

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학 박사 학위논문

Multivariate Homomorphic
Encryption for Approximate

Matrix Arithmetics
(근사 행렬연산을 위한 다변수 동형암호)

2019년 8월

서울대학교 대학원

수리과학부

김안드레이

Multivariate Homomorphic
Encryption for Approximate

Matrix Arithmetics
(근사 행렬연산을 위한 다변수 동형암호)

지도교수 천정희

이 논문을 이학 박사 학위논문으로 제출함

2019년 4월

서울대학교 대학원

수리과학부

김안드레이

김안드레이 의 이학 박사 학위논문을 인준함

2019년 6월

위 원 장 김 명 환 (인)

부 위 원 장 천 정 희 (인)

위 원 현 동 훈 (인)

위 원 서 재 홍 (인)

위 원 신 지 선 (인)

Multivariate Homomorphic
Encryption for Approximate

Matrix Arithmetics

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of

Seoul National University

by

Andrey Kim

Dissertation Director : Professor Jung Hee Cheon

Department of Mathematical Sciences

Seoul National University

August 2019

c© 2019 Andrey Kim

All rights reserved.

Abstract

Multivariate Homomorphic Encryption

for Approximate Matrix Arithmetics

Andrey Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

Homomorphic Encryption for Arithmetics of Approximate Numbers

(HEAAN) is a homomorphic encryption (HE) scheme for approximate

arithmetics intoroduced by Cheon et.al. [CKKS17]. Its vector packing tech-

nique proved its potential in cryptographic applications requiring approx-

imate computations, including data analysis and machine learning.

Multivariate Homomorphic Encryption for Approximate Matrix Arith-

metics (MHEAAN) is a generalization of HEAAN to the case of a tensor

structure of plaintext slots. Our design takes advantage of the HEAAN

scheme, that the precision losses during the evaluation are limited by the

depth of the circuit, and it exceeds no more than one bit compared to un-

encrypted approximate arithmetics, such as floating point operations. Due

to the multi-dimensional structure of plaintext slots along with rotations

in various dimensions, MHEAAN is a more natural choice for applications

involving matrices and tensors.

i

ii

The concrete two-dimensional construction shows the efficiency of the

MHEAAN scheme on matrix operations, and was applied to several Ma-

chine Learning algorithms on encrypted data and encrypted model such as

Logistic Regression (LR) training algorithm, Deep Neural Network (DNN)

and Recurrent Neural Network (RNN) classification algorithms. With the

efficient bootstrapping, the implementation can be easily be scaled to the

case of arbitrary LR, DNN or RNN structures.

Key words: homomorphic encryption, privacy protection, machine learn-

ing

Student Number: 2014-31408

Contents

Abstract i

1 Introduction 1

1.1 Multidimensional Variant of HEAAN 3

1.2 Applications To Machine Learning 4

1.3 List Of Papers . 8

2 Background Theory 9

2.1 Basic Notations . 9

2.2 Machine Learning Algorithms 10

2.2.1 Logistic Regression 10

2.2.2 Deep Learning . 13

2.3 The Cyclotomic Ring and Canonical Embedding 15

2.4 m-RLWE Problem . 16

2.5 HEAAN Scheme . 18

2.5.1 Bootstrapping for HEAAN 20

3 MHEAAN Scheme 23

3.1 MHEAAN Scheme . 23

3.1.1 Structure of MHEAAN 23

iii

CONTENTS

3.1.2 Concrete Construction 24

3.2 Bootstrapping for MHEAAN 30

3.3 Homomorphic Evaluations of Matrix Operations 31

3.3.1 Matrix by Vector Multiplication 32

3.3.2 Matrix Multiplication 33

3.3.3 Matrix Transposition 35

3.3.4 Matrix Inverse . 36

4 Applications 38

4.1 Sigmoid & Tanh Approximations 38

4.2 Homomorphic LR Training Phase 39

4.2.1 Database Encoding 39

4.2.2 Homomorphic Evaluation of the GD 40

4.2.3 Homomorphic Evaluation of NLGD 43

4.3 Homomorphic DNN Classification 44

4.4 Homomorphic RNN Classification 46

5 Implementation Results 48

5.1 Evaluation of NLGD Training 50

5.2 Evaluation of DNN Classification 52

5.3 Evaluation of RNN Classification 54

6 Conclusions 56

A Proofs 65

Abstract (in Korean) 74

Acknowledgement (in Korean) 75

iv

Chapter 1

Introduction

Homomorphic Encryption (HE) [RAD78] allows to perform certain arith-

metics operations in encrypted state. Following Gentry’s blueprint [Gen09],

a numerous HE schemes have been proposed [DGHV10, BV11a, BV11b,

Bra12, BGV12, GHS12, LATV12, BLLN13, GSW13, CLT14, CS15, DM15,

DHS16, CKKS17, CGGI18]. The most asymptotically efficient HE schemes

are based on the hardness of RLWE, and they normally have a common

structure of ciphertexts with noised encryption for security.

In calculations, floating-point arithmetic (FP) is arithmetic using the

formal representation of real numbers as an approximation to maintain a

compromise between range and accuracy. For this reason, floating point

calculations are often found in systems that include very small and very

large real numbers (e.g. floating point numbers) that require fast processing

time. The number, as a rule, is presented approximately to a fixed number

of significant digits (values) and is scaled using the exponent in some fixed

base. Over the years, a variety of floating-point representations have been

used in computers systems.

1

CHAPTER 1. INTRODUCTION

Recently Cheon et. al. [CKKS17] presented a method of constructing

an HE scheme for arithmetics of approximate numbers (called HEAAN).

The idea of the construction is to treat encryption noise as a part of error

occurring during approximate computations. In other words, a ciphertext

ct of a plaintext m P R encrypted by a secret key sk for an underlying

ciphertext modulus q will have a decryption structure of the form xct, sky “

m ` e pmod R{qRq for some small error e. HEAAN is based on an RLWE

structure over a power-of-two M “ 2¨N cyclotomic ring modulo q,R{qR “
ZqrXs{pXN ` 1q. A vector of complex values of size up to N{2 can be

encoded using a variant of canonical embedding map.

HEAAN showed its potential by providing the winning solution of Track 3

(Homomorphic Encryption Based Logistic Regression Model Learning) at

the iDASH privacy and security competition in 2017 [KSK`]. In the iDASH

2018, all the participants used HEAAN scheme as an underlying scheme for

the Secure Parallel Genome Wide Association Studies using Homomorphic

Encryption (Track 2) [CKK`17].

In both years in their solutions authors packed a matrix of inputs in

a vector. Even though the authors could provide all computations using

matrix to vector packing in that particular task, due to absence of row-

wise matrix rotation functionality they had to circumvent and consume

an additional level during the computations. With the growth of more

complex algorithms, such as deep learning and recommendation systems

which require lots of matrix operations, the possibility of performing ma-

trix operations is becoming crucial for homomorphic encryptions. Despite

the diversity of HE schemes that achieve a variety of circuit evaluations,

practical matrix operations such as matrix multiplications is still a problem

in HE.

2

CHAPTER 1. INTRODUCTION

1.1 Multidimensional Variant of HEAAN

We present generalization of HEAAN with a tensor packing method, along

with natural rotations in various dimensions, which is, called the hyper-

cube structure, also applied in HElib [HS14, HS15, HS18]. The straightfor-

ward attempt could be based on the Multivariate RLWE (m-RLWE) prob-

lem as an underlying hardness problem, introduced by Pedrouzo-Ulloa et

al. [PUTPPG15, PUTPPG16] as a multivariate variant of RLWE problem

with an underlying ring Zrx0, x1s{px
N0
0 `1, xN1

1 `1q where both N0 and N1

are powers-of-two. However this problem succumbs to the following eval-

uation attack: without loss of generality assume N0 ě N1, and substitute

x1 “ x
N0{N1

0 , then the RLWE problem over Zrx0, x1s{px
N0
0 ` 1, xN1

1 ` 1q

reduces to a problem over Zrx0s{px
N0
0 ` 1q.

