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Abstract

Transcriptomic analysis, the measurement of transcripts on the genome scale,
is now routinely performed in high resolution. Since the number of genes ob-
tained in the transcriptome data is usually large, it is difficult for researchers
to identify genes that are relevant to their research goals, without additional
analysis. Analysis of transcriptome data is often performed utilizing heteroge-
neous resources such as biological networks, annotated gene information, and
published literature. However, the relationship among heterogeneous resources
is often too complicated to decipher which genes are relevant to the experimen-
tal design. Therefore, powerful computational methods should be coupled with
these heterogeneous resources in order to effectively determine and illustrate
key genes that are relevant to specific research goals. In my doctoral study, I
have developed three bioinformatics systems that use network approaches to an-
alyze transcriptome data and rank genes that are relevant to the experimental
design.

The first study was conducted to develop a bioinformatics system that could
be used to analyze RNA-Seq data of gene knockout (KO) mice, where the sam-
ple number is small. In this case, the main objectives were to investigate how
the KO gene affects the expression of other genes and identify the key genes
that contribute significantly to the phenotypic difference. To address these ques-
tions, I developed a gene prioritization system that utilizes the characteristics
of RNA-Seq data. The system prioritizes genes by removing the less infor-
mative differentially expressed genes (DEGs) using gene regulatory network

(GRN) and biological pathways. Next, it filters out genes that might be differ-



ent due to genetic differences between samples using single nucleotide variant
(SNV) information. Consequently, this study demonstrated that the integration
of networks and SNV information was able to increase the performance of gene
prioritization.

The second study was conducted to develop a gene prioritization system
that allows the user to specify the context of the experiment. This study was
inspired by the fact that the currently available analysis methods for transcrip-
tome data do not fully consider the experimental design of gene KO studies.
Therefore, I envisaged that users would prefer an analysis method that took into
consideration the characteristics of the KO experiments and could be guided
by the context of the researcher who has designed and performed the biological
experiment. Therefore, I developed CLIP-GENE, a web service of the condition-
specific context-laid integrative analysis for prioritizing genes in mouse TF KO
experiments. CLIP-GENE prioritizes genes of KO experiments by removing the
less informative DEGs using GRN, discards genes that might have sample vari-
ance, using SNV information, and ranks genes that are related to the user’s
context using the text-mining technique, as well as considering the shortest
path of protein-protein interaction (PPI) from the KO gene to the target genes.

The last study was conducted to develop an informative system that could
be used to compare multiple RNA-Seq experiments using Venn diagrams. In
general, RNA-Seq experiments are performed to compare samples between con-
trol and treated groups, producing a set of DEGs. Each region in a Venn dia-
gram (a subset of DEGs) generally contains a large number of genes that could
complicate the determination of the important and relevant genes. Moreover,
simply comparing the list of DEGs from different experiments could be mis-
leading because some of the DEG lists may have been measured using different

controls. To address these issues, Venn-diaNet was developed, an analysis frame-
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work that integrates Venn diagram and network propagation to prioritize genes
for experiments that have multiple DEG lists. We demonstrated that Venn-
diaNet was able to reproduce research findings reported in the original papers
by comparing two, three, and eight biological experiments measured in differ-
ent conditions. I believe that Venn-diaNet can be very useful for researchers to
determine genes for their follow-up studies.

In summary, my doctoral study aimed to develop computational tools that
can prioritize genes from transcriptome data. To achieve this goal, I combined
network approaches with multiple heterogeneous resources in a single compu-
tational environment. All three informatics systems are deployed as software
packages or web tools to support convenient access to researchers, eliminating

the need for installation or learning any additional software packages.

Keywords: RNA-seq, Gene prioritization, Informatics system, Network-based
approach
Student Number: 2012-23113
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Chapter 1

Introduction

RNA-Seq is one of the popular technologies that estimates the abundance of
global RNAs to identify genes that are relevant to the experimental design
(Ozsolak and Milos, 2011; Li and Li, 2018). The data provides an unprecedented
amount of information and details that cannot be handled in a single process.
Therefore, the expression profile from RNA-Seq data is generally analyzed by
using multiple databases and methods in order to obtain useful insight (Li and
Li, 2018).

For more than a decade, studies have introduced a number of approaches
and applications to analyze RNA-Seq data. However, it is largely difficult to
pinpoint a gene with enough evidence to infer the relationship between the
gene and the phenotype, in a single-step analysis. For example, differentially
expressed gene (DEG) analysis is an analysis that finds genes that have sta-
tistically altered expressions, however, it does not provide enough information
to explain why and how there is a phenotypic difference between samples. To

overcome the limitations of single-step analysis, a number of studies have intro-
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Figure 1.1: Work flow for prioritizing genes (Moreau and Tranchevent, 2012)

duced strategies that combine multiple data sources and methods to compen-
sate for the insufficient information obtained from a single-step analysis (Figure
1.1)(Moreau and Tranchevent, 2012; Tranchevent et al., 2010).

However, a number of databases and analysis methods, as well as strategies
to combine these elements exist (Figure 1.2). Therefore, it is now a challenging
task to select a strategy that is tailored for the goal of the experiment, with the
appropriate combination of tools to analyze RNA-Seq data.

My doctoral study addresses the challenges in analyzing RNA-Seq data
with three informatics systems that prioritize genes based on networks. The
first study was conducted to analyze RNA-Seq data that have a small number
of samples. The second study was conducted to overcome the challenges of

gene ranking that does not reflect user interest. The third study was conducted

2 s g e ki)



0
3-8 4

c Data Data Data Data
source 1/\ source source 3/ \ source 4,

Candidates ‘ Integration

Vo
oo

]

)
Ay
Pt
w
N
S
O

Figure 1.2: Various strategies to prioritize genes (Moreau and Tranchevent, 2012)

to analyze complicated RNA-Seq data that have multiple conditions, with an

intuitive interpretation on.

1.1 Challenges of analyzing RNA-Seq data

The challenges to find phenotype-related genes with RNA-Seq data can be sum-
marized into three reasons. (i) Large number of databases and methods make
selection of the correct combination difficult and confusing (7i) Knowledge-bias
that prioritize less relevant genes. (ii4) Complicated experiment designs (i.e:
multiple control/treatments, a small number of samples) that is difficult to

analyze.
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1.1.1 Excessive amount of databases and analysis methods

Intensive research has led to the creation of a large number and variety of
databases and methods for the analysis of transcriptomic data. However, the
vast array of options makes selection of the correct combination that would be
ideal for one’s research, difficult. To overcome this issue, studies have suggested
various data combination strategies to identify promising genes (Moreau and
Tranchevent, 2012)(Figure 1.2), however, these strategies have their limitations,
which need to be addressed.

For example, filtering strategy, a strategy that uses multiple databases (or
methods) as filters and removes the less significant candidate genes step wise
(Figure 1.2a), is a straight forward strategy that strictly reduces the number
of candidates that do not satisfy each criterion. However, if the filters do not
have enough discrimination power, they will fail to screen out the less promising
candidates. On the contrary, if the filters are too stringent, this strategy will
give rise to a number of false negatives. Therefore, it is very challenging to
adjust the level of discrimination power according to the combination of data
sources.

Unlike filtering strategy, data fusion strategy has the advantage of eliminat-
ing false negatives caused by the stringent thresholds among filters by scoring
the candidates at each data source and summarizes the overall ranks (Figure
1.2b). However, because the strategy combines heterogeneous data sources, the
relationship between input and output data sources becomes complicated, and
the complexities increase according to the number of data sources. Therefore,
it is difficult to make an intuitive interpretation for the final results and this
makes the analysis tools to have ‘black-box’ like characteristics (Moreau and

Tranchevent, 2012).



Therefore, despite the availability of an abundance and variety of databases

and methodologies, it is difficult to effectively combine these sources.

1.1.2 Knowledge bias that prioritizes less relevant genes

The knowledge bias between genes in databases can cause difficulties in iden-
tifying promising genes with data fusion strategy (Moreau and Tranchevent,
2012). Because the strategy evaluates candidate genes by utilizing multiple
data sources, a well-studied gene is likely to be over-represented in multiple
databases and cause biased rank even if it is not relevant to the experiment de-
sign. Therefore, it is necessary to address the biased-rank genes as well as prior-
itizing genes that are focused on the context of experimental design. Moreover,
knowledge bias affects the network-based strategies that use network propa-
gation, which is now one of the most powerful and common techniques to in-
vestigate the relationship between candidate genes and known genes (usually
disease-related genes). However, this strategy largely relies on seeds that require
prior knowledge to select proper seeds. If the prior information is insufficient for
the selection of appropriate seed genes, the results of the network propagation
will be less likely to reveal similarities between two different genes. Neverthe-
less, a few studies have used sequence features or topology features instead
of prior knowledge to overcome these difficulties (Lépez-Bigas and Ouzounis,
2004; Adie et al., 2005; Chen et al., 2009b). However, seed selection is difficult

for transcriptome-based experiments that have poor prior knowledge.

1.1.3 Complicated experiment designs

DEGs are common elements used as initial candidates that are combined with
other data sources for the identification of promising genes. However, discov-

ering phenotype-dependent genes from complicated experimental designs (such



as mouse gene KO experiments that have a small number of samples, or experi-
ments that have multiple control/treated groups) is difficult with the currently
available strategies. If the number of samples is small, the statistical evidence
of DEGs can be weak, suggesting that differential gene expression (giving rise
to DEGs) may have been caused by effects other than the conditional differ-
ences (i.e. genetic difference between biological replicates). If the false positives
are considered during gene prioritization, identification of the true phenotype-
related genes with the strategies that combine DEGs, is more challenging.
Studies that compare multiple DEG lists usually have experimental designs
that include multiple control and treatment groups, increasing the complexity
of sample comparison. Since each DEG list with different controls (or treatment
groups) indicates different biological differences, simply adding or subtracting
the entries between these lists might not be intuitive enough to decipher the
biological meaning of the subset of genes. The complexity of the problem further

increases with increasing number of DEG lists.

