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Abstract

Transcriptomic analysis, the measurement of transcripts on the genome scale,

is now routinely performed in high resolution. Since the number of genes ob-

tained in the transcriptome data is usually large, it is difficult for researchers

to identify genes that are relevant to their research goals, without additional

analysis. Analysis of transcriptome data is often performed utilizing heteroge-

neous resources such as biological networks, annotated gene information, and

published literature. However, the relationship among heterogeneous resources

is often too complicated to decipher which genes are relevant to the experimen-

tal design. Therefore, powerful computational methods should be coupled with

these heterogeneous resources in order to effectively determine and illustrate

key genes that are relevant to specific research goals. In my doctoral study, I

have developed three bioinformatics systems that use network approaches to an-

alyze transcriptome data and rank genes that are relevant to the experimental

design.

The first study was conducted to develop a bioinformatics system that could

be used to analyze RNA-Seq data of gene knockout (KO) mice, where the sam-

ple number is small. In this case, the main objectives were to investigate how

the KO gene affects the expression of other genes and identify the key genes

that contribute significantly to the phenotypic difference. To address these ques-

tions, I developed a gene prioritization system that utilizes the characteristics

of RNA-Seq data. The system prioritizes genes by removing the less infor-

mative differentially expressed genes (DEGs) using gene regulatory network

(GRN) and biological pathways. Next, it filters out genes that might be differ-
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ent due to genetic differences between samples using single nucleotide variant

(SNV) information. Consequently, this study demonstrated that the integration

of networks and SNV information was able to increase the performance of gene

prioritization.

The second study was conducted to develop a gene prioritization system

that allows the user to specify the context of the experiment. This study was

inspired by the fact that the currently available analysis methods for transcrip-

tome data do not fully consider the experimental design of gene KO studies.

Therefore, I envisaged that users would prefer an analysis method that took into

consideration the characteristics of the KO experiments and could be guided

by the context of the researcher who has designed and performed the biological

experiment. Therefore, I developed CLIP-GENE, a web service of the condition-

specific context-laid integrative analysis for prioritizing genes in mouse TF KO

experiments. CLIP-GENE prioritizes genes of KO experiments by removing the

less informative DEGs using GRN, discards genes that might have sample vari-

ance, using SNV information, and ranks genes that are related to the user’s

context using the text-mining technique, as well as considering the shortest

path of protein-protein interaction (PPI) from the KO gene to the target genes.

The last study was conducted to develop an informative system that could

be used to compare multiple RNA-Seq experiments using Venn diagrams. In

general, RNA-Seq experiments are performed to compare samples between con-

trol and treated groups, producing a set of DEGs. Each region in a Venn dia-

gram (a subset of DEGs) generally contains a large number of genes that could

complicate the determination of the important and relevant genes. Moreover,

simply comparing the list of DEGs from different experiments could be mis-

leading because some of the DEG lists may have been measured using different

controls. To address these issues, Venn-diaNet was developed, an analysis frame-
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work that integrates Venn diagram and network propagation to prioritize genes

for experiments that have multiple DEG lists. We demonstrated that Venn-

diaNet was able to reproduce research findings reported in the original papers

by comparing two, three, and eight biological experiments measured in differ-

ent conditions. I believe that Venn-diaNet can be very useful for researchers to

determine genes for their follow-up studies.

In summary, my doctoral study aimed to develop computational tools that

can prioritize genes from transcriptome data. To achieve this goal, I combined

network approaches with multiple heterogeneous resources in a single compu-

tational environment. All three informatics systems are deployed as software

packages or web tools to support convenient access to researchers, eliminating

the need for installation or learning any additional software packages.

Keywords: RNA-seq, Gene prioritization, Informatics system, Network-based

approach

Student Number: 2012-23113
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Chapter 1

Introduction

RNA-Seq is one of the popular technologies that estimates the abundance of

global RNAs to identify genes that are relevant to the experimental design

(Ozsolak and Milos, 2011; Li and Li, 2018). The data provides an unprecedented

amount of information and details that cannot be handled in a single process.

Therefore, the expression profile from RNA-Seq data is generally analyzed by

using multiple databases and methods in order to obtain useful insight (Li and

Li, 2018).

For more than a decade, studies have introduced a number of approaches

and applications to analyze RNA-Seq data. However, it is largely difficult to

pinpoint a gene with enough evidence to infer the relationship between the

gene and the phenotype, in a single-step analysis. For example, differentially

expressed gene (DEG) analysis is an analysis that finds genes that have sta-

tistically altered expressions, however, it does not provide enough information

to explain why and how there is a phenotypic difference between samples. To

overcome the limitations of single-step analysis, a number of studies have intro-
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Figure 1.1: Work flow for prioritizing genes (Moreau and Tranchevent, 2012)

duced strategies that combine multiple data sources and methods to compen-

sate for the insufficient information obtained from a single-step analysis (Figure

1.1)(Moreau and Tranchevent, 2012; Tranchevent et al., 2010).

However, a number of databases and analysis methods, as well as strategies

to combine these elements exist (Figure 1.2). Therefore, it is now a challenging

task to select a strategy that is tailored for the goal of the experiment, with the

appropriate combination of tools to analyze RNA-Seq data.

My doctoral study addresses the challenges in analyzing RNA-Seq data

with three informatics systems that prioritize genes based on networks. The

first study was conducted to analyze RNA-Seq data that have a small number

of samples. The second study was conducted to overcome the challenges of

gene ranking that does not reflect user interest. The third study was conducted
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Figure 1.2: Various strategies to prioritize genes (Moreau and Tranchevent, 2012)

to analyze complicated RNA-Seq data that have multiple conditions, with an

intuitive interpretation on.

1.1 Challenges of analyzing RNA-Seq data

The challenges to find phenotype-related genes with RNA-Seq data can be sum-

marized into three reasons. (i) Large number of databases and methods make

selection of the correct combination difficult and confusing (ii) Knowledge-bias

that prioritize less relevant genes. (iii) Complicated experiment designs (i.e:

multiple control/treatments, a small number of samples) that is difficult to

analyze.
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1.1.1 Excessive amount of databases and analysis methods

Intensive research has led to the creation of a large number and variety of

databases and methods for the analysis of transcriptomic data. However, the

vast array of options makes selection of the correct combination that would be

ideal for one’s research, difficult. To overcome this issue, studies have suggested

various data combination strategies to identify promising genes (Moreau and

Tranchevent, 2012)(Figure 1.2), however, these strategies have their limitations,

which need to be addressed.

For example, filtering strategy, a strategy that uses multiple databases (or

methods) as filters and removes the less significant candidate genes step wise

(Figure 1.2a), is a straight forward strategy that strictly reduces the number

of candidates that do not satisfy each criterion. However, if the filters do not

have enough discrimination power, they will fail to screen out the less promising

candidates. On the contrary, if the filters are too stringent, this strategy will

give rise to a number of false negatives. Therefore, it is very challenging to

adjust the level of discrimination power according to the combination of data

sources.

Unlike filtering strategy, data fusion strategy has the advantage of eliminat-

ing false negatives caused by the stringent thresholds among filters by scoring

the candidates at each data source and summarizes the overall ranks (Figure

1.2b). However, because the strategy combines heterogeneous data sources, the

relationship between input and output data sources becomes complicated, and

the complexities increase according to the number of data sources. Therefore,

it is difficult to make an intuitive interpretation for the final results and this

makes the analysis tools to have ‘black-box’ like characteristics (Moreau and

Tranchevent, 2012).
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Therefore, despite the availability of an abundance and variety of databases

and methodologies, it is difficult to effectively combine these sources.

1.1.2 Knowledge bias that prioritizes less relevant genes

The knowledge bias between genes in databases can cause difficulties in iden-

tifying promising genes with data fusion strategy (Moreau and Tranchevent,

2012). Because the strategy evaluates candidate genes by utilizing multiple

data sources, a well-studied gene is likely to be over-represented in multiple

databases and cause biased rank even if it is not relevant to the experiment de-

sign. Therefore, it is necessary to address the biased-rank genes as well as prior-

itizing genes that are focused on the context of experimental design. Moreover,

knowledge bias affects the network-based strategies that use network propa-

gation, which is now one of the most powerful and common techniques to in-

vestigate the relationship between candidate genes and known genes (usually

disease-related genes). However, this strategy largely relies on seeds that require

prior knowledge to select proper seeds. If the prior information is insufficient for

the selection of appropriate seed genes, the results of the network propagation

will be less likely to reveal similarities between two different genes. Neverthe-

less, a few studies have used sequence features or topology features instead

of prior knowledge to overcome these difficulties (López-Bigas and Ouzounis,

2004; Adie et al., 2005; Chen et al., 2009b). However, seed selection is difficult

for transcriptome-based experiments that have poor prior knowledge.

1.1.3 Complicated experiment designs

DEGs are common elements used as initial candidates that are combined with

other data sources for the identification of promising genes. However, discov-

ering phenotype-dependent genes from complicated experimental designs (such

5



as mouse gene KO experiments that have a small number of samples, or experi-

ments that have multiple control/treated groups) is difficult with the currently

available strategies. If the number of samples is small, the statistical evidence

of DEGs can be weak, suggesting that differential gene expression (giving rise

to DEGs) may have been caused by effects other than the conditional differ-

ences (i.e. genetic difference between biological replicates). If the false positives

are considered during gene prioritization, identification of the true phenotype-

related genes with the strategies that combine DEGs, is more challenging.

Studies that compare multiple DEG lists usually have experimental designs

that include multiple control and treatment groups, increasing the complexity

of sample comparison. Since each DEG list with different controls (or treatment

groups) indicates different biological differences, simply adding or subtracting

the entries between these lists might not be intuitive enough to decipher the

biological meaning of the subset of genes. The complexity of the problem further

increases with increasing number of DEG lists.

1.2 My approach to address the challenges for the

analysis of RNA-Seq data

This thesis introduces three studies, each of the studies introduces an informat-

ics system that uses a unique combination of network and data sources to solve

the challenges prioritizing genes that are related to the phenotypic difference.

1. Combined analysis of gene regulatory network and SNV infor-

mation enhances identification of potential gene markers in mouse

gene KO studies with a small number of samples : a filtering strategy

that addresses the challenge of complicated experimental design having a small

number of samples by (i) removing less informative DEGs using gene regula-

6



tory network (GRN), biological pathways, and (ii) filtering out genes that differ

between samples based on the presence of SNVs. As a result, this study was

able to show that the integration of network and SNV information increases the

performance of gene prioritization. The key idea of the method is to reconfirm

that the DEGs have resulted as an effect of gene KO, rather than due to genetic

differences between different samples.