So instead, we provide a scheme MHEAAN based on the m-RLWE problem

with indeterminates x0 and x1 (or in general case x0, . . . , xs) satisfying re-

lations given by cyclotomic polynomials corresponding to relatively prime

orders. The hardness of the m-RLWE problem over this ring is shown to

have reduction from the origina RLWE problem. MHEAAN enjoys all the ben-

efits of HEAAN such as a rescaling procedure, which enables us to preserve

the precision of the message after approximate computations and to reduce

the size of ciphertexts significantly. Thus, the scheme can be a reasonable

solution for approximate computation over the complex values. Moreover,

with a multivariable structure of m-RLWE, we provide a general technique

for tensor plaintext slots packing in a single ciphertext. We provide a con-

crete two-dimensional construction which supports matrix operations as

well as standard HE operations.

For two-dimensional case corresponding to natural matrix structure of

plaintext slots, matrix multiplication in MHEAAN is achieved in very simple

3

CHAPTER 1. INTRODUCTION

way using Fox matrix multiplication algorithm [FO87]. In contrast to the

method of Mishra et al. [MRDY] our method does not require exponen-

tially large degree of the base ring and we can use matrix multiplication

as a part of more complex algorithms. The matrix size is also not a prob-

lem, as our method preserves matrix structure, and can combined with

divide-and-conquer algorithm. Moreover MHEAAN enjoys other matrix re-

lated operations, like matrix transposition.

MHEAAN supports faster bootstrapping procedure than that of HEAAN

when number of slots is sufficiently large. For base ring degree N , the boot-

strapping procedure for large number of slots in MHEAAN is approximately

requires OpN
1

2ps`1q q of ciphertext rotations and OpN
1

s`1 q of constant mul-

tiplications where s` 1 is the number of factors of base ring. The original

HEAAN requires about Op
?
Nq of ciphertext rotations and OpNq of constant

multiplications. In our implementation s is equal to 1 and the degree of

ring is factored into values close to
?
N , so the bootstrapping complexity

is reduced from Op
?
Nq to Op 4

?
Nq rotations and from OpNq to Op

?
Nq

constant multiplications.

1.2 Applications To Machine Learning

Machine Learning is a class of artificial intelligence methods whose char-

acteristic feature is not a direct solution of a problem, but learning in

the process of applying solutions to a multitude of similar tasks. To build

such methods, the tools of mathematical statistics, numerical methods,

optimization methods, probability theory, graph theory, and various tech-

niques of working with data in digital form are used.

The scope of ML applications is constantly expanding, however, with

4

CHAPTER 1. INTRODUCTION

the rise of ML, the security problem has become an important issue. For

example, many medical decisions rely on logistic regression model, and

biomedical data usually contain confidential information about individuals

which should be treated carefully. Therefore, privacy and security of data

are the major concerns, especially when deploying the outsource analysis

tools. In most of the ML based online services, model-service providers have

a common strategy that a trained model resides on a server and returns

computed values of data uploaded by the user instead of releasing the

trained model in public. This is because not only the trained models with

the massive amount of data have high economic values, but also publicly

available models are vulnerable to adversarial attacks. On the other hand,

in perspectives of such service users, one of the major concerns is about

privacy of their data. Users lose control over the data after uploading it

to the online services. In other words, it is impossible for users to know

who will access their data and how the data will be used. And Even if

model-service providers are honest, there is always a risk of information

leakage due to external adversaries. For this reason, users become reluctant

to use such services, despite how helpful those services are. Therefore it is

essential to execute inferences of the trained ML models while preserving

data privacy.

Homomorphic encryption can be a solution to this problem, which is

an encryption scheme that allows calculations on several operations on en-

crypted data without decryption. We show several applications of MHEAAN

to different machine learning algorithms.

Logistic Regression Training Phase.

Before iDASH 2017 several papers already discussed ML with HE tech-

niques. Wu et al. [WS13] used Paillier cryptosystem [LP13] and approx-

5

CHAPTER 1. INTRODUCTION

imated the logistic function using polynomials, but it required an expo-

nentially growing computational cost in the degree of the approximation

polynomial. Aono et al. [AHTPW16] and Xie et al. [XWBB16] used an ad-

ditive HE scheme to aggregate some intermediate statistics. However, the

scenario of Aono et al. relies on the client to decrypt these intermediary

statistics and the method of Xie et al. requires expensive computational

cost to calculate the intermediate information. The most related research

of our approach is the work of Kim et al. [KSW`] which also used HE based

ML. However, the size of encrypted data and learning time were highly de-

pendent on the number of features, so the performance for a large dataset

was not practical in terms of storage and computational cost.

We propose a general practical solution for MHEAAN based logistic regres-

sion learning algorithm over encrypted data. Our approach demonstrates

good performance and low storage costs. In practice, our output quality

is comparable to the one of an unencrypted learning case. To improve the

performance, we apply several additional techniques including a matrix

packing method, which reduce the required storage space and optimize the

computational time. We also adapt Nesterov’s accelerated gradient [Nes83]

to improve the convergence rate. As a result, we used less number of iter-

ations than the other solutions, resulting in a much faster time to learn a

model.

Deep Neural Network Classification.

A deep neural network is an artificial neural network with multiple

layers between the input and output layers. The DNN finds the correct

mathematical manipulation to turn the input into the output, whether it

be a linear relationship or a non-linear relationship.

Previous implementations of encrypted prediction [BMMP17, HTG17]

6

CHAPTER 1. INTRODUCTION

are done over the plain models, and limited number of hidden layers. The

result of [BMMP17] has an impressive performance, but it is restricted

only for a binary model, and is expected to have huge drowning in the

efficiency when expanding to a non-binary model.

We constructed MHEAAN based Deep Neural Network classification al-

gorithm with 2 and 6 number of layers. With matrix packing we with the

rotation technique we optimized the storage space and computational time.

The encrypted predictions achieve the accuracy similar to the accuracy of

the predictions on the plain data. With our practical bootstrapping method

our approach is flexible and can be generalized to the DNN architecture

with large number of hidden layers.

Recurrent Neural Network Classification.

Recurrent Neural Networks (RNNs) are popular models that have shown

great promise in many sequential data and among others used by Apples

Siri and Googles Voice Search. Their great advantage is that the algorithm

remembers its input, due to an internal memory. RNN model has much

more complex structure than standard DNN model, thus it is much harded

to adapt it with HE.

We chose as an application a model designed in deepTarget (Lee et

al.) [LBPY16] as a validation of MHEAAN scheme. We evaluate the scalability

of MHEAAN on a sequential model with RNA sequences, where privacy is

critical. As far as our knowledge, this is the first attempt to implement

RNN using FHE.

7

CHAPTER 1. INTRODUCTION

1.3 List Of Papers

Andrey Kim was a co-author for original HEAAN papers. The contribution

of Andrey Kim was researching and drafting the source code. The original

papers for HEAAN scheme are:

• [CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, Yongsoo Song,

Homomorphic Encryption for Arithmetic of Approximate Numbers ,

978-3-319-70693-1, ASIACRYPT 2017, Part 1, LNCS 10624.

• [CHK`18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran

Kim, Yongsoo Song, Bootstrapping for Approximate Homomorphic

Encryption, EUROCRYPT 2018.

This thesis is based on the following papers:

• [KSK`] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, Jung

Hee Cheon, Logistic Regression Model Training based on the Ap-

proximate Homomorphic Encryption, BMC Medical Genomics 2018,

vol. 11 (suppl. 4) :83, (SCI) doi: 10.1186/s12920-018-0401-7

• [CKY18] Jung Hee Cheon, Andrey Kim, Donggeon Yhee Multi-dimensional

Packing for HEAAN for Approximate Matrix Arithmetics

• [JKN`19] Jaehee Jang, Andrey Kim, Byunggook Na, Byunghan Lee,

Sungroh Yoon and Junghee Cheon. Privacy-Preserving Inference for

Gated RNNs with Matrix Homomorphic Encryptions

In [KSK`] and [CKY18] Andrey Kim was the main author and con-

tributor. In [JKN`19] Andrey Kim designed the source code.