1.2 My approach to address the challenges for the
analysis of RNA-Seq data

This thesis introduces three studies, each of the studies introduces an informat-
ics system that uses a unique combination of network and data sources to solve
the challenges prioritizing genes that are related to the phenotypic difference.

1. Combined analysis of gene regulatory network and SNV infor-
mation enhances identification of potential gene markers in mouse
gene KO studies with a small number of samples : a filtering strategy
that addresses the challenge of complicated experimental design having a small

number of samples by (i) removing less informative DEGs using gene regula-



tory network (GRN), biological pathways, and (ii) filtering out genes that differ
between samples based on the presence of SNVs. As a result, this study was
able to show that the integration of network and SNV information increases the
performance of gene prioritization. The key idea of the method is to reconfirm
that the DEGs have resulted as an effect of gene KO, rather than due to genetic
differences between different samples.

2. CLIP-GENE: a web service of the condition-specific context-laid
integrative analysis for gene prioritization in mouse TF KO exper-
iments : a data fusion strategy that focuses on rank genes that are related
to the experimental design. CLIP-GENE (i) removes less informative DEGs
using GRN, (ii) discards genes that have sample variance with SNV, and (iii)
ranks genes by using protein-protein interaction (PPI) network information and
text-mining technique.

3. Venn-diaNet : Venn diagram based network propagation analysis
framework for comparing multiple biological experiments a Venn di-
agram based network propagation analysis framework to prioritize genes that
address the challenge of complicated experimental design, having multiple con-
trols and treatment groups as well as seed selection for network propagation.
Venn-diaNet was able to reproduce the original findings of experiments which
comprised analysis and comparison of multiple biological transcriptomic data,

measured in multiple conditions.

1.3 Background

1.3.1 Differentially expressed gene

Once the abundance of global mRNAs is measured, estimating the DEGs be-

tween samples is one of the great starting points to understand the characteris-



tics of the phenotype differences (Marioni et al., 2008). Measuring the expres-
sion differences that is statistically significant have proved to be a successful
approach to find genes that is responible for the phenotypic differences (Hard-
castle and Kelly, 2010; Robinson et al., 2010; Anders and Huber, 2012; Trapnell
et al., 2013; Leng et al., 2013; Li and Tibshirani, 2013; Tarazona et al., 2015).
The statistical approach to calculate DEG varies based on the distributional
assumptions. Software such as DEGseq (Wang et al., 2009), MyRNA (Lang-
mead et al., 2010), and PoissonSeq (Li et al., 2012) use Poisson model for
RNA-Seq count data while edgeR (Robinson et al., 2010), DESeq (Anders and
Huber, 2012), and DESeq2 (Love et al., 2014) use negative binomial model. In
addition, there are more DEG calculation software tools that use more other
statistical models. However, it is important to understand the characteristics of

the models and carefully apply to the data (Huang et al., 2015).

1.3.2 (Gene prioritization

Gene prioritization is a strategy that identifies the most promising genes from
a large pool of candidates by integrating multiple data source for further down-
stream screens (Figure 1.2). The integration of the list of genes and external
data sources allows increasing the data dimension from 1D (simple gene list) to
a higher dimension that can have much more explanation to the data (Moreau
and Tranchevent, 2012; Cowen et al., 2017). Currently, the strategy of gene
prioritization can be generally categorized into four types. (i) filtering strat-
egy, (ii) profiling and data fusion, (%ii) text-mining, and (iv) network analysis
(Moreau and Tranchevent, 2012).

Filtering strategy is an approach that uses multiple data source (or meth-
ods) as filters while each filter removes less significant candidate genes step by

step (Figure 1.2a). Unlike filtering strategy, data fusion strategy has the advan-



tage to avoid the false negatives caused by the hard thresholds among filters by
scoring the candidates at each data sources and summarizes the overall rank
(Figure 1.2b). Text-mining is a data mining method that finds the associations
between given keywords. In bioinformatics, text-mining is a strategy that finds
the associations between candidate genes and knowledge (disease, phenotype or
else) while the relationship between two elements is retrieved by information re-
trieval methods (Krallinger et al., 2008; Winnenburg et al., 2008)(Figure 1.2c).
Network-based strategy uses various type of networks (biological pathway, PPI,
GRN) to find the similarity between the candidate genes and networks. Net-
work propagation is one of the popular technique to find the similarity between
candidate genes and seed genes using networks while seed genes are often de-
fined as disease genes or phenotype-relevant genes that requires prior knowledge

(Figure 1.2d).

1.4 Outline of the thesis

Chapter 2 elaborates on the process of integration of network and SNV in-
formation, which was able to improve the statistical bias from mouse gene KO
experiments that have a small number of samples. Chapter 3 describes a system
that combines GRN, PPI, and text-mining techniques to prioritize genes that
focus on the context of the experiment. Chapter 4 demonstrates that Venn dia-
gram has a great advantage in prioritizing genes that can address the challenges
of heterogeneous data and seed selection issues for network propagation. Chap-
ter 5 summarizes and concludes the studies that are presented in this thesis.

The bibliography of the cited references is organized at the end of the thesis.



Chapter 2

A filtering strategy that combines
GRN, SNV information to
enhances the gene prioritization in
mouse KO studies with small
number of samples

2.1 Background

DEGs from RNA-Seq data are often used for finding significant genes that can
explain the phenotypic differences between control and cases (Oshlack et al.,
2010; Frazee et al., 2014). However, in gene KO studies, discovering phenotype-
dependent gene only with DEG can be difficult because distinguishing whether
the expression alteration is resulted by the inactivation of the KO gene or
by the genetic variations that were merely from differences in samples rather
than phenotypic differences. And the problem becomes much more challenging
when the number of samples is small, an issue that RNA-Seq experiments face

frequently (Tarazona et al., 2011). Various methods and models were proposed

10



to overcome the difficulties of selecting phenotype related DEGs from a small
number of samples such as the Poisson model (Marioni et al., 2008), Bayesian
approaches (Vreugdenhil et al., 2008; Anders and Huber, 2010), or increased
the sequencing depth of samples (Tarazona et al., 2011).

Even if a number of studies have resolved the difficulties of DEG detection
to some degree, addressing phenotype related DEGs from a small number of
samples is still a challenging process. Studies suggested to increase the number
of biological samples is the most critical factor have significant DEGs (Zhou
et al., 2013). However, increasing the number of biological samples is not easy
for many reasons. Thus, a new approach that can detect significant gene markers
in a small number of samples is necessary. This study proposes a new method
that distinguishes genes that are relevant to the phenotypic differences in mouse
gene KO experiments that have a small number of samples. The method uses the
filter-out gene prioritization strategy that combines GRN, biological pathways
and SNV information using DEGs as input (Hur et al., 2015).

2.2 Methods

The gene prioritization method uses a reductionist approach by adding more

filters at each step as described below (Figure 2.1).

1. The first filter is to use a method to identify DEGs between control and
case samples. In this study, we used fold change, a classical DEG selection

method.

2. The filter at the second step is to use GRN. GRN is constructed from a
large volume of public data to represent the whole gene regulatory net-

work. DEGs that are included in the network are selected as candidates.

]
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Figure 2.1: Filtering strategy combining networks and SNV

3. The third filter utilizes biological pathway information. Candidates that

are not included in the pathways are discarded.

4. Finally, candidates that have higher than a certain rate of SNVs are dis-
carded since the DEGs that have SNVs possibly resulted from genetic

differences rather than phenotypic differences.

2.2.1 First filter : DEG

From the given expression profile, DEGs are considered as initial candidates.
DEGs are used for the purpose of observing the alteration of expression pat-
terns that could explain the phenotypic differences among samples. DEGs were
selected by using fold change of the expression value (FPKM) between case
and control. The study used multiple cutoffs in order to compare and observe

differences in the number of selected genes. Note that this study used samples
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that does not have enough biological replicates to perform statistical testing to
calculate DEGs. Therefore, expression fold change was used as a DEG estima-

tion.

2.2.2 Second filter : GRN

The concept of reverse engineering the regulatory network from transcriptome
data, GRN is a very effective method that can consider complex relationships
of many genes (Basso et al., 2005). GRN is used as the second filter of the gene
prioritization process in order to discard genes that have less significant roles
in the regulatory network.

In order to construct a GRN that is appropriate for mouse gene KO exper-
iment data, public data (Microarray, RNA-Seq) of mouse were collected from
NCBI GEO. For microarray, each series matrix files from GSE45929 (Ram-
sey et al., 2013), GSE16741 (Yun et al., 2010), GSE30906 (Shan et al., 2012),
GSE36780 (Bae et al., 2012), GSE40375 (not published), GSE41380 (Nusinow
et al., 2012), GSE43663 (Ruan et al., 2013) were used for GRN construction.
These data contain gene expression value of multiple samples that differs in
mouse’s strain, genotype, and treatment (42 samples in total) and were created
by the same microarray platform (Illumina MouseWG-6 v2.0 expression bead-
chip) and preprocessed by R bioconductor lumi package (Du et al., 2008) (vari-
ance stabilizing transform, quantile normalization). The study integrates gene
expression values of 7 series matrix files (GSE45929, GSE16741, GSE30906,
GSE36780, GSE40375, GSE41380, GSE43663) into a single matrix and quantile
normalized gene expression values of every sample and used it as an expression
profile for construction of GRN.

GRN is constructed by using NARROMI (Zhang et al., 2012) while a list

of transcription factors and co-factors from the Animal Transcription Factor

]
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Database (Zhang et al., 2011) was used for regulatory information for NAR-
ROMI. For the gene list, we simply defined it as a list of whole genes that in-
cludes not only transcription factors and co-factors but also non-transcription
factors. As a result, NARROMI constructed a network topology of 2950865
edges. The study supports a URL for the network topology file which was used
in this study (epigenomics.snu.ac.kr/mouse_network/total_mouse.topology).
With the constructed GRN, the study discards candidates that have weak
or no regulatory roles. The method filters out less significant DEGs that do
not have any potential regulatory roles upon the calculated GRN. As a result,

candidates that participate in a regulatory role remains.

