and are computationally less intensive (Won and 

Lange 2013). Therefore, I consider retrospective analysis for both prospectively 

and retrospectively selected samples, and genetic association is detected by 

testing the independence of genotype distributions with phenotypes. 

Association between M genetic variants and Q phenotypes is examined, 

and I denote the coded genotype of individual j in family i at variant m and 

phenotype q by gijm and yijq, respectively. I assume there are n families and ni 

individuals in family i. Thus, the sample size, N, is ∑ ni
n
i=1 . I let 

𝐆𝑚 = [

𝑔11𝑚
⋮

𝑔𝑛𝑛𝑛𝑚
] , 𝐆 = (𝐆1, … , 𝐆𝑀), and 
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𝐘𝑞 = [

𝑦11𝑞
⋮

𝑦𝑛𝑛𝑛𝑞
] , 𝐘 = (𝐘1, … , 𝐘𝑄). 

I also define 

𝐆𝑖𝑗 = [

𝑔𝑖𝑗1
⋮

𝑔𝑖𝑗𝑀
], and 𝐘𝑖𝑗 = [

𝑦𝑖𝑗1
⋮
𝑦𝑖𝑗𝑄

].

 

The genetic variance-covariance matrix between individuals can be 

parameterized with the kinship coefficient matrix (KCM), Ф. If I let 𝜙𝑖𝑗𝑘  be 

the kinship coefficient between individual j and individual k in family i, and let 

hij be the inbreeding coefficient for individual j in family i, 

𝚽𝑖 = [
1 + ℎ𝑖1 ⋯ 2𝜙𝑖1𝑛

⋮ ⋱ ⋮

2𝜙𝑖𝑛1 ⋯ 1 + ℎ𝑖𝑛

], 

and I define 

𝚽 = [

𝚽1
0

0
𝚽2

0
0

…
…

0
⋮
   

0
⋮

𝚽3

⋱
⋱
⋱

]. 

In the presence of population substructure, Φ should be replaced with the 

genetic relationship matrix (GRM) to provide statistically valid results 

(Thornton et al. 2012). The variance-covariance matrix between the M 

additively coded markers is denoted by 𝚺, and I assume that 

cov(𝐆𝑖𝑗, 𝐆𝑖′𝑗′) ≈ 2𝜙𝑖𝑗,𝑖′𝑗′var(𝐆𝑖𝑗) = 2𝜙𝑖𝑗,𝑖′𝑗′𝚺. 
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Then I can easily show that 

var(vec(𝐆)) ≈ 𝚺⨂𝚽. 

 

3.2.2 Choice of offset 

It has been shown that the statistical efficiency of test statistics in 

retrospective analysis can be improved by adjusting phenotypes for relevant 

covariates (Lange et al. 2002). For our score statistic, I introduced a new 

parameter 𝜇𝑖𝑗𝑞 for phenotype q of individual j in family i, which will be called 

the offset in the remainder of this chapter (Won and Lange 2013). I set 

𝝁𝑖𝑗 = [

𝜇𝑖𝑗1
⋮

𝜇𝑖𝑗𝑄
] , 𝝁 = (𝝁11

𝑡 , … , 𝝁𝒏𝑛𝑛
𝑡 )

𝑡
, 𝐓𝑖𝑗 = 𝐘𝑖𝑗 − 𝝁𝑖𝑗 , 𝐓 = 𝐘 − 𝝁.

 

Statistical efficiency depends on μ, and thus its elements need to be 

carefully selected. The offset μ can be either calculated by the BLUP with 

covariates, as done for SKAT, or the disease prevalence can be used (Won and 

Lange 2013). The most efficient μ will depend on the sampling scheme. If 

families are randomly selected, BLUP was shown to be most efficient for both 

dichotomous and quantitative phenotypes (Won and Lange 2013), while 

prevalence was recommended to study dichotomous phenotypes if families 

with a large number of affected family members are selected (Thornton and 

McPeek 2007, Won and Lange 2013). Therefore, I chose BLUP and prevalence 
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as offsets for quantitative phenotypes and dichotomous phenotypes, 

respectively.  

 

3.2.3 Score for quasi-likelihood 

I let eij be an N dimensional vector in which the (𝑗 + ∑ 𝑛𝑖′
𝑖−1
𝑖′=1 )th element 

is 1 and the others are 0, and 1w be a column vector with w elements all equal 

to 1. I denote the effect of rare variant m on phenotype q as βmq which is the 

regression coefficients of the phenotype on the causal variants. I consider the 

score statistic and thus βmq is not needed to be estimated. However, the false 

positive rates can be inflated and the statistic for each βmq has large false 

negative rates. Therefore, collapsed genotype scores were utilized to prevent 

these problems. Under the null hypothesis, which is 𝛽11 = ⋯ = 𝛽𝑀𝑄 = 0, the 

best linear unbiased estimator for E(Gm) (McPeek et al. 2004) is 

𝟏𝑁(𝟏𝑁
𝑡 𝚽−1𝟏𝑁)

−1𝟏𝑁
𝑡 𝚽−1𝐆𝑚, 

and if I let 𝐀 = 𝚽−1 −𝚽−1𝟏𝑁(𝟏𝑁
𝑡 𝚽−1𝟏𝑁)

−1𝟏𝑁
𝑡 𝚽−1, I can define 𝐒𝑖𝑗

𝑚 for 

the individual j in family i by 

𝐒𝑖𝑗
𝑚 = (𝐓𝑖𝑗𝐞𝑖𝑗

𝑡 )𝚽𝐀𝐆𝑚. 

Based on MFQLS (Won et al. 2015), the score vector for the M variants can be 

defined by 

𝐒 = (𝐒1, … , 𝐒𝑀) = 𝐓𝑡𝚽𝐀𝐆, 
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and because var(vec(𝐆)) ≈ 𝚺⨂𝚽, the variance-covariance matrix for S is 

approximately equal to 

var(vec(𝐒)) ≈ 𝚺⨂(𝐓𝑡𝚽𝐀𝚽𝐓). 

 

3.2.4 Homogeneous mFARVAT 

The effects of each causal variant on a phenotype, estimated as the 

regression coefficients of the phenotype on the causal variants, can be in the 

same or different directions, and I propose two different statistics for these two 

scenarios. The first statistic, homogeneous mFARVAT, assumes that effects of 

each causal variant on the multiple phenotypes are in the same direction, for 

example, when the phenotypes are highly correlated or longitudinal. For rare 

variant association analysis, burden tests regress phenotypes on the sum of 

genotype scores over rare variants. Therefore, association of the Q phenotypes 

with variant m can be built by testing whether βm1 + … + βmQ = 0, and I can 

provide a statistic based on 𝟏𝑄
𝑡 𝐒.  

The importance of each variant is often different and statistical efficiency 

can be improved by weighting each variant based on its relative importance 

(Madsen and Browning 2009). Relative importance is usually expressed by a 

function of MAF. I assume that the weight for variant m is wm and W is an M×M 

diagonal matrix with diagonal elements wm; I choose wm = beta(pm, a1, a2) 

proposed by Wu et al(Wu et al. 2011), where pm is the MAF of variant m and a1 
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and a2 were set to be 1 and 25 respectively. beta(pm, a1, a2) is flexible because it 

can accommodate a broad range of scenarios by considering different a1 and a2, 

and Wu et al found that the choices of a1 and a2 were often efficient. Then the 

scores for the burden and SKAT tests are, respectively, 

1

𝟏𝑄
𝑡 𝐓𝑡𝚽𝐀𝚽𝐓𝟏𝑄

𝟏𝑄
𝑡 𝐒𝐖𝟏𝑀𝟏𝑀

𝑡 𝐖𝐒𝑡𝟏𝑄 , 

and 

1

𝟏𝑄
𝑡 𝐓𝑡𝚽𝐀𝚽𝐓𝟏𝑄

𝟏𝑄
𝑡 𝐒𝐖𝐖𝐒𝑡𝟏𝑄. 

If I let 

𝐑𝜌
𝐻𝑜𝑚 = (1 − 𝜌)𝐈𝑀 + 𝜌𝟏𝑀𝟏𝑀

𝑡 , 

scores for burden and SKAT tests can be generalized as 

𝑀𝑆𝜌
𝐻𝑜𝑚 =

1

𝟏𝑄
𝑡 𝐓𝑡𝚽𝐀𝚽𝐓𝟏𝑄

𝟏𝑄
𝑡 𝐒𝐖𝐑𝜌

𝐻𝑜𝑚𝐖𝐒𝑡𝟏𝑄, 

where the optimal choice of ρ depends on the distribution of rare variant effects 

on the multiple phenotypes. 

I denote the eigenvalues of 𝚺1/2𝐖𝐑𝜌
𝐻𝑜𝑚𝐖𝚺1/2 by (𝜆1

𝜌
, … , 𝜆𝑀

𝜌
). If I let 

𝜒1,𝑚
2  be an independent chi-square distribution with a single degree of freedom, 

I have 
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𝑀𝑆𝜌
𝐻𝑜𝑚~∑ 𝜆𝑚

𝜌

𝑀

𝑚=1

𝜒1,𝑚
2 . 

If I denote the p-value for 𝑀𝑆𝜌
𝐻𝑜𝑚 by 𝑝𝑀𝑆𝜌

𝐻𝑜𝑚, and let 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑆
𝐻𝑜𝑚 =

𝑝𝑀𝑆0
𝐻𝑜𝑚  and 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝐵

𝐻𝑜𝑚 = 𝑝𝑀𝑆1
𝐻𝑜𝑚 , the SKAT-O mFARVAT 

(mFARVATO) statistic is defined by 

𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂
𝐻𝑜𝑚 = min{𝑝𝑀𝑆0

𝐻𝑜𝑚, 𝑝𝑀𝑆0.12
𝐻𝑜𝑚, … , 𝑝𝑀𝑆0.52

𝐻𝑜𝑚, 𝑝𝑀𝑆1
𝐻𝑜𝑚}. 

Its p-value will be denoted as 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂
𝐻𝑜𝑚  in the remainder of this 

chapter, and can be calculated from the numerical algorithm for SKAT-O (Lee 

et al. 2012), with a small modification. If I let 

𝐙 = 𝚺1/2𝐖,and 𝐙̅ = 𝐙𝟏𝑀(𝟏𝑀
𝑡 𝟏𝑀)

−1, 

the projection matrix onto a space spanned by 𝐙̅

 

becomes 𝚷 = 𝐙̅(𝐙̅𝑡𝐙̅)𝐙̅𝑡. 

If I let 

𝐮 = 𝚺−1/2𝐒𝑡𝟏𝑄
1

√𝟏𝑄
𝑡 𝐓𝑡𝚽𝐀𝚽𝐓𝟏𝑄

, 𝐮~𝑀𝑉𝑁(0, 𝐈𝑀), 

𝑀𝑆𝜌
𝐻𝑜𝑚

 

becomes 

𝑀𝑆𝜌
𝐻𝑜𝑚 = 𝐮𝑡𝚺

1
2𝐖𝐑𝐖𝚺

1
2𝐮 = (1 − 𝜌)𝐮𝑡𝐙𝐙𝑡𝐮 + 𝜌𝑀2𝐮𝑡𝐙̅𝐙̅𝑡𝐮. 

As was shown by Lee et al (Lee et al. 2012), if I let 



47 

 

𝜏(𝜌) = 𝑀2𝜌𝐙̅𝑡𝐙̅ +
(1 − 𝜌)

𝐙̅𝑡𝐙̅
𝐙̅𝑡𝐙𝐙𝑡𝐙̅, 

I have 

𝑀𝑆𝜌
𝐻𝑜𝑚 = (1 − ρ)𝐮𝑡(𝐈𝑀 −𝚷)𝐙𝐙

𝑡(𝐈𝑀 −𝚷)𝐮 + 2(1 − 𝜌)𝐮
𝑡(𝐈𝑀 −𝚷)𝐙𝐙

𝑡𝚷𝐮

+ 𝜏(𝜌)𝐮𝑡𝚷𝐮, 

where 𝐮𝑡(𝐈𝑀 −𝚷)𝐙𝐙
𝑡(𝐈𝑀 −𝚷)𝐮 , 𝐮𝑡(𝐈𝑀 −𝚷)𝐙𝐙

𝑡𝚷𝐮  and 𝐮𝑡𝚷𝐮  are 

mutually independent. Therefore, if I let  

𝑃𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑝𝑀𝑆0
𝐻𝑜𝑚, 𝑝𝑀𝑆0.12

𝐻𝑜𝑚, … , 𝑝𝑀𝑆0.52
𝐻𝑜𝑚, 𝑝𝑀𝑆1

𝐻𝑜𝑚}, 

then I have 

𝑃 (𝑀𝑆𝜌0
𝐻𝑜𝑚 ≤ 𝑄𝜌0(𝑃min),… ,𝑀𝑆𝜌𝐿

𝐻𝑜𝑚 ≤ 𝑄𝜌𝐿(𝑃min)) 

= 𝐸{𝑃(𝑀𝑆𝜌0
𝐻𝑜𝑚 ≤ 𝑄𝜌0(𝑃min),… ,MS𝜌𝐿

𝐻𝑜𝑚 ≤ 𝑄𝜌𝐿(𝑃min) |𝐮
𝑡𝚷𝐮 = 𝜂)}. 

Conditional probability can be numerically calculated as was suggested by Lee 

et al (Lee et al. 2012): 

𝑃(𝑀𝑆𝜌0
𝐻𝑜𝑚 ≤ 𝑄𝜌0(𝑃min),… ,𝑀𝑆𝜌𝐿

𝐻𝑜𝑚 ≤ 𝑄𝜌𝐿(𝑃min) |𝐮
𝑡𝚷𝐮 = 𝜂). 

 

3.2.5 Heterogeneous mFARVAT 

The effects of each variant on multiple phenotypes can be heterogeneous 

in certain situations, and it may be reasonable to consider such effects separately. 
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I assumed the effects 𝛽𝑚𝑞  of variant m on multiple phenotypes follow an 

arbitrary distribution with mean 0 and variance 𝜏𝑚. Therefore, I can provide 

statistics based on vec(S), and, under the null hypothesis 𝛽11 = ⋯ = 𝛽𝑀𝑄 = 0, 

I have 

E{vec(𝐒)} = 𝟎  and var{vec(𝐒)} = 𝚺⨂𝐓𝑡𝚽𝐀𝚽𝐓. 

If I assume that 𝐈𝑤 is a 𝑤 × 𝑤 identity matrix and 

𝐑𝜌
𝐻𝑒𝑡 = (1 − 𝜌)𝐈𝑀𝑄 + 𝜌𝟏𝑀𝑄𝟏𝑀𝑄

𝑡 , 

I define the generalized score by 

𝑀𝑆𝜌
𝐻𝑒𝑡 = vec(𝐒)𝑡(𝐈𝑄⨂𝐖)𝐑𝜌

𝐻𝑒𝑡(𝐈𝑄⨂𝐖)vec(𝐒). 

Then the burden and SKAT tests can be expressed as 

𝑀𝑆1
𝐻𝑒𝑡 = vec(𝐒)𝑡(𝐈𝑄⨂𝐖)𝟏𝑀𝑄𝟏𝑀𝑄

𝑡 (𝐈𝑄⊗𝐖)vec(𝐒), 

𝑀𝑆0
𝐻𝑒𝑡 = vec(𝐒)𝑡(𝐈𝑄⨂𝐖)(𝐈𝑄⊗𝐖)vec(𝐒). 

If I let (𝜆1
′𝜌
, … , 𝜆𝑀𝑄

′𝜌
) be the eigenvalues of 

(𝚺1/2⨂(𝐓𝑡𝚽𝐀𝚽𝐓)1/2)(𝐈𝑄⨂𝐖)𝐑𝜌

× (𝐈𝑄⨂𝐖)(𝚺
1/2⨂(𝐓𝑡𝚽𝐀𝚽𝐓)1/2), 

then I have 



49 

 

𝑀𝑆𝜌
𝐻𝑒𝑡~∑𝜆𝑙

′𝜌
𝜒1,𝑙
2

𝑀𝑄

𝑙=1

 under 𝐻0. 

P-values for 𝑀𝑆𝜌
𝐻𝑒𝑡 will be denoted by 𝑝𝑀𝑆𝜌

𝐻𝑒𝑡, and I let 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑆
𝐻𝑒𝑡 =

𝑝𝑀𝑆0
𝐻𝑒𝑡 and 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝐵

𝐻𝑒𝑡 = 𝑝𝑀𝑆1
𝐻𝑒𝑡. I consider 

𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂
𝐻𝑒𝑡 = min{𝑝𝑀𝑆0

𝐻𝑒𝑡 , 𝑝𝑀𝑆0.12
𝐻𝑒𝑡 , … , 𝑝𝑀𝑆0.52

𝐻𝑒𝑡, 𝑝𝑀𝑆1
𝐻𝑒𝑡}. 

I let the p-value for 𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂
𝐻𝑒𝑡  be 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂

𝐻𝑒𝑡  and the detailed 

algorithm to calculate the asymptotic p-value is provided in the next section. 

Similarly, for 𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂
𝐻𝑒𝑡, I assume  

𝐙 = var(vec(𝐒))
1/2
(𝐈𝑄⨂𝐖), and 𝐙̅ = 𝐙𝟏𝑀𝑄(𝟏𝑀𝑄

𝑡 𝟏𝑀𝑄)
−1
. 

Then the projection matrix on a space spanned by 𝐙̅ is 𝚷 = 𝐙̅(𝐙̅𝑡𝐙̅)𝐙̅𝑡 . 