8

Chapter 2

Background Theory

To avoid an ambiguity, we define tensors following linear algebras :

Definition 2.0.1. A tensor is an assign from a multi-indices set to values.

A tensor is of rank k if the multi-indices set consists of k-tuple of indices.

A vector is a rank 1 tensor and a matrix is a rank 2 tensor.

2.1 Basic Notations

All logarithms are base 2 unless otherwise indicated. We denote vectors in

bold, e.g. a, and every vector in this paper will be a column vector. For

vectors a and b we denote by xa,by the usual dot product. We denote

matrices by bold capital letters, e.g. A, and general tensors by â. For a

real number r, trs is the nearest integer to r, rounding upwards in case

of a tie. For an integer q, we identify the ring Zq with p´q{2, q{2s as a

representative interval and for integer r we denote by trsq the reduction

of r modulo q into that interval. We use a Ð χ to denote the sampling

a according to a distribution χ. If χ is a uniform distribution on a set D,

9

CHAPTER 2. BACKGROUND THEORY

we use a Ð D rather than a Ð χ. For rank k tensors â, b̂ P Cn1ˆ¨¨¨ˆnk we

denote a component-wise product by âdb̂. For vectors r “ pr1, . . . , rkq and

g “ pg1, . . . , gkq we denote by gr “ pgr11 , . . . , g
rk
k q component powers, and

by rtpâ, rq a tensor obtained from â by cyclic rotating by ri in corresponding

index i. For example, in case of matrices i.e. rank 2 tensors, we have:

A “

»

—

—

—

—

—

–

a0,0 a0,1 ¨ ¨ ¨ a0,n1´1

a1,0 a1,1 ¨ ¨ ¨ a1,n1´1

...
...

. . .
...

an0´1,0 an0´1,1 ¨ ¨ ¨ an0´1,n1´1

fi

ffi

ffi

ffi

ffi

ffi

fl

rtpA, pr0, r1qq “

»

—

—

—

—

—

–

ar0,r1 ar0,r1`1 ¨ ¨ ¨ ar0,r1´1

ar0`1,r1 ar0`1,r1`1 ¨ ¨ ¨ ar0`1,r1´1

...
...

. . .
...

ar0´1,r1 ar0´1,r1`1 ¨ ¨ ¨ ar0´1,r1´1

fi

ffi

ffi

ffi

ffi

ffi

fl

where indices are taken modulus ni. Denote the security parameter

throughout the paper: all known valid attacks against the cryptographic

scheme under scope should take bit operations.

2.2 Machine Learning Algorithms

2.2.1 Logistic Regression

Logistic regression or logit model is a ML model used to predict the proba-

bility of occurrence of an event by fitting data to a logistic curve [Har01]. It

10

CHAPTER 2. BACKGROUND THEORY

is widely used in various fields including machine learning, biomedicine [LL90],

genetics [LK12], and social sciences [GL09].

Throughout this paper, we treat the case of a binary dependent vari-

able, represented by ˘1. Learning data consists of pairs pxi, yiq of a vector

of co-variates xi “ pxi1, ..., xif q P Rf and a dependent variable yi P t˘1u.

Logistic regression aims to find an optimal β P Rf`1 which maximizes the

likelihood estimator

n
ź

i“1

Prpyi|xiq “
n
ź

i“1

1

1` expp´yip1,xiqTβq
,

or equivalently minimizes the loss function, defined as the negative log-

likelihood:

Jpβq “
1

n

n
ÿ

i“1

logp1` expp´zTi βqq

where zi “ yi ¨ p1,xiq for i “ 1, . . . , n.

Gradient Descent

Gradient Descent (GD) is a method for finding a local extremum (mini-

mum or maximum) of a function by moving along gradients. To minimize

the function in the direction of the gradient, one-dimensional optimization

methods are used.

For logistic regression, the gradient of the cost function with respect to

β is computed by

∇Jpβq “ ´ 1

n

n
ÿ

i“1

σp´zTi βq ¨ zi

where σpxq “ 1
1`expp´xq

. Starting from an initial β0, the gradient descent

11

CHAPTER 2. BACKGROUND THEORY

method at each step t updates the regression parameters using the equation

βpt`1q
Ð βptq `

αt
n

n
ÿ

i“1

σp´zTi β
ptq
q ¨ zi

where αt is a learning rate at step t.

Nesterov’s Accelerated Gradient

The method of GD can face a problem of zig-zagging along a local optima

and this behavior of the method becomes typical if it increases the number

of variables of an objective function. Many GD optimization algorithms

are widely used to overcome this phenomenon. Momentum method, for

example, dampens oscillation using the accumulated exponential moving

average for the gradient of the loss function.

Nesterov’s accelerated gradient [Nes83] is a slightly different variant

of the momentum update. It uses moving average on the update vector

and evaluates the gradient at this “looked-ahead” position. It guarantees a

better rate of convergence Op1{t2q (vs. Op1{tq of standard GD algorithm)

after t steps theoretically, and consistently works slightly better in prac-

tice. Starting with a random initial v0 “ β0, the updated equations for

Nesterov’s Accelerated GD are as follows:

$

&

%

βpt`1q “ vptq ´ αt ¨5Jpvptqq,

vpt`1q “ p1´ γtq ¨ β
pt`1q ` γt ¨ β

ptq,
(2.2.1)

where 0 ă γt ă 1 is a moving average smoothing parameter.

12

CHAPTER 2. BACKGROUND THEORY

2.2.2 Deep Learning

Deep Learning is a set of machine learning algorithms (with a training, with

partial involvement of a training, without a training, with reinforcement),

based on the representation learning, rather than specialized algorithms

for specific tasks. Many deep learning methods were known as early as the

1980s, but the results were unimpressive, while advances were made in the

theory of artificial neural networks. And the computational power of the

mid-2000s did not allow creating complex technological architectures of

neural networks with sufficient productivity and did not allow to solve a

wide range of tasks in computer vision, machine translation, speech recog-

nition. However nowadays deep learning has shown amazing performance

in diverse areas including academic research as well as industrial develop-

ments, and is applied to the increasing number of real-life applications.

DNN Classification Algorithm

We briefly describe the flow of DNN classification algorithm. DNN model

consists of L` 1 number of fully connected (FC) layers. For simplicity we

enumerate the layers starting from 0. Each layer contains nl number of

nodes for l “ 0, . . .L. The layer 0 is input layer, the layer l is output layer,

and the others are hidden layers. Each of the hidden layers and the output

layer has a corresponding weight matrix Wl P Rnlˆnl´1 and a bias vector

bl P Rnl . For the input vector a0 P Rn0 , we consecutively calculate the

linear transformation part

zl “ Wlal´1 ` bl

and for acitivation function gl the activation part

13

CHAPTER 2. BACKGROUND THEORY

al “ glpzlq

at the each hidden layer. For the output layer we calculate the linear

transformation part zL “ WLaL´1 ` bL and the index of largest value in

zL is the classification output.

RNN Classification Algorithm

Most neural networks currently used in research based on deep learning are

deep sequential models. In the deep sequential models, a prediction value

or vector corresponding to input data is computed by going through their

critical operations (i.e., matrix multiplication, activation function). A RNN

is one of the most popular deep sequential model. The RNN has recurrent

operations to get knowledge from sequence data. Connections of neurons in

the RNNs form computational directed graphs, and types of the directed

graphs can diverse. RNN can learn dynamic temporal representation of

input data by recurrently calculating internal states of the neurons.

We briefly describe the flow of RNN classification algorithm based on

gated recurrent units (GRU). RNN model consists of T number of GRU

layers and L` 1 number of FC layers.

Each GRU layer has hidden state ht´1 and input xt as inputs, and

hidden state ht as output. Each of the GRU layers has a corresponding

weight matrices Wz, Uz, Wr, Ur, Wh, Uh and a bias vectors bWz , bUz ,

bWr , bUr , bWh
, bUh

.