2.2.3 Third filter : Biological Pathway

The combination of DEG and GRN information was used not only for reducing
the number of candidates but also to select significant genes that have regula-
tory roles that could represent the phenotypic differences between WT and KO
mouse. However, GRN is a hypothetical topology that gains regulatory informa-
tion from the given data. Therefore, it is also important to ensure whether the
candidates have biological evidence. In this study, KEGG pathway (Kanehisa

and Goto, 2000) for confirming the candidates in terms of domain knowledge.

2.2.4 Final filter : SNV

Even if the study reduced the number of candidates by using multiple filtering
methods, it is necessary to eliminate genes that have genetic differences that
may not represent phenotypic differences. Since the statistical power is weak
in a small number of samples, it is difficult to distinguish whether the genetic
differences were caused by phenotypic differences or not. Therefore the study

removed genes that have a certain or higher SNV rate. This process will remove
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SNVs from the genetic differences but also by the phenotypic differences. A
possibility to have false negative results. However, it will completely avoid the

risk of selecting SNVs resulting from genetic differences.

2.3 Results and Discussion

GSEA47851 were used for evaluating the filter-out method. The performance of
the method is discussed by comparing between the genes reported from the
original research article (Yagi et al., 2014) and the genes prioritized by the
filtering method.

RNA-Seq data of GSE47851 are from an experiment of Gatad KO that
have multiple SRA files. The study used 8 SRA files (SRR896215, SRR896216,
SRR896217, SRR896218, SRR896219, SRR896220, SRR896221, SRR896222)
that have two conditions where each of the conditions has 2 biological samples
and 2 technical replicates of each biological sample.

The study reported that genes of TNF and TNFR, superfamilies, members of
NFKkB and cell surface markers of ILC2s have expression alterations when Gata3
is not activated in ILC2 cells (Yagi et al., 2014). The authors reported that when
Gata3 is inactivated, many TNF and TNFR superfamily genes, such as Tnfrsf9
and Tnfsf21 and NFkB family members, including Nfkb2 and Relb, have altered
expression patterns while cell-cycle inhibitor Cdkn2b was up-regulated. Accord-
ing to the authors we report, the reductionist approach was able to reproduce
4 out of 5 genes (except Tnfsf21). In addition, we were able to reconfirm the
following facts by mapping the candidate genes to the KEGG pathway. Figure
2.2 represents expression alteration in NF-kappa B signaling pathway, showing
down regulations of Nfkb2 (p100) and Relb when Gata3 is inactivated. Expres-

sion alteration was also detected in the TNF signaling pathway (Figure 2.2).
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Filtering Steps NONE 1% filter 2"d filter 3" filter Final filter
SelectedCandidates || 12298 2153 1184 478 343
TruePositives 23 23 19 18 14
Accuracy 0.002 0.827 0.905 0.962 0.972
Precision 0.002 0.011 0.016 0.038 0.041
Recall 0.885 0.885 0.731 0.692 0.538
F-measure 0.004 0.021 0.032 0.073 0.076

Table 2.1: Performance comparison of filters
The table represents the remaining candidates, number of correctly predicted true positives, and the

performance of each adapted filters.

TNF and TNFR superfamily genes, such as Tnf and Tnfrsf9, were successfully
detected in the pathway as well as the statement (Figure 2.3).

The study also stated about the expression alterations in cell-surface mark-
ers of ILC2s. The study reported that 130 genes are positively regulated by
GATA3 in ILC2s, and not in Th2 cells. Cell-surface markers of ILC2s, such as
Icos, 112ra, Kit, I11r2, Cysltrl, Htrlb, and Tphl were included. As a result, the
reductionist approach was able to reproduce 4 genes among 7 were successfully
matched (Figure 2.4C).

In addition, the study evaluated whether each filter had a significant role
during the filter-out process (Table 2.1). Table 2.1 summarizes the performance
of prioritizing candidates at each filtering step. Without no filter (NONE), it
is obvious that there is a very few chances to prioritize genes reported in the
original paper. However, when filters are gradually added, the number of false
positives decreased rapidly. In addition, the recall has steadily decreased at each

filtering steps, but the F-measure represents that the general performance of
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the filtering process was better than the previous steps.

2.4 Discussion

This study proposed a novel method that uses four filtering steps to distinguish
phenotype-dependent genes from RNA-Seq data of mouse gene KO studies that
have a small number of samples. The study demonstrated that the combination
of DEG, GRN, biological pathways and SNV information was able to narrow
down the significant genes that have regulatory roles and reduced the risk of
including candidates that have genetic differences. However, several limitations
of this study need to be addressed. First of all, there should be a more rigor-
ous study of GRN construction. Using much omics data for GRN construction
somehow preserves important relationships between transcription factors and
their target genes, but how much data is needed for GRN construction is not
rigorously studied. In this study, we had enough omics data for the network
construction, therefore we were able to use a simple method using NARROMI
(Zhang et al., 2012). However, when the amount of omics data for network con-
struction is not enough, special techniques such as low order partial correlation
based methods (Zuo et al., 2014) should be considered. Second, removing genes
with genetic variation allows us to focus on genes that are relevant to the un-
derlying biological mechanisms for the KO study. However, genetic variations
do not always affect the transcription activity of genes, and it is possible that
the suggested method might discard a number of SNVs that were affected by
the KO gene. Thus, it is necessary to investigate the effect of genetic variations

on transcription activities.
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Chapter 3

An integration of data-fusion and
text-mining strategy to prioritize
context-laid genes in mouse TF
KO experiments

3.1 Background

To overcome the limitations of the DEG methods, studies suggested data fu-
sion techniques that utilize additional information to effectively identify genes
that are related to the phenotypic differences. However, it is known that the
integration of heterogeneous databases has several difficulties while prioritizing
candidates for data of gene knock study that motivated this study. First, most
of the existing gene prioritization tools are not appropriate for the condition-
specific data such as mouse KO data. When a certain gene is knocked out, re-
searchers have specific hypotheses that are related to the observed phenotypic
differences. Thus, to select genes that are related to phenotypic differences, it

is important to not only consider gene expression alteration but also to pri-
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oritize genes with the researcher’s interest. Without considering the condition
or the goal of the experiment, gene prioritization will likely to focus on genes
that have enough supporting evidence instead of considering the intention of
the experiment design. The best strategy is to provide information about the
conditions of the experiment or a specific hypothesis that the user has. When
the user provides such information, genes can be prioritized by consulting the
literature database. Therefore, it is necessary to perform an integrative anal-
ysis of transcriptome data and literature data for the condition-specific gene
selection and prioritization.

Second, complex relationships among genes should be considered in order
to selected and prioritize genes that are related to the phenotype. Therefore,
networks such as GRN and PPT are useful in explaining alteration among genes
by considering gene-gene and regulatory relationships. Many KO experiments
investigated transcription factors (TFs) that could result in the phenotypic
differences by analyzing the GRN (Geier et al., 2007; Madhamshettiwar et al.,
2012; Wang et al., 2012; Ud-Dean and Gunawan, 2015).

Thus, considering GRN (to be specific, GRN) is essential to characterize
the roles of TFs from KO data. In addition to GRNs, PPI networks also assist
in explaining expression alteration among genes since PPI networks consist of
more entities than other networks such as GRNs and biological pathway net-
works. Since we need to use both TF and PPI networks, an issue is how to
utilize two different networks in a single computational framework. Our ap-
proach uses GRN to select candidate genes from the TF KO experiment and
uses the combination of PPI and literature information to prioritize candidate
genes in a condition-specific manner.

Third, existing computational methods for prioritizing genes are not de-

signed for mouse KO data. Only 3 among 27 tools (listed in Gene Prioritization
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Portal (Tranchevent et al., 2010)) are designed for the mouse data (van Dam
et al., 2012; Tranchevent et al., 2008; Nitsch et al., 2011).

However, these tools are generally not applicable to evaluate RNA-Seq data
of KO experiments. For example, even though PINTA (Nitsch et al., 2011) and
GeneFriends (van Dam et al., 2012) can prioritize genes based on the concept of
the guilt-by-association or network analysis, these tools require a pre-selected
gene list of a certain size: up to 200 genes in PINTA and up to 500 genes in
GeneFriends. Both tools are not applicable when the number of genes is large,
such as DEG results. Although the use of a stringent cutoff value can reduce the
number of candidate genes that can be used for the aforementioned tools, there
may be too many false negatives. Therefore, the requirement of a pre-selected
gene list in PINTA and GeneFriends is not easy to be resolved. In addition,
PINTA is designed for microarray data and prioritizes genes by referring to
the expression profiles of its neighbors from the PPI network, but it does not
consider the influence of the KO gene. Likewise, GeneFriends prioritizes genes
by considering co-expression of other genes but does not reflect the effect of
the KO gene. Another tool, Endeavor (Tranchevent et al., 2008), is able to
prioritize genes from a large number of gene list that does not require pre-
selection from a gene list. However, Endeavor requires a gene list from prior
knowledge for a training dataset, and it is designed to select disease-related
genes rather than KO related genes. To address the discussed issues, this study
developed CLIP-GENE (Context Laid Integrative analysis to Prioritize genes)
(Hur et al., 2016). A web-based tool that takes a DEG list as input and uses
GRN and SNV information to narrow down candidate genes and prioritizes
genes with PPI information and literature information. In particular, CLIP-
GENE allows researchers to specify the context of the experiment as a set of

keywords input to a bio-medical entity search tool (BEST) (Lee et al., 2016).
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3.2 Methods

CLIP-GENE prioritizes genes with two major steps, selection, and ranking. For
the selection step, GRN and SNV information are used to select candidate genes
that are affected by the KO gene as well as expressed differentially between
wild type and KO mouse. For the ranking step, BEST and PPI information
are used to prioritize genes according to the researcher’s context or hypothesis.
With the assistance of a BEST (Lee et al., 2016), it allows specifying certain
context or hypothesis with a set of keywords by a user that is expected from
the data. Afterward, PPI is used to consider the gene-gene relationship between
the candidate genes and the KO gene. Workflow of CLIP-GENE is illustrated

in Figure 3.1. Details of each step are described below.