If I let 

𝐮 = var(vec(𝐒))
−1/2

vec(𝐒), 𝐮~𝑀𝑉𝑁(0, 𝐈𝑀𝑄), 

𝑀𝑆𝜌
𝐻𝑒𝑡

 

becomes 

𝑀𝑆𝜌
𝐻𝑒𝑡 = 𝐮𝑡var(vec(𝐒))

1
2(𝐈𝑄⨂𝐖)var(vec(𝐒))

1
2𝐮 

= (1 − 𝜌)𝐮𝑡𝐙𝐙𝑡𝐮 + 𝜌(𝑀𝑄)2𝐮𝑡𝐙̅𝐙̅𝑡𝐮. 

As was suggested by Lee et al(Lee et al. 2012), if I let 

𝜏(𝜌) = (𝑀𝑄)2𝜌𝐙̅𝑡𝐙̅ +
(1 − 𝜌)

𝐙̅𝑡𝐙̅
𝐙̅𝑡𝐙𝐙𝑡𝐙̅, 
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I have 

𝑀𝑆𝜌
𝐻𝑒𝑡 = (1 − 𝜌)𝐮𝑡(𝐈𝑀𝑄 −𝚷)𝐙𝐙

𝑡(𝐈𝑀𝑄 −𝚷)𝐮

+ 2(1 − 𝜌)𝐮𝑡(𝐈𝑀𝑄 −𝚷)𝐙𝐙
𝑡𝚷𝐮+ 𝜏(𝜌)𝐮𝑡𝚷𝐮, 

Therefore, if I let 𝑃min = 𝑚𝑖𝑛{𝑝𝑀𝑆0
𝐻𝑒𝑡 , 𝑝𝑀𝑆0.12

𝐻𝑒𝑡 , … , 𝑝𝑀𝑆0.52
𝐻𝑒𝑡, 𝑝𝑀𝑆1

𝐻𝑒𝑡}, I have 

𝑃 (𝑀𝑆𝜌0
𝐻𝑒𝑡 ≤ 𝑄𝜌0(𝑃min), … ,𝑀𝑆𝜌𝐿

𝐻𝑒𝑡 ≤ 𝑄𝜌𝐿(𝑃min)) 

= 𝐸{𝑃(𝑀𝑆𝜌0
𝐻𝑒𝑡 ≤ 𝑄𝜌0(𝑃min),… ,𝑀𝑆𝜌𝐿

𝐻𝑒𝑡 ≤ 𝑄𝜌𝐿(𝑃min) |𝐮
𝑡𝚷𝐮 = 𝜂)}. 

 𝑃(𝑀𝑆𝜌0
𝐻𝑒𝑡 ≤ 𝑄𝜌0(𝑃min), … ,𝑀𝑆𝜌𝐿

𝐻𝑒𝑡 ≤ 𝑄𝜌𝐿(𝑃min) |𝐮
𝑡𝚷𝐮 = 𝜂)  can be 

calculated as in (Lee et al. 2012). 
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3.3 Simulation study 

3.3.1 The simulation model 

To evaluate mFARVAT, I simulated large families that extend three generations 

and consist of 10 members (see Figure 3.1). 5,000 haplotypes with 50,000 base 

pairs were generated under a coalescent model using the software COSI 

(Schaffner et al. 2005). Each haplotype was generated by setting the mutation 

rate at 1.5 × 10-8. Haplotypes were randomly chosen with replacement to build 

founder genotypes. Nonfounder haplotypes were determined in Mendelian 

fashion from pairs of parents under the assumption of no recombination. For 

each simulated haplotype, I defined variants with sample MAFs less than 0.01 

as being rare, and 60 rare variants were randomly selected. 
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Figure 3.1 Extended family used in the simulation studies 

 

  



53 

 

Phenotypes were generated under the null and alternative hypotheses, and 

I considered both quantitative and dichotomous phenotypes. Quantitative 

phenotypes were defined by summing the phenotypic mean, polygenic effect, 

main genetic effect and random error, and I assumed there was no 

environmental effect shared between family members. Phenotypic means were 

denoted by α1,…, αQ-1 and αQ. I assumed that α1 = 0, α2 = 0.3 for Q = 2, and α1 

= α2 = α3 = 0, α4 = α5 = 0.3 for Q = 5. The polygenic effects for the Q phenotypes 

for each founder were independently generated from MVN(0,VB), and for 

nonfounders the average of maternal and paternal polygenic effects were 

combined with values independently sampled from MVN(0, 0.5VB). Random 

errors for the Q phenotypes were assumed to be independent, so the random 

error for phenotype q was independently sampled from N(0, σE,q
2). If Q = 2, I 

assumed that 

𝐕𝐁 = [
1 √2𝑐

√2𝑐 2
] , 𝜎𝐸,1

2 = 1, 𝜎𝐸,2
2 = 2, 

and if Q = 5, they were 

𝐕𝐁 =

[
 
 
 
 
 
1 𝑐 √2𝑐 √2𝑐 √2𝑐

𝑐 1 √2𝑐 √2𝑐 √2𝑐

√2𝑐

√2𝑐

√2𝑐

√2𝑐

√2𝑐

√2𝑐

2 
2𝑐
2𝑐
 
  

2𝑐
2
2𝑐
   

2𝑐
2𝑐
2 ]
 
 
 
 
 

, 

𝜎𝐸,1
2 = 1, 𝜎𝐸,2

2 = 2, 𝜎𝐸,3
2 = 3, 𝜎𝐸,4

2 = 4, 𝜎𝐸,5
2 = 5. 

For c I chose 0.5 and 0.8. 
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The genetic effect at variant m for phenotype q was the product of βmq and 

the number of disease susceptibility alleles. Under the null hypothesis, βmq was 

assumed to be 0. Under the alternative hypothesis, if I let ha
2 be the proportion 

of variance explained by rare variants, βmq was sampled from U(0,vq), where  

𝜈𝑞 = √
(𝜎𝐵,𝑞

2 + 𝜎𝐸,𝑞
2 )ℎ𝑎

2

(1 − ℎ𝑎
2)∑ 𝛽𝑚𝑞

2 2𝑝𝑚(1 − 𝑝𝑚)
𝑀
𝑚=1

. 

Here 𝜎𝐁,𝑞
2  indicates the (q,q)th element of VB, and I assumed that ha

2 = 0.02. 

βmq was generated for both heterogeneous and homogeneous scenarios. For 

homogeneous scenarios, I assumed that the effects of each rare variant on 

different phenotypes are similar. For example, the ratios between βm1, … , and 

βmQ were assumed to be 1:0.9 if Q = 2, and 1:0.9:0.8:0.7:0.6 if Q = 5. For 

heterogeneous scenario, the effects of each rare variant on phenotypes were 

independently generated from U(0,vq). 

Simulation of dichotomous phenotypes was performed using the liability 

threshold model. Once the quantitative phenotypes with genetic effect, 

polygenic effect and random error were generated, they were transformed to 

being affected for quantitative phenotypes larger than the threshold, and 

otherwise were transformed to unaffected. The threshold was chosen to 

preserve the assumed disease prevalence. I assumed that prevalence of the 

multiple phenotypes were 0.1 or 0.2 if Q = 2, and 0.1, 0.2, 0.2, 0.3, or 0.3 if Q 

= 5. To allow for the ascertainment bias of dichotomous phenotypes in our 
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simulation studies, I assumed that families with at least one affected individual 

were selected for analysis. 

 

3.3.2 Evaluation of mFARVAT with simulated data  

To evaluate statistical validity, TIE estimates for both dichotomous and 

quantitative phenotypes were calculated at various significance levels using 

20,000 replicates of two hundred extended families, so that each replicate 

sample contained 2,000 individuals. Table 3.1 shows empirical TIE estimates 

for homogeneous mFARVAT (mFARVATHom) and heterogeneous mFARVAT 

(mFARVATHet) at the 0.05, 0.01, 0.001, and 2.5×10-6 significance levels. The 

estimates are virtually equal to the nominal significance levels for both 

quantitative and dichotomous phenotypes. Quantile-quantile (QQ) plots in 

Figures 3.2 -3.5 also show consistent results, and I conclude that mFARVATHet 

and mFARVATHom are statistically valid. 
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Table 3.1 Type I error estimates from the simulation study. The empirical type I error was estimated for heterogeneous and homogeneous 

SKAT-O type mFARVAT with 20,000 replicates at the 0.05, 0.01, 0.001 and 2.5×10-6 significance levels. I assumed that the number of rare 

variants is 60, and that their MAFs were generated as U(0,vq). 

Correlation Type Q 
mFARVATHet mFARVATHom 

0.05 0.01 0.001 2.5E-6 0.05 0.01 0.001 2.5E-6 

0.5 

Quantitative 
2 0.0449 0.0087 0.0009 0 0.0470 0.0082 0.0009 0 

5 0.0481 0.0098 0.0009 0 0.0502 0.0084 0.0009 0 

Dichotomous 
2 0.0503 0.0110 0.0010 5e-5 0.0502 0.0106 0.0008 0 

5 0.0502 0.0083 0.0013 0 0.0483 0.0093 0.0012 0 

0.8 

Quantitative 
2 0.0443 0.0087 0.0007 0 0.0466 0.0091 0.0011 0 

5 0.0491 0.0099 0.0014 0 0.0498 0.0099 0.0014 0 

Dichotomous 
2 0.0505 0.0111 0.0014 0 0.0507 0.0106 0.0012 0 

5 0.0484 0.0095 0.0011 0 0.0487 0.0089 0.0011 0 

The definition of the acronyms in Table 3.1: 1) Correlation: the correlation among the phenotypes; 2) Type: the type of phenotypes; 3) Q: the 

number of phenotypes. 
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Figure 3.2 QQ plots of mFARVATO for quantitative phenotypes with c = 0.5. 

The empirical p-values for heterogeneous and homogeneous mFARVAT were 

calculated under the null hypothesis with 20,000 replicates for Q=2 and Q=5. 

The correlation among phenotypes is 0.5. 

 

 

  

(a) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=2 (b) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=5 

  

 

(c) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=2 

 

(d) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=5 
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Figure 3.3 QQ plots of mFARVATO for dichotomous phenotypes with c = 

0.5. The empirical p-values for heterogeneous and homogeneous mFARVAT 

were calculated under the null hypothesis with 20,000 replicates for Q=2 and 

Q=5. The correlation among phenotypes is 0.5. 

 

 

  

(a) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=2 (b) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=5 

  

 

(c) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=2 

 

(d) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=5 
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Figure 3.4 QQ plots of mFARVATO for quantitative phenotypes with c = 0.8. 

The empirical p-values for heterogeneous and homogeneous mFARVAT were 

calculated under the null hypothesis with 20,000 replicates for Q=2 and Q=5. 

The correlation among phenotypes is 0.8. 

 

 

  

(e) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=2 (f) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=5 

  

 

(g) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=2 

 

(h) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=5 
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Figure 3.5 QQ plots of mFARVATO for dichotomous phenotypes with c = 

0.8. The empirical p-values for heterogeneous and homogeneous mFARVAT 

were calculated under the null hypothesis with 20,000 replicates for Q=2 and 

Q=5. The correlation among phenotypes is 0.8. 

 

 

  

(e) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=2 (f) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑒𝑡, Q=5 

  

 

(g) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=2 

 

(h) 𝑝𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂𝐻𝑜𝑚, Q=5 
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Empirical power estimates were calculated at the 10-4 significance level 

with correlations 0.5 and 0.8 for quantitative phenotypes (for the underlying 

quantitative phenotypes in the case of dichotomous phenotypes). I considered 

two different scenarios, in which either all or half the rare variants were causal, 

and assumed that 50%, 80% and 100% of causal variants were deleterious, with 

the rest being protective. Empirical power estimates were calculated with 2,000 

replicates for six different statistics: (1) 𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂
𝐻𝑒𝑡; (2) 𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑂

𝐻𝑜𝑚; 

(3) 𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑆
𝐻𝑒𝑡 ; (4) 𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝑆

𝐻𝑜𝑚 ; (5) 𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝐵
𝐻𝑒𝑡 ; (6) 

𝑚𝐹𝐴𝑅𝑉𝐴𝑇𝐵
𝐻𝑜𝑚 . Results are provided in Tables 3.2-3.4 and Tables 3.5-3.7, 

which represent respectively scenarios where all or half the rare variants are 

causal. Notably, each method performed similarly in both scenarios, although 

the empirical power estimates improve if causal variants are more abundant.   

I first examined the efficiency of the methods. Tables 3.2-3.7 confirm that 

the most efficient method depends on the disease model, which tends to be 

unknown. For example, when all the rare causal variants have deleterious 

effects on all phenotypes, burden mFARVAT (mFARVATB) outperforms all other 

approaches, but if there are variants with deleterious and protective effects, 

SKAT mFARVAT (mFARVATS) is the most efficient. SKAT-O mFARVAT 

(mFARVATO) is not always the best, but its empirical power estimates are 

usually very close to those of the most efficient approach. Therefore, our results 

are consistent with previous findings that mFARVATO is robust and efficient for 

various disease models (Lee et al. 2012). 
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Table 3.2 Empirical power estimates when all rare variants are causal and 100% of them are deleterious. Empirical power of 

𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒐𝒎, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒐𝒎 and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎 was calculated for dichotomous 

and quantitative multiple phenotypes (Q = 2 and Q = 5) with homogeneous and heterogeneous effects and different correlations (c = 0.5 and c 

= 0.8) at the 10-4 significant level. Empirical power of FARVAT was calculated by adopting Bonferroni correction to the minimum p-value of 

univariate association tests on multiple phenotypes. 

Q Type c Eff 
FARVAT mFARVATHet mFARVATHom 

SKAT Burden SKAT-O SKAT Burden SKAT-O SKAT Burden SKAT-O 

 

 

2 

 

 

 

 

 

D 

0.5 

Het 
0.208 0.712 0.738 0.331 0.908 0.912 0.337 0.896 0.900 

Hom 
0.196 0.766 0.778 0.353 0.928 0.927 0.439 0.915 0.925 

0.8 

Het 
0.200 0.713 0.723 0.310 0.876 0.875 0.290 0.865 0.859 

Hom 
0.201 0.705 0.729 0.333 0.865 0.874 0.373 0.853 0.874 

Q 

0.5 

Het 
0.350 0.987 0.987 0.531 0.998 0.998 0.593 0.999 0.998 

Hom 
0.396 0.984 0.979 0.574 0.998 0.998 0.755 0.996 0.997 

0.8 

Het 
0.251 0.980 0.979 0.490 0.995 0.999 0.486 0.995 0.995 

Hom 
0.365 0.977 0.977 0.509 0.996 0.995 0.607 0.996 0.995 
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5 

 

 

 

 

D 

0.5 

Het 
0.317 0.924 0.934 0.839 1.000 1.000 0.826 1.000 1.000 

Hom 
0.315 0.948 0.955 0.868 1.000 1.000 0.947 1.000 1.000 

0.8 

Het 
0.267 0.887 0.900 0.706 0.991 0.995 0.635 0.990 0.992 

Hom 
0.265 0.893 0.914 0.756 0.995 0.995 0.814 0.995 0.995 

Q 

0.5 

Het 
0.540 0.998 0.998 0.952 1.000 1.000 0.973 1.000 1.000 

Hom 
0.602 1.000 1.000 0.968 1.000 1.000 0.999 1.000 1.000 

0.8 

Het 
0.495 0.992 0.993 0.879 1.000 1.000 0.836 1.000 1.000 

Hom 
0.525 0.994 0.994 0.890 1.000 1.000 0.957 1.000 1.000 

The definition of the acronyms in Table 3.2: 1) Q: the number of phenotypes; 2) Type: the type of phenotypes, D – dichotomous, Q - quantitative; 

4) c: the correlation among the phenotypes; 5) Eff: the underlying genetic effects architecture, Hom – homogeneous effects, Het – heterogeneous 

effects; 6) SKAT: the sequence kernel association test; 7) Burden: the burden test; 8) SKAT-O: the optimal SKAT. 
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Table 3.3 Empirical power estimates when all rare variants are causal and 80% of them are deleterious. Empirical power of 

𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒐𝒎, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒐𝒎 and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎 was calculated for dichotomous 

and quantitative multiple phenotypes (Q = 2 and Q = 5) with homogeneous and heterogeneous effects and different correlations (c = 0.5 and c 

= 0.8) at the 10-4 significant level. Empirical power of FARVAT was calculated by adopting Bonferroni correction to the minimum p-value of 

univariate association tests on multiple phenotypes. 