14

CHAPTER 2. BACKGROUND THEORY

(update gate) zt “ σpWzxt ` bWz `Uzxt ` bUzq (2.2.2)

(reset gate) rt “ σpWrxt ` bWr `Urxt ` bUrq (2.2.3)

(hidden cell) h̃t “ tanhpWhxt ` bWh
` rt ˚ pUhxt ` bUh

qq (2.2.4)

(output) ht “ zt ˚ ht´1 ` p1´ ztq ˚ h̃t (2.2.5)

For FC layers the algorithm is same as DNN case. Our input vector for

FC is hT .

2.3 The Cyclotomic Ring and Canonical Em-

bedding

For an integer M consider its decomposition into primes M “ 2k0 ¨ pk11 ¨

¨ ¨ ¨ ¨ pkss “
śs

i“0Mi, where M0 “ 2k0 , and Mi “ pkii for i “ 1, . . . , s.

We will consider the cases k0 ą 2. Let Ni “ φpMiq “ p1 ´ 1
pi
qMi for

i “ 0, . . . , s, and N “ φpMq “
śs

i“0Ni. Denote tensors N̂ “ N0 ˆ N1 ˆ

¨ ¨ ¨ ˆ Ns, N̂h “ N0{2 ˆ N1 ˆ ¨ ¨ ¨ ˆ Ns, and vectors N “ pN0, N1, . . . , Nsq,

Nh “ pN0{2, N1, . . . , Nsq. Let ΦMpxq be M -th cyclotomic polynomial. Let

R “ Zrxs{ΦMpxq and S “ Rrxs{ΦMpxq. The canonical embedding τM of

apxq P Qrxs{pΦMpxqq into CN is the vector of evaluation values of apxq at

the roots of ΦMpxq. We naturally extend it to the set of real polynomials

S, τM : S Ñ CN , so τMpapxqq will be defined as papξjMqqjPZ‹M P C
N for any

a P R where ξM “ expp´2πi{Mq is a primitive M -th roots of unity. The

`8-norm of τMpapXqq is called the canonical embedding norm of a, denoted

by }a}can8 “ }τMpaq}8. The canonical embedding norm }¨}can8 satisfies the

following properties:

15

CHAPTER 2. BACKGROUND THEORY

‚ For all a, b P R, we have }a ¨ b}can8 ď }a}can8 ¨ }b}can8

‚ For all a P R, we have }a}can8 ď }a}1.

‚ For all a P R, we have }a}8 ď }a}
can
8 .

Refer [DPSZ12] for more details.

2.4 m-RLWE Problem

Here we set up an underlying hardness problem.

Proposition 2.4.1. If M0,M1, ¨ ¨ ¨ ,Ms are pairwisely coprime, then there

is a ring isomorphism

S “ Rrxs{ΦMpxq – Rrx0, . . . , xss{pΦM0px0q, . . .ΦMspxsqq “ S 1

and the map induces a ring isomorphism

R “ Zrxs{ΦMpxq – Zrx0, . . . , xss{pΦM0px0q, . . .ΦMspxsqq “ R1.

We refers [BGV12] for RLWE-problem.

Definition 2.4.1. A decisional RLWE problem RLWER,σ is a distinguish-

ing problem between uniform distribution papxq, bpxqq and a distribution

papxq, apxqspxq`epxqq such that apxq, bpxq, spxq Ð R{qR and epxq is given

by the image of a sample in R whose canonical embedding has components

following a Gaussian distribution of variance σ2 independently.

Definition 2.4.2. A decisional m-RLWE problem m-RLWER1,σ1 is a distin-

guishing problem between uniform distribution papxq, bpxqq and a distribu-

tion papxq, apxqspxq` epxqq such that apxq, bpxq, spxq P R1{qR1 and epxq is

16

CHAPTER 2. BACKGROUND THEORY

given by the image of a sample in R1 whose coefficients follow a Gaussian

distribution of variance σ12 independently.

The m-RLWE problem is suspected to be weak under evaluation attacks

such as in case of the ring Zrx0, x1s{pΦM0px0q,ΦM1px1qq for the powers-of-

two M0,M1. The attack also seems to be expanding at least partially to the

case gcdpMi,Mjq ą 1. We design our scheme using relatively prime Mi’s

to avoid this case. Further we show the hardness of our case by devising

a reduction from the original RLWE problem to m-RLWE problem with

relatively prime Mi’s.

Lemma 2.4.1. (Hardness of m-RLWE) Let R and R1 be given as proposi-

tion 2.4.1. Then RLWER,σ reduces to m-RLWER1,cσ, where

c2
“

s
ź

i“1

ˆ

pi ´ 1

pi
ˆ p2`

12π

pi
q

˙

In particular, c is less than
?

3 if pi ě 41 ą 12π or pi “ 3, 37. As p

increases, c tends to be
?

2. The followings are approximations of c :

ppi, cq “ p5, 2.8q, p7, 2.6q, p11, 2.3q, p13, 2.2q, p17, 2.0q,

p19, 2.0q, p23, 1.9q, p29, 1.8q, p31, 1.9q

For pi “ 3 and 37, the norm is given 2{
?

3 and bounded by 1.72, respec-

tively.

Remark 2.4.1. Our implementation covers cases of s “ 1 and p “ 17, 257.

In these cases, c2 is approximately 2.06, 2.01, respectively.

Remark 2.4.2. Since }a}2 ď }a}8, the distinguishing problem given by `8

norm is at least as hard as the problem given by `2 norm. In other words,

17

CHAPTER 2. BACKGROUND THEORY

m-RLWE sample can be chosen by an error distribution following `8 norm

rather than `2 norm. From now on, the norm of m-RLWE samples, or their

errors, are measured by `8 norm.

2.5 HEAAN Scheme

The following is the instantiation of the RLWE-based HEAAN scheme [CKKS16,

CKKS17]. For a power-of-two N ą 4 and M “ 2N , denote ΦMpxq “

pxN`1q, R “ Zrxs{ΦMpxq. For a positive integer `, denote R` “ R{2`R “
Z2`rxs{ΦMpxq the residue ring ofR modulo 2`. The variant of the canonical

embedding map defined as

τ 1N{2 : mpxq Ñ z “ pz0, . . . , zN{2´1q

such that zj “ mpξ5j

Mq.

Sparse packing. For a power-of-two n ď N{2 consider a subring Rpnq “
Zrx1s{px12n ` 1q Ă R where x1 “ xN{p2nq. For Rpnq define an isomorphism

τ 1n : mpx1q “ mpxN{p2nqq Ñ z “ pz0, . . . , zn´1q such that zj “ mpξ1jq, where

ξ1j “ ξ
N{p2nq
j . We can pack n complex values via isomorphism τ 1´1

n . In this

case if we apply τ 1N{2 to mpx1q P R we will get a vector obtained from z by

concatenating itself N{n times. For a message mpxq encoding a vector z

and a ciphertext ct encrypting mpxq, ct is also said to be encrypting vector

z.

‚ HEAAN.KeyGenp1λq.

- For an integer L that corresponds to the largest ciphertext mod-

ulus level, given the security parameter λ, output the ring di-

mension N which is a power of two.

18

CHAPTER 2. BACKGROUND THEORY

- Set the small distributions χkey, χerr, χenc over R for secret, er-

ror, and encryption, respectively.

- Sample a secret s Ð χkey, a random a Ð RL and an error

e Ð χerr. Set the secret key as sk Ð ps, 1q and the public key

as pkÐ pa, bq P R2
L where bÐ ´as` e pmod 2Lq.

‚ HEAAN.KSGenskps
1q. For s1 P R, sample a random a1 Ð R2¨L and an

error e1 Ð χerr. Output the switching key as swk Ð pa1, b1q P R2
2¨L

where b1 Ð ´a1s` e1 ` 2Ls1 pmod 22¨Lq.

- Set the evaluation key as evkÐ HEAAN.KSGenskps
2q.

‚ HEAAN.Encodepz, pq. For a vector z P Cn, with of a power-of-two

n ď N{2 and an integer p ă L corresponding to precision bits,

output the polynomial mÐ τ 1´1
n p2

p ¨ zq P R.

‚ HEAAN.Decodepm, pq. For a plaintext m P R, the encoding of a vector

consisting of a power-of-two n ď N{2 complex messages and precision

bits p, output the vector z Ð τ 1npm{2
pq P Cn.