3.2.1 Selection of initial candidate genes.

CLIP-GENE takes a DEG list from the KO experiment and investigates the
regulatory role of the DEGs by referring to GRN. GRN is created using NAR-
ROMI (Zhang et al., 2012) with data of normal inbred mouse data that varied
in its strains, developmental stage, and tissues (150 samples of wild type mouse
RNA-Seq data from 17 independent studies) (Yao et al., 2014; Tena et al., 2014;
Stilling et al., 2014; Srivastava et al., 2015; Shen et al., 2014; Roger et al., 2014;
Ntziachristos et al., 2014; Moniot et al., 2014; Mielcarek et al., 2014; Liu et al.,
2014; Kayo et al., 2014; Harmacek et al., 2014; Gu et al., 2014; Deng et al.,
2014; Bhatnagar et al., 2014; Altboum et al., 2014; Alpern et al., 2014). while a
list of transcription factors and co-factors from the Animal Transcription Fac-
tor Database (Zhang et al., 2011) was used for the regulatory information for
NARROMI.

CLIP-GENE takes a list of DEGs as input and uses them as initial candi-
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dates. Then, by referring to the mouse GRN that was constructed using 150
mouse expression profiles, DEGs that do not affect other DEGs or DEGs that
are not affected by the KO gene are excluded. This step is performed to focus on
the relationship between the regulator and its target genes that are significantly
altered.

After CLIP-GENE selects candidate DEGs that take a part in the regulatory
role, SNV information is used to filter out DEGs that might be caused by the
genetic differences rather than the influence of the KO gene. It is well known
that even if the inbred mouse are raised in a controlled environment, genetic
differences are likely to be present (Eisener-Dorman et al., 2009). If a large
number of RNA-Seq experiments can be performed, it is possible to screen genes
that may be expressed differentially due to the genetic difference. However, it
is not practical to perform such a large number of RNA-Seq experiments that
is enough to remove such genes. To compensate the low statistical power of the
typical RNA-Seq data, candidate genes with over than a certain rate of SNVs
in the KO mouse are discarded (Hur et al., 2015).

3.2.2 Prioritizing genes with the user context and PPI

Candidate genes selected in the previous step are ranked in terms of the rele-
vance to the phenotype in two different criteria: the user specified context and
the PPI information.

Researchers can specify their hypothesis for the KO data as ‘context’ in a set
of keywords. Specifically, context means a set of subjective words that describe
the user’s interest such as ‘expected biological function when the gene is KO’ or
‘known function of the KO gene’. For example, a context for Gata3d KO data can
be described as ‘Immune response’, ‘Cell signaling’, or ‘Inflammatory response’

(Yagi et al., 2014; Wan, 2014). Then genes that are related to the user-specified

-1
26 -i == T



keywords can be determined by looking for the relevance between keywords
since certain keywords are documented in the literature in relation to a certain
gene. Thus this can be viewed as a process to find a keyword-keyword rela-
tionship and keyword-gene relationship to prioritize genes. In order to find the
relevance between two different keywords, literature search systems based on the
named entity recognition (NER) are known to be effective (Spampinato et al.,
2011). For CLIP-GENE, BEST (Lee et al., 2016) is used to find the relevance
between the KO gene and candidate genes as well as the relationship between
candidate genes and the user given context. With the user-specified keywords,
BEST computes relevance between any pair of keywords from PubMed and re-
turns a relevance score of genes with ranks. Once the relevance score of ‘context
to candidate gene’ and ‘KO gene to candidate gene’ is calculated, the maximum
of them is used to represent how the candidate gene is relevant to the user’s
interest or the KO gene. As a result, a candidate gene with a higher relevance
score is ranked with higher priority.

PPI information is used to rank candidates by computing the shortest in-
teraction path to the KO gene on the STRING PPI network (Szklarczyk et al.,
2010). Candidates that have a shorter interaction path to the KO gene are con-
sidered to be more relevant to the phenotypic/functional difference, hence they
are ranked with a higher priority. Finally, CLIPGENE summarizes candidates
with ranks by combining the BEST and PPI information with unweighted Borda

count (Grazia, 1953). Figure 3.2 describes the overview of gene prioritization.

3.3 Results and Discussion

For the performance evaluation, we used datasets that come with publications

reporting which genes are relevant to the functional difference when the gene is
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silenced. These genes are used as true positives to measure the precision, recall,
and F-measure in terms of genes reported in the publications for data sets,
GSEA7851 (Yagi et al., 2014), GSE54932 (Zhang et al., 2014), and GSE53398
(Zhuang et al., 2014). CLIP-GENE was compared with methods and tools that
can be used for RNAseq mouse data. This study compared DEG-only method
(DEG), integrative analysis method (TA) (Hur et al., 2015), and GeneFriends
(van Dam et al., 2012) in terms of the predictive power. In addition, since the
user can specify context with a set of keywords, the performance depends on the
context that the user provides. In this experiment, four different sets of keywords
are used as context. To compare the predictive power, the study designated
the best case and the worst case in terms of the number of genes reproduced
by CLIP-GENE. In addition, as BEST investigates the relationship between
two given keywords by referring the abstract from PubMed, we chose keywords
that were not mentioned in the abstract of the corresponding publications. This
process is done to make sure that BEST did not consider the keywords from
the publication that generated the data while calculating the relevance score.
Dataset GSE47851 is from a Gata3 KO mouse study that reported 25 genes
were relevant to the functional difference between the wild type and the KO. For
the performance evaluation, four different contexts: ‘Inflammatory response’,
‘Immune regulation’, ‘Cell differentiation’, ‘Cell proliferation’, the known func-
tions of Gata3 (Yagi et al., 2014; Wan, 2014). Dataset GSE54932 is from a Setd2
KO study, reporting 21 genes that are relevant to the phenotypic/functional dif-
ferences between the wild type and the KO. ‘Cell proliferation’, ‘DNAmismatch
repair’, ‘Endodermal differentiation’, and ‘Histone modification’ were used as
the contexts for the Setd2 KO study since they are keywords representing
well-known functions of Setd2 (Zhang et al., 2014; Feng et al., 2015). Dataset
GSES53398 of Barx2 KO mouse, was used for the last evaluation. The study
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Methods Precision Recall F-measure

DEG 0.0105 1 0.0208
IA 0.0239 0.72 0.0463
GeneFriends 0.0038 0.92 0.0075
CLIP-GENE (Immune regulation*) 0.0613 0.64 0.1122
CLIP-GENE (Inflammatory response) 0.0354 0.76 0.0677
CLIP-GENE (Cell differentiation) 0.0294 0.72 0.0564
CLIP-GENE (Cell proliferation) 0.0201 0.72 0.0391

Table 3.1: Performance of CLIP-GENE while analyzing GSE47851 (Gata3 KO)

The best performed measurement is marked with a star (*) with a bold context.

reported that 47 genes significantly differs when Barx?2 is silenced. For the cor-
responding KO mouse data, we used ‘Myoblast progeny’, ‘Muscle maintenance’,
‘Chondrogenesis’, ‘Morphogenesis’ as the contexts for CLIP-GENE (Olguin and
Olwin, 2004; Mi et al., 2016; Zammit et al., 2004; Meech et al., 2012, 2005; T'sau
et al., 2011).

3.3.1 Performance with the best context

In terms of F-measure, CLIP-GENE achieved better performance in finding
phenotypical /functional relevant (validated) genes than other methods 3.1,3.2,
3.3, as well as prioritizing phenotypic/functionally relevant genes with proper
ranks (Hur et al., 2016).

Context ‘Immune regulation’ achieved the best performance for the Gata3
KO data, which performed about 5.4 times better than DEG, 2.4 better than TA,
and 15 times better than GeneFriends while ranking 4 genes in the top 10 gene
list among 25 validated genes. For the Setd2 KO data, CLIP-GENE ranked

4 genes among 21 validated genes in top 10 with the context ‘Endodermal
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Methods Precision Recall F-measure
DEG 0.0099  0.5238 0.0195
IA 0.0183  0.1905 0.0333
GeneFriends 0.0015  0.5238 0.0031
CLIP-GENE (Endodermal differentiation*) 0.2083 0.2381  0.2222
CLIP-GENE (Cell proliferation) 0.0252  0.3333 0.0468
CLIP-GENE (DNA mismatch repair) 0.1304  0.1429 0.1364
CLIP-GENE (Histone modification) 0.0408 0.1905 0.0672

Table 3.2: Performance of CLIP-GENE while analyzing GSE54932 (Setd2 KO)

The best performed measurement is marked with a star (*) with a bold text.

Methods Precision Recall F-measure
DEG 0.0071 0.7872 0.0142
1A 0.0111 0.3617 0.0215
GeneFriends 0.0036 0.617 0.0071
CLIP-GENE (Myoblast progeny) 0.1818 0.0426 0.069
CLIP-GENE (Muscle maintenance) 0.0476  0.0426 0.0449
CLIP-GENE (Chondrogensis) 0.1667 0.0426 0.0678
CLIP-GENE (Morphogenesis) 0.0217  0.4255 0.0412

Table 3.3: Performance of CLIP-GENE while analyzing GSE53398 (Barx2 KO)

The best performed measurement is marked with a star (*) with a bold text.
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differentiation’, achieving 11 times better than DEG, 6.7 times better than
TA, and 72 times better than GeneFriends. For the Barx2 KO data, context
‘Myoblast progeny’ achieved the best performance, achieving 4.8 times better
than the DEG, 3.2 times better than IA method, and 9.7 times better than
Gene Friends. In addition, CLIP-GENE was able to prioritize 2 genes among
47 validated genes in the top 10 from Barx2 KO data.