2. CLIP-GENE: a web service of the condition-specific context-laid

integrative analysis for gene prioritization in mouse TF KO exper-

iments : a data fusion strategy that focuses on rank genes that are related

to the experimental design. CLIP-GENE (i) removes less informative DEGs

using GRN, (ii) discards genes that have sample variance with SNV, and (iii)

ranks genes by using protein-protein interaction (PPI) network information and

text-mining technique.

3. Venn-diaNet : Venn diagram based network propagation analysis

framework for comparing multiple biological experiments a Venn di-

agram based network propagation analysis framework to prioritize genes that

address the challenge of complicated experimental design, having multiple con-

trols and treatment groups as well as seed selection for network propagation.

Venn-diaNet was able to reproduce the original findings of experiments which

comprised analysis and comparison of multiple biological transcriptomic data,

measured in multiple conditions.

1.3 Background

1.3.1 Differentially expressed gene

Once the abundance of global mRNAs is measured, estimating the DEGs be-

tween samples is one of the great starting points to understand the characteris-
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tics of the phenotype differences (Marioni et al., 2008). Measuring the expres-

sion differences that is statistically significant have proved to be a successful

approach to find genes that is responible for the phenotypic differences (Hard-

castle and Kelly, 2010; Robinson et al., 2010; Anders and Huber, 2012; Trapnell

et al., 2013; Leng et al., 2013; Li and Tibshirani, 2013; Tarazona et al., 2015).

The statistical approach to calculate DEG varies based on the distributional

assumptions. Software such as DEGseq (Wang et al., 2009), MyRNA (Lang-

mead et al., 2010), and PoissonSeq (Li et al., 2012) use Poisson model for

RNA-Seq count data while edgeR (Robinson et al., 2010), DESeq (Anders and

Huber, 2012), and DESeq2 (Love et al., 2014) use negative binomial model. In

addition, there are more DEG calculation software tools that use more other

statistical models. However, it is important to understand the characteristics of

the models and carefully apply to the data (Huang et al., 2015).

1.3.2 Gene prioritization

Gene prioritization is a strategy that identifies the most promising genes from

a large pool of candidates by integrating multiple data source for further down-

stream screens (Figure 1.2). The integration of the list of genes and external

data sources allows increasing the data dimension from 1D (simple gene list) to

a higher dimension that can have much more explanation to the data (Moreau

and Tranchevent, 2012; Cowen et al., 2017). Currently, the strategy of gene

prioritization can be generally categorized into four types. (i) filtering strat-

egy, (ii) profiling and data fusion, (iii) text-mining, and (iv) network analysis

(Moreau and Tranchevent, 2012).

Filtering strategy is an approach that uses multiple data source (or meth-

ods) as filters while each filter removes less significant candidate genes step by

step (Figure 1.2a). Unlike filtering strategy, data fusion strategy has the advan-
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tage to avoid the false negatives caused by the hard thresholds among filters by

scoring the candidates at each data sources and summarizes the overall rank

(Figure 1.2b). Text-mining is a data mining method that finds the associations

between given keywords. In bioinformatics, text-mining is a strategy that finds

the associations between candidate genes and knowledge (disease, phenotype or

else) while the relationship between two elements is retrieved by information re-

trieval methods (Krallinger et al., 2008; Winnenburg et al., 2008)(Figure 1.2c).

Network-based strategy uses various type of networks (biological pathway, PPI,

GRN) to find the similarity between the candidate genes and networks. Net-

work propagation is one of the popular technique to find the similarity between

candidate genes and seed genes using networks while seed genes are often de-

fined as disease genes or phenotype-relevant genes that requires prior knowledge

(Figure 1.2d).

1.4 Outline of the thesis

Chapter 2 elaborates on the process of integration of network and SNV in-

formation, which was able to improve the statistical bias from mouse gene KO

experiments that have a small number of samples. Chapter 3 describes a system

that combines GRN, PPI, and text-mining techniques to prioritize genes that

focus on the context of the experiment. Chapter 4 demonstrates that Venn dia-

gram has a great advantage in prioritizing genes that can address the challenges

of heterogeneous data and seed selection issues for network propagation. Chap-

ter 5 summarizes and concludes the studies that are presented in this thesis.

The bibliography of the cited references is organized at the end of the thesis.
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Chapter 2

A filtering strategy that combines
GRN, SNV information to
enhances the gene prioritization in
mouse KO studies with small
number of samples

2.1 Background

DEGs from RNA-Seq data are often used for finding significant genes that can

explain the phenotypic differences between control and cases (Oshlack et al.,

2010; Frazee et al., 2014). However, in gene KO studies, discovering phenotype-

dependent gene only with DEG can be difficult because distinguishing whether

the expression alteration is resulted by the inactivation of the KO gene or

by the genetic variations that were merely from differences in samples rather

than phenotypic differences. And the problem becomes much more challenging

when the number of samples is small, an issue that RNA-Seq experiments face

frequently (Tarazona et al., 2011). Various methods and models were proposed
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to overcome the difficulties of selecting phenotype related DEGs from a small

number of samples such as the Poisson model (Marioni et al., 2008), Bayesian

approaches (Vreugdenhil et al., 2008; Anders and Huber, 2010), or increased

the sequencing depth of samples (Tarazona et al., 2011).

Even if a number of studies have resolved the difficulties of DEG detection

to some degree, addressing phenotype related DEGs from a small number of

samples is still a challenging process. Studies suggested to increase the number

of biological samples is the most critical factor have significant DEGs (Zhou

et al., 2013). However, increasing the number of biological samples is not easy

for many reasons. Thus, a new approach that can detect significant gene markers

in a small number of samples is necessary. This study proposes a new method

that distinguishes genes that are relevant to the phenotypic differences in mouse

gene KO experiments that have a small number of samples. The method uses the

filter-out gene prioritization strategy that combines GRN, biological pathways

and SNV information using DEGs as input (Hur et al., 2015).

2.2 Methods

The gene prioritization method uses a reductionist approach by adding more

filters at each step as described below (Figure 2.1).

1. The first filter is to use a method to identify DEGs between control and

case samples. In this study, we used fold change, a classical DEG selection

method.

2. The filter at the second step is to use GRN. GRN is constructed from a

large volume of public data to represent the whole gene regulatory net-

work. DEGs that are included in the network are selected as candidates.

11



Figure 2.1: Filtering strategy combining networks and SNV

3. The third filter utilizes biological pathway information. Candidates that

are not included in the pathways are discarded.

4. Finally, candidates that have higher than a certain rate of SNVs are dis-

carded since the DEGs that have SNVs possibly resulted from genetic

differences rather than phenotypic differences.

2.2.1 First filter : DEG

From the given expression profile, DEGs are considered as initial candidates.

DEGs are used for the purpose of observing the alteration of expression pat-

terns that could explain the phenotypic differences among samples. DEGs were

selected by using fold change of the expression value (FPKM) between case

and control. The study used multiple cutoffs in order to compare and observe

differences in the number of selected genes. Note that this study used samples
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that does not have enough biological replicates to perform statistical testing to

calculate DEGs. Therefore, expression fold change was used as a DEG estima-

tion.

2.2.2 Second filter : GRN

The concept of reverse engineering the regulatory network from transcriptome

data, GRN is a very effective method that can consider complex relationships

of many genes (Basso et al., 2005). GRN is used as the second filter of the gene

prioritization process in order to discard genes that have less significant roles

in the regulatory network.

In order to construct a GRN that is appropriate for mouse gene KO exper-

iment data, public data (Microarray, RNA-Seq) of mouse were collected from

NCBI GEO. For microarray, each series matrix files from GSE45929 (Ram-

sey et al., 2013), GSE16741 (Yun et al., 2010), GSE30906 (Shan et al., 2012),

GSE36780 (Bae et al., 2012), GSE40375 (not published), GSE41380 (Nusinow

et al., 2012), GSE43663 (Ruan et al., 2013) were used for GRN construction.

These data contain gene expression value of multiple samples that differs in

mouse’s strain, genotype, and treatment (42 samples in total) and were created

by the same microarray platform (Illumina MouseWG-6 v2.0 expression bead-

chip) and preprocessed by R bioconductor lumi package (Du et al., 2008) (vari-

ance stabilizing transform, quantile normalization). The study integrates gene

expression values of 7 series matrix files (GSE45929, GSE16741, GSE30906,

GSE36780, GSE40375, GSE41380, GSE43663) into a single matrix and quantile

normalized gene expression values of every sample and used it as an expression

profile for construction of GRN.

GRN is constructed by using NARROMI (Zhang et al., 2012) while a list

of transcription factors and co-factors from the Animal Transcription Factor

13



Database (Zhang et al., 2011) was used for regulatory information for NAR-

ROMI. For the gene list, we simply defined it as a list of whole genes that in-

cludes not only transcription factors and co-factors but also non-transcription

factors. As a result, NARROMI constructed a network topology of 2950865

edges. The study supports a URL for the network topology file which was used

in this study (epigenomics.snu.ac.kr/mouse network/total mouse.topology).

With the constructed GRN, the study discards candidates that have weak

or no regulatory roles. The method filters out less significant DEGs that do

not have any potential regulatory roles upon the calculated GRN. As a result,

candidates that participate in a regulatory role remains.

2.2.3 Third filter : Biological Pathway

The combination of DEG and GRN information was used not only for reducing

the number of candidates but also to select significant genes that have regula-

tory roles that could represent the phenotypic differences between WT and KO

mouse. However, GRN is a hypothetical topology that gains regulatory informa-

tion from the given data. Therefore, it is also important to ensure whether the

candidates have biological evidence. In this study, KEGG pathway (Kanehisa

and Goto, 2000) for confirming the candidates in terms of domain knowledge.

2.2.4 Final filter : SNV

Even if the study reduced the number of candidates by using multiple filtering

methods, it is necessary to eliminate genes that have genetic differences that

may not represent phenotypic differences. Since the statistical power is weak

in a small number of samples, it is difficult to distinguish whether the genetic

differences were caused by phenotypic differences or not. Therefore the study

removed genes that have a certain or higher SNV rate. This process will remove
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SNVs from the genetic differences but also by the phenotypic differences. A

possibility to have false negative results. However, it will completely avoid the

risk of selecting SNVs resulting from genetic differences.