‚ HEAAN.Encpkpmq. For m P R, sample v Ð χenc and e0, e1 Ð χerr.

Output v ¨ pk` pe0, e1 `mq pmod 2Lq.

‚ HEAAN.Decskpctq. For ct “ pc0, c1q P R2
` , output c0 ¨ s` c1 pmod 2`q.

‚ HEAAN.Addpct1, ct2q. For ct1, ct2 P R2
` , output ctadd Ð ct1`ct2 pmod 2`q.

‚ HEAAN.CMultevkpct, c, pq. For ct P R2
` and c P Cn, compute c Ð

HEAAN.Encodepc; pq and output ct1 Ð c ¨ ct pmod 2`q.

‚ HEAAN.PolyMultevkpct, g, pq. For ct P R2
` and g P R`, output ct1 Ð

g ¨ ct pmod 2`q.

19

CHAPTER 2. BACKGROUND THEORY

‚ HEAAN.Multevkpct1, ct2q. For ct1 “ pa1, b1q, ct2 “ pa2, b2q P R2
` , let

pd0, d1, d2q “ pa1 ¨a2, a1 ¨ b2`a2 ¨ b1, b1 ¨ b2q pmod 2`q. Output ctmult Ð

pd1, d2q ` t2´L ¨ d0 ¨ evks pmod 2`q.

‚ HEAAN.ReScalepct, pq. For a ciphertext ct P R2
` and an integer p,

output ct1 Ð t2´p ¨ cts pmod 2`´pq.

‚ HEAAN.ModDownpct, pq. For a ciphertext ct P R2
` and an integer p,

output ct1 Ð ct pmod 2`´pq.

For an integer k co-prime withM , let κk : mpxq Ñ mpxkq pmod ΦMpxqq.

This transformation can be used to provide more functionalities on plain-

text slots.

‚ HEAAN.Conjugatecjkpctq. Set the conjugation key as cjkÐ HEAAN.KSGenskpκ´1psqq.

For ct “ pa, bq P R2
` encrypting vector z, let pa1, b1q “ pκ´1paq, κ´1pbqq

pmod 2`q. Output ctcj Ð p0, b1q ` t2´L ¨ a1 ¨ cjks pmod 2`q. ctcj is a ci-

phertext encrypting z̄ - the conjugated plaintext vector of ct.

‚ HEAAN.Rotatertkpct; rq. Set the rotation key as rtkÐ HEAAN.KSGenskpκ5rpsqq.

For ct “ pa, bq P R2
` encrypting vector z, let pa1, b1q “ pκ5rpaq, κ5rpbqq

pmod 2`q. Output ctrt Ð p0, b1q ` t2´L ¨ a1 ¨ rtks pmod 2`q. ctrt is a ci-

phertext encrypting rtpz, rq “ pzr, . . . , zn´1, z0, . . . , zr´1q - rotated by

r positions plaintext vector of ct.

Refer [CKKS17, CHK`18] for the technical details and noise analysis.

2.5.1 Bootstrapping for HEAAN

Consider a ciphertext ct P R12` , an encryption of message mpxq encoding a

vector of size n. Then the coefficients of mpxq are non-zero only at degrees

20

CHAPTER 2. BACKGROUND THEORY

k ¨ N
2n

for k “ 1, 2, ¨ ¨ ¨ , 2n´ 1. Consider ct as an element of R12L for L " `.

We can treat ct as an encryption of mpxq ` 2` ¨ Ipxq in R1L i.e. Decpctq “

mpxq ` epxq ` 2` ¨ Ipxq pmod Rq for some polynomial Ipxq of degree ă N .

With a choice of sparse sk, coefficients of Ipxq are bounded with some

constant. Now the bootstrapping procedure is defined as followings.

‚ HEAAN.SubSumpct, nq As the number of slots is n, then nonzero co-

efficients of mpxq are only at degrees k ¨ N
2n

. The output encrypts a

message mpxq` 2` ¨ I 1pxq where I 1pxq derived from Ipxq by vanishing

the coefficients at degrees other than multiples of N
2n

.

Algorithm 1 SubSum procedure

1: procedure SubSum(ct P R12L, n | N{2, n ě 1)
2: ct1 Ð ct
3: for j “ 0 to logp N

2n
q ´ 1 do

4: ctj Ð HEAAN.Rotatepct1; 2j ¨ nq
5: ct1 Ð HEAAN.Addpct1, ctjq
6: end for
7: ct2 Ð HEAAN.ReScalepct1; logp N

2n
qq

8: return ct2

9: end procedure

Let mpxq` 2` ¨ I 1pxq “
řN´1
j“0 tjx

j encoding vector z “ pz0, . . . , zn´1q.

Then for the following matrix Σ we have equation:

21

CHAPTER 2. BACKGROUND THEORY

Σ ¨ z “

»

—

—

—

—

—

–

ξ0
0 ξ1

0 ¨ ¨ ¨ ξn´1
0

ξ0
1 ξ1

1 ¨ ¨ ¨ ξn´1
1

...
...

. . .
...

ξ0
n´1 ξ1

n´1 ¨ ¨ ¨ ξn´1
n´1

fi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

—

–

z0

z1

...

zn´1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

t10 ` i ¨ t1n

t11 ` i ¨ t1n`1

...

t1n´1 ` i ¨ t12n´1

fi

ffi

ffi

ffi

ffi

ffi

fl

(2.5.6)

where ξj “ expp2πi¨5j

2n
q and t1k “ tk¨ N

2n
.

‚ HEAAN.SlotToCoeffpctq. Multiply ct by a matrix Σ´1. The output is

the ciphertext that encrypts coefficients of mpxq`2` ¨I 1pxq in real and

imaginary parts: tk¨ N
2n
` i ¨ tpk`nq¨ N

2n
in slot k for k “ 1, 2, ¨ ¨ ¨ , n´ 1.

‚ HEAAN.RemoveIPartpctq Extract real and imaginary parts of slots and

evaluate the polynomial function, close to fpxq “ 1
2πi

expp2πix
2`
q for

both parts. Combine the two ciphertexts to obtain a ciphertext that

encrypts coefficients of mpxq in real and imaginary parts: mk¨ N
2n
` i ¨

mpk`nq¨ N
2n

in slot k for k “ 1, 2, ¨ ¨ ¨ , n´ 1.

‚ HEAAN.CoeffToSlotpctq Multiply ct by a matrix Σ´1. The result is

a ciphertext that encrypts mpxq in a higher power-of-two modulus

L1 " `

SlotToCoeff and CoeffToSlot parts of the algorithm require Op
?
nq

ciphertext rotations and Opnq constant multiplications when performing

so-called ‘baby-giant step’ optimization. The algorithm also requires to

store Op
?
nq rotations keys, which is impractical for large number of slots.

For more details refer to [CHK`18, CKKS16].

22

Chapter 3

MHEAAN Scheme

3.1 MHEAAN Scheme

3.1.1 Structure of MHEAAN

In this section we will use notations from Section 2.3. MHEAAN is a general-

ization of HEAAN to a case of non power-of-two M . The encryption process

in MHEAAN scheme can be shown in the following outline: we encode a ten-

sor of complex values of size N̂ using τ 1´1
Nh

into mpxq P R1. We mask the

result with m-RLWE instance
`

apxq, bpxq
˘

in the corresponding ring R1`.
For a message mpxq encoding a tensor ẑ and a ciphertext ct encrypting

mpxq, we also say that ct encrypts tensor ẑ.

sparse packing. For divisors n0 of N0{2 and ni of Ni for i “ 1, . . . , s,

denote n̂ “ n0 ˆ n1 ˆ ¨ ¨ ¨ ˆ ns, n “ pn0, n1, . . . , nsq. We can imitate sparse

tensor packing similar to the HEAAN case. We can encode a sparse tensor of

complex values of size n̂ using τ 1´1
Nh

applied to a tensor of size N̂h consisting

of same blocks of size n̂. We denote this embedding as τ 1´1
n .