3.3.2 Performance with the worst context

In terms of F-measure, even with the worst performed context, CLIP-GENE

achieved better performance in predicting phenotypic/functionally relevant genes.

For the Gata3 KO data, context ‘Cell proliferation’ performed 1.9 times better
than DEG and 5.2 times better than GeneFriends, and slightly poor than TA.
CLIP-GENE ranked one gene in the top 10 among 25 validated genes. The
context ‘Cell proliferation’ performed the worst case for the Setd2 KO data,
which still performed better than DEG, IA, and GeneFriends while reporting
one gene among 21 validated genes in the top 10. ‘Morphogenesis’ was the worst
context for the Barx2 KO dataset. However, CLIP-GENE still performs better
than other methods while ranking 2 genes from the 47 validated genes in top 10,
which again suggests that CLIP-GENE promises significant results than other

compared methods even with the worst context.

3.4 Discussion

The performance of CLIP-GENE depends on the context that the user pro-
vided. However, in terms of candidate selection and prioritization, even with
the context that performed worst, CLIP-GENE was consistently superior to

DEG, IA, and GeneFriends. Transcriptome data from mouse models with cer-
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tain genes knocked out are widely used to investigate gene functions in terms of
phenotypes. In order to determine genes that are affected by the knocked out
TF, both selecting candidate genes and prioritizing genes are necessary. Only
three tools are available for the mouse data, but none of these tools was appro-
priate to prioritize genes of user’s interest from KO data. This study presents a
novel web service that select and prioritizes the candidate genes in terms of the
user’s experimental context. Two major contributions are: (i) CLIP-GENE al-
lows researchers to specify the experimental conditions in a set of keywords. Our
system automatically determines relevance between the keywords and genes so
that we can provide rankings of the candidate genes in the users’ context. (i7)
CLIP-GENE provides a comprehensive web service for the mouse KO experi-
ments by integrating multiple resources into a single framework: mouse GRN,

SNV information, PPI network, and literature information.
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Chapter 4

Integrating Venn diagram to the
network-based strategy for
comparing multiple biological
experiments

4.1 Background

Before performing advanced analysis (i.e. network analysis, gene set analysis,
or more) in transcriptome data, identifying DEGs is the very first step to un-
derstand the characteristics of the experiment. Since the number of DEGs can
be hundreds or thousands, understanding the difference between samples with
a list (or lists) of DEGs is not easy. An effective method to summarize a large
number of DEGs is to use Venn diagram. A simple, yet a powerful tool that can
illustrate the portion of each gene sets. The intuitive diagram helps researchers
to understand the common and distinctive characteristics of the experiments
that assist the decision for further investigation. However, there are several

issues when Venn diagram tries to compare and analyze multiple experiments.
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First of all, current Venn diagram tools are difficult to find genes that are
responsible for the phenotype differences. Most of the current Venn diagram ap-
plications are developed with the purpose of visualizing the correct appearance
of the diagram or to compare gene sets that aid researchers’ brief understand-
ing by giving additional knowledge such as enriched sub-network or gene sets
(Kestler et al., 2004; Martin et al., 2012; Kestler et al., 2008; Chen and Boutros,
2011; Heberle et al., 2015; Hulsen et al., 2008; Wang et al., 2014; Jeggari et al.,
2018). The provided information may be useful but it is difficult to design a
follow-up experiment with a simple list of gene sets.

Moreover, elucidating the phenotypic difference for the experiment designs
that have different controls is also an issue. For example, when a dataset of two
experiments that focus to find the differences of gene KO (KO) effect between
liver and muscle, the DEG of each experiment represents the tissue-specific
phenotypic difference. Thus, comparing the gene sets and the number of genes
of the two experiments is not informative enough to pinpoint whether the genes
are affected by the gene knock out effect or the tissue effect.

If it is possible to rank DEGs in a region of Venn diagram, then the re-
searcher can make a more informed decision and overcome the difficulties that
are described. To rank DEGs, this study combined the gene prioritization
method into Venn diagram. Gene prioritization is a widely used method to
rank genes by combining multiple database and methods to maximize the bio-
logical relevance to answer a difficult question that cannot be easily solved in
a single data. Network propagation is one of the widely used technique that
computes the influence of initial nodes (or seeds) to other nodes (Cowen et al.,
2017), and prioritize genes in the context of biological networks (Li and Pa-
tra, 2010; Smedley et al., 2014; Kohler et al., 2008; Vanunu et al., 2010; Lee

et al., 2011; Chen et al., 2009a, 2006). However, selection of seed genes is one
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of the critical factors for the network propagation analysis and becomes more
important when prior knowledge is not available or is not enough. This paper
suggests that the seed selection issue can be handled by allowing the user to
select seed genes freely in arbitrary combinations of regions in a Venn diagram.
We present Venn-diaNet: a web-based Venn diagram based network analysis
framework that can prioritize genes to compare multiple biological experiments
of transcriptome data. A convenient web-based user interface is provided to gen-
erate Venn diagrams of DEGs dynamically and to perform network propagation
experiments to investigate which genes are relevant to certain phenotypes. This
study suggests that Venn diagram, coupled with analytic methods such as net-
work propagation, can be a very useful tool for comparing multiple biological

experiments with different controls.

4.2 Methods

4.2.1 Taking input data

Venn-diaNet takes multiple DEG lists as input while each DEG list is resulted
by the comparison of treatment/control or treatment/treatment experiment
(Figure 4.1: Step 1). Each file must include one DEG list from one experiment.
For example, if a researcher wants to compare three different experiments, three
independent files of DEG list must be provided. The format of the file is as
follows. Each input file requires gene ID (transcript ID) for the first column
and gene symbol for the second column. We provide an example data on the

web page of Venn-diaNet for better understanding.
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Step 1 : Upload DEG lists per experiments Step 4 : Perform network propagation
{

~
Experiment 1 Experiment 2 Experiment 3
Gene 1 Gene 1 Gene 1
Gene 2 Gene 2 Gene 2
Gene 3 Gene 3 Gene 3
i :
i i
! i
Step 2 : Display Venn diagram from given data
'q " 2. Define seed nodes
Experiment 1 ¢
C, G . ~
o Wl
G < O )
7 ¢l H
© C
Cs Co . . 3. Perform network propagation
Experiment 2 Experiment 3 G - . .
~ - - o 4. Rank genes
Step 3 : Choose ‘condition’ that will be seeds
O Gene 1 #condition 1
C, c . . O Gene 2 #condition 1
2 B ‘ Gene 3 #condition 2
G . Gene 4 #condition 2
G ¢ HEN
C, ~ 3 L . Gene N #condition 3 )

Figure 4.1: Venn-diaNet work flow
Step 1 : Venn-diaNet receives DEG lists per experiments from user. Step 2 : Uploaded DEGs from step
1 are interpreted with a Venn diagram as well as organized as sets with table. Step 3 : Define specific
or multiple C; as seeds for further network propagation analysis. Step 4 : Once the seed is defined,
Venn-diaNet instantiates a PPI network of DEGs from STRING DB. Network propagation with given
seeds from the previous steps. As a result, DEGs are ranked by the probability score calculated during

the Markov Random Walk.
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GENE KO vs WT GENE KO vs WT
(A) Tissue A Tissue B (B)

(C) (D)

Gene 1
Gene 2
Gene 3
Gene 4

Gene N
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Figure 4.2: Key concept of Venn-diaNet
(A) Instantiate a PPI network with the DEGs from the multiple experiments. (B) When we are
interested in C; that has similar function as Cz, we can define Cz as seeds. (C) Performing network
propagation with Markov Random Walk. (D) Discard Cs genes (as well as seed genes) in order to
focus on C; genes. Remaining genes are ranked by the probability score calculated from the previous

step.
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4.2.2 Generating Venn diagram of DEG sets

Venn-diaNet considers each experiment as a set for the diagram. Therefore,
With given number (=n) of experiments E, Venn-diaNet generates a diagram of
n circles that have 2" —1 regions. Each region is denoted as C; (1 < di < 2" —1)

while each C; contains genes of

E; if j=1

ES if j=0

Ci={g:g€ N, G(b))}, G(b;) =

b represents the binary number of C; (i.e. Ci = 001) while b; indicates
the position of digits (i.e. by = 1, by = 0, b3 = 0). If Venn-diaNet receives
DEG lists from 3 experiments, Venn-diaNet illustrates a Venn diagram of 3
sets (E1,Es,E3) that have 7 regions (C1,C2,Cs, --- C7), where C7 contains
genes of 1 N FEoN E3. C; represents specific DEGs to certain region that could

be considered as ‘condition specific genes’.

Seed selection

This step is the most important part of Venn-diaNet. A user can select multiple
(or a single) C; as seeds for network propagation to measure the global influence
of the seed DEGs. Thus, the results will vary depending on the selected seeds.
Network propagation methods generally use informative genes as seeds. Such as
‘disease-related genes’, ‘phenotype-related genes’, or else. The idea of network
propagation in Venn-diaNet is very similar but does not need to select genes
that require prior knowledge. As the DEG in each region of the Venn diagram
can be considered as condition-specific DEGs, the DEG in C; can be a guide
to find the similarities or dissimilarities to other C; (j # ¢) that researchers are

interested in. Because the selection is crucial, this study provides three possible
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seed selection scenarios to help to understand the seed selection.

The first scenario is to consider ‘condition-specific function’ as seeds. Again,
DEGs in specific region can be considered as condition-specific DEGs. If the
researcher uses these genes as seeds, it can prioritize DEGs belonging to other
conditions in terms of functional similarity to the seed DEGs. For example, if
a user wants to prioritize tissue A-specific DEGs (Figure 4.2A: C4) that have
a similar function to the tissue B-specific DEGs when the same gene is KO,
tissue B specific-DEGs (Figure 4.2A: C3) can be used as seeds.