2.3 Results and Discussion

GSE47851 were used for evaluating the filter-out method. The performance of

the method is discussed by comparing between the genes reported from the

original research article (Yagi et al., 2014) and the genes prioritized by the

filtering method.

RNA-Seq data of GSE47851 are from an experiment of Gata3 KO that

have multiple SRA files. The study used 8 SRA files (SRR896215, SRR896216,

SRR896217, SRR896218, SRR896219, SRR896220, SRR896221, SRR896222)

that have two conditions where each of the conditions has 2 biological samples

and 2 technical replicates of each biological sample.

The study reported that genes of TNF and TNFR superfamilies, members of

NFkB and cell surface markers of ILC2s have expression alterations when Gata3

is not activated in ILC2 cells (Yagi et al., 2014). The authors reported that when

Gata3 is inactivated, many TNF and TNFR superfamily genes, such as Tnfrsf9

and Tnfsf21 and NFkB family members, including Nfkb2 and Relb, have altered

expression patterns while cell-cycle inhibitor Cdkn2b was up-regulated. Accord-

ing to the authors we report, the reductionist approach was able to reproduce

4 out of 5 genes (except Tnfsf21). In addition, we were able to reconfirm the

following facts by mapping the candidate genes to the KEGG pathway. Figure

2.2 represents expression alteration in NF-kappa B signaling pathway, showing

down regulations of Nfkb2 (p100) and Relb when Gata3 is inactivated. Expres-

sion alteration was also detected in the TNF signaling pathway (Figure 2.2).
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Filtering Steps NONE 1st filter 2nd filter 3rd filter Final filter

SelectedCandidates 12298 2153 1184 478 343

TruePositives 23 23 19 18 14

Accuracy 0.002 0.827 0.905 0.962 0.972

Precision 0.002 0.011 0.016 0.038 0.041

Recall 0.885 0.885 0.731 0.692 0.538

F-measure 0.004 0.021 0.032 0.073 0.076

Table 2.1: Performance comparison of filters

The table represents the remaining candidates, number of correctly predicted true positives, and the

performance of each adapted filters.

TNF and TNFR superfamily genes, such as Tnf and Tnfrsf9, were successfully

detected in the pathway as well as the statement (Figure 2.3).

The study also stated about the expression alterations in cell-surface mark-

ers of ILC2s. The study reported that 130 genes are positively regulated by

GATA3 in ILC2s, and not in Th2 cells. Cell-surface markers of ILC2s, such as

Icos, Il2ra, Kit, Il1r2, Cysltr1, Htr1b, and Tph1 were included. As a result, the

reductionist approach was able to reproduce 4 genes among 7 were successfully

matched (Figure 2.4C).

In addition, the study evaluated whether each filter had a significant role

during the filter-out process (Table 2.1). Table 2.1 summarizes the performance

of prioritizing candidates at each filtering step. Without no filter (NONE), it

is obvious that there is a very few chances to prioritize genes reported in the

original paper. However, when filters are gradually added, the number of false

positives decreased rapidly. In addition, the recall has steadily decreased at each

filtering steps, but the F-measure represents that the general performance of
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the filtering process was better than the previous steps.

2.4 Discussion

This study proposed a novel method that uses four filtering steps to distinguish

phenotype-dependent genes from RNA-Seq data of mouse gene KO studies that

have a small number of samples. The study demonstrated that the combination

of DEG, GRN, biological pathways and SNV information was able to narrow

down the significant genes that have regulatory roles and reduced the risk of

including candidates that have genetic differences. However, several limitations

of this study need to be addressed. First of all, there should be a more rigor-

ous study of GRN construction. Using much omics data for GRN construction

somehow preserves important relationships between transcription factors and

their target genes, but how much data is needed for GRN construction is not

rigorously studied. In this study, we had enough omics data for the network

construction, therefore we were able to use a simple method using NARROMI

(Zhang et al., 2012). However, when the amount of omics data for network con-

struction is not enough, special techniques such as low order partial correlation

based methods (Zuo et al., 2014) should be considered. Second, removing genes

with genetic variation allows us to focus on genes that are relevant to the un-

derlying biological mechanisms for the KO study. However, genetic variations

do not always affect the transcription activity of genes, and it is possible that

the suggested method might discard a number of SNVs that were affected by

the KO gene. Thus, it is necessary to investigate the effect of genetic variations

on transcription activities.
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Chapter 3

An integration of data-fusion and
text-mining strategy to prioritize
context-laid genes in mouse TF
KO experiments

3.1 Background

To overcome the limitations of the DEG methods, studies suggested data fu-

sion techniques that utilize additional information to effectively identify genes

that are related to the phenotypic differences. However, it is known that the

integration of heterogeneous databases has several difficulties while prioritizing

candidates for data of gene knock study that motivated this study. First, most

of the existing gene prioritization tools are not appropriate for the condition-

specific data such as mouse KO data. When a certain gene is knocked out, re-

searchers have specific hypotheses that are related to the observed phenotypic

differences. Thus, to select genes that are related to phenotypic differences, it

is important to not only consider gene expression alteration but also to pri-
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oritize genes with the researcher’s interest. Without considering the condition

or the goal of the experiment, gene prioritization will likely to focus on genes

that have enough supporting evidence instead of considering the intention of

the experiment design. The best strategy is to provide information about the

conditions of the experiment or a specific hypothesis that the user has. When

the user provides such information, genes can be prioritized by consulting the

literature database. Therefore, it is necessary to perform an integrative anal-

ysis of transcriptome data and literature data for the condition-specific gene

selection and prioritization.

Second, complex relationships among genes should be considered in order

to selected and prioritize genes that are related to the phenotype. Therefore,

networks such as GRN and PPI are useful in explaining alteration among genes

by considering gene-gene and regulatory relationships. Many KO experiments

investigated transcription factors (TFs) that could result in the phenotypic

differences by analyzing the GRN (Geier et al., 2007; Madhamshettiwar et al.,

2012; Wang et al., 2012; Ud-Dean and Gunawan, 2015).

Thus, considering GRN (to be specific, GRN) is essential to characterize

the roles of TFs from KO data. In addition to GRNs, PPI networks also assist

in explaining expression alteration among genes since PPI networks consist of

more entities than other networks such as GRNs and biological pathway net-

works. Since we need to use both TF and PPI networks, an issue is how to

utilize two different networks in a single computational framework. Our ap-

proach uses GRN to select candidate genes from the TF KO experiment and

uses the combination of PPI and literature information to prioritize candidate

genes in a condition-specific manner.

Third, existing computational methods for prioritizing genes are not de-

signed for mouse KO data. Only 3 among 27 tools (listed in Gene Prioritization
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Portal (Tranchevent et al., 2010)) are designed for the mouse data (van Dam

et al., 2012; Tranchevent et al., 2008; Nitsch et al., 2011).

However, these tools are generally not applicable to evaluate RNA-Seq data

of KO experiments. For example, even though PINTA (Nitsch et al., 2011) and

GeneFriends (van Dam et al., 2012) can prioritize genes based on the concept of

the guilt-by-association or network analysis, these tools require a pre-selected

gene list of a certain size: up to 200 genes in PINTA and up to 500 genes in

GeneFriends. Both tools are not applicable when the number of genes is large,

such as DEG results. Although the use of a stringent cutoff value can reduce the

number of candidate genes that can be used for the aforementioned tools, there

may be too many false negatives. Therefore, the requirement of a pre-selected

gene list in PINTA and GeneFriends is not easy to be resolved. In addition,

PINTA is designed for microarray data and prioritizes genes by referring to

the expression profiles of its neighbors from the PPI network, but it does not

consider the influence of the KO gene. Likewise, GeneFriends prioritizes genes

by considering co-expression of other genes but does not reflect the effect of

the KO gene. Another tool, Endeavor (Tranchevent et al., 2008), is able to

prioritize genes from a large number of gene list that does not require pre-

selection from a gene list. However, Endeavor requires a gene list from prior

knowledge for a training dataset, and it is designed to select disease-related

genes rather than KO related genes. To address the discussed issues, this study

developed CLIP-GENE (Context Laid Integrative analysis to Prioritize genes)

(Hur et al., 2016). A web-based tool that takes a DEG list as input and uses

GRN and SNV information to narrow down candidate genes and prioritizes

genes with PPI information and literature information. In particular, CLIP-

GENE allows researchers to specify the context of the experiment as a set of

keywords input to a bio-medical entity search tool (BEST) (Lee et al., 2016).
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3.2 Methods

CLIP-GENE prioritizes genes with two major steps, selection, and ranking. For

the selection step, GRN and SNV information are used to select candidate genes

that are affected by the KO gene as well as expressed differentially between

wild type and KO mouse. For the ranking step, BEST and PPI information

are used to prioritize genes according to the researcher’s context or hypothesis.

With the assistance of a BEST (Lee et al., 2016), it allows specifying certain

context or hypothesis with a set of keywords by a user that is expected from

the data. Afterward, PPI is used to consider the gene-gene relationship between

the candidate genes and the KO gene. Workflow of CLIP-GENE is illustrated

in Figure 3.1. Details of each step are described below.

3.2.1 Selection of initial candidate genes.

CLIP-GENE takes a DEG list from the KO experiment and investigates the

regulatory role of the DEGs by referring to GRN. GRN is created using NAR-

ROMI (Zhang et al., 2012) with data of normal inbred mouse data that varied

in its strains, developmental stage, and tissues (150 samples of wild type mouse

RNA-Seq data from 17 independent studies) (Yao et al., 2014; Tena et al., 2014;

Stilling et al., 2014; Srivastava et al., 2015; Shen et al., 2014; Roger et al., 2014;

Ntziachristos et al., 2014; Moniot et al., 2014; Mielcarek et al., 2014; Liu et al.,

2014; Kayo et al., 2014; Harmacek et al., 2014; Gu et al., 2014; Deng et al.,

2014; Bhatnagar et al., 2014; Altboum et al., 2014; Alpern et al., 2014). while a

list of transcription factors and co-factors from the Animal Transcription Fac-

tor Database (Zhang et al., 2011) was used for the regulatory information for

NARROMI.

CLIP-GENE takes a list of DEGs as input and uses them as initial candi-
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dates. Then, by referring to the mouse GRN that was constructed using 150

mouse expression profiles, DEGs that do not affect other DEGs or DEGs that

are not affected by the KO gene are excluded. This step is performed to focus on

the relationship between the regulator and its target genes that are significantly

altered.