23

CHAPTER 3. MHEAAN SCHEME

We can treat HEAAN scheme as a special case of MHEAAN with s “ 0:

z “

»

—

—

—

—

—

–

z0

z1

...

zn0´1

fi

ffi

ffi

ffi

ffi

ffi

fl

τ 1´1
n0

ÝÝÝÝÑ
Encode

mpxq
RLWE
ÝÝÝÑ
Enc

ct

and for two-dimensional packing (s “ 1) we have:

Z “

»

—

—

—

—

—

–

z0,0 z0,1 ¨ ¨ ¨ zn1´1

z1,0 z1,1 ¨ ¨ ¨ z1,n1´1

...
...

. . .
...

zn0´1,0 zn0´1,1 ¨ ¨ ¨ zn0´1,n1´1

fi

ffi

ffi

ffi

ffi

ffi

fl

τ 1´1
n0,n1

ÝÝÝÝÑ
Encode

mpx0, x1q
m´RLWE
ÝÝÝÝÝÑ

Enc
ct

3.1.2 Concrete Construction

For a positive integer ` denote R1` “ R1{2`R1 the residue ring of R1 mod-

ulo 2`. For a real σ ą 0, DGpσ2q samples a multivariate polynomial in R1

by drawing its coefficient independently from the discrete Gaussian dis-

tribution of variance σ2. For an positive integer h, HWT phq is the set of

signed binary tensors in t0,˘1uN̂ whose Hamming weight is exactly h. For

a real 0 ď ρ ď 1, the distribution ZOpρq draws each entry in the tensor

from t0,˘1uN̂, with probability ρ{2 for each of ´1 and `1, and probability

being zero 1´ ρ.

‚ MHEAAN.KeyGenp1λq.

- Given the security parameter λ, set an integer M that corre-

24

CHAPTER 3. MHEAAN SCHEME

sponds to a cyclotomic ring, an integer L that corresponds to

the largest ciphertext modulus level and distribution parame-

ters pρ, σ, hq.

- Set the distributions χenc “ ZOpρq, χerr “ DGpσq, χkey “
HWT phq over R for secret, error, and encryption, respectively.

- Sample a secret s Ð χkey, a random a Ð R1L and an error

e Ð χerr. Set the secret key as sk Ð ps, 1q and the public key

as pkÐ pa, bq P R12L where bÐ ´a ¨ s` e pmod 2Lq.

‚ MHEAAN.KSGenskpsq. For s P R1, sample a random a Ð R12¨L and an

error e Ð χerr. Output the switching key as swk Ð pa, bq P R122¨L
where bÐ ´a ¨ s` e` 2Ls pmod R12¨Lq.

- Set the evaluation key as evkÐ MHEAAN.KSGenskps
2q.

‚ MHEAAN.Encodepẑ, pq. For a tensor ẑ P Cn̂, an integer p ă L ´ 1

corresponding to precision bits, output the two-degree polynomial

mÐ τ 1np2
p ¨ ẑq P R1.

‚ MHEAAN.Decodepm, pq. For a plaintext m P R1, the encoding of a

tensor of complex messages ẑ P Cn̂, precision bits p, output the

tensor ẑ1 Ð τ 1´1
n pm{2

pq P Cn̂.

‚ MHEAAN.Encpkpmq. For m P R1, sample v Ð χenc and e0, e1 Ð χerr.

Output ct “ v ¨ pk` pe0, e1 `mq pmod R1Lq.

‚ MHEAAN.Decskpctq. For ct “ pc0, c1q P R12` , output c0 ¨s`c1 pmod R1`q.

‚ MHEAAN.Addpct1, ct2q. For ct1, ct2 P R12` - encryption of tensors ẑ1, ẑ2 P

Cn̂ output ctadd Ð ct1`ct2 pmod 2`q. ctadd is a ciphertext encrypting

tensor ẑ1 ` ẑ2.

25

CHAPTER 3. MHEAAN SCHEME

‚ MHEAAN.CMultevkpct,C, pq. For ct P R2
` - encryption of ẑ P Cn̂, and a

constant tensor ĉ P Cn̂, compute cÐ MHEAAN.Encodepĉ, pq the encod-

ing of ĉ and output ctcmult Ð c ¨ ct pmod R1`q. ctcmult is a ciphertext

encrypting tensor ẑd ĉ.

‚ MHEAAN.PolyMultevkpct, g, pq. For ct P R2
` - encryption of ẑ P Cn̂,

and a constant g P R` output ctcmult Ð c ¨ ct pmod R1`q. ctcmult is a

ciphertext encrypting tensor ẑd ĉ, where ĉ is decoding of g.

Multiplication by polynomial is similar to a constant multiplication,

however in the next section we will show why it is important to define it

separately.

‚ MHEAAN.Multevkpct1, ct2q. For ct1 “ pa1, b1q, ct2 “ pa2, b2q P R12` -

encryptions of tensors ẑ1, ẑ2 P Cn̂, let pd0, d1, d2q “ pa1a2, a1b2 `

a2b1, b1b2q pmod R1`q. Output

ctmult Ð pd1, d2q ` t2´L ¨ d0 ¨ evks pmod R1`q

ctmult is a ciphertext encrypting tensor ẑ1 d ẑ2.

‚ MHEAAN.ReScalepct, pq. For a ciphertext ct P R12` and an integer p,

output ct1 Ð t2´p ¨ cts pmod R1`´pq.

For an integer vector k “ pk0, . . . , ksq with ki co-prime with Mi, let

κk : m1
pxq Ñ m1

pxk
q pmod R1`q

This transformation can be used to provide conjugation and rotations in

different dimensions on the plaintext matrix.

26

CHAPTER 3. MHEAAN SCHEME

‚ MHEAAN.Conjugatecjkpctq. Set the conjugation key as

cjkÐ MHEAAN.KSGenskpκ´1psqq

For ct “ pa, bq P R12` encrypting matrix Z, let

pa1, b1q “ pκ´1paq, κ´1pbqq pmod R1`q

Output

ctcj Ð p0, b1q ` t2´L ¨ a1 ¨ cjks pmod R1`q

ctcj is a ciphertext encrypting ¯̂z - the conjugated plaintext tensor of

ct.

‚ MHEAAN.Rotatertkpct; rq. Set the rotation key as

rtkÐ MHEAAN.KSGenskpκgrpsqq

For ct “ pa, bq P R12` encrypting matrix Z, let pa1, b1q “ pκgrpaq, κgrpbqq

pmod R1`q. Output ctrt Ð p0, b1q ` t2´L ¨ a1 ¨ rtks pmod R1`q. ctrt is a

ciphertext encrypting rtpẑ, rq - cyclic rotated plaintext tensor by ri

in i-th dimension.

Throughout this paper, we use real polynomials as plaintexts for conve-

nience of analysis. A ciphertext ct P R12` will be called a valid encryption of

m P S with the encryption noise bounded by δ, and plaintext bounded by

µ, if xct, sky “ m` e pmod R1`q for some polynomial e P S with }e}can8 ă δ

and }m}can8 ă µ. We will use a corresponding tuple pct, δ, µ, `q for such

an encryption of m. The following lemmas give upper bounds on noise

growth after encryption, rescaling and homomorphic operations. Refer to

27

CHAPTER 3. MHEAAN SCHEME

Appendix A for proofs.

Lemma 3.1.1 (Encoding & Encryption). For m Ð MHEAAN.Encodepẑ, pq

and ct Ð MHEAAN.Encpkpmq the encryption noise is bounded by δclean “

8
?

2 ¨ σN ` 6σ
?
N ` 16σ

?
hN .

Lemma 3.1.2 (Rescaling). Let pct, δ, µ, `q be a valid encryption of m and

ct1 Ð MHEAAN.ReScalepct, pq. Then pct1, δ{2p ` δscale, µ{2
p, `´ pq is a valid

encryption of m{2p where δscale “ 6
a

N{12` 16
a

hN{12

Remark 3.1.1. We can slightly change the public key generation and the

encryption process to obtain a ciphertext with initial noise reduced from

δclean to almost δscale. For this we generate public key in R122L instead of

R12L. Also in the encryption process we encode the plaintext m with p ` L

precision bits, instead of p bits with the following rescaling of the encryption

ct of m by L bits. With a slightly slower encryption process we end up with a

valid encryption in R12L, with the initial noise bounded by δclean{2
L`δscale «

δscale.