Q Type c Eff 
FARVAT mFARVATHet mFARVATHom 

SKAT Burden SKAT-O SKAT Burden SKAT-O SKAT Burden SKAT-O 

 

 

2 

 

 

 

 

 

D 

0.5 

Het 
0.129 0.148 0.289 0.231 0.327 0.464 0.135 0.302 0.372 

Hom 
0.150 0.194 0.326 0.252 0.389 0.525 0.342 0.356 0.550 

0.8 

Het 
0.111 0.146 0.270 0.191 0.263 0.422 0.092 0.242 0.316 

Hom 
0.133 0.164 0.283 0.212 0.313 0.447 0.264 0.279 0.462 

Q 

0.5 

Het 
0.355 0.414 0.627 0.523 0.592 0.808 0.301 0.581 0.692 

Hom 
0.368 0.467 0.670 0.546 0.678 0.854 0.718 0.660 0.892 

0.8 

Het 
0.331 0.376 0.608 0.451 0.491 0.736 0.190 0.492 0.561 

Hom 
0.319 0.407 0.608 0.461 0.564 0.753 

 

 

 

 

 

 

 

0.577 0.536 0.790 
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5 

 

 

 

 

D 

0.5 

Het 
0.214 0.270 0.479 0.707 0.763 0.903 0.272 0.745 0.764 

Hom 
0.228 0.328 0.512 0.750 0.844 0.931 0.887 0.814 0.952 

0.8 

Het 
0.179 0.215 0.386 0.629 0.590 0.819 0.143 0.562 0.586 

Hom 
0.195 0.290 0.453 0.622 0.705 0.855 0.742 0.672 0.881 

Q 

0.5 

Het 
0.577 0.574 0.831 0.962 0.922 0.997 0.459 0.923 0.931 

Hom 
0.546 0.643 0.839 0.934 0.961 0.997 0.992 0.954 1.000 

0.8 

Het 
0.527 0.490 0.765 0.915 0.802 0.972 0.238 0.791 0.804 

Hom 
0.477 0.566 0.773 0.865 0.846 0.971 0.953 0.826 0.989 

The definition of the acronyms in Table 3.3: 1) Q: the number of phenotypes; 2) Type: the type of phenotypes, D – dichotomous, Q - quantitative; 

4) c: the correlation among the phenotypes; 5) Eff: the underlying genetic effects architecture, Hom – homogeneous effects, Het – heterogeneous 

effects; 6) SKAT: the sequence kernel association test; 7) Burden: the burden test; 8) SKAT-O: the optimal SKAT. 
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Table 3.4 Empirical power estimates when all rare variants are causal and 50% of them are deleterious. Empirical power of 

𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒐𝒎, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒐𝒎 and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎 was calculated for dichotomous 

and quantitative multiple phenotypes (Q = 2 and Q = 5) with homogeneous and heterogeneous effects and different correlations (c = 0.5 and c 

= 0.8) at the 10-4 significant level. Empirical power of FARVAT was calculated by adopting Bonferroni correction to the minimum p-value of 

univariate association tests on multiple phenotypes. 

Q Type c Eff 
FARVAT mFARVATHet mFARVATHom 

SKAT Burden SKAT-O SKAT Burden SKAT-O SKAT Burden SKAT-O 

 

 

2 

 

 

 

 

 

D 

0.5 

Het 
0.038 0.000 0.028 0.069 0.000 0.048 0.020 0.000 0.016 

Hom 
0.050 0.000 0.031 0.120 0.003 0.081 0.181 0.002 0.133 

0.8 

Het 
0.064 0.000 0.038 0.087 0.000 0.068 0.016 0.000 0.010 

Hom 
0.052 0.003 0.039 0.100 0.007 0.082 0.127 0.004 0.101 

Q 

0.5 

Het 
0.330 0.000 0.236 0.489 0.001 0.386 0.121 0.001 0.070 

Hom 
0.335 0.001 0.240 0.481 0.003 0.405 0.657 0.005 0.566 

0.8 

Het 
0.341 0.001 0.246 0.431 0.000 0.327 0.103 0.000 0.064 

Hom 
0.312 0.002 0.230 0.410 0.008 0.329 0.533 0.007 0.433 
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5 

 

 

 

 

D 

0.5 

Het 
0.067 0.001 0.038 0.409 0.001 0.320 0.043 0.000 0.024 

Hom 
0.065 0.002 0.105 0.499 0.018 0.434 0.763 0.009 0.687 

0.8 

Het 
0.073 0.001 0.036 0.382 0.000 0.282 0.007 0.000 0.006 

Hom 
0.060 0.000 0.044 0.381 0.009 0.305 0.557 0.003 0.445 

Q 

0.5 

Het 
0.529 0.001 0.365 0.944 0.000 0.906 0.043 0.000 0.024 

Hom 
0.472 0.001 0.333 0.883 0.018 0.836 0.983 0.012 0.972 

0.8 

Het 
0.543 0.000 0.371 0.913 0.000 0.866 0.019 0.000 0.012 

Hom 
0.411 0.001 0.277 0.817 0.008 0.744 0.918 0.005 0.875 

The definition of the acronyms in Table 3.4: 1) Q: the number of phenotypes; 2) Type: the type of phenotypes, D – dichotomous, Q - quantitative; 

4) c: the correlation among the phenotypes; 5) Eff: the underlying genetic effects architecture, Hom – homogeneous effects, Het – heterogeneous 

effects; 6) SKAT: the sequence kernel association test; 7) Burden: the burden test; 8) SKAT-O: the optimal SKAT. 
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Table 3.5 Empirical power estimates when half rare variants are causal and 100% of them are deleterious. Empirical power of 

𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒐𝒎, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒐𝒎 and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎 was calculated for dichotomous 

and quantitative multiple phenotypes (Q = 2 and Q = 5) with homogeneous and heterogeneous effects and different correlation (c = 0.5 and c = 

0.8) at the 10-4 significant level. Empirical power of FARVAT was calculated by adopting Bonferroni correction to the minimum p-value of 

univariate association tests on multiple phenotypes. 

Q Type c Eff 
FARVAT mFARVATHet mFARVATHom 

SKAT Burden SKAT-O SKAT Burden SKAT-O SKAT Burden SKAT-O 

 

 

2 

 

 

 

 

 

D 

0.5 

Het 
0.207 0.273 0.427 0.340 0.523 0.663 0.219 0.488 0.569 

Hom 
0.259 0.298 0.484 0.403 0.578 0.712 0.502 0.536 0.729 

0.8 

Het 
0.425 0.634 0.788 0.572 0.831 0.910 0.379 0.826 0.863 

Hom 
0.488 0.684 0.834 0.678 0.857 0.937 0.812 0.851 0.948 

Q 

0.5 

Het 
0.178 0.254 0.419 0.285 0.422 0.575 0.139 0.382 0.461 

Hom 
0.248 0.283 0.462 0.390 0.497 0.647 0.420 0.460 0.631 

0.8 

Het 
0.400 0.602 0.754 0.521 0.759 0.877 0.251 0.752 0.794 

Hom 
0.434 0.646 0.767 0.562 0.781 0.883 0.645 0.768 0.901 
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5 

 

 

 

 

D 

0.5 

Het 
0.294 0.427 0.630 0.839 0.921 0.977 0.417 0.908 0.910 

Hom 
0.375 0.512 0.722 0.886 0.963 0.990 0.952 0.951 0.995 

0.8 

Het 
0.609 0.807 0.920 0.974 0.997 0.999 0.645 0.997 0.997 

Hom 
0.665 0.845 0.944 0.977 0.999 1.000 0.999 0.998 1.000 

Q 

0.5 

Het 
0.266 0.383 0.582 0.729 0.817 0.917 0.276 0.812 0.817 

Hom 
0.328 0.464 0.651 0.773 0.867 0.947 0.854 0.835 0.960 

0.8 

Het 
0.595 0.759 0.901 0.900 0.961 0.991 0.405 0.955 0.956 

Hom 
0.631 0.782 0.911 0.919 0.973 0.996 0.963 0.969 0.998 

The definition of the acronyms in Table 3.5: 1) Q: the number of phenotypes; 2) Type: the type of phenotypes, D – dichotomous, Q - quantitative; 

4) c: the correlation among the phenotypes; 5) Eff: the underlying genetic effects architecture, Hom – homogeneous effects, Het – heterogeneous 

effects; 6) SKAT: the sequence kernel association test; 7) Burden: the burden test; 8) SKAT-O: the optimal SKAT. 
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Table 3.6 Empirical power estimates when half rare variants are causal and 80% of them are deleterious. Empirical power of 

𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒐𝒎, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒐𝒎 and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎 was calculated for dichotomous 

and quantitative multiple phenotypes (Q = 2 and Q = 5) with homogeneous and heterogeneous effects and different correlation (c = 0.5 and c = 

0.8) at the 10-4 significant level. Empirical power of FARVAT was calculated by adopting Bonferroni correction to the minimum p-value of 

univariate association tests on multiple phenotypes. 

Q Type c Eff 
FARVAT mFARVATHet mFARVATHom 

SKAT Burden SKAT-O SKAT Burden SKAT-O SKAT Burden SKAT-O 

 

 

2 

 

 

 

 

 

D 

0.5 

Het 
0.128 0.043 0.174 0.215 0.105 0.306 0.098 0.091 0.182 

Hom 
0.167 0.055 0.217 0.295 0.165 0.392 0.369 0.132 0.419 

0.8 

Het 
0.392 0.114 0.453 0.565 0.215 0.640 0.219 0.200 0.384 

Hom 
0.413 0.138 0.490 0.601 0.301 0.705 0.751 0.272 0.793 

Q 

0.5 

Het 
0.112 0.045 0.164 0.169 0.079 0.238 0.072 0.062 0.135 

Hom 
0.159 0.052 0.203 0.240 0.133 0.327 0.301 0.112 0.348 

0.8 

Het 
0.375 0.112 0.410 0.469 0.152 0.526 0.137 0.135 0.267 

Hom 
0.391 0.145 0.477 0.514 0.245 0.611 0.625 0.223 0.672 



71 

 

 

 

 

 

5 

 

 

 

 

D 

0.5 

Het 
0.184 0.059 0.245 0.703 0.317 0.769 0.118 0.288 0.363 

Hom 
0.254 0.108 0.345 0.773 0.518 0.848 0.907 0.458 0.913 

0.8 

Het 
0.581 0.152 0.604 0.968 0.469 0.975 0.209 0.452 0.568 

Hom 
0.612 0.267 0.696 0.953 0.690 0.977 0.996 0.662 0.997 

Q 

0.5 

Het 
0.237 0.049 0.194 0.612 0.211 0.651 0.062 0.187 0.234 

Hom 
0.237 0.090 0.311 0.669 0.353 0.736 0.779 0.292 0.789 

0.8 

Het 
0.581 0.135 0.568 0.912 0.321 0.927 0.094 0.305 0.352 

Hom 
0.573 0.197 0.631 0.875 0.512 0.911 0.943 0.459 0.953 

The definition of the acronyms in Table 3.6: 1) Q: the number of phenotypes; 2) Type: the type of phenotypes, D – dichotomous, Q - quantitative; 

4) c: the correlation among the phenotypes; 5) Eff: the underlying genetic effects architecture, Hom – homogeneous effects, Het – heterogeneous 

effects; 6) SKAT: the sequence kernel association test; 7) Burden: the burden test; 8) SKAT-O: the optimal SKAT. 
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Table 3.7 Empirical power estimates when half rare variants are causal and 50% of them are deleterious. Empirical power of 

𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒐𝒎, 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒐𝒎 and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎 was calculated for dichotomous 

and quantitative multiple phenotypes (Q = 2 and Q = 5) with homogeneous and heterogeneous effects and different correlation (c = 0.5 and c = 

0.8) at the 10-4 significant level. Empirical power of FARVAT was calculated by adopting Bonferroni correction to the minimum p-value of 

univariate association tests on multiple phenotypes. 

Q Type c Eff 
FARVAT mFARVATHet mFARVATHom 

SKAT Burden SKAT-O SKAT Burden SKAT-O SKAT Burden SKAT-O 

 

 

2 

 

 

 

 

 

D 

0.5 

Het 
0.041 0.000 0.024 0.094 0.000 0.064 0.024 0.000 0.011 

Hom 
0.054 0.001 0.036 0.148 0.004 0.113 0.196 0.001 0.139 

0.8 

Het 
0.343 0.001 0.239 0.500 0.001 0.403 0.127 0.000 0.090 

Hom 
0.341 0.004 0.246 0.500 0.004 0.421 0.677 0.004 0.568 

Q 

0.5 

Het 
0.050 0.000 0.036 0.071 0.001 0.050 0.020 0.000 0.012 

Hom 
0.062 0.001 0.037 0.118 0.000 0.088 0.139 0.001 0.102 

0.8 

Het 
0.352 0.001 0.253 0.426 0.000 0.327 0.087 0.000 0.062 

Hom 
0.333 0.001 0.232 0.430 0.002 0.356 0.554 0.002 0.448 
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5 

 

 

 

 

D 

0.5 

Het 
0.079 0.000 0.053 0.420 0.001 0.318 0.017 0.000 0.018 

Hom 
0.130 0.000 0.086 0.532 0.014 0.468 0.771 0.009 0.703 

0.8 

Het 
0.535 0.003 0.367 0.940 0.001 0.891 0.046 0.000 0.031 

Hom 
0.508 0.000 0.364 0.900 0.014 0.848 0.977 0.007 0.963 

Q 

0.5 

Het 
0.075 0.010 0.042 0.363 0.000 0.264 0.002 0.000 0.002 

Hom 
0.115 0.003 0.075 0.449 0.012 0.389 0.594 0.009 0.505 

0.8 

Het 
0.562 0.001 0.377 0.901 0.000 0.841 0.017 0.000 0.010 

Hom 
0.466 0.003 0.338 0.815 0.014 0.759 0.914 0.010 0.874 

The definition of the acronyms in Table 3.7: 1) Q: the number of phenotypes; 2) Type: the type of phenotypes, D – dichotomous, Q - quantitative; 

4) c: the correlation among the phenotypes; 5) Eff: the underlying genetic effects architecture, Hom – homogeneous effects, Het – heterogeneous 

effects; 6) SKAT: the sequence kernel association test; 7) Burden: the burden test; 8) SKAT-O: the optimal SKAT. 
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I also compared the performance of mFARVATHet and mFARVATHom using 

simulated data. Tables 3.2-3.7 show that if the effects of each rare variant on 

phenotypes are heterogeneous, mFARVATHet performs better than 

mFARAVATHom, and vice versa. In addition, when the effects of causal variants 

go in different directions, as in cases where some variants are deleterious while 

others are protective, the gap between the power of mFARVATHet and 

mFARAVATHom is larger than in a scenario where such effects are in the same 

direction. Interestingly, for each method the statistical power difference 

between 100% and 50% deleterious causal variants seems to be larger for 

family-based samples than that for population-based designs (Lee et al. 2012). 

Results for dichotomous phenotypes tend to be similar to those for 

quantitative phenotypes, although statistical power for the former is usually 

smaller. This difference may be explained by the fact that dichotomous 

phenotypes were transformed from quantitative phenotypes. Moreover, overall 

the power is seen to be inversely related to correlations among phenotypes. 

There is some power loss when c is increased from 0.5 to 0.8. Notably, when 

more phenotypes are included in the analysis, mFARVAT performs more 

effectively. 

Last, I compared the proposed method with univariate analyses using 

FARVAT (Choi et al. 2014). The minimum p-value adjusted by Bonferroni 

correction was selected to calculate the power of univariate analyses. I 

considered two scenarios: multiple phenotypes are associated with variants and 
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only a single phenotype is associated with variants. Results in Tables 3.2-3.7 

show that for the former scenario multivariate rare variant analyses perform 

better than univariate analyses. For the latter scenario, univariate rare variant 

analyses outperform multivariate analyses (see Table 3.8).  
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Table 3.8 Empirical power estimates when only one phenotype is associated with a region to test. Taking the proportion of deleterious and 

protective variants among 60 causal rare variants to be 100/0, 80/20, and 50/50, and only one phenotype was associated with the rare variants, 

the empirical power of 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒆𝒕,  𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒆𝒕 , 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕 , 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑩

𝑯𝒐𝒎 , 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑺
𝑯𝒐𝒎  and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎  was 

calculated for dichotomous and quantitative multiple phenotypes (Q = 2 and Q = 5) with correlation (c = 0.5) at the 10-4 significant level. 

Empirical power of FARVAT was calculated by adopting Bonferroni correction to the minimum p-value of univariate association tests on multiple 

phenotypes. 

Q Type +/- 

FARVAT mFARVATHet mFARVATHom 

SKAT Burden SKAT-O SKAT Burden SKAT-O SKAT Burden SKAT-O 

 

 

 

 

 

 

2 

D 

100/0 0.130 0.520 0.540 0.020 0.070 0.090 0.010 0.060 0.060 

80/20 0.020 0.120 0.150 0.000 0.010 0.020 0.000 0.020 0.020 

50/50 0.040 0.010 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

Q 

100/0 0.190 0.940 0.950 0.000 0.170 0.150 0.000 0.160 0.100 

80/20 0.110 0.310 0.450 0.010 0.050 0.060 0.000 0.050 0.060 

50/50 0.170 0.000 0.110 0.020 0.000 0.010 0.000 0.000 0.000 

 

 

 

 

D 

100/0 0.050 0.420 0.450 0.000 0.000 0.000 0.010 0.000 0.000 

80/20 0.040 0.070 0.120 0.010 0.000 0.010 0.000 0.000 0.000 

50/50 0.020 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 
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5 Q 

100/0 0.140 0.800 0.790 0.000 0.000 0.000 0.000 0.000 0.000 

80/20 0.110 0.190 0.370 0.000 0.000 0.000 0.000 0.000 0.000 

50/50 0.090 0.000 0.110 0.000 0.000 0.000 0.000 0.000 0.000 

The definition of the acronyms in Table 3.8: 1) Q: the number of phenotypes; 2) Type: the type of phenotypes, D – dichotomous, Q - quantitative; 

4) +/-: the number of variants with positive/negative effect; 5) SKAT: the sequence kernel association test; 6) Burden: the burden test; 7) SKAT-

O: the optimal SKAT. 
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3.4 Application to COPD data 

I applied mFARVAT to whole-exome sequencing data from the Boston 

Early-onset COPD Study (EOCOPD) (Silverman et al. 1998). The EOCOPD 

data are derived from an extended pedigree-based design. Probands were 

selected by age ≤53 years old, prebronchodilator forced expiratory volume in 

one second (FEV1) of ≤40%, physician-diagnosed COPD, and without severe 

alpha-1 antitrypsin deficiency. All first-degree relatives, older second-degree 

relatives, and additional affected family members were enrolled. 49 pedigrees 

with at least 2 affected family members were selected for WES. Sequencing 

was performed at the University of Washington (Seattle, WA) Center for 

Mendelian Genomics, using Nimblegen V2 capture (Roche NimbleGen, Inc., 

Madison, WI) and the Illumina platform (Illumina, Inc., San Diego, CA). 

Quality control was performed using PLINK (Purcell et al. 2007), vcfTools 

(Danecek et al. 2011), and PLINK/SEQ at Brigham and Women’s Hospital. 