After CLIP-GENE selects candidate DEGs that take a part in the regulatory

role, SNV information is used to filter out DEGs that might be caused by the

genetic differences rather than the influence of the KO gene. It is well known

that even if the inbred mouse are raised in a controlled environment, genetic

differences are likely to be present (Eisener-Dorman et al., 2009). If a large

number of RNA-Seq experiments can be performed, it is possible to screen genes

that may be expressed differentially due to the genetic difference. However, it

is not practical to perform such a large number of RNA-Seq experiments that

is enough to remove such genes. To compensate the low statistical power of the

typical RNA-Seq data, candidate genes with over than a certain rate of SNVs

in the KO mouse are discarded (Hur et al., 2015).

3.2.2 Prioritizing genes with the user context and PPI

Candidate genes selected in the previous step are ranked in terms of the rele-

vance to the phenotype in two different criteria: the user specified context and

the PPI information.

Researchers can specify their hypothesis for the KO data as ‘context’ in a set

of keywords. Specifically, context means a set of subjective words that describe

the user’s interest such as ‘expected biological function when the gene is KO’ or

‘known function of the KO gene’. For example, a context for Gata3 KO data can

be described as ‘Immune response’, ‘Cell signaling’, or ‘Inflammatory response’

(Yagi et al., 2014; Wan, 2014). Then genes that are related to the user-specified
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keywords can be determined by looking for the relevance between keywords

since certain keywords are documented in the literature in relation to a certain

gene. Thus this can be viewed as a process to find a keyword-keyword rela-

tionship and keyword-gene relationship to prioritize genes. In order to find the

relevance between two different keywords, literature search systems based on the

named entity recognition (NER) are known to be effective (Spampinato et al.,

2011). For CLIP-GENE, BEST (Lee et al., 2016) is used to find the relevance

between the KO gene and candidate genes as well as the relationship between

candidate genes and the user given context. With the user-specified keywords,

BEST computes relevance between any pair of keywords from PubMed and re-

turns a relevance score of genes with ranks. Once the relevance score of ‘context

to candidate gene’ and ‘KO gene to candidate gene’ is calculated, the maximum

of them is used to represent how the candidate gene is relevant to the user’s

interest or the KO gene. As a result, a candidate gene with a higher relevance

score is ranked with higher priority.

PPI information is used to rank candidates by computing the shortest in-

teraction path to the KO gene on the STRING PPI network (Szklarczyk et al.,

2010). Candidates that have a shorter interaction path to the KO gene are con-

sidered to be more relevant to the phenotypic/functional difference, hence they

are ranked with a higher priority. Finally, CLIPGENE summarizes candidates

with ranks by combining the BEST and PPI information with unweighted Borda

count (Grazia, 1953). Figure 3.2 describes the overview of gene prioritization.

3.3 Results and Discussion

For the performance evaluation, we used datasets that come with publications

reporting which genes are relevant to the functional difference when the gene is
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silenced. These genes are used as true positives to measure the precision, recall,

and F-measure in terms of genes reported in the publications for data sets,

GSE47851 (Yagi et al., 2014), GSE54932 (Zhang et al., 2014), and GSE53398

(Zhuang et al., 2014). CLIP-GENE was compared with methods and tools that

can be used for RNAseq mouse data. This study compared DEG-only method

(DEG), integrative analysis method (IA) (Hur et al., 2015), and GeneFriends

(van Dam et al., 2012) in terms of the predictive power. In addition, since the

user can specify context with a set of keywords, the performance depends on the

context that the user provides. In this experiment, four different sets of keywords

are used as context. To compare the predictive power, the study designated

the best case and the worst case in terms of the number of genes reproduced

by CLIP-GENE. In addition, as BEST investigates the relationship between

two given keywords by referring the abstract from PubMed, we chose keywords

that were not mentioned in the abstract of the corresponding publications. This

process is done to make sure that BEST did not consider the keywords from

the publication that generated the data while calculating the relevance score.

Dataset GSE47851 is from a Gata3 KO mouse study that reported 25 genes

were relevant to the functional difference between the wild type and the KO. For

the performance evaluation, four different contexts: ‘Inflammatory response’,

‘Immune regulation’, ‘Cell differentiation’, ‘Cell proliferation’, the known func-

tions of Gata3 (Yagi et al., 2014; Wan, 2014). Dataset GSE54932 is from a Setd2

KO study, reporting 21 genes that are relevant to the phenotypic/functional dif-

ferences between the wild type and the KO. ‘Cell proliferation’, ‘DNAmismatch

repair’, ‘Endodermal differentiation’, and ‘Histone modification’ were used as

the contexts for the Setd2 KO study since they are keywords representing

well-known functions of Setd2 (Zhang et al., 2014; Feng et al., 2015). Dataset

GSE53398 of Barx2 KO mouse, was used for the last evaluation. The study
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Methods Precision Recall F-measure

DEG 0.0105 1 0.0208

IA 0.0239 0.72 0.0463

GeneFriends 0.0038 0.92 0.0075

CLIP-GENE (Immune regulation*) 0.0613 0.64 0.1122

CLIP-GENE (Inflammatory response) 0.0354 0.76 0.0677

CLIP-GENE (Cell differentiation) 0.0294 0.72 0.0564

CLIP-GENE (Cell proliferation) 0.0201 0.72 0.0391

Table 3.1: Performance of CLIP-GENE while analyzing GSE47851 (Gata3 KO)

The best performed measurement is marked with a star (*) with a bold context.

reported that 47 genes significantly differs when Barx2 is silenced. For the cor-

responding KO mouse data, we used ‘Myoblast progeny’, ‘Muscle maintenance’,

‘Chondrogenesis’, ‘Morphogenesis’ as the contexts for CLIP-GENE (Olguin and

Olwin, 2004; Mi et al., 2016; Zammit et al., 2004; Meech et al., 2012, 2005; Tsau

et al., 2011).

3.3.1 Performance with the best context

In terms of F-measure, CLIP-GENE achieved better performance in finding

phenotypical/functional relevant (validated) genes than other methods 3.1,3.2,

3.3, as well as prioritizing phenotypic/functionally relevant genes with proper

ranks (Hur et al., 2016).

Context ‘Immune regulation’ achieved the best performance for the Gata3

KO data, which performed about 5.4 times better than DEG, 2.4 better than IA,

and 15 times better than GeneFriends while ranking 4 genes in the top 10 gene

list among 25 validated genes. For the Setd2 KO data, CLIP-GENE ranked

4 genes among 21 validated genes in top 10 with the context ‘Endodermal
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Methods Precision Recall F-measure

DEG 0.0099 0.5238 0.0195

IA 0.0183 0.1905 0.0333

GeneFriends 0.0015 0.5238 0.0031

CLIP-GENE (Endodermal differentiation*) 0.2083 0.2381 0.2222

CLIP-GENE (Cell proliferation) 0.0252 0.3333 0.0468

CLIP-GENE (DNA mismatch repair) 0.1304 0.1429 0.1364

CLIP-GENE (Histone modification) 0.0408 0.1905 0.0672

Table 3.2: Performance of CLIP-GENE while analyzing GSE54932 (Setd2 KO)

The best performed measurement is marked with a star (*) with a bold text.

Methods Precision Recall F-measure

DEG 0.0071 0.7872 0.0142

IA 0.0111 0.3617 0.0215

GeneFriends 0.0036 0.617 0.0071

CLIP-GENE (Myoblast progeny) 0.1818 0.0426 0.069

CLIP-GENE (Muscle maintenance) 0.0476 0.0426 0.0449

CLIP-GENE (Chondrogensis) 0.1667 0.0426 0.0678

CLIP-GENE (Morphogenesis) 0.0217 0.4255 0.0412

Table 3.3: Performance of CLIP-GENE while analyzing GSE53398 (Barx2 KO)

The best performed measurement is marked with a star (*) with a bold text.
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differentiation’, achieving 11 times better than DEG, 6.7 times better than

IA, and 72 times better than GeneFriends. For the Barx2 KO data, context

‘Myoblast progeny’ achieved the best performance, achieving 4.8 times better

than the DEG, 3.2 times better than IA method, and 9.7 times better than

Gene Friends. In addition, CLIP-GENE was able to prioritize 2 genes among

47 validated genes in the top 10 from Barx2 KO data.

3.3.2 Performance with the worst context

In terms of F-measure, even with the worst performed context, CLIP-GENE

achieved better performance in predicting phenotypic/functionally relevant genes.

For the Gata3 KO data, context ‘Cell proliferation’ performed 1.9 times better

than DEG and 5.2 times better than GeneFriends, and slightly poor than IA.

CLIP-GENE ranked one gene in the top 10 among 25 validated genes. The

context ‘Cell proliferation’ performed the worst case for the Setd2 KO data,

which still performed better than DEG, IA, and GeneFriends while reporting

one gene among 21 validated genes in the top 10. ‘Morphogenesis’ was the worst

context for the Barx2 KO dataset. However, CLIP-GENE still performs better

than other methods while ranking 2 genes from the 47 validated genes in top 10,

which again suggests that CLIP-GENE promises significant results than other

compared methods even with the worst context.

3.4 Discussion

The performance of CLIP-GENE depends on the context that the user pro-

vided. However, in terms of candidate selection and prioritization, even with

the context that performed worst, CLIP-GENE was consistently superior to

DEG, IA, and GeneFriends. Transcriptome data from mouse models with cer-
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tain genes knocked out are widely used to investigate gene functions in terms of

phenotypes. In order to determine genes that are affected by the knocked out

TF, both selecting candidate genes and prioritizing genes are necessary. Only

three tools are available for the mouse data, but none of these tools was appro-

priate to prioritize genes of user’s interest from KO data. This study presents a

novel web service that select and prioritizes the candidate genes in terms of the

user’s experimental context. Two major contributions are: (i) CLIP-GENE al-

lows researchers to specify the experimental conditions in a set of keywords. Our

system automatically determines relevance between the keywords and genes so

that we can provide rankings of the candidate genes in the users’ context. (ii)

CLIP-GENE provides a comprehensive web service for the mouse KO experi-

ments by integrating multiple resources into a single framework: mouse GRN,

SNV information, PPI network, and literature information.
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Chapter 4

Integrating Venn diagram to the
network-based strategy for
comparing multiple biological
experiments

4.1 Background

Before performing advanced analysis (i.e. network analysis, gene set analysis,

or more) in transcriptome data, identifying DEGs is the very first step to un-

derstand the characteristics of the experiment. Since the number of DEGs can

be hundreds or thousands, understanding the difference between samples with

a list (or lists) of DEGs is not easy. An effective method to summarize a large

number of DEGs is to use Venn diagram. A simple, yet a powerful tool that can

illustrate the portion of each gene sets. The intuitive diagram helps researchers

to understand the common and distinctive characteristics of the experiments

that assist the decision for further investigation. However, there are several

issues when Venn diagram tries to compare and analyze multiple experiments.
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First of all, current Venn diagram tools are difficult to find genes that are

responsible for the phenotype differences. Most of the current Venn diagram ap-

plications are developed with the purpose of visualizing the correct appearance

of the diagram or to compare gene sets that aid researchers’ brief understand-

ing by giving additional knowledge such as enriched sub-network or gene sets

(Kestler et al., 2004; Martin et al., 2012; Kestler et al., 2008; Chen and Boutros,

2011; Heberle et al., 2015; Hulsen et al., 2008; Wang et al., 2014; Jeggari et al.,

2018). The provided information may be useful but it is difficult to design a

follow-up experiment with a simple list of gene sets.