Lemma 3.1.3 (Addition & Multiplication). Let pcti, δi, µi, `q be encryp-

tions of mi P R1 and let

ctadd Ð MHEAAN.Addpct1, ct2q

and

ctmult Ð MHEAAN.Multevkpct1, ct2q

then

pctadd, δ1 ` δ2, µ1 ` µ2, `q

and

pctmult, µ1 ¨ δ2 ` µ2 ¨ δ1 ` δ1 ¨ δ2 ` δmult, µ1 ¨ µ2, `q

28

CHAPTER 3. MHEAAN SCHEME

are valid encryptions of m1 ` m2 and m1 ¨ m2, respectively, where δks “

8σN{
?

3 and δmult “ 2`´L ¨ δks ` δscale.

Lemma 3.1.4 (Conjugation & Rotation). Let pct, δ, µ, `q be encryption of

m P R1 that encodes tensor ẑ, r- integer vector, and let

ctrt “ MHEAAN.Rotatertkpct; rq

ctcj “ MHEAAN.Conjugatecjkpctq

then pctrt, δ` δ˚, µ, `q and pctcj, δ` δ˚, µ, `q are valid encryptions of tensors

rtpẑ, rq and ¯̂z respectively where where δks “ 8σN{
?

3 and δ˚ “ 2`´L ¨ δks`

δscale

Relative Error As discussed in [CKKS17] the decryption of a ciphertext

is an approximate value of plaintext, so it needs to dynamically manage

the bound of noise of ciphertext. It is sometimes convenient to consider the

relative error defined by β “ δ{µ. When two ciphertexts with relative errors

βi “ δi{µi are added the output ciphertext has a relative error bounded by

maxipβiq. When two ciphertexts are multiplied with the following rescaling

by p bits the output ciphertext has a relative error bounded by

β1 “ β1 ` β2 ` β1β2 `
δmult ` 2´p ¨ δscale

µ1µ2

according to Lemmas 3.1.2 and 3.1.3. This relative error is close to β1`β2

which is similar to the case of unencrypted floating-point multiplication

under an appropriate choice of parameters.

For convenience of analysis, we will assume that for two ciphertexts

with relatives errors β1 and β2 the relative error after multiplication and

rescaling is bounded by β1 ` β2 ` β
˚ for some fixed β˚

29

CHAPTER 3. MHEAAN SCHEME

3.2 Bootstrapping for MHEAAN

Similar to HEAAN scheme, consider a ciphertext ct P R12` as an element of

R12L for L " `, with Decpctq “ mpxq ` epxq ` 2` ¨ Ipxq pmod R1Lq. For

simplicity we only consider boostrapping for full packing. However some

cases of sparse packing (as sparse packing in dimension corresponding to

M0) could be achieved using similar to HEAAN case techniques.

‚ MHEAAN.SlotToCoeffpctq. From the equation A.0.1 (in appendix) we

notice that linear transformation can be split into consecutive linear

transformations consisting of Σ from the equation 2.5.6 and Σ1i from

the equations A.0.2 applying to different dimensions i of mpxq. Out-

put is the ciphertext that encrypts coefficients ofmpxq`epxq`2`¨Ipxq

in real and imaginary parts.

‚ MHEAAN.RemoveIPartpctq This part of algorithm is same to HEAAN.

Extract real and imaginary parts of slots, evaluate polynomial func-

tion, close to fpxq “ 1
2πi

expp2πix
2`
q for both parts. Combine two ci-

phertexts to obtain ciphertext that encrypts coefficients of mpxq in

real and imaginary parts.

‚ HEAAN.CoeffToSlotpctq Apply consecutively linear transformations

Σ´1 and Σ´1
i . The result is a ciphertext that encrypts same vector

as initial ct in a higher modulus R12L1 with L1 " `.

The noise, correctness and performance analysis are similar to [CHK`18]

with the differences that now SlotToCoeff and CoeffToSlot parts of the

algorithm require Op
řs
i“0

?
Niq ciphertext rotations and Op

řs
i“0Niq con-

stant multiplications when performing ‘baby-giant step’ optimization. This

is much smaller than Op
?
Nq and OpNq corresponding to HEAAN case for

30

CHAPTER 3. MHEAAN SCHEME

a full slot packing N{2. We now also have to store only Op
řs
i“0

?
Niq ro-

tations keys instead of Op
?
Nq keys for HEAAN case. The only drawback

is that when applying consecutively linear transformations, we use more

rescaling operations. For small s such as s “ 1, however, it is not a big

issue.

3.3 Homomorphic Evaluations of Matrix Op-

erations

One of the purposes to design MHEAAN is to run the matrix operations

naturally. Since a matrix multiplication consists of multiplications and ad-

ditions for each components, every HE scheme should support the opera-

tion. However, the there is no known general practical result yet. With the

structure of MHEAAN we provide algorithms for homomorphic evaluation of

approximate matrix multiplication, transposition and inverse functions.

Let n be a divisor of both of N0{2 and N1, in particular n is a power-

of-two. For simplicity we will consider only square power-of-two size ma-

trix case for multiplication, transposition and inverse. One can keep in

mind parameters ps,M0,M1q “ p1, 2
k, 257q, in which case n can be up to

minp2k´2, 256q, and parameters ps,M0,M1q “ p1, 2
k, 17q, in which case n

can be up to minp2k´2, 16q. We start with several simple auxiliary algo-

rithms.

Remark 3.3.1. Multiplication and transposition algorithms can be ex-

tended to a non-square matrices case. Also for bigger matrices we can

split them into smaller ones and use divide-and-conquer algorithm. We

will omit the details as we need to consider many cases, although they are

essentially similar.

31

CHAPTER 3. MHEAAN SCHEME

Row and Column Sums Let ctA - encryption of matrix A P Cnˆn. Then

the algorithm 2 return the ciphertext encrypting row sums of A. Similarly

we can define algorithm ColSum for column sums of A.

Algorithm 2 Row Sum

1: procedure MHEAAN.RowSum(ctA P R12`)
2: ctS Ð ctA
3: for j “ 0 to log n do
4: ctj Ð MHEAAN.RotatepctS, 2

j, 0q
5: ctS Ð MHEAAN.AddpctS, ctjq
6: end for
7: return ctS
8: end procedure

Diagonal Extraction Let I P Cnˆn be the identity matrix with Ik “

rtpI, pk, 0qq. We can obtain encryption of shifted diagonal of A by multi-

plying ctA with Ik. The procedure is described in Algorithm 3.

Algorithm 3 Diagonal Extraction

1: procedure MHEAAN.Diag(ctA P R12` , k, p)
2: ctAk

Ð MHEAAN.CMultpctA, Ikq
3: ctAk

Ð MHEAAN.ReScalepctAk
, pq

4: return ctAk

5: end procedure

3.3.1 Matrix by Vector Multiplication

Let ciphertext ctv encrypts vector v as a matrix of size n ˆ 1. Remind

that ctv can be viewed as encryption of matrix of size nˆ n, consisting of

same columns v. If we multiply ctAT by ctv and apply ColSum algorithm

32

CHAPTER 3. MHEAAN SCHEME

we obtain ciphertext encrypting wT “ pAvqT as a matrix of size 1 ˆ n.

Matrix by vector multiplication is stated in algorithm 4. Similarly for wT

of size nˆ1 we can define VecMatMult algorithm that evaluates encryption

of Aw.

Algorithm 4 Matrix by Vector Multiplication

1: procedure MHEAAN.MatVecMult(ctAT , ctv P R12` , p P Z)
2: ctpAvqT Ð MHEAAN.MultpctAT , ctvq
3: ctpAvqT Ð MHEAAN.ReScalepctpAvqT , pq
4: ctpAvqT Ð MHEAAN.ColSumpctpAvqT q

5: return ctpAvqT

6: end procedure

3.3.2 Matrix Multiplication

We adapt Fox matrix multiplication algorithm [FO87] to encrypted matrix

multiplication. For ctA, ctB be encryptions of matrices A,B P Cnˆn with

power-of-two n we define Algorithm 5.