Quality control included Mendelian error rates (< 1%), HWE (p > 10-8), and 

average sequencing depth (> 12). Relatedness of individuals was evaluated by 

comparing KCM and GRM. Heterozygous/homozygous genotype ratio, 

Mendelian errors, proportion of variants in dbSNP and proportion of non-

synonymous variants were used to identify outliers. After additionally filtering 

out samples with missing phenotypes or covariates, 254 samples from 49 

families were obtained. The descriptive details of the EOCOPD data are 

provided in Table 3.9.  
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Table 3.9 The description of early-onset chronic obstructive pulmonary 

disease (EOCOPD) data. This description includes the range of age, and the 

number of individuals, families, females/males, cases/controls, variants, rare 

variants (MAF <5%) and genes. 

Description EOCOPD 

Age [21, 87] 

Sample size 254 

Families 49 

F/M 172/82 

Cases/controls 132/122 

Variants 124,288 

Rare variants 88,373 

Genes 8,126 

The definition of the acronyms in Table 3.9: 1) Families: the number of families; 

2) F/M: the number of females and males; 3) Cases/controls: the number of 

cases and controls; 4) Variants: the number of variants; 5) Rare variants: the 

number of rare variants; 6) Genes: the number of genes.  
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I considered five COPD-related phenotypes: forced expiratory volume in 

one second pre-bronchodilator (FEVPRE); forced vital capacity post-

bronchodilator (FVCPST); forced expiratory flow 25-75% pre-bronchodilator 

(DPRF2575); FEVPRE divided by FVCPRE (RATIO); and DPRF2575 divided 

by FVCPRE (F2575RAT). Sex, age, height, and pack-years of cigarette 

smoking were utilized to estimate BLUP offsets. It should be noted that 

genotypes were not used to estimate offsets. The correlation structure of the 

phenotypes is shown in Table 3.10. 
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Table 3.10 Correlation structure of the five chronic obstructive pulmonary 

disease (COPD) related phenotypes. 

 
FEVPRE FVCPST DPRF2575 F2575RAT RATIO 

FEVPRE 1 0.907 0.919 0.770 0.825 

FVCPST 0.907 1 0.734 0.497 0.569 

DPRF2575 0.919 0.734 1 0.919 0.829 

F2575RAT 0.770 0.497 0.919 1 0.898 

RATIO 0.825 0.569 0.829 0.898 1 

The definition of the acronyms in Table 3.10: 1) FEVPRE: forced expiratory 

volume in one second pre-bronchodilator; 2) FVCPST: forced vital capacity 

post-bronchodilator; 4) DPRF2575: forced expiratory flow 25-75% pre-

bronchodilator; 5) F2575RAT: DPRF2575/FVCPRE. 
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I assumed that variants with MAFs less than 5% were rare, and considered 

only genes with at least two rare variants and a MAC of at least four. As a result, 

8,126 genes and 88,373 rare variants were analyzed. Our statistic requires the 

correlation matrix between individuals to obtain Φ. If there exists population 

substructure, GRM should be utilized for Φ and otherwise KCM is adequate. I 

found no significant population substructure, and KCM was used for Φ. The 

Bonferroni-corrected 0.05 genome-wide significance level is 6.15E-6. QQ plots 

in Figures 3.6 show the statistical validity of our analysis. Manhattan plots are 

shown in Figure 3.7. The top 10 most significant results from mFARVATHet and 

mFARVATHom are shown in Table 3.11. I could not find any genome-wide 

significant results with association analysis of multiple phenotypes. The most 

significant result was found for KRTAP5-9 on chromosome 11, with 

mFARVATHet (p-value = 1.00×10-4), but the p-value for KRTAP5-9 from 

mFARVATHom is 2.72×10-4. The smaller p-value of mFARVATHet may indicate 

that effect of each rare variant on the multiple phenotypes is heterogeneous.  
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Figure 3.6 QQ plots of mFARVAT with the COPD data. mFARVAT was 

applied to the five COPD-related phenotypes. QQ-plots in (a) and (b) were from 

heterogeneous and homogeneous mFARVAT, respectively. KCM was utilized as 

Ф. 

 

  

 

(a) mFARVATHet with KCM 

 

(b) mFARVATHom with KCM 
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Figure 3.7 Manhattan plots of mFARVAT with the COPD data. mFARVAT 

was applied to the five COPD-related phenotypes. Manhattan plots in (a) and 

(b) are from heterogeneous and homogeneous mFARVAT, respectively. KCM 

was utilized as Ф. 

 

  

 

(a) mFARVATHet with KCM 

 

(b) mFARVATHom with KCM 
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Table 3.11 mFARVAT analysis of the COPD-releted phenotypes. Genes are 

the top 10 most significant results from 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶
𝑯𝒆𝒕 and 𝒎𝑭𝑨𝑹𝑽𝑨𝑻𝑶

𝑯𝒐𝒎. 

Method Chr Gene MAC # variants P-value 

Het 

11 KRTAP5-9 21 3 1.00×10-04 

13 DIAPH3 40 7 1.73×10-04 

4 ENAM 82 9 3.16×10-04 

2 SLC8A1 5 3 3.38×10-04 

3 MFI2 32 5 4.30×10-04 

11 PLEKHA7 20 9 5.16×10-04 

2 SLC19A3 11 4 6.88×10-04 

7 ZNF736 8 2 7.94×10-04 

15 MGA 49 11 9.08×10-04 

8 CA1 7 2 1.18×10-03 

Hom 

13 DIAPH3 40 7 1.25×10-04 

2 SLC8A1 5 3 1.80×10-04 

11 PLEKHA7 20 9 2.18×10-04 

11 KRTAP5-9 21 3 2.72×10-04 

15 POLG 58 8 6.28×10-04 

2 SLC19A3 11 4 6.37×10-04 

1 ETV3L 31 5 6.63×10-04 

7 ZNF736 8 2 7.94×10-04 

5 AFAP1L1 20 3 7.95×10-04 

3 ANO10 32 3 9.57×10-04 

The definition of the acronyms in Table 3.11: 1) Chr: chromosome; 2) MAC: 

minor allele count; 3) # variants: the number of rare variants; 4) Het: 

heterogeneous mFARVAT; 5) Hom: homogeneous mFARVAT. 
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3.5 Discussion 

Extended families have complex correlation structure and association 

analyses using extended families are very complicated, in particular for 

dichotomous phenotypes. For instance, the unbalanced nature of family-based 

samples can lead to inflation or deflation of sandwich estimators for the 

variance-covariance matrix, and results from generalized estimating equation 

can be invalid (Aaij et al. 2013). An alternative approach is to use a generalized 

linear mixed model. However, calculating maximum likelihood estimators 

requires numerical integration, which is computationally very intensive, and 

approximations to avoid this can introduce serious bias (Gilmour et al. 1985, 

Schall 1991). Therefore in spite of the efficiency of extended families for rare 

variant association analysis, few methods have been suggested for family-based 

association analyses. In this chapter, I propose a new method of family-based 

analysis of rare variants associated with dichotomous phenotypes, quantitative 

phenotypes, or both. The proposed method enables multivariate analyses of 

extended families to detect rare variants. Extensive simulation studies show that 

mFARVAT works well for dichotomous and quantitative phenotypes. Our 

method is computationally efficient and association analyses at the genome-

wide scale are computationally feasible for extended families. In our analyses, 

an Intel (R) Xeon (R) E5-2620 0 CPU at 2.00GHz, with a single node and 80 

gigabyte memory, required six minutes to analyze the real data on two 
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phenotypes. mFARVAT is implemented in C++ and freely downloadable from 

http://healthstat.snu.ac.kr/software/mfarvat. 

However, in spite of the analytical flexibility and efficiency of the method, 

some limitations still remain. First, GRM should ideally be used as the 

correlation matrix Ф to provide robustness against population substructure; 

however, proper estimation of GRM requires large-scale common variants. In 

the absence of such data, the transmission disequilibrium test (Laird et al. 2000) 

is a unique alternative. Second, the proposed statistics are for retrospective 

designs and power loss is expected if samples are prospectively gathered. It has 

been shown that appropriate choice of offset minimizes power loss in certain 

scenarios but further investigation is still necessary. Third, mFARVAT cannot be 

used directly to analyze X-linked variants. The distribution of X-linked genetic 

variants in male is different from that in female, and thus different statistics for 

males and females are required. This issue will be investigated in my future 

work. Forth, homogeneous model and heterogeneous model are powerful when 

the real genetic model satisfies their assumptions. Specifically, if the effects of 

a variant among different phenotypes are in the same direction, homogeneous 

mFARVAT is more powerful, otherwise, heterogeneous mFARVAT performs 

better. However, the underlying genetic architecture is usually unknown. It 

would be more practical if we can propose a combined omnibus method, which 

can combine homogeneous and heterogeneous statistics and can be more robust 

for various genetic models. Similar to SKAT-O, the combined omnibus method 

can be derived as: 
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𝑀𝑆𝑐 = 𝑐𝑀𝑆𝜌1
𝐻𝑜𝑚 + (1 − 𝑐)𝑀𝑆𝜌2

𝐻𝑒𝑡, 

where 𝑀𝑆𝜌1
𝐻𝑜𝑚  and 𝑀𝑆𝜌2

𝐻𝑒𝑡  are the homogeneous and heterogeneous 

mFARVAT SKAT-O statistics;  0 ≤ 𝜌1, 𝜌2 ≤ 1  are values that make both 

statistics reach the minimum p-values, respectively. 𝜌1, 𝜌2 can be interpreted 

as the pairwise correlation among the genetics effects of different variants; 0 ≤

𝑐 ≤ 1 can be interpreted as a pairwise correlation among the genetic effects of 

different phenotypes. Similarly, we can calculate the p-values of 𝑀𝑆𝑐, 𝑝𝑀𝑆𝑐, 

with a grid of c and choose the one by the minimum p-value, 𝑃𝑚𝑖𝑛
𝑐 . For 

example,  

𝑃𝑚𝑖𝑛
𝑐 = min{𝑝𝑀𝑆0, 𝑝𝑀𝑆0.12 , … , 𝑝𝑀𝑆0.52 , 𝑝𝑀𝑆1 }. 

𝑃𝑚𝑖𝑛
𝑐  is the actual statistic of this combined omnibus method. To calculate the 

p-value of the omnibus statistic, the traditional SKAT-O derives the linear 

combination into a three independent terms and calculate p-value with one-

dimensional numerical integration. However, this approach is not feasible here 

since 𝑀𝑆𝜌1
𝐻𝑜𝑚  and 𝑀𝑆𝜌2

𝐻𝑒𝑡  contains different scores. Permutation is not 

applicable neither to family-based designs. Gene-dropping algorithm is a 

promising solution for this issue and will be considered in my future work. 

Over the last decade, we have recognized that a substantial amount of 

unidentified genetic risk exists, and much effort has been expended to 

investigate this risk. Our methods provide an efficient strategy to analyze rare 
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variant associations in family-based samples, and it may increase understanding 

of heritable diseases. 
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Chapter 4  

 

Family-based Rare Variant Association Test for 

Meta-analysis 

 

4.1 Introduction 

In this chapter, I proposed a new meta-analysis method for family-based, 

population-based, and case-control rare variant association tests, metaFARVAT. 

metaFARVAT generates a quasi-likelihood score for each variant and combines 

them to generate burden, VT, SKAT, and SKAT-O statistics. metaFARVAT can 

assume homogeneous or heterogeneous effects of variants among different 

studies and can be applied to both quantitative and dichotomous phenotypes. I 

evaluated the statistical validity of metaFARVAT using simulated data and 
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compared its estimated power with those of RAREMETAL and seqMeta under 

various scenarios. Furthermore, metaFARVAT was applied to identify rare 

variants for COPD using whole-exome sequencing (WES) data from family-

based samples from the Boston Early-Onset COPD Study (EOCOPD) and case-

control samples from the COPDGene study. 
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4.2 Methods 

4.2.1 Notation 

I assume that there are K studies available and that each study is of either 

a population-based, case-control, or family-based design. It is assumed that Nk 

subjects are available in study k. I assume that there are M rare variants in a 

gene, and the MAC of variant m for subject j in study k is coded by gjmk. Traits 

can be either quantitative or dichotomous, and yjk indicates a phenotype of 

subject j in study k. Their vectors are denoted by 

𝐆𝑘
𝑚 = [

𝑥1𝑚𝑘
⋮

𝑥𝑁𝑘𝑚𝑘
] , 𝐆𝑘 = (𝐆𝑘

1 ,⋯ , 𝐆𝑘
𝑀), 𝐘𝑘 = [

𝑦1𝑘
⋮

𝑦𝑁𝑘𝑘
].

 

In some cases, rare variants may be observed only in a subset of studies. If 

variant m is missing or monomorphic in study k, I assume that 𝐆𝑘
𝑚 is 0, and its 

variance and covariance with 𝐆𝑘
𝑚′
(𝑚 ≠ 𝑚′) are 0. If variant m is missing for 

all studies, then it should be removed from the analysis.  

Parental genotypes are transmitted to offspring under Mendelian 

transmission, and thus our test statistics consider the genetic correlation 

between family members. The genetic variance-covariance matrix among 

family members can be specified by a kinship coefficient matrix, Фk. Under the 

presence of population substructure, the genetic relationship matrix (GRM) can 

be estimated with large-scale genotyping data and should alternatively replace 

Фk (Thornton et al. 2012). 
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Last, meta-analysis of rare variant association analyses with multiple 

studies requires two different types of weights. First, when multiple studies are 

combined, each study has different features, such as sample size and disease 

diagnosis, and such differences can be handled with an a priori specified weight 

for each study. I assume that the statistics for study k are weighted by 𝑣𝑘, and 

their K×K dimensional diagonal matrix is denoted by 𝐖𝐵 . Second, rare 

variants have different gene annotations, genomic coordinates, and functional 

characterization, and various annotation tools have been proposed to choose 

important features based on their biological properties. I denote the weight for 

rare variant m by wm, and I let WW be their M ×M dimensional diagonal matrix. 

 

4.2.2 Choices of Offset 

I introduce the offset μjk for subject j at study k to improve the efficiency 

of the proposed score test (Lange et al. 2002). I set 

𝛍𝑘 = [

𝜇1𝑘
⋮

𝜇𝑁𝑘𝑘
] , 𝛍 = (𝛍1, ⋯ , 𝛍𝐾), 𝐓𝑘 = 𝐘𝑘 − 𝛍𝑘 .

 

The most efficient choice of μ may depend on the sampling scheme, and either 

the BLUP with covariates or the prevalence were shown to be the most efficient 

(Won and Lange 2013). If families are randomly selected, BLUP was shown to 

be the most efficient (Won and Lange 2013); otherwise, the prevalence is 

recommended for dichotomous phenotypes (Thornton and McPeek 2007, Won 

and Lange 2013). In this report, I focus on randomly selected families, and I 
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incorporate BLUP from the linear mixed model for μ. Under the null hypothesis, 

the linear mixed model (George and Elston 1987) for a quantitative phenotype 

is given by 

𝐘 = 𝐗𝛂 + 𝐁 + 𝐄, 𝐁~𝑀𝑉𝑁(0, 𝜎𝑏
2𝚽) 𝑎𝑛𝑑 𝐄~𝑀𝑉𝑁(0, 𝜎𝑒

2𝐈𝑁), 

where 𝐗 is the covariate matrix and 𝛂 is its regression coefficient vector; B 

and E indicate the polygenetic random effect and random error, respectively. 

Then, incorporation of BLUP as an offset gives  

𝐓 = 𝐘 − 𝛍 = (𝐈 − 𝐗(𝐗𝐭𝐇−𝟏𝐗)
−𝟏
𝐗𝐭𝐇−𝟏 − 𝜎̂1

2𝚽𝐏)𝐘, 

where 𝐇 = 𝜎̂𝑏
2𝚽+ 𝜎̂𝑒

2𝐈𝑁 , and 𝐏 = 𝐇−𝟏 −𝐇−𝟏𝐗(𝐗𝐭𝐇−𝟏𝐗)
−𝟏
𝐗𝐭𝐇−𝟏 . For a 

dichotomous phenotype, use of the generalized linear mixed model might be 

considered an appropriate approach, but I estimated T in the same way as for 

quantitative phenotypes when individuals were randomly selected because of 

its superior statistical power (Won and Lange 2013).  

 

4.2.3 Score for Quasi-likelihood 

I let 1w be a w×1 column vector, of which the elements are 1. The score 

based on quasi-likelihood for variant m in study k is defined by 

𝑢𝑚,𝑘 = 𝐓𝑘
𝑡 (𝐈𝑁𝑘 − 𝟏𝑁𝑘(𝟏𝑁𝑘

𝑡 𝚽𝑘
−1𝟏𝑁𝑘)

−1
𝟏𝑁𝑘
𝑡 𝚽𝑘

−1)𝐆𝑘
𝑚. 
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If I denote the covariance between 𝑔𝑚,𝑘  and 𝑔𝑚’,𝑘  by 𝜎𝑚𝑚′,𝑘 , then 

cov(𝐆𝑘
𝑚, 𝐆𝑘

𝑚′
) = 𝜎𝑚𝑚′,𝑘𝚽𝑘 , and 𝜎𝑚𝑚′,𝑘  is estimated by the empirical 

covariance. I let 

𝚺𝒌 = [

𝜎11,𝑘 … 𝜎1𝑀,𝑘
⋮ ⋱ ⋮

𝜎𝑀1,𝑘 … 𝜎𝑀𝑀,𝑘
]. 