Moreover, elucidating the phenotypic difference for the experiment designs

that have different controls is also an issue. For example, when a dataset of two

experiments that focus to find the differences of gene KO (KO) effect between

liver and muscle, the DEG of each experiment represents the tissue-specific

phenotypic difference. Thus, comparing the gene sets and the number of genes

of the two experiments is not informative enough to pinpoint whether the genes

are affected by the gene knock out effect or the tissue effect.

If it is possible to rank DEGs in a region of Venn diagram, then the re-

searcher can make a more informed decision and overcome the difficulties that

are described. To rank DEGs, this study combined the gene prioritization

method into Venn diagram. Gene prioritization is a widely used method to

rank genes by combining multiple database and methods to maximize the bio-

logical relevance to answer a difficult question that cannot be easily solved in

a single data. Network propagation is one of the widely used technique that

computes the influence of initial nodes (or seeds) to other nodes (Cowen et al.,

2017), and prioritize genes in the context of biological networks (Li and Pa-

tra, 2010; Smedley et al., 2014; Köhler et al., 2008; Vanunu et al., 2010; Lee

et al., 2011; Chen et al., 2009a, 2006). However, selection of seed genes is one
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of the critical factors for the network propagation analysis and becomes more

important when prior knowledge is not available or is not enough. This paper

suggests that the seed selection issue can be handled by allowing the user to

select seed genes freely in arbitrary combinations of regions in a Venn diagram.

We present Venn-diaNet: a web-based Venn diagram based network analysis

framework that can prioritize genes to compare multiple biological experiments

of transcriptome data. A convenient web-based user interface is provided to gen-

erate Venn diagrams of DEGs dynamically and to perform network propagation

experiments to investigate which genes are relevant to certain phenotypes. This

study suggests that Venn diagram, coupled with analytic methods such as net-

work propagation, can be a very useful tool for comparing multiple biological

experiments with different controls.

4.2 Methods

4.2.1 Taking input data

Venn-diaNet takes multiple DEG lists as input while each DEG list is resulted

by the comparison of treatment/control or treatment/treatment experiment

(Figure 4.1: Step 1). Each file must include one DEG list from one experiment.

For example, if a researcher wants to compare three different experiments, three

independent files of DEG list must be provided. The format of the file is as

follows. Each input file requires gene ID (transcript ID) for the first column

and gene symbol for the second column. We provide an example data on the

web page of Venn-diaNet for better understanding.
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Figure 4.1: Venn-diaNet work flow

Step 1 : Venn-diaNet receives DEG lists per experiments from user. Step 2 : Uploaded DEGs from step

1 are interpreted with a Venn diagram as well as organized as sets with table. Step 3 : Define specific

or multiple Ci as seeds for further network propagation analysis. Step 4 : Once the seed is defined,

Venn-diaNet instantiates a PPI network of DEGs from STRING DB. Network propagation with given

seeds from the previous steps. As a result, DEGs are ranked by the probability score calculated during

the Markov Random Walk.
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Figure 4.2: Key concept of Venn-diaNet

(A) Instantiate a PPI network with the DEGs from the multiple experiments. (B) When we are

interested in C1 that has similar function as C2, we can define C2 as seeds. (C) Performing network

propagation with Markov Random Walk. (D) Discard C3 genes (as well as seed genes) in order to

focus on C1 genes. Remaining genes are ranked by the probability score calculated from the previous

step.
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4.2.2 Generating Venn diagram of DEG sets

Venn-diaNet considers each experiment as a set for the diagram. Therefore,

With given number (=n) of experiments E, Venn-diaNet generates a diagram of

n circles that have 2n−1 regions. Each region is denoted as Ci (1 ≤ di ≤ 2n−1)

while each Ci contains genes of

Ci = {g : g ∈
⋂N

j=1G(bj)}, G(bj) =


Ej if j = 1

Ec
j if j = 0

b represents the binary number of Ci (i.e. C1 = 001) while bj indicates

the position of digits (i.e. b1 = 1, b2 = 0, b3 = 0). If Venn-diaNet receives

DEG lists from 3 experiments, Venn-diaNet illustrates a Venn diagram of 3

sets (E1,E2,E3) that have 7 regions (C1,C2,C3, · · · C7), where C7 contains

genes of E1 ∩E2 ∩E3. Ci represents specific DEGs to certain region that could

be considered as ‘condition specific genes’.

Seed selection

This step is the most important part of Venn-diaNet. A user can select multiple

(or a single) Ci as seeds for network propagation to measure the global influence

of the seed DEGs. Thus, the results will vary depending on the selected seeds.

Network propagation methods generally use informative genes as seeds. Such as

‘disease-related genes’, ‘phenotype-related genes’, or else. The idea of network

propagation in Venn-diaNet is very similar but does not need to select genes

that require prior knowledge. As the DEG in each region of the Venn diagram

can be considered as condition-specific DEGs, the DEG in Ci can be a guide

to find the similarities or dissimilarities to other Cj (j ̸= i) that researchers are

interested in. Because the selection is crucial, this study provides three possible

39



seed selection scenarios to help to understand the seed selection.

The first scenario is to consider ‘condition-specific function’ as seeds. Again,

DEGs in specific region can be considered as condition-specific DEGs. If the

researcher uses these genes as seeds, it can prioritize DEGs belonging to other

conditions in terms of functional similarity to the seed DEGs. For example, if

a user wants to prioritize tissue A-specific DEGs (Figure 4.2A: C1) that have

a similar function to the tissue B-specific DEGs when the same gene is KO,

tissue B specific-DEGs (Figure 4.2A: C2) can be used as seeds.

The second scenario is to consider ‘common function’ as seeds. In some

cases, a user might be interested in condition-specific DEGs that have a common

function in different experiments. For instance, if the user is interested in tissue

A-specific DEGs (Figure 4.2A: C1) that have similar function between two

different tissues, C3 can be seeds. Similarly, if the common KO effect in different

tissues are in interest (C3), C1+C2 can be seeds.

The last scenario is to consider seeds that have ‘Functional similarity’. Dis-

tinct from the two scenarios stated above, this study assumed a case that there

is no sufficient knowledge to select a certain condition as seeds. In this case, a

‘minimum guideline’ to choose certain conditions as seeds to rank the genes of

interest. If the user has multiple experiments and expects some DEGs in the

condition of interest (Ci) to have functional similarity to other condition DEGs

(Cj), the condition that has functional similarity to the condition of interest

will be appropriate to be as seeds. This guideline is suggested to prioritize genes

for experiments that study compound effects of multiple treatments which will

be introduced later.
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4.2.3 Network propagation and gene ranking

When a set of seed DEGs are selected, Venn-diaNet instantiates a protein-

protein interaction (PPI) network of DEGs from STRING DB (Szklarczyk et al.,

2014). In the instantiated network, nodes are DEGs and an edge between two

DEGs is defined when the corresponding edge in the original PPI network is of

high-confidence (combined score > 700). Then, Markov Random Walk (MRW)

(Dirmeier, 2018) is performed using the seeds selected in the previous step (Fig-

ure 4.1: Step 4). The goal of network propagation is to quantify the influence of

seed DEGs to the remaining DEGs. The selected seed DEGs can be considered

as the hypothesis that a user wants to test. Thus, by performing a network

propagation analysis, the user can obtain the DEGs pertaining to the hypoth-

esis. For the network propagation, an R package diffusr, the implementation

of MRW, is used. The equation is shown below:

pt+1 = (1− r)A′pt + rp0

where p0 is the vector of initialized nodes, t is a time step, pt is the vec-

tor at the current time step t, pt+1 is the vector at the next time step, A′ is

column-normalized matrix of adjacency matrix A, and r is the restart rate. p0 is

initialized in 1 or 0, to represent the assigned seed DEGs and target DEGs, and

normalized so the sum of the elements in p0 becomes 1. The adjacency matrix

A is a matrix consists with 0 or 1 that represents a graph with no weighted

edges. 0.5 is used for r and network propagation stops when L1 norm difference

between pt and pt+1 is smaller than 10−4, which are the default progress of the

diffusr package. When the algorithm stops, Venn-diaNet returns ranked gene

sets based on the network propagation result.
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Figure 4.3: Venn-diaNet (web) work flow

A work flow of Venn-diaNet (web). Step 1: Upload DEG lists per experiment. Step 2: Select seed

condition Ci Step 3: Perform analysis. Venn-diaNet gives user (1) list of ranked genes, (2) gene’s

neighbor nodes information (when the node is clicked). (3) Venn diagram with PPI network (when

the Venn diagram is zoomed in).

4.3 Results and Discussion

This study evaluated the performance of Venn-diaNet using three datasets

downloaded from the Gene Expression Omnibus (GEO) (Edgar et al., 2002)

or from the supplementary data of the corresponding published paper. Three

datasets were selected to show how to perform network propagation analysis

with different seed gene selections.

4.3.1 Venn-diaNet for two experiments

The dataset is from a study of Per2 KO mouse with two different tissues

(Grimaldi et al., 2010): (i) Per2 KO vs WT in white adipose tissue (WAT

Per2 KO), and (ii) Per2 KO vs WT in brown adipose tissue (BAT Per2 KO).