The second scenario is to consider ‘common function’ as seeds. In some
cases, a user might be interested in condition-specific DEGs that have a common
function in different experiments. For instance, if the user is interested in tissue
A-specific DEGs (Figure 4.2A: Cp) that have similar function between two
different tissues, C'3 can be seeds. Similarly, if the common KO effect in different
tissues are in interest (C3), C14+Co can be seeds.

The last scenario is to consider seeds that have ‘Functional similarity’. Dis-
tinct from the two scenarios stated above, this study assumed a case that there
is no sufficient knowledge to select a certain condition as seeds. In this case, a
‘minimum guideline’ to choose certain conditions as seeds to rank the genes of
interest. If the user has multiple experiments and expects some DEGs in the
condition of interest (C;) to have functional similarity to other condition DEGs
(Cj), the condition that has functional similarity to the condition of interest
will be appropriate to be as seeds. This guideline is suggested to prioritize genes
for experiments that study compound effects of multiple treatments which will

be introduced later.
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4.2.3 Network propagation and gene ranking

When a set of seed DEGs are selected, Venn-diaNet instantiates a protein-
protein interaction (PPI) network of DEGs from STRING DB (Szklarczyk et al.,
2014). In the instantiated network, nodes are DEGs and an edge between two
DEGs is defined when the corresponding edge in the original PPI network is of
high-confidence (combined score > 700). Then, Markov Random Walk (MRW)
(Dirmeier, 2018) is performed using the seeds selected in the previous step (Fig-
ure 4.1: Step 4). The goal of network propagation is to quantify the influence of
seed DEGs to the remaining DEGs. The selected seed DEGs can be considered
as the hypothesis that a user wants to test. Thus, by performing a network
propagation analysis, the user can obtain the DEGs pertaining to the hypoth-
esis. For the network propagation, an R package diffusr, the implementation

of MRW, is used. The equation is shown below:
pt+1 — (1 . T)A,pt + Tp(]

where p° is the vector of initialized nodes, t is a time step, pt is the vec-
tor at the current time step ¢, p'*t! is the vector at the next time step, A’ is
column-normalized matrix of adjacency matrix A, and r is the restart rate. p° is
initialized in 1 or 0, to represent the assigned seed DEGs and target DEGs, and
normalized so the sum of the elements in p® becomes 1. The adjacency matrix
A is a matrix consists with 0 or 1 that represents a graph with no weighted
edges. 0.5 is used for r and network propagation stops when L1 norm difference
between p' and p'*! is smaller than 10™*, which are the default progress of the
diffusr package. When the algorithm stops, Venn-diaNet returns ranked gene

sets based on the network propagation result.
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B8 Upload Upload DEG files.
ach e ndicates different conditons.

b S * 1.example.txt @intersectior
Color by Propagation Results || Color by Sets

Figure 4.3: Venn-diaNet (web) work flow
A work flow of Venn-diaNet (web). Step 1: Upload DEG lists per experiment. Step 2: Select seed

condition C; Step 3: Perform analysis. Venn-diaNet gives user (1) list of ranked genes, (2) gene’s
neighbor nodes information (when the node is clicked). (3) Venn diagram with PPI network (when

the Venn diagram is zoomed in).

4.3 Results and Discussion

This study evaluated the performance of Venn-diaNet using three datasets
downloaded from the Gene Expression Omnibus (GEO) (Edgar et al., 2002)
or from the supplementary data of the corresponding published paper. Three
datasets were selected to show how to perform network propagation analysis

with different seed gene selections.

4.3.1 Venn-diaNet for two experiments

The dataset is from a study of Per2 KO mouse with two different tissues
(Grimaldi et al., 2010): (i) Per2 KO vs WT in white adipose tissue (WAT
Per2 KO), and (ii) Per2 KO vs WT in brown adipose tissue (BAT Per2 KO).

The authors used these DEGs and reported that several WAT specific expressed
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(A) (B) C, DEGs C, DEGs

GOTERM (SP_PIR_KEYWORD) Hit % GOTERM (SP_PIR_KEYWORD) Hit %
Serine protease inhibitor 677 mitochondrion 30.00
L transit peptide 21.82
protease inhibitor 6.76

Per2 KO vs WT Per2 KO vs WT mitochondrion inner membrane 1273

acute phase 4.05 : s
BAT (23) WAT fatty acid metabolism 11.82
(82) c (120) Secreted 1081 jipid metabolism 11.82

3 lipid synthésls . 541 C, DEGs
C1 C2 endoplasmic reticulum 811 GOTERM (SP_PIR_KEYWORD) Hit %
mitochondrion inner membrane 405 membrane 4000
mitochondrion 811  transmembrane 30.00
(©)

70%

60%

GO term hit rate

50%

Top 30 DEGs ranked with Seeds (C;)

30% I Top 30 DEGs ranked with Seeds (C;)

20% I I I . Top 30 DEGs ranked with Seeds (C;+C3)
10% I I Top 30 DEGs ranked with FoldChange
0% . . [ All DEGs without any ranking

fatty acid metabolism lipid metabolism mitochondrion

Figure 4.4: Venn-diaNet Per2 GO term Comparison
(A) Venn-diagram of GSE20165 experiment. C; represents Per2 KO vs WT DEGs that is specific to
BAT while C represents WAT specific Per2 KO vs WT DEGs. (B) Enriched GO terms by DAVID
gene functional clustering analysis. Gene functional clustering was performed for each specific condition

(C;). (C) Enriched GO terms of Top 30 genes prioritized by corresponding seeds.
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Gene FC Cy O3 C1+Cs
Ucpl 2 18 16 14
Cidea 4 26 18 25
Acsm3 47 30 39 35
Pdk4 20 71 61 74
Cptlb 11 6 20 6
Acads 129 58 27 61
Acadm 119 14 15 11
Acadl 95 52 28 58
Acadvl 67 37 12 34
Hadha 111 5 10 3
Hadhb 54 8 13 5
Cox7al 14 62 66 67
Cox8b 12 22 43 28
PredictedCandidates || 120 100 100 100

Table 4.1: Comparing ranking results of the Per2 KO experiment performed by

(Grimaldi et al., 2010)
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genes have similar behavior also BAT when Per2 is KO.

Venn-diaNet used these two experiments from this study to evaluate how
well Venn-diaNet could reproduce the effects of the corresponding study. For
convenience, this study denoted BAT Per2 KO specific DEGs as C1, WAT Per2
KO as (s, and the intersection DEGs of BAT Per2 KO and WAT Per2 KO as
Cs3 (Figure 4.4A). Venn-diaNet used this data to show that Venn-diaNet can
reproduce the authors’ results by following the authors’ inputs, interest, and
approach. The original paper reported that Per2 KO caused BAT-specific genes
to express in WAT by controlling PPAR~-dependent genes. Therefore, the aim
of this study is to find promising Cy DEGs that have the similar characteristic in
BAT tissue. Three suggested seed scenarios can be used to address the authors
interests. For each seed scenarios, the study compared (¢) how the GO terms
of ranked top 10% genes match the GO terms reported in the original paper,
and (77) how many genes match to the genes that were reported in the original
paper. Note that the authors used only fold change to rank genes and did not

use any gene prioritization method.

Condition specific function (C7) & common function as seeds (Cs)

BAT Per2 KO specific DEGs (C1), can be used as seeds in order to prioritize
genes of WAT Per2 KO specific DEGs (C2). This scenario is to investigate that
some of the unknown PPAR~-dependent genes that express exclusively in BAT
somehow seems to be expressed in WAT when Per2 is KO. The phenomenon
indicates that there might be a functional similarity between these two different
conditions. Likewise, common DEGs between two experiments (C3) can also
be considered as seeds. Activation of BAT-specific PPAR~-dependent genes
in WAT also means that BAT and WAT have common functions. Thus, the

common function of these genes (C3) might be a guideline to prioritize WAT-
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specific genes with the context of ‘functional similarity’ between two different
tissues. It is interesting that Venn-diaNet could prioritize genes in top 30 (about
10% of total candidates) as well as prioritizing genes that are related to the

functions that the authors reported (Figure 4.4C, Table 4.1).

Analysis scenario with functional similarity as seeds (C})

As discussed in the previous section, researchers might encounter a situation
where the user does not have sufficient knowledge to select seeds. In this case,
the suggested ‘minimum guideline’ to choose a certain condition as seeds to
rank genes in a condition of interest. For this, the study defined ‘The condition
that has functional similarity to the condition of interest will be appropriate to
be as seeds’ as a ‘minimum guideline’ to find seeds.

The process is very straight-forward. (i) Find the major GO terms of each
Cj, and (i2) use genes in C; if the GO terms are similar to the condition Cj
(j # i) that we want to prioritize. As a result, the study found that GO term
(mitochondrion) in € was similar to the condition of interest (C3) (Figure
4.4B). Thus, Cq becomes an appropriate seed for this scenario and the results
share the same which we discussed in the previous subsection.

Venn-diaNet is also tested with other possible seed scenarios (C; + C3) to

confirm whether Venn-diaNet performs better than random seeds.