If I let 𝐀𝑘 = 𝚽𝑘 − 𝟏𝑁𝑘(𝟏𝑁𝑘
𝑡 𝚽𝑘

−1𝟏𝑁𝑘)
−1
𝟏𝑁𝑘
𝑡 , the variance-covariance matrix 

of um,k  (Choi et al. 2014) was shown to be 

var [

𝐓𝑘
𝑡 (𝐆𝑘

1 − 𝐸̂(𝐆𝑘
1))

⋮

𝐓𝑘
𝑡 (𝐆𝑘

𝑀 − 𝐸̂(𝐆𝑘
𝑀))

] = (𝐓𝑘
𝑡𝐀𝑘𝐓𝑘)𝚺𝑘. 

The score vector of rare variants in study k can be defined by 

𝐔𝑘 =
1

√𝐓𝑘
𝑡𝐀𝑘𝐓𝑘

𝐓𝑘
𝑡 (𝐈𝑁𝑘 − 𝟏𝑁𝑘(𝟏𝑁𝑘

𝑡 𝚽𝑘
−1𝟏𝑁𝑘)

−1
𝟏𝑁𝑘
𝑡 𝚽𝑘

−1)𝐆𝑘. 

The score statistic tests whether the coded genotypes are linearly 

independent from the phenotypes; for dichotomous phenotypes, it is equivalent 

to comparing the MAFs between cases and controls.   

 

4.2.4 Homogeneous Model 

The homogeneous model assumes that the effect sizes of each variant are 

expected to be in the same direction among different studies, and thus the 

proposed scores for each study can be collapsed across studies as follows: 
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𝐔𝐻𝑜𝑚 ≡ ∑ 𝑣𝑘𝐔𝑘
𝑡

𝑘 , 𝚺𝐻𝑜𝑚 ≡ var(𝐔𝐻𝑜𝑚) = ∑ 𝑣𝑘
2𝚺𝑘𝑘 . 

Here, I set 𝑣𝑘  to be 1. However, the proposed statistics are sometimes 

unavailable, and the appropriate choice can vary according to the available 

information. For instance, if standardized test statistics and sample sizes are 

available, then the inverse function to the square root of the sample size can be 

utilized. 

Rare variant association analysis can be categorized into burden and 

variance-component tests (Li and Leal 2008, Price et al. 2010, Neale et al. 2011, 

Wu et al. 2011). The burden test is known to be the most powerful if all rare 

variants have either deleterious or protective effects on disease; otherwise, the 

variance-component test is more efficient (Neale et al. 2011). If I let 
2

1
  be a 

chi-square distribution with a single degree of freedom, the burden test for a 

homogeneous model becomes 

𝑆𝑏𝑢𝑟𝑑𝑒𝑛
𝐻𝑜𝑚 =

(𝐔𝐻𝑜𝑚)𝑡𝐖𝑊𝟏𝑀𝟏𝑀
𝑡 𝐖𝑊𝐔

𝐻𝑜𝑚

𝟏𝑀
𝑡 𝐖𝑊𝚺

𝐻𝑜𝑚𝐖𝑊𝟏𝑀
~𝜒1

2 under 𝐻0. 

Variance component tests use the collapsed squared scores (Neale et al. 2011, 

Wu et al. 2011) and can be expressed by 

𝑆𝑆𝐾𝐴𝑇
𝐻𝑜𝑚 = (𝐔𝐻𝑜𝑚)𝑡𝐖𝑊𝐈𝑀𝐖𝑊𝐔

𝐻𝑜𝑚. 

I denote eigenvalues for (𝚺𝐻𝑜𝑚)1/2𝐖𝑊𝐖𝑊(𝚺
𝐻𝑜𝑚)1/2 by λm. If I let 𝜒1,𝑚

2  be an 

independent chi-square distribution with a single degree of freedom, the 

variance component test for the homogeneous model follows 



97 

 

𝑆𝑆𝐾𝐴𝑇
𝐻𝑜𝑚~ ∑ 𝜆𝑚𝜒1,𝑚

2

𝑀

𝑚=1

 under 𝐻0. 

A balanced approach for both scenarios can be achieved by the SKAT-O 

type statistic (Lee et al. 2012). For a certain 𝜌 between 0 and 1, I consider 

(𝐔𝐻𝑜𝑚)𝑡𝐖𝑊((1 − 𝜌)𝐈𝑀 + 𝜌𝟏𝑀𝟏𝑀
𝑡 )𝐖𝑊𝐔

𝐻𝑜𝑚. 

If I let its p-value be 𝑝𝑆𝜌
𝐻𝑜𝑚, the SKAT-O type statistic for 𝜌0 = 0 < 𝜌1 <

⋯ < 𝜌𝐿 = 1 is defined by 

𝑆𝑆𝐾𝐴𝑇𝑂
𝐻𝑜𝑚 = 𝑝min

𝐻𝑜𝑚 = min{𝑝𝑆0
𝐻𝑜𝑚, 𝑝𝑆0.01

𝐻𝑜𝑚, 𝑝𝑆0.04
𝐻𝑜𝑚, 𝑝𝑆0.09

𝐻𝑜𝑚, 𝑝𝑆0.16
𝐻𝑜𝑚, 𝑝𝑆0.25

𝐻𝑜𝑚, 𝑝𝑆1
𝐻𝑜𝑚}. 

Its p-value can be calculated with the numerical algorithm for the FARVAT 

statistic (Choi et al. 2014). 

Last, rare variant association analysis utilizes rare variants, but the 

definition of a rare variant is not clear. VT approaches are very useful in such 

scenarios. I assume that rare variants are sorted in ascending order of overall 

MAF. I let 1(m) be an M-dimensional column vector whose 1st, … , mth elements 

are 1 and the others are 0. If I let 

𝑈(𝑚)
𝐻𝑜𝑚 = ∑ 𝑣𝑘𝟏(𝑚)

𝑡 𝐖𝑊𝐔𝑘
𝑡𝐾

𝑘=1 = 𝟏(𝑚)
𝑡 𝐖𝑊𝐔

𝐻𝑜𝑚, 

then the covariance between 𝑈(𝑚)
𝐻𝑜𝑚 and 𝑈(𝑚′)

𝐻𝑜𝑚 is 

𝟏(𝑚)
𝑡 𝐖𝑊𝚺

𝐻𝑜𝑚𝐖𝑊𝟏(𝑚′). 

Therefore, I let  
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𝑇(𝑚)
𝐻𝑜𝑚 =

𝑈(𝑚)
𝐻𝑜𝑚

√𝟏(𝑚)
𝑡 𝐖𝑊𝚺

𝐻𝑜𝑚𝐖𝑊𝟏(𝑚)

. 

If I denote the realization of 𝑇(𝑚)
𝐻𝑜𝑚  by t(m) and let t(|max|) = max{𝑇(𝑚)

𝐻𝑜𝑚 } 

(Spielman et al. 1993), the p-value for the VT method can be calculated by 

1 − 𝑃(|𝑇(1)
𝐻𝑜𝑚| > 𝑡(|max|),⋯ , |𝑇(𝑀)

𝐻𝑜𝑚| > 𝑡(|max|)). 

Here, (𝑇(1)
𝐻𝑜𝑚,⋯ , 𝑇(𝑀)

𝐻𝑜𝑚)
𝑡
 follows the multivariate normal distribution with 

mean 0 and the following variance-covariance matrix: 

𝚿𝑯𝒐𝒎 = (𝚿𝒎𝒎′
𝑯𝒐𝒎)

𝑴×𝑴
,   

where 𝚿𝑚𝑚′
𝐻𝑜𝑚 =

𝟏(𝑚)
𝑡 𝐖𝑤𝚺

𝐻𝑜𝑚𝐖𝑤𝟏(𝑚′)

√(𝟏(𝑚)
𝑡 𝐖𝑤𝚺

𝐻𝑜𝑚𝐖𝑤𝟏(𝑚))(𝟏(𝑚′)
𝑡 𝐖𝑤𝚺

𝐻𝑜𝑚𝐖𝑤𝟏(𝑚′))

. 

 

4.2.5 Heterogeneous Model 

As in the homogeneous model, I propose burden and variance component 

tests for the heterogeneous model. The heterogeneous model assumes that the 

effects of specific variant m are heterogeneous among studies and follow an 

arbitrary distribution with mean 0 and variance 𝜏𝑚. If I let 𝐸(𝑢𝑚,𝑘) = 𝛽𝑚𝑘, 

the null hypothesis can be expressed by 𝛽𝑚1 = ⋯ = 𝛽𝑚𝐾 = 0 , or simply 

𝜏𝑚 = 0, and I consider the following score vector and its variance matrix: 

𝐔𝐻𝑒𝑡 ≡ (𝑣1𝐔1 … 𝑣𝐾𝐔𝐾)
𝑡, 𝚺𝐻𝑒𝑡 ≡ var(vec(𝐔)) = ∑ (𝑣𝑘

2𝚺𝑘⨂𝒆𝑘𝑘)𝑘 , 
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where 𝒆𝑘𝑘  is a K×K dimensional matrix whose (k, k) element is 1 and the 

others are 0. Then, the burden test can be expressed as 

𝑆𝑏𝑢𝑟𝑑𝑒𝑛
𝐻𝑒𝑡 =

𝐔𝐻𝑒𝑡(𝐖𝑊⨂𝐖𝐵)𝟏𝑀𝐾𝟏𝑀𝐾
𝑡 (𝐖W⨂𝐖𝐵)𝐔

𝐻𝑒𝑡𝑡

𝟏𝑀𝐾
𝑡 (𝐖𝑊⨂𝐖𝐵)𝚺

𝐻𝑒𝑡(𝐖𝑊⨂𝐖𝐵)𝟏𝑀𝐾
~𝜒1

2 under 𝐻0. 

I let 

𝐑𝑐
𝐻𝑒𝑡 = (1 − 𝑐)𝐈𝑀𝐾+𝑐𝟏𝑀𝐾𝟏𝑀𝐾

𝑡 , 𝑆𝑐
𝐻𝑒𝑡

= 𝐔𝐻𝑒𝑡(𝐖𝑊⨂𝐖𝐵)𝐑𝑐
𝐻𝑒𝑡(𝐖𝑊⨂𝐖𝐵)𝐔

𝐻𝑒𝑡𝑡, 

and I let (𝜆1
𝑐 , … , 𝜆𝑀𝐾

𝑐 ) be the eigenvalues of 

∑(𝚺𝑘⨂𝒆𝑘𝑘)

𝑘

(𝐖𝑊⨂𝐖𝐵)𝐈𝑀𝐾(𝐖𝑊⨂𝐖𝐵)∑(𝚺𝑘⨂𝒆𝑘𝑘)

𝑘

. 

Then, 𝑆𝑐
𝐻𝑒𝑡 follows 

𝑆𝑐
𝐻𝑒𝑡~ ∑𝜆𝑙

𝑐𝜒1,𝑙
2

𝑀𝐾

𝑙=1

 under 𝐻0. 

Therefore, the variance component test is defined by 

𝑆𝑆𝐾𝐴𝑇
𝐻𝑒𝑡 = 𝐔𝐻𝑒𝑡(𝐖𝑊⨂𝐖𝐵)𝐈𝑀𝐾(𝐖𝑊⨂𝐖𝐵)𝐔

𝐻𝑒𝑡𝑡

= 𝑆0
𝐻𝑒𝑡~ ∑𝜆𝑙

0𝜒1,𝑙
2

𝑀𝐾

𝑙=1

 under 𝐻0. 

If I denote the p-value for 𝑆𝑐
𝐻𝑒𝑡 by p𝑆𝑐

𝐻𝑒𝑡, the SKAT-O-type statistic is defined 

by 

𝑆𝑆𝐾𝐴𝑇𝑂
𝐻𝑒𝑡 = 𝑝min

𝐻𝑒𝑡 = min{𝑝𝑆0
𝐻𝑒𝑡 , 𝑝𝑆0.01

𝐻𝑒𝑡 , 𝑝𝑆0.04
𝐻𝑒𝑡 , 𝑝𝑆0.09

𝐻𝑒𝑡 , 𝑝𝑆0.16
𝐻𝑒𝑡 , 𝑝𝑆0.25

𝐻𝑒𝑡 , 𝑝𝑆1
𝐻𝑒𝑡}, 
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and its p-value is also obtained by the numerical algorithm for the FARVAT 

statistic (Choi et al. 2014) 
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4.3 Simulation study 

4.3.1 The simulation model 

The performance of metaFARVAT was evaluated via extensive simulation 

studies. metaFARVAT can be applied to population-based and case-control 

designs by calculating GRM among samples. Therefore, I only focused on 

family-based designs in our simulation studies and considered unbalanced 

families consisting of trios, nuclear families, and extended families with 3 

generations; the family structures that I considered are presented in Figure 4.1. 

The families for our simulations were randomly selected from these different 

family structures. To generate rare variants, 1,200 haplotypes with 50,000 base 

pairs were generated under a coalescent model using the software COSI 

(Schaffner et al. 2005).  
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Figure 4.1 Family structures with different family members. 

  

(a) Trio (b) Nuclear family with 4 members 

  

 

(c) Nuclear family with 5 members 

 

(d) Nuclear family with 6 members 

  

 

(e) Extended family with 7 members 

 

(f) Extended family with 8 members 

  

 

(g) Extended family with 9 members 

 

(h) Extended family with 10 members 
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Each haplotype was generated by setting the mutation rate to 1.5 × 10−8, and 

haplotypes were randomly chosen with replacement to build founder 

genotypes. I defined variants with MAFs < 0.01 as being rare, and 60 rare 

variants were randomly selected from their haplotypes. Then, non-founder 

haplotypes were chosen from their parents’ haplotypes in Mendelian fashion 

under the assumption of no recombination. 

Phenotypes were generated under the null and alternative hypotheses. 

Simulation of dichotomous phenotypes was performed using the liability 

threshold model. Once the quantitative phenotypes were generated, they were 

transformed into case-control status for dichotomous phenotypes. If 

quantitative phenotypes were larger than the threshold, they were considered 

affected and otherwise were considered unaffected. The threshold was chosen 

to preserve the assumed disease prevalence of 0.1. If the disease prevalence is 

misspecified, loss of statistical power is expected; however, it has been shown 

with simulation studies that the effect of misspecification is not very substantial 

(Won and Lange 2013). To allow for the ascertainment bias of dichotomous 

phenotypes in our simulation studies, I assumed that families with at least one 

affected subject were selected for analysis.  

Quantitative phenotypes were defined by summing the phenotypic mean, 

polygenic effect, main genetic effect, and random error, and I assumed there 

was no environmental effect shared between family members. The phenotypic 

mean was denoted by α = 0.3. The polygenic effect for each founder was 

independently generated from N(0, σg
2=1), and for non-founders, the average 
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of maternal and paternal polygenic effects was combined with values 

independently sampled from N(0, 0.5σg
2). Random error was independently 

sampled from N(0, σe
2=1). Therefore, the heritability of the simulated trait is 

0.5. The genetic effect at variant m in study k was the product of βmk and the 

number of disease susceptibility alleles. To evaluate the TIE estimates, βmk was 

assumed to be 0. To evaluate the statistical power estimates, if I let ha
2 be the 

proportion of variance explained by rare variants, βmk values were iteratively 

sampled with a two-step approach. 𝛽𝑚𝑘
(0)

 were first sampled from U(0,1). Then, 

if I let  

𝜈𝑘 = √
(𝜎𝑔

2+𝜎𝑒
2)ℎ𝑎

2

(1−ℎ𝑎
2)∑ [(𝛽𝑚𝑘

(0)
)
2
2𝑝𝑚(1−𝑝𝑚)]

𝑀
𝑚=1

, 

βmk values were sampled from the uniform distribution U(0, vk). This procedure 

was repeated until vk converged. I assumed that ha
2 = 0.01. βmk was generated 

from heterogeneous or homogeneous scenarios. For homogeneous scenarios, I 

assumed that the effects of each rare variant were in the same direction in all 

studies. For heterogeneous scenarios, the signs (+/-) of βmk values sampled from 

U(0,vk) were chosen randomly. 

 

4.3.2 Evaluation of metaFARVAT with simulated data 

To evaluate statistical validity, TIE estimates for both dichotomous and 

quantitative phenotypes were calculated at various significance levels using 

20,000 replicates of 200 unbalanced families. For each replicate, I performed 3 
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different meta-analyses, including 3, 6, and 9 studies. Table 4.1 shows empirical 

TIE estimates for homogeneous metaFARVAT (metaFARVATHom) and 

heterogeneous metaFARVAT (metaFARVATHet) at the 0.1, 0.01, 10-3, and 10-4 

significance levels with dichotomous phenotypes. Estimates of TIE rates were 

virtually equal to nominal significance levels. However, VT type 

metaFARVATHom showed inflation, especially when there were 3 studies, and if 

the number of rare variants is small, it is not recommended. Quantile-quantile 

(QQ) plots in Figures 2–4 also show consistent results. Therefore, I conclude 

that the proposed metaFARVATHom and metaFARVATHet are statistically valid. 

Secondly, empirical power estimates for dichotomous phenotypes were 

calculated at the 2.5×10-6 significance level, showing the changes in power 

under different scenarios. Empirical power estimates were calculated with 

2,000 replicates for 7 different statistics: burden, SKAT, SKAT-O, and VT type 

statistics for metaFARVATHom and burden, SKAT, and SKAT-O type statistics 

for metaFARVATHet. Results are provided in Tables 4.2 and 4.3 for homogeneous 

and heterogeneous scenarios, respectively. In addition, I compared the proposed 

methods with two meta-analysis methods based on the use of p-values across 

studies: the minimum p-value method and Fisher’s method. If I let pk be the p-

value from the kth study (k = 1,2,…,K), the minimum p-value and Fisher’s 

method can be obtained by  

minP = min(𝑝𝑘)~𝐵𝑒𝑡𝑎(1, 𝐾), Fisher = −2∑ ln 𝑝𝑘
𝐾
𝑘=1 ~𝜒2(𝑑𝑓 = 2𝐾) under 𝐻0. 
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Table 4.1 Type I error estimates from simulation study with dichotomous 

phenotypes. The empirical type I error was estimated for the proposed methods 

with 20,000 replicates at the 0.1, 0.01, 10-3 and 10-4 significance levels for 

dichotomous phenotypes. I assumed that the number of rare variants is 60, and 

that their MAF <0.01.  Both homogeneous (Hom) and heterogeneous (Het) 

models were considered. 