The authors used these DEGs and reported that several WAT specific expressed
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Figure 4.4: Venn-diaNet Per2 GO term Comparison

(A) Venn-diagram of GSE20165 experiment. C1 represents Per2 KO vs WT DEGs that is specific to

BAT while C2 represents WAT specific Per2 KO vs WT DEGs. (B) Enriched GO terms by DAVID

gene functional clustering analysis. Gene functional clustering was performed for each specific condition

(Ci). (C) Enriched GO terms of Top 30 genes prioritized by corresponding seeds.
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Gene FC C1 C3 C1+C3

Ucp1 2 18 16 14

Cidea 4 26 18 25

Acsm3 47 30 39 35

Pdk4 20 71 61 74

Cpt1b 11 6 20 6

Acads 129 58 27 61

Acadm 119 14 15 11

Acadl 95 52 28 58

Acadvl 67 37 12 34

Hadha 111 5 10 3

Hadhb 54 8 13 5

Cox7a1 14 62 66 67

Cox8b 12 22 43 28

PredictedCandidates 120 100 100 100

Table 4.1: Comparing ranking results of the Per2 KO experiment performed by

(Grimaldi et al., 2010)
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genes have similar behavior also BAT when Per2 is KO.

Venn-diaNet used these two experiments from this study to evaluate how

well Venn-diaNet could reproduce the effects of the corresponding study. For

convenience, this study denoted BAT Per2 KO specific DEGs as C1, WAT Per2

KO as C2, and the intersection DEGs of BAT Per2 KO and WAT Per2 KO as

C3 (Figure 4.4A). Venn-diaNet used this data to show that Venn-diaNet can

reproduce the authors’ results by following the authors’ inputs, interest, and

approach. The original paper reported that Per2 KO caused BAT-specific genes

to express in WAT by controlling PPARγ-dependent genes. Therefore, the aim

of this study is to find promising C2 DEGs that have the similar characteristic in

BAT tissue. Three suggested seed scenarios can be used to address the authors

interests. For each seed scenarios, the study compared (i) how the GO terms

of ranked top 10% genes match the GO terms reported in the original paper,

and (ii) how many genes match to the genes that were reported in the original

paper. Note that the authors used only fold change to rank genes and did not

use any gene prioritization method.

Condition specific function (C1) & common function as seeds (C3)

BAT Per2 KO specific DEGs (C1), can be used as seeds in order to prioritize

genes of WAT Per2 KO specific DEGs (C2). This scenario is to investigate that

some of the unknown PPARγ-dependent genes that express exclusively in BAT

somehow seems to be expressed in WAT when Per2 is KO. The phenomenon

indicates that there might be a functional similarity between these two different

conditions. Likewise, common DEGs between two experiments (C3) can also

be considered as seeds. Activation of BAT-specific PPARγ-dependent genes

in WAT also means that BAT and WAT have common functions. Thus, the

common function of these genes (C3) might be a guideline to prioritize WAT-
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specific genes with the context of ‘functional similarity’ between two different

tissues. It is interesting that Venn-diaNet could prioritize genes in top 30 (about

10% of total candidates) as well as prioritizing genes that are related to the

functions that the authors reported (Figure 4.4C, Table 4.1).

Analysis scenario with functional similarity as seeds (C1)

As discussed in the previous section, researchers might encounter a situation

where the user does not have sufficient knowledge to select seeds. In this case,

the suggested ‘minimum guideline’ to choose a certain condition as seeds to

rank genes in a condition of interest. For this, the study defined ‘The condition

that has functional similarity to the condition of interest will be appropriate to

be as seeds’ as a ‘minimum guideline’ to find seeds.

The process is very straight-forward. (i) Find the major GO terms of each

Ci, and (ii) use genes in Ci if the GO terms are similar to the condition Cj

(j ̸= i) that we want to prioritize. As a result, the study found that GO term

(mitochondrion) in C1 was similar to the condition of interest (C2) (Figure

4.4B). Thus, C1 becomes an appropriate seed for this scenario and the results

share the same which we discussed in the previous subsection.

Venn-diaNet is also tested with other possible seed scenarios (C1 + C3) to

confirm whether Venn-diaNet performs better than random seeds.

4.3.2 Venn-diaNet for three experiments

Data from a study of human papillomavirus oncogenes (Spurgeon et al., 2017)

is used for Venn-diaNet validation to consider the case of more complicated

experiment designs. The study observes the independent, synergistic effects of

two treatments: (i) K14E6/E7 bitransgenic mouse vs WT mouse (E6/E7), (ii)

estrogen treated mouse vs WT mouse (E2), and (iii) K14E6/E7 bitransgenic
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Gene FC C2 C4 C6 C2+C4 C2+C6 C4+C6 C2+C4+C6

Ccl3 284 236 27 159 78 246 35 91

Ccl6 107 15 188 171 53 24 206 62

Ccl28 257 36 220 242 94 54 240 107

Cd14 39 174 21 107 44 186 25 51

Cxcl1 12 125 131 142 144 143 148 156

Cxcl2 5 132 9 139 17 151 11 16

Cxcl3 9 139 166 202 232 161 184 248

Cxcl5 1 179 43 196 63 202 52 74

Cxcl16 268 121 139 129 159 141 156 169

Ecm1 207 238 312 282 320 258 319 324

Enpp3 346 14 230 122 71 21 241 77

Il1a 45 232 179 118 269 242 191 278

Il1b 111 117 34 20 32 114 19 21

Il1f6 213 378 378 373 385 380 380 387

Il23a 389 62 177 164 88 73 192 101

Il33 104 364 104 358 208 366 123 223

Met 211 127 60 21 52 118 27 34

Pglyrp1 16 73 341 303 179 86 347 199

Pycard 226 50 241 172 115 60 250 134

S100a8 7 248 65 121 130 257 77 143

S100a9 3 227 238 39 296 188 218 286

Spp1 99 80 189 155 118 92 205 135

Table 4.2: Comparing ranking results of the E6/E7 experiment performed by

(Spurgeonet al., 2017)
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Figure 4.5: Venn-diaNet HPV experiment GO term Comparison

(A) Venn-diagram of the experiment by (Spurgeonet al., 2017). C1 C2, and C4 represents E6/E7+E2

specific DEGs, E6/E7 specific DEGs, and E2 specific DEGs, respectively. (B) Enriched GO terms by

DAVID gene functional clustering analysis. Gene functional clustering was performed for each specific

condition (Ci). (C) Enriched GO terms of Top 100 genes prioritized by corresponding seeds.
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mouse treated with estrogen mouse vs WT mouse (E6/E7+E2) (Figure 4.5).

The study focused on E6E7+E2 DEGs (C1 + C3 + C5 + C7) to deter-

mine the synergistic effect of E6/E7 and E2. E6/E7 specific DEGs and E2

specific DEGs (C2 + C4) were selected for the seed scenario of ‘condition spe-

cific function’. The seed scenario represents that the independent effect of each

treatment as a guideline to find the effect of the combined factors. The goal for

this experiment is to reproduce GO terms and genes that the authors reported.

Condition specific function as seeds (C2 + C4)

As a result, Venn-diaNet could prioritize genes and GO terms that were re-

ported in the original paper by using the combination of independent effects of

two factors as seeds (C2 + C4) (Figure 4.5C and 4.2). However, several careful

consideration remains to be discussed. When Venn-dianet considers the prior-

itized top 20% genes, Venn-diaNet was not superior to the authors approach,

but it could prioritize genes that are related to the GO terms where the original

paper focused. In addition, Venn-diaNet could prioritize other genes that were

related to the function of interest (immune response & inflammatory response)

that are responsible for the HPV associated cervical cancer while the authors

did not.

For example, Tlr2, a gene that is known to be related to having a signifi-

cant role in HPV associated cervical cancer (Woodby et al., 2016; Zom et al.,

2016; Halec et al., 2018; Yang et al., 2018), was distinctively overexpressed in

E6/E7+E2. The results support that Tlr2 might be one of the significant gene

that is enhanced by the combined effect of E6/E7 and E2, which achieves the

condition of ‘inflammatory response are increased by epithelial E6/E7 expres-

sion and further enhanced by estrogen’. The study conjectured that Tlr2 was

not included in the original paper because the fold change of Tlr2 is not sig-
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nificant (ranked 332th in terms of fold change rankings). However, our gene

prioritization analysis ranked Tlr2 much higher in the 33rd place.

Likewise, CD74 has been reported that it may play an important role in

the pathogenesis and angiogenesis of cervical cancer (Cheng et al., 2011) as

well as the influence of the HPV (Klymenko et al., 2017). Venn-diaNet placed

this gene in the 76th position while fold change could only rank them as 182th.

Icam1 was ranked 76th in foldchange but had the 3rd position in Venn-diaNet

which also might have a E6/E7+E2 specific expression while Icam1 was also

reported to have a role with HPV related cervical carcinoma (Viac et al., 1992)

The comparison of Top 100 ranked genes related to ‘inflammatory response’ &

‘immune response’ is summarized in 4.2.

Functional similarity as seeds (C4)

C4 was selected by following the ‘minimum guideline’ to select seeds. Unlike

‘Condition specific function as seeds’, seeds chosen by functional similarity per-

formed weaker than the previous seeds. This is probably because the seed sce-

nario does not reflect the effect of E6/E7. E6/E7 is well known to change the

activity of cytokine and chemokine, and Venn-diaNet could not prioritize those

genes with not considering those effects in seeds (Figure 4.5C). The study em-

phasized that this seed scenario reflects that using seed genes from a singular

treatment is not effective to rank genes that is under the influence of multiple

treatments. However, Venn-diaNet could still prioritize 7 genes in top 100 with

seeds of ‘functional similarity’ (4.2). In addition, Venn-diaNet also tested every

other possible seeds, and the results indicate other seeds are less effective than

the suggested seed scenarios.
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4.3.3 Venn-diaNet for eight experiments

Case 3 uses a dataset from a study that designed the experiments with three

treatments and four tissues (Julien et al., 2017): (i) narciclasine (ncls), (ii)

high-fat diet (HFD), (iii) normal chow diet (NCD), (iv) WAT, (v) BAT, (vi)

liver, and (vii) muscle. The initial number of sets of this study were extremely

complicated that makes almost impossible to interpret the DEG list at once.

Thus, the authors used a step-by-step filtering method to find promising genes

for these multi-conditioned data. The authors searched the relation between

treatments and tissues using hierarchical clustering and narrowed down to com-

pare two DEG lists (HFD-ncls/HFD-veh, NCD-veh/HFD-veh) of muscle. The

study reported genes that have low expression level in HFD, changes to have a

high expression level when ncls was given. The results indicate that a natural

compound ncls can attenuate diet-induced obesity and the associated genes can

enhance the energy expenditure.