4.3.2 Venn-diaNet for three experiments

Data from a study of human papillomavirus oncogenes (Spurgeon et al., 2017)
is used for Venn-diaNet validation to consider the case of more complicated
experiment designs. The study observes the independent, synergistic effects of
two treatments: (i) K14E6/E7 bitransgenic mouse vs WT mouse (E6/E7), (i)
estrogen treated mouse vs WT mouse (E2), and (i) K14E6/E7 bitransgenic
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Gene FC Cy Cy Cs Co4+Cy Ca+Cs Cy+Cs Co+Cys+Cs
Ccl3 284 236 27 159 78 246 35 91
Ccl6 107 15 188 171 53 24 206 62
Ccl28 257 36 220 242 94 54 240 107
Cd14 39 174 21 107 44 186 25 51
Cxcll 12 125 131 142 144 143 148 156
Cxcl2 5 132 9 139 17 151 11 16
Cxcl3 9 139 166 202 232 161 184 248
Cxclb 1 179 43 196 63 202 52 74
Cxcl16 268 121 139 129 159 141 156 169
Ecml 207 238 312 282 320 258 319 324
Enpp3 346 14 230 122 71 21 241 7
Il1a 45 232 179 118 269 242 191 278
Il1b 111 117 34 20 32 114 19 21
11116 213 378 378 373 385 380 380 387
1123a 389 62 177 164 88 73 192 101
1133 104 364 104 358 208 366 123 223
Met 211 127v 60 21 52 118 27 34
Pglyrpl || 16 73 341 303 179 86 347 199
Pycard || 226 50 241 172 115 60 250 134
5100a8 7 248 65 121 130 257 7 143
5100a9 3 227 238 39 296 188 218 286
Sppl 99 80 189 155 118 92 205 135

Table 4.2: Comparing ranking results of the E6/E7 experiment performed by

(Spurgeonet al., 2017)
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(A) (B) (C4+ C3+C4+ C;) DEGS C,DEGs

C‘1 GOTERM (SP_PIR_KEYWORDS) HIT%  GOTERM (SP_PIR_KEYWORDS) HIT %
inflammatory response 3.160 membrane 4380
E6/E7+E2 transmembrane 3802
(182) Secreted 16.70 signal 2397
c c signal 25.73 Secreted 13.64
(1063) (895) glycoprotein 2979 disulfide bond 16.94
C; transport 1322
(83) disulfide bond 22.57 ion transport 576
E6/E7 Ce WT+E2 C,DEGs C¢DEGs

187) (31 (253) GOTERM (SP_PIR_KEYWORDS) HIT%  GOTERM (SP_PIR_KEYWORDS) HIT %
Intermediate filament 452 ransport 25,81

Cz C4 keratin 452 P .
coiled coil 14697  protein transport 12.90

(©)

25%
20%

15%

GO term hit rate

10% Top 100 DEGs ranked with Seeds (C,+C,)
[ Top 100 DEGs ranked with Seeds (C,)

5% . Top 100 DEGs ranked with Seeds (C,)

. II I I [ I II I Top 100 DEGs ranked with FoldChange

Cytokine activity  Chemokine activity _Inflammatory response Immune response  Cytokine-cytokine I All DEGs without any ranking

Figure 4.5: Venn-diaNet HPV experiment GO term Comparison
(A) Venn-diagram of the experiment by (Spurgeonet al., 2017). C1 Ca, and Cy represents E6/E7+E2
specific DEGs, E6/ET specific DEGs, and E2 specific DEGs, respectively. (B) Enriched GO terms by
DAVID gene functional clustering analysis. Gene functional clustering was performed for each specific

condition (C;). (C) Enriched GO terms of Top 100 genes prioritized by corresponding seeds.
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mouse treated with estrogen mouse vs WT mouse (E6/E7+E2) (Figure 4.5).
The study focused on E6E7+E2 DEGs (C; + C3 + C5 + C7) to deter-
mine the synergistic effect of E6/E7 and E2. E6/E7 specific DEGs and E2
specific DEGs (C2 + Cy) were selected for the seed scenario of ‘condition spe-
cific function’. The seed scenario represents that the independent effect of each
treatment as a guideline to find the effect of the combined factors. The goal for

this experiment is to reproduce GO terms and genes that the authors reported.

Condition specific function as seeds (Cy + Cy)

As a result, Venn-diaNet could prioritize genes and GO terms that were re-
ported in the original paper by using the combination of independent effects of
two factors as seeds (Cy + C4) (Figure 4.5C and 4.2). However, several careful
consideration remains to be discussed. When Venn-dianet considers the prior-
itized top 20% genes, Venn-diaNet was not superior to the authors approach,
but it could prioritize genes that are related to the GO terms where the original
paper focused. In addition, Venn-diaNet could prioritize other genes that were
related to the function of interest (immune response & inflammatory response)
that are responsible for the HPV associated cervical cancer while the authors
did not.

For example, TIr2, a gene that is known to be related to having a signifi-
cant role in HPV associated cervical cancer (Woodby et al., 2016; Zom et al.,
2016; Halec et al., 2018; Yang et al., 2018), was distinctively overexpressed in
E6/E7+E2. The results support that Tlr2 might be one of the significant gene
that is enhanced by the combined effect of E6/E7 and E2, which achieves the
condition of ‘inflammatory response are increased by epithelial E6/E7 expres-
sion and further enhanced by estrogen’. The study conjectured that Tlr2 was

not included in the original paper because the fold change of Tlr2 is not sig-
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nificant (ranked 332%" in terms of fold change rankings). However, our gene
prioritization analysis ranked Tlr2 much higher in the 33" place.

Likewise, CD74 has been reported that it may play an important role in
the pathogenesis and angiogenesis of cervical cancer (Cheng et al., 2011) as

well as the influence of the HPV (Klymenko et al., 2017). Venn-diaNet placed

this gene in the 76" position while fold change could only rank them as 182,
Icam1 was ranked 76" in foldchange but had the 3™ position in Venn-diaNet
which also might have a E6/E7+E2 specific expression while Icam1 was also
reported to have a role with HPV related cervical carcinoma (Viac et al., 1992)
The comparison of Top 100 ranked genes related to ‘inflammatory response’ &

‘immune response’ is summarized in 4.2.

Functional similarity as seeds (Cj)

Cy was selected by following the ‘minimum guideline’ to select seeds. Unlike
‘Condition specific function as seeds’, seeds chosen by functional similarity per-
formed weaker than the previous seeds. This is probably because the seed sce-
nario does not reflect the effect of E6/E7. E6/ET7 is well known to change the
activity of cytokine and chemokine, and Venn-diaNet could not prioritize those
genes with not considering those effects in seeds (Figure 4.5C). The study em-
phasized that this seed scenario reflects that using seed genes from a singular
treatment is not effective to rank genes that is under the influence of multiple
treatments. However, Venn-diaNet could still prioritize 7 genes in top 100 with
seeds of ‘functional similarity’ (4.2). In addition, Venn-diaNet also tested every
other possible seeds, and the results indicate other seeds are less effective than

the suggested seed scenarios.
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4.3.3 Venn-diaNet for eight experiments

Case 3 uses a dataset from a study that designed the experiments with three
treatments and four tissues (Julien et al., 2017): (¢) narciclasine (ncls), (i)
high-fat diet (HFD), (74) normal chow diet (NCD), (iv) WAT, (v) BAT, (vi)
liver, and (vii) muscle. The initial number of sets of this study were extremely
complicated that makes almost impossible to interpret the DEG list at once.
Thus, the authors used a step-by-step filtering method to find promising genes
for these multi-conditioned data. The authors searched the relation between
treatments and tissues using hierarchical clustering and narrowed down to com-
pare two DEG lists (HFD-ncls/HFD-veh, NCD-veh/HFD-veh) of muscle. The
study reported genes that have low expression level in HFD, changes to have a
high expression level when ncls was given. The results indicate that a natural
compound ncls can attenuate diet-induced obesity and the associated genes can
enhance the energy expenditure.

To reproduce the results what the authors made, we planned two different
scenarios. The first scenario is to follow the story of the authors: using two DEG
lists. The authors compared the expression profile of treatments and tissues
using hierarchical clustering as a very first step. They discovered that muscle
had partial mutual exclusive expression pattern to other tissues and made a
hypothesis of ‘ncls might accelerate genes to be expressed again while the genes
were suppressed in HFD environment in muscle’. The study assumed to reached
this step and use Venn-diaNet for the DEGs of HFD-ncls/HFD-veh and NCD-
veh/HFD-veh. Venn-diaNet will mimic this story with the concept of ‘Case 1:
Venn-diaNet for two experiments’ analysis of Venn-diaNet.

Another scenario is to find promising genes purely by Venn-diaNet, using

eight DEG lists. The goal of this scenario is to check whether Venn-diaNet can
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2 DEG list 8 DEG list
FC Ci+ Oy Cy C3+C5+Chg2
Actcl 31 1 7 -
Tnnil 8 6 26 12
Myl2 10 23 25 9
Myh7 6 28 31 11
Tnntl 13 ) 28 10
Myl3 11 4 3 5
Tnncl 9 20 24 15

Table 4.3: Comparing ranking results of the HFD experiment performed by
(Julien et al., 2017)

track down the reported genes, with a reasonable story.

Authors’ approach : two DEG list

As described in the previous section, the study also assumed to performed
hierarchical clustering and focus to find certain genes in Cs (Figure 4.6A) that
have the common characteristics of up-regulation when ncls is induced and
up-regulated in NCD without any treatments .

In order to prioritize genes in Cs, the study used the seed scenario of
Condition specific function as seeds. DEGs that are common in both
experiments can be prioritized using the independent effects of each factor.
Therefore, C;+Cs, the independent effect of each treatment was selected as
seeds to observe the influence to the genes that have same activity alteration in
HFD-ncls/HFD-veh and NCD-veh/HFD-veh (Cs). The study found that Venn-

diaNet could prioritize and reproduce the genes where the authors reported
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(A) (B) cDEGs C,DEGs

C C GOTERM (SP_PIR KEYWORDS) HIT % GOTERM (SP_PIR_KEYWORDS) HIT %
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Figure 4.6: Venn-diaNet HFD GO term Comparison
(A) Venn-diagram of GSE63268 experiment. C; represents HFD (ncls/veh) specific DEGs while Cs
shows veh (NCD/HFD) specific DEGs. (B) Enriched GO terms by DAVID gene functional clustering
analysis. Gene functional clustering was performed for each specific region. (C) Enriched GO terms of

Top 100 genes prioritized by corresponding seeds

(Table 4.3) as well as prioritizing GO terms of the authors’ interest with better
hit ratio (Figure 4.6C). The minimum guideline, ‘Functional similarity as seeds’
(C2) showed weaker gene prioritization but still had a better focus on GO terms
(Figure 4.6C and Table 4.3). In addition, this study is designed to find the com-
mon effect from independent conditions, meaning that the condition of interest
is closely related to each other condition. Therefore, it is natural to have poor

performance with the same reason that is discussed in the previous section.