Model K 𝜶 
Dichotomous phenotype 

Burden SKAT SKAT-O VT 

Hom 

3 

0.1 0.0960 0.0950 0.0953 0.1100 

0.01 0.0103 0.0099 0.0100 0.0116 

10-3 0.0009 0.0012 0.0014 0.0017 

10-4 0.0001 0.0001 0.0001 0.0004 

6 

0.1 0.1002 0.0953 0.0957 0.1018 

0.01 0.0094 0.0085 0.0088 0.0106 

10-3 0.0008 0.0009 0.0008 0.0011 

10-4 0.0001 0.0000 0.0000 0.0001 

9 

0.1 0.1000 0.1015 0.1025 0.1018 

0.01 0.0096 0.0098 0.0093 0.0110 

10-3 0.0007 0.0009 0.0007 0.0015 

10-4 0.0001 0.0000 0.0000 0.0001 

Het 

3 

0.1 0.0987 0.1006 0.0981 -- 

0.01 0.0100 0.0091 0.0094 -- 

10-3 0.0008 0.0008 0.0013 -- 

10-4 0.0001 0.0002 0.0002 -- 

6 

0.1 0.1036 0.0986 0.0985 -- 

0.01 0.0094 0.0106 0.0105 -- 

10-3 0.0008 0.0014 0.0012 -- 

10-4 0.0001 0.0003 0.0002 -- 

9 

0.1 0.1041 0.1026 0.1046 -- 

0.01 0.0107 0.0095 0.0107 -- 

10-3 0.0009 0.0011 0.0009 -- 

10-4 0.0001 0.0002 0.0001 -- 

The definition of the acronyms in Table 4.1: 1) K: the number of studies; 2) 

SKAT: the sequence kernel association test; 3) Burden: the burden test; 4) 

SKAT-O: the optimal SKAT; 5) VT: the variable threshold test; 6) 𝛼 : 

significance level. 
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Figure 4.2 QQ plots for meta-analyses of dichotomous phenotype based on 

3 studies. QQ plots were provided for results from the proposed methods under 

the null hypothesis. The empirical p-values were calculated under the null 

hypothesis with 20,000 replicates. 

  

(a) Burden-type metaFARVATHom (b) SKAT-type metaFARVATHom 

  

(c) SKATO-type metaFARVATHom (d) VT-type metaFARVATHom 

  

(e) Burden-type metaFARVATHet (f) SKAT-type metaFARVATHet 

  

(g) SKATO-type metaFARVATHet  
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Figure 4.3 QQ plots for meta-analyses of dichotomous phenotype based on 

6 studies. QQ plots were provided for results from the proposed methods under 

the null hypothesis. The empirical p-values were calculated under the null 

hypothesis with 20,000 replicates. 

  

(a) Burden-type metaFARVATHom (b) SKAT-type metaFARVATHom 

  

(c) SKATO-type metaFARVATHom (d) VT-type metaFARVATHom 

  

(e) Burden-type metaFARVATHet (f) SKAT-type metaFARVATHet 

  

(g) SKATO-type metaFARVATHet  
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Figure 4.4 QQ plots for meta-analyses of dichotomous phenotype based on 

9 studies. QQ plots were provided for results from the proposed methods under 

the null hypothesis. The empirical p-values were calculated under the null 

hypothesis with 20,000 replicates. 

(a) Burden-type metaFARVATHom (b) SKAT-type metaFARVATHom 

  

(c) SKATO-type metaFARVATHom (d) VT-type metaFARVATHom 

  

(e) Burden-type metaFARVATHet (f) SKAT-type metaFARVATHet 

  

(g) SKATO-type metaFARVATHet  
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Table 4.2 Empirical power estimates for dichotomous phenotype for homogeneous variants among studies. Empirical power of burden, 

SKAT, SKAT-O and VT type of metaFARVATHom and metaFARVATHet was calculated for dichotomous phenotypes with homogeneous effects at 

the 2.5×10-6 significance level. 

+/- Method 
3 studies 6 studies 9 studies 

SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT 

60/0 

Fisher 0.1990 0.6495 0.8940 

minP 0.0315 0.0610 0.0715 

Hom 0.0195 0.3590 0.3660 0.3915 0.1690 0.9265 0.9150 0.9240 0.4920 0.9975 0.9945 0.9965 

Het 0.0115 0.3390 0.4160 -- 0.0750 0.9095 0.9330 -- 0.1865 0.9930 0.9960 -- 

48/12 

Fisher 0.0270 0.1060 0.2400 

minP 0.0060 0.0070 0.0070 

Hom 0.0105 0.0335 0.0670 0.0450 0.1105 0.2290 0.3720 0.2665 0.4000 0.5355 0.7565 0.5720 

Het 0.0045 0.0310 0.0720 -- 0.0225 0.2080 0.3305 -- 0.0760 0.4825 0.6325 -- 

30/30 

Fisher 0.0000 0.0015 0.0035 

minP 0.0000 0.0000 0.0000 

Hom 0.0050 0.0000 0.0025 0.0010 0.0555 0.0000 0.0270 0.0000 0.2615 0.0000 0.1650 0.0065 

Het 0.0000 0.0000 0.0005 -- 0.0020 0.0000 0.0015 -- 0.0120 0.0000 0.0090 -- 

30/0 

Fisher 0.0440 0.2090 0.4520 

minP 0.0090 0.0170 0.0205 

Hom 0.0140 0.0725 0.1145 0.0900 0.1790 0.4260 0.5760 0.4785 0.5515 0.7970 0.9125 0.8220 

Het 0.0070 0.0605 0.1290 -- 0.0555 0.3905 0.5545 -- 0.1410 0.7545 0.8590 -- 
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24/6 

Fisher 0.0075 0.0365 0.0895 

minP 0.0020 0.0020 0.0015 

Hom 0.0095 0.0045 0.0215 0.0085 0.1285 0.0465 0.1980 0.0610 0.4480 0.1440 0.5480 0.1765 

Het 0.0025 0.0035 0.0240 -- 0.0225 0.0340 0.1215 -- 0.0630 0.1105 0.2890 -- 

15/15 

Fisher 0.0000 0.0030 0.0045 

minP 0.0000 0.0010 0.0005 

Hom 0.0020 0.0000 0.0005 0.0010 0.0550 0.0000 0.0270 0.0025 0.2700 0.0000 0.1650 0.0060 

Het 0.0000 0.0000 0.0000 -- 0.0025 0.0000 0.0025 -- 0.0090 0.0000 0.0030 -- 

The definition of the acronyms in Table 4.2: 1) +/-: the number of causal variants with positive and negative effect; 2) SKAT: the sequence 

kernel association test; 3) Burden: the burden test; 4) SKAT-O: the optimal SKAT; 5) VT: the variable threshold test; 6) Fisher: Fisher’s method; 

7) minP: the minimum p-value method; 8) Hom: homogeneous metaFARVAT; 9) Het: heterogeneous metaFARVAT.  
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Table 4.3 Empirical power estimates for dichotomous phenotype for heterogeneous variants among studies. Empirical power of burden, 

SKAT, SKAT-O and VT type of metaFARVATHom and metaFARVATHet was calculated for dichotomous phenotypes with heterogeneous effects at 

the 2.5×10-6 significance level. 

+/- Method 
3 studies 6 studies 9 studies 

SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT 

48/12 

Fisher 0.0240 0.1040 0.2235 

minP 0.0065 0.0070 0.0105 

Hom 0.0040 0.0340 0.0425 0.0460 0.0130 0.2170 0.2450 0.2555 0.0420 0.5200 0.5305 0.5680 

Het 0.0080 0.0325 0.0590 -- 0.0270 0.1865 0.3180 -- 0.0715 0.4555 0.6115 -- 

30/30 

Fisher 0.0000 0.0030 0.0020 

minP 0.0000 0.0000 0.0000 

Hom 0.0005 0.0000 0.0000 0.0005 0.0005 0.0000 0.0005 0.0000 0.0015 0.0000 0.0015 0.0000 

Het 0.0005 0.0000 0.0005 -- 0.0050 0.0000 0.0030 -- 0.0090 0.0000 0.0070 -- 

30/0 

Fisher 0.0460 0.2220 0.4690 

minP 0.0115 0.0145 0.0160 

Hom 0.0065 0.0670 0.0945 0.0880 0.0400 0.4385 0.4595 0.4730 0.1185 0.7880 0.7875 0.7980 

Het 0.0060 0.0570 0.1340 -- 0.0510 0.3930 0.5580 -- 0.1370 0.7425 0.8380 -- 

24/6 

Fisher 0.0095 0.0325 0.0850 

minP 0.0030 0.0035 0.0030 

Hom 0.0020 0.0070 0.0115 0.0120 0.0045 0.0470 0.0680 0.0655 0.0125 0.1520 0.1875 0.1900 

Het 0.0040 0.0065 0.0270 -- 0.0215 0.0335 0.1230 -- 0.0590 0.1185 0.2825 -- 
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15/15 

Fisher 0.0010 0.0015 0.0020 

minP 0.0005 0.0010 0.0005 

Hom 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0005 

Het 0.0015 0.0000 0.0015 -- 0.0030 0.0000 0.0010 -- 0.0095 0.0000 0.0060 -- 

The definition of the acronyms in Table 4.3: 1) +/-: the number of causal variants with positive and negative effect; 2) SKAT: the sequence 

kernel association test; 3) Burden: the burden test; 4) SKAT-O: the optimal SKAT; 5) VT: the variable threshold test; 6) Fisher: Fisher’s method; 

7) minP: the minimum p-value method; 8) Hom: homogeneous metaFARVAT; 9) Het: heterogeneous metaFARVAT.  
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According to our results, the minimum p-value approach usually 

performed the least efficiently, especially when there were equal numbers of 

protective and deleterious rare variants in the targeted gene. Moreover, the 

power of the minimum p-value approach was not much improved by including 

more studies in the meta-analysis. The Fisher approach always performed better 

than the minimum p-value approach but was less powerful than the 

metaFARVAT method, regardless of scenarios. Furthermore, the statistical 

power estimates of metaFARVATHet were similar between the homogeneous and 

the heterogeneous scenarios. However, the statistical power estimates of 

metaFARVATHom were much smaller than those of metaFARVATHet in the 

heterogeneous scenario. In addition, the difference in power between 

metaFARVATHom and metaFARVATHet increased as the proportion of protective 

causal variants increased. The most efficient method depends on the disease 

model, which is often unknown. For example, when all rare causal variants had 

deleterious effects on the phenotype, burden and VT type metaFARVAT 

outperformed all other approaches, but if there were variants with deleterious 

and protective effects, SKAT-type metaFARVAT was the most efficient. SKAT-

O metaFARVAT was not always the most powerful, but its empirical power 

estimates were usually very close to those of the most efficient approach.  

The proposed methods can be applied to quantitative phenotypes, and 

results for quantitative phenotypes are provided in Tables 4.4-4.6 and Figures 

4.5–4.7. For quantitative phenotypes, I compared our method with 

RAREMETAL and seqMeta, since these two methods can only be applied to 
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quantitative phenotypes. RAREMETAL does not provide the SKAT-O type 

statistic and seqMeta does not provide the VT type statistic. seqMeta performed 

better than RAREMETAL in most scenarios and was similar to metaFARVATHom 

under homogeneous scenarios. The SKAT-O type statistic in seqMeta did not 

perform well when there were as many protective variants as deleterious 

variants in the gene. metaFARVATHet outperformed other methods when the 

effects of each rare variant differed among studies and when there were variants 

with deleterious and protective effects within a gene.  
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Table 4.4 Type I error estimates from simulation study for quantitative 

phenotypes. The empirical type I error was estimated for proposed methods 

with 20,000 replicates at the 0.1, 0.01, 10-3 and 10-4 significance levels for 

quantitative phenotypes. I applied the proposed methods to meta-analyses 

based on 3, 6 and 9 studies. I assumed that the number of rare variants is 60, 

and their MAF <0.1. 

Method K 𝜶 

Quantitative phenotype 

Burden SKAT SKAT-O VT 

homogeneous 

metaFARVAT 

3 

0.1 0.0989 0.0965 0.0993 0.1044 

0.01 0.0094 0.0083 0.0094 0.0108 

10-3 0.0012 0.0011 0.0009 0.0018 

10-4 0.0001 0.0001 0.0002 0.0006 

6 

0.1 0.1010 0.0948 0.0959 0.0929 

0.01 0.0092 0.0097 0.0094 0.0087 

10-3 0.0010 0.0008 0.0010 0.0009 

10-4 0.0002 0.0001 0.0002 0.0001 

9 

0.1 0.0999 0.0963 0.0948 0.0959 

0.01 0.0094 0.0085 0.0090 0.0090 

10-3 0.0008 0.0008 0.0007 0.0006 

10-4 0.0002 0.0000 0.0000 0.0000 

heterogeneous 

metaFARVAT 

3 

0.1 0.1017 0.0984 0.0976 -- 

0.01 0.0093 0.0084 0.0085 -- 

10-3 0.0010 0.0007 0.0007 -- 

10-4 0.0002 0.0001 0.0003 -- 

6 

0.1 0.1010 0.0996 0.0989 -- 

0.01 0.0098 0.0091 0.0095 -- 

10-3 0.0011 0.0008 0.0011 -- 

10-4 0.0002 0.0001 0.0002 -- 

9 

0.1 0.1007 0.1072 0.1013 -- 

0.01 0.0097 0.0101 0.0094 -- 

10-3 0.0011 0.0008 0.0005 -- 

10-4 0.0001 0.0001 0.0002 -- 

The definition of the acronyms in Table 4.4: 1) K: the number of studies; 2) 

SKAT: the sequence kernel association test; 3) Burden: the burden test; 4) 

SKAT-O: the optimal SKAT; 5) VT: the variable threshold test; 6) 𝛼 : 

significance level.  
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Table 4.5 Empirical power estimates for meta-analyses of quantitative phenotype for homogeneous variants among studies. Empirical 

power estimates of proposed methods for quantitative phenotypes were calculated with homogeneous effects at the 2.5×10-6 significant level. 

Empirical power estimates of burden, SKAT and VT type of RAREMETAL and seqMeta were calculated with the same dataset and were 

compared with metaFARVAT method. 

+/- Method 
3 studies 6 studies 9 studies 

SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT 

60/0 

Fisher 0.6300 0.9870 1.0000 

minP 0.1155 0.1805 0.2120 

RAREMETAL 0.0340 0.8330  -- 0.7535 0.4930 1.0000  -- 1.0000 0.9370 1.0000  -- 1.0000 

seqMeta 0.0455 0.8655 0.8715 -- 0.5880 1.0000 1.0000 -- 0.9650 1.0000 1.0000 -- 

Hom 0.0400 0.8650 0.8370 0.8700 0.5720 1.0000 1.0000 1.0000 0.9620 1.0000 1.0000 1.0000 

Het 0.0030 0.8580 0.8605 -- 0.0465 1.0000 1.0000 -- 0.1850 1.0000 1.0000 -- 

48/12 

Fisher 0.0820 0.4025 0.7240 

minP 0.0090 0.0185 0.0185 

RAREMETAL 0.0295 0.1065  -- 0.0830 0.4750 0.5935  -- 0.5215 0.9285 0.9120  -- 0.8770 

seqMeta 0.0440 0.1475 0.1640 -- 0.5740 0.6555 0.6855 -- 0.9545 0.9360 0.9525 -- 

Hom 0.0400 0.1455 0.2345 0.1875 0.5580 0.6540 0.8705 0.6855 0.9505 0.9335 0.9955 0.9395 

Het 0.0070 0.1465 0.2315 -- 0.0750 0.6440 0.7810 -- 0.2070 0.9295 0.9725 -- 

30/30 

Fisher 0.0035 0.0225 0.0690 

minP 0.0000 0.0000 0.0005 

RAREMETAL 0.0420 0.0000  -- 0.0010 0.4470 0.0000  -- 0.0025 0.9140 0.0000  -- 0.0110 

seqMeta 0.0590 0.0000 0.0000 -- 0.5610 0.0000 0.0000 -- 0.9500 0.0000 0.0000 -- 
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Hom 0.0520 0.0000 0.0250 0.0025 0.5515 0.0000 0.4065 0.0070 0.9470 0.0000 0.8975 0.0250 

Het 0.0125 0.0000 0.0050 -- 0.0845 0.0000 0.0530 -- 0.2430 0.0000 0.1535 -- 

 

Fisher 0.1725 0.6295 0.9005 

minP 0.0195 0.0270 0.0335 

RAREMETAL 0.0540 0.2405  -- 0.1925 0.6015 0.8490  -- 0.7990 0.9635 0.9885  -- 0.9795 

seqMeta 0.0605 0.2820 0.3095 -- 0.6510 0.8840 0.9015 -- 0.9720 0.9910 0.9945 -- 

Hom 0.0535 0.2865 0.3900 0.3410 0.6385 0.8820 0.9490 0.8910 0.9705 0.9915 1.0000 0.9915 

Het 0.0100 0.2830 0.3905 -- 0.0935 0.8735 0.9380 -- 0.2750 0.9900 0.9970 -- 

24/6 

Fisher 0.0175 0.1295 0.3445 

minP 0.0025 0.0025 0.0025 

RAREMETAL 0.0515 0.0100  -- 0.0070 0.5460 0.1145  -- 0.0995 0.9465 0.3650  -- 0.3290 

seqMeta 0.0620 0.0150 0.0200 -- 0.6155 0.1490 0.1915 -- 0.9595 0.4335 0.5120 -- 

Hom 0.0565 0.0145 0.0825 0.0315 0.6060 0.1490 0.6478 0.2045 0.9565 0.4305 0.9720 0.4805 

Het 0.0130 0.0125 0.0615 -- 0.0795 0.1410 0.3690 -- 0.2335 0.4120 0.7245 -- 

15/15 

Fisher 0.0010 0.0185 0.0655 

minP 0.0000 0.0005 0.0000 

RAREMETAL 0.0360 0.0000  -- 0.0000 0.4420 0.0000  -- 0.0010 0.9065 0.0000  -- 0.0070 

seqMeta 0.0485 0.0000 0.0000 -- 0.5525 0.0000 0.0000 -- 0.9470 0.0000 0.0000 -- 

Hom 0.0470 0.0000 0.0190 0.0000 0.5420 0.0000 0.3875 0.0070 0.9470 0.0000 0.8825 0.0270 

Het 0.0070 0.0000 0.0035 -- 0.0810 0.0000 0.0515 -- 0.2420 0.0000 0.1570 -- 
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Table 4.6 Empirical power estimates for meta-analyses of quantitative phenotype for heterogeneous variants among studies. Empirical 

power estimates of burden, SKAT, SKAT-O and VT type of metaFARVATHom and metaFARVATHet were calculated for quantitative phenotypes 

with heterogeneous effects at the 2.5×10-6 significant level. Empirical power estimates of burden, SKAT and VT type of RAREMETAL and 

seqMeta were calculated with the same dataset and were compared with metaFARVAT method. 