To reproduce the results what the authors made, we planned two different

scenarios. The first scenario is to follow the story of the authors: using two DEG

lists. The authors compared the expression profile of treatments and tissues

using hierarchical clustering as a very first step. They discovered that muscle

had partial mutual exclusive expression pattern to other tissues and made a

hypothesis of ‘ncls might accelerate genes to be expressed again while the genes

were suppressed in HFD environment in muscle’. The study assumed to reached

this step and use Venn-diaNet for the DEGs of HFD-ncls/HFD-veh and NCD-

veh/HFD-veh. Venn-diaNet will mimic this story with the concept of ‘Case 1:

Venn-diaNet for two experiments’ analysis of Venn-diaNet.

Another scenario is to find promising genes purely by Venn-diaNet, using

eight DEG lists. The goal of this scenario is to check whether Venn-diaNet can
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2 DEG list 8 DEG list

FC C1+ C2 C2 C3+C5+C192

Actc1 31 1 7 -

Tnni1 8 6 26 12

Myl2 10 23 25 9

Myh7 6 28 31 11

Tnnt1 13 5 28 10

Myl3 11 4 3 5

Tnnc1 9 20 24 15

Table 4.3: Comparing ranking results of the HFD experiment performed by

(Julien et al., 2017)

track down the reported genes, with a reasonable story.

Authors’ approach : two DEG list

As described in the previous section, the study also assumed to performed

hierarchical clustering and focus to find certain genes in C3 (Figure 4.6A) that

have the common characteristics of up-regulation when ncls is induced and

up-regulated in NCD without any treatments .

In order to prioritize genes in C3, the study used the seed scenario of

Condition specific function as seeds. DEGs that are common in both

experiments can be prioritized using the independent effects of each factor.

Therefore, C1+C2, the independent effect of each treatment was selected as

seeds to observe the influence to the genes that have same activity alteration in

HFD-ncls/HFD-veh and NCD-veh/HFD-veh (C3). The study found that Venn-

diaNet could prioritize and reproduce the genes where the authors reported
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Figure 4.6: Venn-diaNet HFD GO term Comparison

(A) Venn-diagram of GSE63268 experiment. C1 represents HFD (ncls/veh) specific DEGs while C2

shows veh (NCD/HFD) specific DEGs. (B) Enriched GO terms by DAVID gene functional clustering

analysis. Gene functional clustering was performed for each specific region. (C) Enriched GO terms of

Top 100 genes prioritized by corresponding seeds

(Table 4.3) as well as prioritizing GO terms of the authors’ interest with better

hit ratio (Figure 4.6C). The minimum guideline, ‘Functional similarity as seeds’

(C2) showed weaker gene prioritization but still had a better focus on GO terms

(Figure 4.6C and Table 4.3). In addition, this study is designed to find the com-

mon effect from independent conditions, meaning that the condition of interest

is closely related to each other condition. Therefore, it is natural to have poor

performance with the same reason that is discussed in the previous section.

Venn-diaNet approach: All (eight) DEG list

The study assumed that the researcher does not have enough knowledge of the

corresponding data, and try whether Venn-diaNet could reach to the authors’

conclusion. Venn-diaNet simply with all DEG lists (that contains up and down-

regulation) from eight different experiments at once (Figure 4.7A). The Venn
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Figure 4.7: Venn-diaNet using 8 different DEG list

(A) Using up and down-regulated DEG list to Venn-diaNet (web). The Venn diagram directly shows

muscle DEGs in HFD-ncls/HFD-veh C48, and NCD-veh/HFD-veh are similar to each other while

other tissues are not similar to each other. (B) Using up-regulated DEG list to Venn-diaNet. The

Venn diagram shows that up-regulated muscle DEGs in HFD-ncls/HFD-veh, and NCD-veh/HFD-veh

are very similar to each other while other tissues are not similar to each other.
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diagram shows that the intersection of HFD-ncls/HFD-veh and NCD-veh/HFD-

veh shared many DEGs in muscle (C48) than any other tissues (C3, C12, C192).

The findings of Venn diagram reaffirms the authors’ hierarchical clustering

results and leads to the idea that the intersection of HFD-ncls/HFD-veh and

NCD-veh/HFD-veh in muscle have common functions than other tissues, and

needs to be analyzed in detail. To start the detailed search, up-regulated DEG

list is used to examine whether Venn-diaNet can answer for the hypothesis of

‘ncls might accelerate genes to be expressed again while the genes were sup-

pressed in HFD environment in muscle’. As a result, This study discovered that

the condition of interest was much more distinct to other conditions (Figure

4.7B: C48) and the portion of common genes between HFD-ncls/HFD-veh and

NCD-veh/HFD-veh in muscle was bigger than any other tissue (C48, C3, C12,

C192). The findings indicate that up-regulation of C48 is likely to be more spe-

cific and distinct to other tissues. To prioritize genes in C48, ‘common functions

as seeds’ is chosen for the seed scenario. This study selected the intersection

of HFD-ncls/HFD-veh and NCD-veh/HFD-veh of other tissues as seeds (C3,

C12, C192) to represent that the function of ’ncls might accelerate genes to be

expressed again while the genes were suppressed in HFD environment’ in other

tissues can assist to prioritize genes in muscle. As a result, this study was able

to reproduce genes that the authors reported in their original paper (Table 4.3).

In addition to seed selection, the minimum guideline cannot be used for this

complex condition data. The data is composed of 255 conditions that make it

difficult to compare and analyze the GO terms of all these conditions.

4.3.4 Venn-diaNet performance with different PPI network

Currently, there are multiple databases that contain PPI information while

Venn-diaNet performed network propagation to the network topology of STRING
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Gene FC C1 C3 C1+C3

Ucp1 2 - - -

Cidea 4 7 17 8

Acsm3 47 - - -

Pdk4 20 28 8 30

Cpt1b 11 51 49 52

Acads 129 60 59 60

Acadm 119 22 51 24

Acadl 95 53 52 54

Acadvl 67 56 56 57

Hadha 111 19 44 21

Hadhb 54 21 46 23

Cox7a1 14 - - -

Cox8b 12 - - -

PredictedCandidates 120 62 62 62

Table 4.4: Comparing ranking results of the Per2 KO experiment performed by

(Grimaldi et al., 2010) using PPI network from BioGRID
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Gene FC C2 C4 C6 C2+C4 C2+C6 C4+C6 C2+C4+C6

Ccl3 284 124 122 103 145 126 124 147

Ccl6 107 - - - - - - -

Ccl28 257 - - - - - - -

Cd14 39 38 165 154 78 41 166 82

Cxcl1 12 - - - - - - -

Cxcl2 5 139 138 123 156 141 140 158

Cxcl3 9 - - - - - - -

Cxcl5 1 - - - - - - -

Cxcl16 268 - - - - - - -

Ecm1 207 - - - - - - -

Enpp3 346 - - - - - - -

Il1a 45 28 134 118 62 30 136 65

Il1b 111 47 72 28 99 53 76 104

Il1f6 213 - - - - - - -

Il23a 389 - - - - - - -

Il33 104 172 172 165 180 173 173 181

Met 211 72 9 36 19 79 11 19

Pglyrp1 16 - - - - - -

Pycard 226 176 176 169 184 177 177 185

S100a8 7 123 121 102 144 125 123 146

S100a9 3 - - - - - - -

Spp1 99 127 125 106 148 129 127 150

Table 4.5: Comparing ranking results of the E6/E7 experiment performed by

(Spurgeonet al., 2017) using PPI network from BioGRID
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Figure 4.8: Venn-diaNet performance comparison between STRING and BioGrid

A barcode plot to distinguish the prioritized results. (A) Per2 KO experiment with Seed C1. left;

SRINGDB, right; BioGrid. (B) Per2 KO experiment with Seed CC . left; SRINGDB, right; BioGrid.

(C) E6/E7 experiment with Seed C2+C4. left; SRINGDB, right; BioGrid. (B) HFD experiment with

Seed C1+C2. left; SRINGDB, right; BioGrid.
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2 DEG list 8 DEG list

FC C1+ C2 C2 C3+C5+C192

Actc1 31 36 35 -

Tnni1 8 - - -

Myl2 10 - - -

Myh7 6 11 7 13

Tnnt1 13 - - -

Myl3 11 33 26 20

Tnnc1 9 35 34 27

Table 4.6: Comparing ranking results of the HFD experiment performed by

(Julien et al., 2017) using PPI network from BioGRID

DB (combined score > 0.4). We considered that the Venn-diaNet might have

different gene prioritization results with different network topology and the net-

work propagation from STRING DB could contain a number of false positives

due to the nature of the STRING DB (several PPI information are not biologi-

cally validated). Therefore it is important to compare whether the results varies

by using the different network that contains higher biological evidence. We ad-

ditionally performed the same process and compared the ranks between results

between STRING to BioGRID (Stark et al., 2006). As a result, we confirmed

that network propagation using network from STRING DB was overall more

effective than the network from the BioGRID that can prioritize the reported

genes in higher ranks (Table 4.4, 4.5 and 4.6)(Figure 4.8).
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4.4 Discussion

This study presented Venn-diaNet, a web-based software that does not require

any additional installment or registration. Venn-diaNet draws a Venn diagram

from a given input and prioritizes genes by network propagation. This study sug-

gested that a Venn diagram can support selecting seeds for network propagation

and introduced several examples to show the idea can effectively prioritize genes

that are related to the function of interests. Venn-diaNet is designed not only to

avoid the ‘black-box’ issue in gene prioritization which is caused by the integra-

tion of heterogeneous databases but also to address a logical approach for seed

selection of network propagation. Venn-diaNet supports gene list with ranking

and additional features that explains how the specific gene is influential to other

genes. Venn-diaNet is available at: biohealth.snu.ac.kr/software/venndianet.
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Chapter 5

Conclusion

Identifying promising genes from a large pool of candidates that represent the

phenotypic differences, is one of the common goals during RNA-Seq analysis.

Although, a number of studies have demonstrated various approaches for pri-

oritizing genes, the challenges in deciding the most appropriate combination of

analysis methods for a complicated experimental design, as well as the difficul-

ties in handling strategies that rank irrelevant genes, still persist. This thesis

summarized three studies to address these difficulties:

1. A filtering strategy that combines DEG, GRN, pathways, and SNVs to

handle the statistical bias caused by a small number of samples in mouse

gene KO data.

2. A data fusion strategy that combines text-mining and PPI network to

rank genes filtered by DEG, GRN, and SNVs to focus on the context of

the experiment design.