Venn-diaNet approach: All (eight) DEG list

The study assumed that the researcher does not have enough knowledge of the
corresponding data, and try whether Venn-diaNet could reach to the authors’
conclusion. Venn-diaNet simply with all DEG lists (that contains up and down-

regulation) from eight different experiments at once (Figure 4.7A). The Venn
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NCD-veh/HFD-veh

HFD-ncls/HFD-veh

Figure 4.7: Venn-diaNet using 8 different DEG list
(A) Using up and down-regulated DEG list to Venn-diaNet (web). The Venn diagram directly shows
muscle DEGs in HFD-ncls/HEFD-veh C48, and NCD-veh/HFD-veh are similar to each other while
other tissues are not similar to each other. (B) Using up-regulated DEG list to Venn-diaNet. The
Venn diagram shows that up-regulated muscle DEGs in HFD-ncls/HFD-veh, and NCD-veh/HFD-veh

are very similar to each other while other tissues are not similar to each other.

54 s s 1A



diagram shows that the intersection of HFD-ncls/HFD-veh and NCD-veh/HFD-
veh shared many DEGs in muscle (C4g) than any other tissues (C3, C12, C192).

The findings of Venn diagram reaffirms the authors’ hierarchical clustering
results and leads to the idea that the intersection of HFD-ncls/HFD-veh and
NCD-veh/HFD-veh in muscle have common functions than other tissues, and
needs to be analyzed in detail. To start the detailed search, up-regulated DEG
list is used to examine whether Venn-diaNet can answer for the hypothesis of
‘ncls might accelerate genes to be expressed again while the genes were sup-
pressed in HFD environment in muscle’. As a result, This study discovered that
the condition of interest was much more distinct to other conditions (Figure
4.7B: Cyg) and the portion of common genes between HFD-ncls/HFD-veh and
NCD-veh/HFD-veh in muscle was bigger than any other tissue (Cysg, C3, Cia,
C192). The findings indicate that up-regulation of Cyg is likely to be more spe-
cific and distinct to other tissues. To prioritize genes in Cyg, ‘common functions
as seeds’ is chosen for the seed scenario. This study selected the intersection
of HFD-ncls/HFD-veh and NCD-veh/HFD-veh of other tissues as seeds (Cs,
C12, C192) to represent that the function of 'ncls might accelerate genes to be
expressed again while the genes were suppressed in HFD environment’ in other
tissues can assist to prioritize genes in muscle. As a result, this study was able
to reproduce genes that the authors reported in their original paper (Table 4.3).

In addition to seed selection, the minimum guideline cannot be used for this
complex condition data. The data is composed of 255 conditions that make it

difficult to compare and analyze the GO terms of all these conditions.

4.3.4 Venn-dialNet performance with different PPI network

Currently, there are multiple databases that contain PPI information while

Venn-diaNet performed network propagation to the network topology of STRING
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Gene FC C, (C3 C1+Cs
Ucpl 2 - - -
Cidea 4 7T 17 8
Acsm3 47 - - -
Pdk4 20 28 8 30
Cptlb 11 51 49 52
Acads 129 60 59 60
Acadm 119 22 51 24
Acadl 95 53 52 54
Acadvl 67 56 56 57
Hadha 111 19 44 21
Hadhb 54 21 46 23
Cox7al 14 - - -
Cox8b 12 - - -
PredictedCandidates || 120 62 62 62

Table 4.4: Comparing ranking results of the Per2 KO experiment performed by
(Grimaldi et al., 2010) using PPI network from BioGRID
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Gene FC Cy Cy Cs Co4+Cy Ca+Cs Cy+Cs Co+Cys+Cs
Ccl3 284 124 122 103 145 126 124 147
Ccl6 107 - - - - - - -
Ccl28 257 - - - - - - -
Cd14 39 38 165 154 78 41 166 82
Cxcll 12 - - - - - - -
Cxcl2 5 139 138 123 156 141 140 158
Cxcl3 9 - - - - - - -
Cxclb 1 - - - - - - -
Cxcl16 268 - - - - - - -
Ecml1 207 - - - - - - -
Enpp3 346 - - - - - - -
Il1a 45 28 134 118 62 30 136 65
Il1b 111 47 72 28 99 53 76 104
11116 213 - - - - - - -
1123a 389 - - - - - - -
1133 104 172 172 165 180 173 173 181
Met 211 72 9 36 19 79 11 19
Pglyrpl || 16 - - - - - -
Pycard || 226 176 176 169 184 177 177 185
S5100a8 7 123 121 102 144 125 123 146
5100a9 3 - - - - - - -
Sppl 99 127 125 106 148 129 127 150

Table 4.5: Comparing ranking results of the E6/E7 experiment performed by
(Spurgeonet al., 2017) using PPI network from BioGRID
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Figure 4.8: Venn-diaNet performance comparison between STRING and BioGrid
A barcode plot to distinguish the prioritized results. (A) Per2 KO experiment with Seed Cj. left;
SRINGDB, right; BioGrid. (B) Per2 KO experiment with Seed C¢. left; SRINGDB, right; BioGrid.

(C) E6/ET experiment with Seed C2+Cly. left; SRINGDB, right; BioGrid. (B) HFD experiment with

Seed C1+Cj5. left; SRINGDB, right; BioGrid.
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2 DEG list 8 DEG list
FC Ci+ Co Cy C3+C5+Chg2
Actcl 31 36 35 -
Tnnil 8 - - -
Myl2 10 - - -
Myh7 6 11 7 13
Tnntl 13 - - -
Myl3 11 33 26 20
Tnncl 9 35 34 27

Table 4.6: Comparing ranking results of the HFD experiment performed by
(Julien et al., 2017) using PPI network from BioGRID

DB (combined score > 0.4). We considered that the Venn-diaNet might have
different gene prioritization results with different network topology and the net-
work propagation from STRING DB could contain a number of false positives
due to the nature of the STRING DB (several PPI information are not biologi-
cally validated). Therefore it is important to compare whether the results varies
by using the different network that contains higher biological evidence. We ad-
ditionally performed the same process and compared the ranks between results
between STRING to BioGRID (Stark et al., 2006). As a result, we confirmed
that network propagation using network from STRING DB was overall more
effective than the network from the BioGRID that can prioritize the reported
genes in higher ranks (Table 4.4, 4.5 and 4.6)(Figure 4.8).
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4.4 Discussion

This study presented Venn-diaNet, a web-based software that does not require
any additional installment or registration. Venn-diaNet draws a Venn diagram
from a given input and prioritizes genes by network propagation. This study sug-
gested that a Venn diagram can support selecting seeds for network propagation
and introduced several examples to show the idea can effectively prioritize genes
that are related to the function of interests. Venn-diaNet is designed not only to
avoid the ‘black-box’ issue in gene prioritization which is caused by the integra-
tion of heterogeneous databases but also to address a logical approach for seed
selection of network propagation. Venn-diaNet supports gene list with ranking
and additional features that explains how the specific gene is influential to other

genes. Venn-diaNet is available at: biohealth.snu.ac.kr/software/venndianet.
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Chapter 5

Conclusion

Identifying promising genes from a large pool of candidates that represent the
phenotypic differences, is one of the common goals during RNA-Seq analysis.
Although, a number of studies have demonstrated various approaches for pri-
oritizing genes, the challenges in deciding the most appropriate combination of
analysis methods for a complicated experimental design, as well as the difficul-
ties in handling strategies that rank irrelevant genes, still persist. This thesis

summarized three studies to address these difficulties:

1. A filtering strategy that combines DEG, GRN, pathways, and SNVs to
handle the statistical bias caused by a small number of samples in mouse

gene KO data.

2. A data fusion strategy that combines text-mining and PPI network to
rank genes filtered by DEG, GRN, and SNVs to focus on the context of

the experiment design.

3. A network strategy that uses Venn diagram to have an advantage in seed
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selection and interpretation, and perform network propagation to rank

candidate genes.

The first study analyzes RNA-Seq data by (i) removing the less informative
DEGs using GRN, biological pathways, and (ii) filtering out genes that differ
among samples on the basis of SNVs. This study demonstrated that the in-
tegration of multiple filters enabled better gene prioritization and refined the
candidates by eliminating the genetic differences among samples. The second
study developed an informatics system to avoid ranking irrelevant genes by
allowing the user to specify the context of the experiment. CLIP-GENE priori-
tizes genes of KO experiments by (i) removing the less informative DEGs using
GRN, (ii) discarding genes that vary among samples on the basis of SNVs, and
(iii) ranking genes that are related to the user’s context using text-mining tech-
nique, as well as considering the shortest path of PPI to the KO gene. The last
study addressed the seed selection issue by integrating Venn diagrams into the
network-based strategy. The study developed an informative gene prioritiza-
tion system that can compare multiple biological experiments in Venn diagram
and select seed genes that are free from the pressure of prior knowledge. The
study demonstrated that Venn-diaNet was able to reproduce the findings of the
original papers that have reported complicated experiments with an intuitive
interpretation.

In conclusion, this thesis summarizes the difficulties of RNA-Seq analysis
methods and has created three different informatics systems that combine net-
work approaches with other methods to prioritize phenotype-specific genes from
RNA-Seq data. For each approach, we have developed software packages and
web tools for researchers to have convenient access to the methods, and hope

that these methods will provide a good starting point for RNA-seq analysis.
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