+/- Method 
3 studies 6 studies 9 studies 

SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT SKAT Burden SKAT-O VT 

48/12 

Fisher 0.0720 0.3765 0.7120 

minP 0.0080 0.0085 0.0130 

RAREMETAL 0.0190 0.2675  --  0.2015 0.1405 0.8720  --  0.8050 0.4410 0.9910  --  0.9825 

seqMeta 0.0095 0.1270 0.1410 -- 0.0560 0.6205 0.6400 -- 0.2345 0.9345 0.9390 -- 

Hom 0.0085 0.1270 0.1515 0.1740 0.0580 0.6190 0.6525 0.6675 0.2290 0.9335 0.9410 0.9465 

Het 0.0045 0.1205 0.2040 -- 0.0615 0.6065 0.7650 -- 0.2075 0.9255 0.9700 -- 

30/30 

Fisher 0.0050 0.0190 0.0565 

minP 0.0000 0.0000 0.0005 

RAREMETAL 0.0015 0.0000  --  0.0000 0.0030 0.0000  --  0.0005 0.0015 0.0000  --  0.0000 

seqMeta 0.0020 0.0005 0.0005 -- 0.0015 0.0000 0.0000 -- 0.0020 0.0000 0.0000 -- 

Hom 0.0020 0.0005 0.0005 0.0015 0.0015 0.0000 0.0005 0.0005 0.0025 0.0000 0.0005 0.0000 

Het 0.0130 0.0005 0.0070 -- 0.0750 0.0000 0.0440 -- 0.2265 0.0000 0.1370 -- 

30/0 

Fisher 0.1825 0.6635 0.9060 

minP 0.0230 0.0295 0.0350 

RAREMETAL 0.0190 0.2675  --  0.2015 0.1405 0.8720  --  0.8050 0.4410 0.9910  --  0.9825 

seqMeta 0.0135 0.3025 0.3175 -- 0.1680 0.8875 0.8955 -- 0.4975 0.9945 0.9965 -- 
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Hom 0.0125 0.3005 0.3245 0.3540 0.1575 0.8855 0.8875 0.8995 0.4800 0.9950 0.9925 0.9945 

Het 0.0115 0.2865 0.4045 -- 0.0960 0.8770 0.9295 -- 0.2530 0.9915 0.9985 -- 

24/6 

Fisher 0.0215 0.1395 0.3550 

minP 0.0025 0.0035 0.0050 

RAREMETAL 0.0035 0.0180  --  0.0110 0.0225 0.1595  --  0.1080 0.0575 0.4230  --  0.3390 

seqMeta 0.0035 0.0225 0.0245 -- 0.0190 0.1745 0.1900 -- 0.0600 0.4435 0.4630 -- 

Hom 0.0030 0.0220 0.0360 0.0395 0.0175 0.1710 0.2270 0.2240 0.0600 0.4430 0.5000 0.5090 

Het 0.0075 0.0200 0.0605 -- 0.0750 0.1560 0.3715 -- 0.2460 0.4110 0.7275 -- 

15/15 

Fisher 0.0020 0.0200 0.0615 

minP 0.0005 0.0000 0.0000 

RAREMETAL 0.0025 0.0000  --  0.0000 0.0015 0.0000  --  0.0000 0.0035 0.0000  --  0.0000 

seqMeta 0.0040 0.0000 0.0000 -- 0.0005 0.0000 0.0000 -- 0.0035 0.0000 0.0000 -- 

Hom 0.0035 0.0000 0.0000 0.0010 0.0005 0.0000 0.0005 0.0000 0.0040 0.0000 0.0005 0.0015 

Het 0.0130 0.0000 0.0090 -- 0.0700 0.0000 0.0485 -- 0.2380 0.0000 0.1485 -- 

The definition of the acronyms in Table 4.6: 1) +/-: the number of causal variants with positive and negative effect; 2) SKAT: the sequence 

kernel association test; 3) Burden: the burden test; 4) SKAT-O: the optimal SKAT; 5) VT: the variable threshold test; 6) Fisher: Fisher’s method; 

7) minP: the minimum p-value method; 8) Hom: homogeneous metaFARVAT; 9) Het: heterogeneous metaFARVAT.  
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Figure 4.5 QQ plots for meta-analyses of quantitative phenotype based on 

3 studies. QQ plots were provided for results from the proposed methods under 

the null hypothesis. The empirical p-values were calculated under the null 

hypothesis with 20,000 replicates. 

(a) Burden-type metaFARVATHom (b) SKAT-type metaFARVATHom 

  

(c) SKATO-type metaFARVATHom (d) VT-type metaFARVATHom 

  

(e) Burden-type metaFARVATHet (f) SKAT-type metaFARVATHet 

  

(g) SKATO-type metaFARVATHet  
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Figure 4.6 QQ plots for meta-analyses of quantitative phenotype based on 

6 studies. QQ plots were provided for results from the proposed methods under 

the null hypothesis. The empirical p-values were calculated under the null 

hypothesis with 20,000 replicates. 

  

(a) Burden-type metaFARVATHom (b) SKAT-type metaFARVATHom 

  

(c) SKATO-type metaFARVATHom (d) VT-type metaFARVATHom 

  

(e) Burden-type metaFARVATHet (f) SKAT-type metaFARVATHet 

  

(g) SKATO-type metaFARVATHet  

 

 



123 

 

Figure 4.7 QQ plots for meta-analyses of quantitative phenotype based on 

9 studies. QQ plots were provided for results from the proposed methods under 

the null hypothesis. The empirical p-values were calculated under the null 

hypothesis with 20,000 replicates. 

  

(a) Burden-type metaFARVATHom (b) SKAT-type metaFARVATHom 

  

(c) SKATO-type metaFARVATHom (d) VT-type metaFARVATHom 

  

(e) Burden-type metaFARVATHet (f) SKAT-type metaFARVATHet 

  

(g) SKATO-type metaFARVATHet  
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4.4 Application to COPD data 

I considered previously reported family-based WES data from Boston 

Early-Onset COPD Study (EOCOPD) and COPDGene case-control subjects 

for meta-analysis (Qiao et al. 2016). Details of the EOCOPD study have been 

described previously (Silverman et al. 1998). The EOCOPD data are derived 

from an extended pedigree-based design. Probands were 53 years old or 

younger with prebronchodilator forced expiratory volume in one second (FEV1) 

of ≤40%, physician-diagnosed COPD, and without severe alpha-1 antitrypsin 

deficiency. All first-degree relatives, older second-degree relatives, and 

additional affected family members were enrolled. There were 49 pedigrees 

with at least 2 affected family members selected for WES. COPDGene was a 

multi-center study of smokers with and without COPD and included African-

Americans and non-Hispanic whites (Regan et al. 2010). The COPDGene 

participants, consisting of 10,192 smokers, had at least 10 pack years of 

smoking, and their ages were between 45 and 80 years. From the COPDGene 

study, 204 COPD subjects with GOLD spirometry grades 3–4 (post-

bronchodilator FEV1<50% and ratio of FEV1 to forced vital capacity 

(FEV1/FVC) <0.7), as well as 195 controls with normal spirometry (frequency-

matched to COPD cases on pack-years of cigarette smoking), were chosen for 

WES. 

Sequencing for both cohorts was performed at the University of 

Washington (Seattle, WA), using Nimblegen V2 capture (Roche NimbleGen, 

Inc., Madison, WI) and the Illumina platform (Illumina, Inc., San Diego, CA). 
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Participants selected from the COPDGene cohort were sequenced via the 

NHLBI Exome Sequencing Program, and EOCOPD subjects were sequenced 

as part of the Center for Mendelian Genomics. Quality control (QC) filtering 

for both data sets was performed by the method of Qiao et al (Qiao et al. 2016) 

and filtered out variants with Mendelian errors (for family-based data), call rate 

<99%, HWE p-value <10−8, and average sequencing depth <12, as well as 

excluding subjects with pedigree, racial, or sex mismatches. After QC, there 

were 303 individuals from 49 families and 124,288 variants in the EOCOPD 

data set, and there were 394 unrelated individuals and 108,443 variants in the 

COPDGene data set. For rare variant analyses, I assumed that variants with 

MAFs <5% in dbSNP were rare, and in both studies, I separately filtered out 

singleton variants or genes with MACs less than 10. Finally, 88,737 rare 

variants in 13,935 genes were analyzed in the EOCOPD data set, and 24,846 

rare variants in 10,550 genes were tested in the COPDGene data set. For both 

EOCOPD and COPDGene data, GRMs were estimated for variants with MAFs 

>5% and were incorporated as variance-covariance matrices of genotypes to 

adjust for population substructure. Effects of covariates for binary phenotypes 

were adjusted by using the BLUP as an offset. First, I fitted the linear mixed 

model with adjustments for age, sex, and pack-years of smoking as covariates, 

and then BLUP was set as the offset for the proposed methods. A description of 

the two datasets is provided in Table 4.7. 
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Table 4.7 The description of chronic obstructive pulmonary disease (COPD) 

datasets, EOCOPD WES and COPDGene. This description includes the 

range of age, and the number of individuals, families, females/males, 

cases/controls/missing, variants, rare variants (MAF <5% in dbSNP) and genes. 

 EOCOPD WES COPDGene 

Age [21, 87] [46, 81] 

Sample size 303 394 

Families 49 -- 

F/M 209/138 211/200 

Cases/controls 155/148 204/195 

Variants 124,288 108,443 

Rare variants 88,373 24,846 

Genes 13,935 10,550 

The definition of the acronyms in Table 4.7: 1) Families: the number of families; 

2) F/M: the number of females and males; 3) Cases/controls: the number of 

cases and controls; 4) Variants: the number of variants; 5) Rare variants: the 

number of rare variants; 6) Genes: the number of genes.  
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To identify rare variants associated with COPD, I separately conducted 

rare variant analyses with EOCOPD and COPDGene data. Manhattan and QQ 

plots are provided in Figure 4.8. According to the results, there were no exome-

wide significant genes. I also conducted meta-analysis with metaFARVATHom 

and metaFARVATHet. For both statistics, 𝑣1 and 𝑣2 were set to 1. The QQ 

plots in Figure 4.9 show that SKAT-O type metaFARVATHet and 

metaFARVATHom preserved the nominal significance level. However, VT type 

metaFARVAT exhibited some inflation, and its results are therefore not included 

in Table 4.8. Manhattan plots are provided in Figure 4.10. The Bonferroni-

corrected 0.05 genome-wide significance level was 6.76 × 10-6 and is indicated 

by a solid blue line. Table 4 shows that DLEC1 achieved genome-wide 

significance under both methods, and ZNF441 was implicated with potentially 

significant results (p-value <10-4) by metaFARVATHom SKAT-O. DLEC1 is a 

protein-coding gene encoding a cilia and flagella-associated protein. 

Downregulation of this gene has been observed in several human cancers, 

including lung, esophageal, and renal tumors and head and neck squamous cell 

carcinoma. It has also been found that reduced expression of this gene in tumor 

cells is a result of aberrant promoter methylation. Several alternatively spliced 

transcripts have been observed that contain disrupted coding regions and likely 

encode nonfunctional proteins (Pruitt et al. 2016). The clinical conditions 

include alveolar cell carcinoma, chest pain, and lymphadenopathy. 
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Figure 4.8 QQ plots and Manhattan plots are based on the results of the 

association analyses with EOCOPD and COPDGene datasets using 

FARVAT. EOCOPD and COPDGene were separately analyzed using FARVAT 

and the results of SKAT-O type statistic were used for QQ plots and Manhattan 

plots. (a) and (b) are for EOCOPD dataset, and (c) and (d) are for COPDGene. 

  

(a) EOCOPD: QQ plot  (b) EOCOPD:Manhattan plot 

  

 

(c) COPDGene: QQ plot 

 

(d) COPDGene:Manhattan plot 
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Figure 4.9 QQ plots of results from metaFARVAT with the EOCOPD and 

the COPDGene datasets. metaFARVAT was applied to meta-analysis with the 

EOCOPD and the COPDGene datasets. (a), (b) and (c) were based on results 

from SKAT-O metaFARVATHom, SKAT-O metaFARVATHet and metaFARVATVT 

respectively. 

  

(a) metaFARVATHom (b) metaFARVATHet 

  

 

(c) metaFARVATVT 
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Figure 4.10 Manhattan plots of results from metaFARVAT with the 

EOCOPD and the COPDGene datasets. metaFARVAT was applied to meta-

analysis with the EOCOPD and the COPDGene datasets. (a), (b) and (c) were 

based on results from SKAT-O metaFARVATHom, SKAT-O metaFARVATHet and 

metaFARVATVT respectively. 

 

  

(a) metaFARVATHom (b) metaFARVATHet 

  

 

(c) metaFARVATVT 
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Table 4.8 The candidate genes found by meta-analysis in chronic obstructive pulmonary disease (COPD) studies. 

Method Data Gene 
Sample 

size 
Chr Start End 

#rare 

variant 
MAC P_B P_S c P_O 

metaFARVAT Hom 
EOCOPD & 

COPDGene 

DLEC1 697 3 38080978 38163785 9 66 1.21e-05 1.02e-04 0.25 5.24e-06 

ZNF441 697 19 11890983 11892255 2 24 9.88e-05 3.46e-04 1 2.13e-05 

metaFARVAT Het 
EOCOPD & 

COPDGene 
DLEC1 697 3 38080978 38163785 15 66 8.03e-06 9.54e-04 0.16 5.43e-06 

FARVAT EOCOPD 
DLEC1 303 3 38080978 38163785 9 28 3.70e-03 1.47e-02 1 7.24e-03 

ZNF441 303 19 11890983 11892255 2 13 1.12e-03 3.83e-03 1 1.37e-03 

FARVAT COPDGene 
DLEC1 394 3 38080978 38163785 6 38 5.80e-04 7.96e-04 0.25 3.53e-04 

ZNF441 394 19 11890983 11892255 1 11 3.09e-02 3.09e-02 1 3.09e-02 

The definition of the acronyms in Table 4.8: 1) Chr: chromosome; 2) #rare variants: the number of rare variants in the gene; 3) MAC: minor 

allele count; 4) P_B: the p-value of burden type test; 5) P_S: the p-value of SKAT type test; 6) c: the parameter used for SKAT-O; 7) P_O: the 

p-value of SKAT-O type test; 8) Start/End: start position and end position. 
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To access the performance of metaFARVAT for case-control designs, I 

applied it to two case-control dataset from COPDGene study and compared it 

with metaSKAT method (Lee et al. 2013). The COPDGene study is a multi-

center epidemiologic and genetic study of 10,192 current or ex-smokers. 

COPDGene subjects were sequenced in two sets. The first set sequenced at 

Baylor included severe COPD cases, The Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) Grades 3 or 4 (post-bronchodilator 

FEV1 < 50% predicted and FEV1/FVC < 0.70), with no age requirement. 

Controls were selected to be resistant smokers with normal lung function with 

ages >55 years. The second set sequenced as part of the NHLBI Exome 

Sequencing Project (ESP) included severe COPD cases with GOLD Grades 3 

or 4, and aged < 65 years old, with substantial emphysema (>15% at −950 HU) 

by quantitative chest CT scan. Controls were selected to be resistant smokers 

with frequency-matched pack-years of cigarette smoking, normal lung function 

(FEV1 > 80% predicted and FEV1/FVC > 70%), aged > 65 years old and no 

significant emphysema (< 5% at −950 HU). All subjects were sequenced using 

Nimblegen capture and Illumina platforms. The COPDGene ESP subjects were 

all sequenced at the University of Washington, using Nimblegen V2 exome 

capture; COPDGene Baylor samples used VChrome capture. Alignment, 

variant calling and quality control were performed using bwa, GATK and in-

house pipelines, respectively. As COPDGene ESP and COPDGene Baylor used 

slightly different capture platforms, calling was performed on these datasets 

separately (Qiao et al. 2018). The description of two datasets are summarized 
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in Table 4.9. The sample sizes are 609 and 380 in each data. There are 293 cases 

and 316 controls in Baylor data, and 192 cases and 188 controls in ESP data. I 

used COPD status as binary phenotype and ratio (FEV1/FEV) as quantitative 

phenotype, and adjusted both phenotypes using covariates: gender, packs per 

year, height and age. Variants with moderate and high impact in SnpEff and 

MAF<5% in 1000 Genome were selected. After filtering, there are 54,724 

variants in 13,982 genes for Baylor data, and 46,709 in 13,335 genes for ESP 

data. 
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Table 4.9 The description of chronic obstructive pulmonary disease (COPD) 

datasets, Baylor and ESP. This description includes the range of age, and the 

number of samples, females/males, cases/controls, variants and genes. 