3. A network strategy that uses Venn diagram to have an advantage in seed
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selection and interpretation, and perform network propagation to rank

candidate genes.

The first study analyzes RNA-Seq data by (i) removing the less informative

DEGs using GRN, biological pathways, and (ii) filtering out genes that differ

among samples on the basis of SNVs. This study demonstrated that the in-

tegration of multiple filters enabled better gene prioritization and refined the

candidates by eliminating the genetic differences among samples. The second

study developed an informatics system to avoid ranking irrelevant genes by

allowing the user to specify the context of the experiment. CLIP-GENE priori-

tizes genes of KO experiments by (i) removing the less informative DEGs using

GRN, (ii) discarding genes that vary among samples on the basis of SNVs, and

(iii) ranking genes that are related to the user’s context using text-mining tech-

nique, as well as considering the shortest path of PPI to the KO gene. The last

study addressed the seed selection issue by integrating Venn diagrams into the

network-based strategy. The study developed an informative gene prioritiza-

tion system that can compare multiple biological experiments in Venn diagram

and select seed genes that are free from the pressure of prior knowledge. The

study demonstrated that Venn-diaNet was able to reproduce the findings of the

original papers that have reported complicated experiments with an intuitive

interpretation.

In conclusion, this thesis summarizes the difficulties of RNA-Seq analysis

methods and has created three different informatics systems that combine net-

work approaches with other methods to prioritize phenotype-specific genes from

RNA-Seq data. For each approach, we have developed software packages and

web tools for researchers to have convenient access to the methods, and hope

that these methods will provide a good starting point for RNA-seq analysis.
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초록

RNA-seq기술은게놈규모의전사체를고해상도로분석가능하게만들었으나,일

반적으로 전사체 데이터에서 나타나는 유전자의 수는 많기 때문에 추가 분석 없이

연구 목표와 관련된 유전자를 식별하기가 어렵다. 따라서 전사체 데이터 분석은

종종 생물 네트워크, 유전자 정보 데이터베이스, 문헌 정보 같이 서로 다른 자원을

활용하여 분석하게 된다. 그러나 자원들 간의 관계는 이질적인 부분이 존재하여

서로 직접적으로 연결하여 해석하기 어려우며 어떠한 유전자가 실험 목표와 관

련이 있는지를 구체적으로 이해하기 힘들다. 따라서 특정 연구 목표와 관련 있는

핵심 유전자를 효과적으로 결정하고 설명하기 위해서는 이러한 이질적인 자원을

효과적으로 통합할 강력한 전산 기법이 필요하다. 본 논문에서는 네트워크 기반

접근법을 사용하여 전사체 데이터를 분석하고 실험 목표와 관련 있는 유전자를

찾기 위한 세 가지 생물 정보 시스템을 개발했다.

첫 번째 연구는 RNA-Seq 데이터의 특성을 활용하여 샘플 수가 적은 유전자

녹아웃 (KO) 마우스 실험에서 중요한 유전자를 찾기 위한 정보학 시스템을 개발

하였다. 이 시스템은 유전자 조절 네트워크 (GRN)와 패스웨이 정보를 사용하여

유의함이 적은 Differentially Expressed Gene (DEG)를 제거하고 단일 염기 변

이 (SNV) 정보를 사용하여 샘플 간 유전적 차이로 인해 다를 수 있는 유전자를

제거한다. 이 연구는 네트워크와 SNV 정보의 통합을 통해서 후보 유전자의 수를

유의미하게 줄일 수 있음을 보여주었다.

두 번째 연구는 사용자의 실험 목표를 반영할 수 있는 유전자 랭킹 시스템인

CLIP-GENE을 개발하였다. CLIP-GENE은 쥐의 전사인자 KO 실험에서 유전자

를랭킹하기위한통합분석웹서비스이다. CLIP-GENE은후보유전자에랭킹을

부여하기 위해 GRN, SNV 정보를 이용하여 샘플 개체 간의 차이가 있고 덜 유

의미한 후보 유전자를 제거하고 텍스트 마이닝 기술과 단백질-단백질 상호작용

75



네트워크 정보를 이용하여 사용자의 실험 목표와 관련된 유전자를 랭킹한다.

마지막 연구는 벤 다이어그램을 사용하여 다수의 RNA-Seq 실험을 비교분석

할수 있는 정보 시스템을 개발하였다. RNA-Seq 실험은 일반적으로 비교 및 대조

군의샘플을비교하여 DEG를생성하고벤다이어그램을통하여샘플간의차이를

분석한다. 그러나 벤 다이어그램 상에서의 각 영역은 다양한 비율의 DEG를 포함

하고 있으며, 특정 영역의 DEG는 서로 다른 비교군(혹은 대조군)에 의한 DEG

이기에 단순히 유전자 목록 간의 차이를 비교하는 것은 적절하지 못하다. 이러한

문제를 해결하기 위해 벤 다이어그램과 네트워크 전파(Network Propagation)를

사용한 통합 분석 프레임워크인 Venn-diaNet이 개발했다. Venn-diaNet은 다수

의 DEG 목록이 있는 실험의 유전자를 랭킹할 수 있는 정보 시스템이다. 우리는

Venn-diaNet이 서로 다른 조건에서 생물학적 실험을 비교함으로써 원본 논문에

보고된 연구 결과를 재현 할 수 있음을 보여주었다.

정리하면 이 논문은 전사체 데이터로부터 유전자를 랭킹할 수있는 정보 시스

템을 개발하기 위해 네트워크 기반 분석법을 다양한 자원들과 결합하였으며, 다른

연구자의 편리한 사용 경험을 위해 친화적인 UI를 가진 웹도구 또는 소프트웨어

패키지로 제작 및 배포하였다.

주요어: RNA-seq, 유전자 랭킹, 정보 분석 시스템, 네트워크 분석

학번: 2012-23113

76


	Chapter 1 Introduction
	1.1 Challenges of analyzing RNA-Seq data . . . . . . . . . . . . . . .
	1.1.1 Excessive amount of databases and analysis methods . . .
	1.1.2 Knowledge bias that prioritizes less relevant genes . . . .
	1.1.3 Complicated experiment designs . . . . . . . . . . . . . .

	1.2 My approach to address the challenges for the analysis of RNASeq data . . .
	1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	1.3.1 Differentially expressed gene . . . . . . . . . . . . . . . .
	1.3.2 Gene prioritization . . . . . . . . . . . . . . . . . . . . . .

	1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . .

	Chapter 2 A filtering strategy that combines GRN, SNV information to enhances the gene prioritization in mouse KO studies with small number of samples
	2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2.2.1 First filter : DEG . . . . . . . . . . . . . . . . . . . . . . .
	2.2.2 Second filter : GRN . . . . . . . . . . . . . . . . . . . . .
	2.2.3 Third filter : Biological Pathway . . . . . . . . . . . . . .
	2.2.4 Final filter : SNV . . . . . . . . . . . . . . . . . . . . . . .

	2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . .
	2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	Chapter 3 An integration of data-fusion and text-mining strategy to prioritize context-laid genes in mouse TF KO experiments
	3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2.1 Selection of initial candidate genes. . . . . . . . . . . . . .
	3.2.2 Prioritizing genes with the user context and PPI . . . . .

	3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . .
	3.3.1 Performance with the best context . . . . . . . . . . . . .
	3.3.2 Performance with the worst context . . . . . . . . . . . .

	3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	Chapter 4 Integrating Venn diagram to the network-based strategy for comparing multiple biological experiments
	4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2.1 Taking input data . . . . . . . . . . . . . . . . . . . . . .
	4.2.2 Generating Venn diagram of DEG sets . . . . . . . . . . .
	4.2.3 Network propagation and gene ranking . . . . . . . . . . .

	4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . .
	4.3.1 Venn-diaNet for two experiments . . . . . . . . . . . . . .
	4.3.2 Venn-diaNet for three experiments . . . . . . . . . . . . .
	4.3.3 Venn-diaNet for eight experiments . . . . . . . . . . . . .
	4.3.4 Venn-diaNet performance with different PPI network . . .

	4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	Chapter 5 Conclusion
	Bibliography
	초록


<startpage>15
Chapter 1 Introduction 1
 1.1 Challenges of analyzing RNA-Seq data . . . . . . . . . . . . . . . 3
  1.1.1 Excessive amount of databases and analysis methods . . . 4
  1.1.2 Knowledge bias that prioritizes less relevant genes . . . . 5
  1.1.3 Complicated experiment designs . . . . . . . . . . . . . . 5
 1.2 My approach to address the challenges for the analysis of RNASeq data . . . 6
 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
  1.3.1 Differentially expressed gene . . . . . . . . . . . . . . . . 7
  1.3.2 Gene prioritization . . . . . . . . . . . . . . . . . . . . . . 8
 1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 2 A filtering strategy that combines GRN, SNV information to enhances the gene prioritization in mouse KO studies with small number of samples 10
 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
 2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
  2.2.1 First filter : DEG . . . . . . . . . . . . . . . . . . . . . . . 12
  2.2.2 Second filter : GRN . . . . . . . . . . . . . . . . . . . . . 13
  2.2.3 Third filter : Biological Pathway . . . . . . . . . . . . . . 14
  2.2.4 Final filter : SNV . . . . . . . . . . . . . . . . . . . . . . . 14
 2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 15
 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 3 An integration of data-fusion and text-mining strategy to prioritize context-laid genes in mouse TF KO experiments 21
 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
  3.2.1 Selection of initial candidate genes. . . . . . . . . . . . . . 25
  3.2.2 Prioritizing genes with the user context and PPI . . . . . 26
 3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 27
  3.3.1 Performance with the best context . . . . . . . . . . . . . 30
  3.3.2 Performance with the worst context . . . . . . . . . . . . 32
 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Chapter 4 Integrating Venn diagram to the network-based strategy for comparing multiple biological experiments 34
 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
  4.2.1 Taking input data . . . . . . . . . . . . . . . . . . . . . . 36
  4.2.2 Generating Venn diagram of DEG sets . . . . . . . . . . . 39
  4.2.3 Network propagation and gene ranking . . . . . . . . . . . 41
 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 42
  4.3.1 Venn-diaNet for two experiments . . . . . . . . . . . . . . 42
  4.3.2 Venn-diaNet for three experiments . . . . . . . . . . . . . 46
  4.3.3 Venn-diaNet for eight experiments . . . . . . . . . . . . . 51
  4.3.4 Venn-diaNet performance with different PPI network . . . 55
 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Chapter 5 Conclusion 61
Bibliography 62
초록 75
</body>