Description Baylor ESP 

Sample size 609 380 

Cases/controls 293/316 192/188 

Phenotypes 
fev1 %  80.60 (61.80) 49.40 (67.98) 

ratio % 70.00 (41.00) 55.00 (45.00) 

Covariates 

Gender: M/F 346/263 185/195 

Packs/year 50.90 (24.40) 45.00 (23.03) 

Height(cm) 169.20 (14.00) 168.80 (13.33) 

Age 64.70 (7.80) 62.80 (11.23) 

Gene sets 
Variants 54,727 46,709 

Genes 13,982 13,335 

The definition of the acronyms in Table 4.9: 1) FEV1: bronchodilator forced 

expiratory volume in one second; 2) ratio: FEV1/FVC; FEV1 over forced vital 

capacity. 3) Packs/year: the number of cigarette packs that the subjects smoke 

per year. 4) Median(IQR): median and interquartile range (IQR) of the 

quantitative variables. 5) Variants: the variants with moderate or high impact in 

SnpEff and minor allele frequency <5% in 1000 Genome were selected. 
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The meta-analyses for Baylor and ESP data were conducted using 

metaFARVAT and metaSKAT SKAT-O method. The QQ-plots and Manhattan 

plots for metaFARVAT and metaSKAT with quantitative phenotype, ratio, are 

displayed in Figure 4.11 and 4.12, respectively, those with binary phenotype, 

COPD status are shown in Figure 4.13 and 4.14. It shows that both methods are 

statistically valid for dichotomous and quantitative phenotypes. There is one 

significant result, PLD5, detected by metsSKAT with affected status. PLD5 is 

a protein coding gene, which encodes protein Inactive phosphatidylcholine-

hydrolyzing phospholipase D5 and is highly expressed in pigmented layer of 

retina. However, there is no evidence showing PLD5 is strongly expressed in 

lungs. To compare the two methods, I selected the genes proven related to ratio 

and COPD respectively from GWAS catalog and provided p-value plots in 

Figure 4.15, of which x axis is – log 𝑝1, where p1 is the p-value of metaFARVAT 

SKAT-O statistic, and y axis is – log 𝑝2, where p2 is the p-value of metaSKAT 

SKAT-O statistic. It shows that the coefficients of x are 0.897 and 0.877 for 

homogeneous and heterogeneous model with ratio, and those are 0.559 and 

0.647 with COPD. The p-values of these coefficients are extremely small. 

Therefore, I can conclude that, for quantitative phenotype, the p-values from 

the two methods are similar but those from metaFARVAT are slightly smaller, 

and for binary phenotype, the difference between the p-values from the two 

methods are larger and metaFARVAT performs better. There are three main 

reasons for the difference in performance: 1) metaFARVAT considers genetic 

relatedness using generalized linear mixed model with GRM even for case-
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control data, which effectively reduce the heterogeneity due to population 

substructure and admixture. metaSKAT does not consider this and it used 

generalized linear model. 2) metaFARVAT uses quasi-likelihood and adjusts 

genotype with its best linear unbiased estimator, while metaSKAT uses 

genotype directly. 3) To adjust phenotype with covariates, metaFARVAT uses 

linear model and metaSKAT uses logistic model.     
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Figure 4.11 QQ plots and Manhattan plots for meta-analysis with ratio 

using homogeneous and heterogeneous metaFARVAT. metaFARVAT was 

applied to meta-analysis of the COPDGene Baylor and ESP datasets with the 

quantitative phenotype, ratio. (a), (b) were based on the results from SKAT-O 

metaFARVATHom, and (c), (d) were based on the results from SKAT-O 

metaFARVATHet. 

  

(a) Ratio:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑜𝑚 (b) Ratio:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑜𝑚  

  

 

(c) Ratio:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑒𝑡 

 

(d) Ratio:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑒𝑡  
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Figure 4.12 QQ plots and Manhattan plots for meta-analysis with ratio 

using homogeneous and heterogeneous metaSKAT. metaSKAT was applied 

to meta-analysis of the COPDGene Baylor and ESP datasets with the 

quantitative phenotype, ratio. (a), (b) were based on the results from SKAT-O 

metaSKATHom, and (c), (d) were based on the results from SKAT-O metaSKATHet. 

  

(a) Ratio:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑜𝑚 (b) Ratio:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑜𝑚  

  

 

(c) Ratio:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑒𝑡 

 

(d) Ratio:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑒𝑡  
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Figure 4.13 QQ plots and Manhattan plots for meta-analysis with COPD 

status using homogeneous and heterogeneous metaFARVAT. metaFARVAT 

was applied to meta-analysis of the COPDGene Baylor and ESP datasets with 

the dichotomous phenotype, COPD status. (a), (b) were based on the results 

from SKAT-O metaFARVATHom, and (c), (d) were based on the results from 

SKAT-O metaFARVATHet. 

  

(a) COPD:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑜𝑚 (b) COPD:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑜𝑚  

  

 

(c) COPD:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑒𝑡 

 

(d) COPD:𝑚𝑒𝑡𝑎𝐹𝐴𝑅𝑉𝐴𝑇𝐻𝑒𝑡  
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Figure 4.14 QQ plots and Manhattan plots for meta-analysis with COPD 

status using homogeneous and heterogeneous metaSKAT. metaSKAT was 

applied to meta-analysis of the COPDGene Baylor and ESP datasets with the 

dichotomous phenotype, COPD status. (a), (b) were based on the results from 

SKAT-O metaSKATHom, and (c), (d) were based on the results from SKAT-O 

metaSKATHet. 

 

 

  

(a) COPD:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑜𝑚 (b) COPD:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑜𝑚  

  

 

(c) COPD:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑒𝑡 

 

(d) COPD:𝑚𝑒𝑡𝑎𝑆𝐾𝐴𝑇𝐻𝑒𝑡  
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Figure 4.15 P-value plots for meta-analysis with metaFARVAT and 

metaSKAT. Homogeneous and heterogeneous models of both methods were 

applied to meta-analysis of the COPDGene Baylor and ESP datasets with ratio 

and COPD status. X axis is – 𝐥𝐨𝐠𝒑𝟏 , where p1 is the p-value of SKAT-O 

metaFARVAT, and y axis is – 𝐥𝐨𝐠𝒑𝟐 , where p2 is the p-value of SKAT-O 

metaSKAT. (a), (b) were based on the results from ratio, and (c), (d) were based 

on the results from COPD status. The blue line is a linear regression line for x 

and y axis. The coefficients and their p-values are shown in the legends.   

  

(a) Ratio: homogeneous model  (b) Ratio: heterogeneous model  

  

 

(c) COPD:homogeneous model  

 

(d) COPD:heterogeneous model  
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4.5 Discussion 

Family-based association methods are robust against population 

substructure, and because of genetic homogeneity among family members, they 

are often utilized for rare variant association analyses. Multiple approaches 

have been proposed, and Tang and Lin (Tang and Lin 2015) provided a 

comprehensive overview of the statistical methods for meta-analysis of 

sequencing studies for discovering rare variant associations. According to their 

overview, RAREMETAL (Feng et al. 2014, Liu et al. 2014) and seqMeta (Chen 

et al. 2014) can be applied to family-based samples. However, these methods 

can consider only homogeneous effects with quantitative phenotypes, and no 

statistical methods for dichotomous phenotypes with family-based samples 

have been proposed. 

In this study, I proposed a new meta-analysis method for family-based rare 

variant association analyses with dichotomous phenotypes, which can test both 

homogeneous and heterogeneous effects of variants in different studies. 

metaFARVAT can also be applied to quantitative phenotypes and is able to 

combine all study designs, including family-based, case-control, and 

population-based designs. Furthermore, the proposed method was applied to a 

meta-analysis of EOCOPD and COPDGene data, and DLEC1 was found to be 

genome-wide significant. DLEC1 is a protein-coding gene encoding a cilia and 

flagella-associated protein. This gene has been implicated in several cancers 

but has not been previously associated with COPD. However, cilia-associated 

genes have been previously implicated in COPD (Tilley et al. 2015). 
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Despite the robustness and efficiency of the proposed method, there are 

still some limitations of the developed method. First, VT methods sort rare 

variants according to their MAFs and search the optimal threshold for rare 

variants. This approach is useful when it is not clear how to define rare variants. 

However, I found that TIE can be inflated if the number of rare variants is too 

small, and it is computationally intensive if there are a large number of variants 

to investigate. This problem can be solved by using a permutation method, and 

further investigation of this approach is necessary. Secondly, sufficiently large 

samples are necessary to guarantee that SKAT-O follows the assumed 

asymptotic distribution of the SKAT-O approach under the null hypothesis. 

Therefore, the SKAT-O type metaFARVAT also has this limitation when it is 

applied to a dichotomous phenotype with a small sample size. Thirdly, the 

proposed method cannot be applied to X- or Y-linked genes because the 

distributions of variants in X and Y chromosomes are different in males and 

females. Such an improvement will be considered in our future work. Fourthly, 

metaFARVAT requires raw data, which includes phenotype and genotype from 

each study. It cannot be directly applied to summary statistics from studies, such 

as score statistic and its variance, unless the statistics are generated using 

FARVAT. Lastly, in the simulation studies, I considered a limited number of rare 

variants and excluded noise variants. However, in practice, it is not known 

which rare variants are causal and which represent noise. Extensive simulations 

are thus necessary in our future work. 
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Despite the importance of rare variant analyses with family-based samples, 

this field of study has suffered over the last decades from a lack of statistical 

methods. In this study, I proposed new methods for family-based samples, 

enabling such statistical analyses. 
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Chapter 5  

 

Summary & Conclusions 

 

In spite of the success of GWAS in discovering DSL, it only identified a 

limited number of loci that partially explain disease heritability. Sequencing 

technology was expected to supply this additional information by obtaining 

large stretches of DNA spanning the entire genome, and improvements in this 

technology have enabled genetic association analysis of rare/common causal 

variants. Several rare variant association methods have been proposed. 

However, due to genetic heterogeneity and small sample size, very few 

genome-wide significant results have been found. In this thesis, I focused on 

the approaches that can enrich genetic effects and improve statistical power of 

rare variant association tests.  
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In chapter 2, I overviewed family-based association studies and compared 

the existing family-based rare variant association tests with GAW19 data. I 

found FARVAT is the most robust, statistically powerful, and computationally 

efficient method. Therefore, I extended FARVAT to multiple phenotype analysis 

and meta-analysis which were described in chapter 3 and chapter 4. 

In chapter 3, I propose a new method for family-based rare variants 

associated with dichotomous phenotypes, quantitative phenotypes, or both. The 

proposed method enables multivariate analyses of extended families to detect 

rare variants under homogeneous and heterogeneous disease models. Extensive 

simulation studies show that mFARVAT works well for dichotomous and 

quantitative phenotypes. Our method is computationally efficient and 

association analyses at the genome-wide scale are computationally feasible for 

extended families. In our analyses, an Intel (R) Xeon (R) E5-2620 0 CPU at 

2.00GHz, with a single node and 80 gigabyte memory, required six minutes to 

analyze the real data on two phenotypes. mFARVAT is implemented in C++. 

In chapter 4, I proposed a novel meta-analysis method for family-based 

rare variant association analyses with both dichotomous phenotypes, which can 

test both homogeneous and heterogeneous effects of variants in different studies. 

metaFARVAT can also be applied to quantitative phenotypes and is able to 

combine all study designs, including family-based, case-control, and 

population-based designs. Furthermore, the proposed method was applied to a 

meta-analysis of EOCOPD and COPDGene data, and DLEC1 was found to be 

genome-wide significant. DLEC1 is a protein-coding gene encoding a cilia and 
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flagella-associated protein. This gene has been implicated in several cancers 

but has not been previously associated with COPD. However, cilia-associated 

genes have been previously implicated in COPD (Tilley et al. 2015). 

In summary, family-based rare variant association tests with extension of 

multiple phenotype analysis and meta-analysis can overcome the limitations of 

traditional rare variant analysis, significantly improve statistical power, and 

reduce false-positive results. The proposed methods can be applied to various 

types of data, including population- and family-based designs, dichotomous and 

quantitative phenotypes, and homogenous and heterogeneous disease models. 

Furthermore, the combination of mFARVAT and metaFARVAT would be 

considered a good strategy to efficiently enrich genetic effects and identify trait- 

and disease-associate rare variants.  

Future Work 

We aim to build an all-in-one tool for family-based rare variant association 

studies. So far, FARVAT and its extension can analysis autosome and sex 

chromosomes (FARVATX) (Choi et al. 2017), dichotomous and quantitative 

phenotype, multiple phenotypes (mFARVAT), meta-analysis (metaFARVAT). 

There always been needs to identify rare variants associated with time-to-event 

traits, such as, age at disease onset, time to mortality, or time to secondary 

complications of disease. However, the existing methods of these association 

tests for family designs are limited. Therefore, my next study will extend 

FARVAT to survival traits (sFARVAT). I will derive an SKAT-O score for time-

to-event outcomes in a Cox proportional hazard model framework and will 
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adapt a small adjustment procedure based on a higher moments matching 

method (Zhou et al. 2018) when analytical p-values are conservative. Li et al. 

(Li et al. 2019) provided a novel dynamic scan-statistic method, SCANG, 

which flexibly detects the sizes and the locations of rare variant association 

regions without the need to specify region set. This method can be potentially 

adapted to sFARVAT. Moreover, I will extend it to sex chromosome as 

sFARVATX.  
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초   록 

 

수많은 전장유전체연관분석(GWAS)에도 불구하고 질병연관 

유전체변이(DSL)는 제한적으로만 발견되었는데 이는 실종된 

질병유전성(missing heritability)에 기인한다. 한 번에 긴 리드(read)를 

시퀀싱하는 기술은 이를 보완해 줄 것으로 기대되어 왔으며, 이 

기술의 발달 덕분에 유전체연관분석을 활용하여 여러 희귀(rare) 및 

일반(common) 인과 변이를 발견할 수 있었다. 그러나 꽤 많은 

샘플을 이용한 실험에서도 단일 변이를 대상으로한 

전장유전체연관분석은 부정오류(false negative) 문제에서 자유로울 수 

없다. 이에 희귀변이 연관 분석의 검정력을 증가시키기 위해 

생물학적으로 연관이 있는 위치의 여러 유전체변이를 하나로 

합쳐서 분석하는 방법들이 제안되었다. 버든 검정(burden test), 

분산구조 검정(variance component test), 결합 옴니버스 검정(combined 

omnibus test) 등의 위치기반 연관 분석이 바로 그것이다.   
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희귀변이 연관분석에 위와 같은 분석방법을 활용하면 검정력이 

크게 증가하여 더 많은 질병연관 유전체 변이를 발견할 수 있을 

것으로 기대되어왔다. 하지만 샘플 간 유전적 이질성의 존재와 

상대적으로 샘플 수가 적은 한계들 때문에 매우 적은 수의 변이 

만이 발견되었다. 이러한 문제점을 해결하기 위해 다양한 방법들이 

개발되었는데, 그 중 하나는 가족기반 분석 방법으로 이는 샘플 간 

유전적 이질성과 집단층화 문제를 다루는데 용이하다. 두 번째로 

서로 다른 표현형이 서로 관련이 있을 경우 검정력을 증가시키기 

위해 이들을 한번에 분석하는 방법이 있다. 세 번째는 메타분석을 

활용하여 여러 연구의 결과를 합치는 방법으로 이는 많은 

연구들에서 효과적임이 밝혀졌다.  

이 논문에서는 현재 많이 사용되고 있는 여러 가족기반 

희귀변이 연관 분석 방법을 비교하였고 다른 방법들에 비해 

FARVAT 이 통계적으로 견고하며 계산 효율적인 방법임을 보였다. 

더 나아가 이를 다중 표현형 분석 방법(mFARVAT)과 메타분석 
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방법(metaFARVAT)으로 확장하였다. mFARVAT은 유사우도함수 기반 

스코어 테스트(quasi-likelihood-based score test)를 다수의 표현형에 

적용하는 희귀질환 연관분석 방법으로 표현형들에 대한 각 변이의 

동질성 및 이질성 효과를 검증한다. metaFARVAT 은 여러 

연구에서의 유도함수 스코어를 결합하여 버든 통계량, 변이 

임계(variable threshold) 통계량, 분산구조 통계량, 결합 옴니버스 

통계량을 생성한다. 이는 여러 연구들의 결과를 이용하여 변이들의 

동질성 및 이질성 효과를 검증하며, 정량 표현형 및 이분 표현형에 

적용이 가능하다. 다양한 시나리오 하에서의 광범위한 모의 실험을 

통해 제안한 방법들이 일반적으로 견고하고 효율적이라는 것을 

보였다. 또한 이 방법을 활용하여 DLEC1 등의 

만성폐쇄성폐질환(COPD) 관련 후보 유전자를 발견하였다.  

주요어: 희귀변이 연관 분석, 가족 기반 분석, 다중 표현형, 메타 

분석, 만성폐쇄성폐질환 

학 번:  2015-30742  
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