Lemma 3.3.1 (Matrix Multiplication). Let pctA, βA¨2
p, 2p, `q and pctB, βB¨

2p, 2p, `q be encryptions of matrices A,B P Cnˆn respectively. The Algo-

rithm 5 outputs pctC, βC ¨n¨2
p, n¨2p, `´2pq the valid encryption of C “ AB

where βC “ βA ` βB ` plog n` 1q ¨ β˚.

Remark 3.3.2. The plain matrix multiplication algorithm has complex-

ity Opn3q. The Algorithm 5 requires totally Opnq ciphertext multiplication

(each of provides multiplication in parallel of n2 values) and Opn log nq

ciphertext rotations. This is almost optimal, compare to unencrypted case.

33

CHAPTER 3. MHEAAN SCHEME

Algorithm 5 Matrix Multiplication

1: procedure MHEAAN.MatMult(ctA, ctB P R12` , p)
2: ctC Ð 0
3: for k “ 0 to n´ 1 do
4: ctBk

Ð MHEAAN.DiagkpctB, pq
5: for j “ 1 to logpnq ´ 1 do
6: ctBk

Ð MHEAAN.AddpctBk
, MHEAAN.RotatepctBk

, p0, 2jqq
7: end for
8: ctAk

Ð MHEAAN.ModDownpMHEAAN.RotatepctA, p
Nx

2
´ k, 0qq, pq

9: ctCk
Ð MHEAAN.MultpctAk

, ctBk
q

10: ctC Ð MHEAAN.AddpctC, ctCk
q

11: end for
12: ctC Ð MHEAAN.ReScalepctC, pq
13: return ctC
14: end procedure

Matrix Multiplications with Permutations

We will mention about more efficient algorithm for matrix multiplication.

If we consider the following permutations of matrices B1 and C2 of B and

C “ AB respectively.

B1
“

»

—

—

—

—

—

–

b0,0 b1,n´1 ¨ ¨ ¨ bn´1,1

b0,1 b1,0 ¨ ¨ ¨ bn´1,2

...
. . .

...

b0,n´1 b1,n´2 ¨ ¨ ¨ bn´1,0

fi

ffi

ffi

ffi

ffi

ffi

fl

,C2
“

»

—

—

—

—

—

–

c0,0 c0,n´1 ¨ ¨ ¨ c0,1

c1,1 c1,0 ¨ ¨ ¨ c1,2

...
. . .

...

cn´1,n´1 cn´1,n´2 ¨ ¨ ¨ cn´1,0

fi

ffi

ffi

ffi

ffi

ffi

fl

Then for given encryptions of A and B1, Algorithm 6 outputs encryp-

tion of C2 - permutation of matrix C. The Algorithm 6 requires totally

Opnq ciphertext multiplication (each of provides multiplication in parallel

34

CHAPTER 3. MHEAAN SCHEME

of n2 values) and Opnq ciphertext rotations. This is asymptotically opti-

mal, compare to unencrypted case. However this algorithm is seems to be

not practical for more complicated tasks as it does not preserve the matrix

structure in slots.

Algorithm 6 Matrix Multiplication with Permutations

1: procedure MHEAAN.MatMultPermute(ctA, ctB1 P R12` , p)
2: ctC2 Ð 0
3: for k “ 0 to n´ 1 do
4: ctAk

Ð MHEAAN.RotatepctA, pk, 0qq
5: ctB1k Ð MHEAAN.RotatepctB1 , pk, kqq
6: ctC2k Ð MHEAAN.MultpctAk

, ctB1kq
7: ctC2 Ð MHEAAN.AddpctC, ctC2kq
8: end for
9: ctC2 Ð MHEAAN.ReScalepctC2 , pq

10: return ctC2
11: end procedure

3.3.3 Matrix Transposition

With Diag algorithm we can extract all the shifted diagonals of matrix

A. We can notice that transposed matrix AT is actually consist of same

shifted diagonals Ak of matrix A, rotated by pk,´kq slots.

Lemma 3.3.2 (Matrix Transposition). Let pctA, βA¨2
p, 2p, `q be an encryp-

tion of matrix A P Cnˆn. The Algorithm 7 outputs pctAT , βAT ¨2p, 2p, `´pq

the valid encryption of AT where βAT “ βA ` β˚. So we have that the

output message bound is close to 0.

35

CHAPTER 3. MHEAAN SCHEME

Algorithm 7 Matrix Transposition

1: procedure MHEAAN.MatTranspose(ctA P R12` , p)
2: ctAT Ð 0
3: for k “ 0 to n´ 1 do
4: ctAk

Ð MHEAAN.DiagkpctA, pq
5: ctAk

Ð MHEAAN.RotatepctAk
, pk,´kqq

6: ctAT Ð MHEAAN.AddpctAT , ctAk
q

7: end for
8: ctAk

Ð MHEAAN.ReScalepctAk
, pq

9: return ctAk

10: end procedure

3.3.4 Matrix Inverse

For matrix inverse we can adapt Schulz algorithm [Sch33] to encrypted

approximate inverse circuit. However for MHEAAN we use a matrix version

algorithm described in [cDSM15] and adopted in [CKKS17] as it more prac-

tical due to power-of-two degrees of matrix in the circuit. The algorithm

is described below.

Assume that invertible square matrix A satisfies }Ā} ď ε ă 1 for

Ā “ I´ 1
2t

A, for some t ě 0 then we get

1

2t
ApI` ĀqpI` Ā2

q . . . pI` Ā2r´1

q “ 1´ Ā2r

We can see that }Ā2r} ď }Ā}2
r
ď ε2

r
, hence 1

2t

śr´1
j“0pI`Ā2jq “ A´1p1´

Ā2rq is an approximate inverse of A for ε2
r
! 1. We will slightly strengthen

the condition on ε in the following lemma:

Lemma 3.3.3 (Matrix Inverse). Let pctĀ, β ¨ ε2
p{n, ε2p{n, `q be an encryp-

tion of matrix Ā P Cnˆn, and }Ā} “ }I´ 1
2t

A} ď ε ă n´1
n

for some t.

The Algorithm 8 outputs pctVr , βVr ¨n
1{n2p´t, n1{n2p´t, `´2pr´ tq the valid

36

CHAPTER 3. MHEAAN SCHEME

Algorithm 8 Matrix Inverse

1: procedure MHEAAN.MatInv(ctĀ P R12` , r, p P Z)
2: i “ MHEAAN.EncodepI, pq
3: ctA0 Ð ctĀ
4: ctV0 Ð MHEAAN.ModDownpi` ctĀ, pq
5: for j “ 0 to r ´ 1 do
6: ctAj

Ð MHEAAN.ReScalepMHEAAN.MatMultpctAj´1
, ctAj´1

q, pq
7: ctVj`1

Ð MHEAAN.ReScalepMHEAAN.MatMultpctVj
, i` ctAj

q, pq
8: end for
9: ctVr Ð MHEAAN.ReScalepctVr , tq

10: return ctVr

11: end procedure

encryption of A´1 where βVr “ 2β ` pr ` 1q ¨ p1` log nq ¨ β˚. So we have

that the output message bound is close to 2p´t and error growth linearly in

r.

37

Chapter 4

Applications

4.1 Sigmoid & Tanh Approximations

One limitation of the existing HE cryptosystems is that they only support

polynomial arithmetic operations. However many machine learning algo-

rithms require evaluation of the sigmoid or tanh functions, which become

an obstacle for the implementation since they cannot be expressed as a

polynomials.

Kim et al. [KSW`] used the least squares approach to find a global

polynomial approximation of the sigmoid function. We adapt this approx-

imation method and consider the degree 3, 5, and 7 least squares polyno-

mials of the sigmoid and tanh functions over the domain r´8, 8s.

Let a least squares polynomial of σpxq and tanhpxq will be denoted by

gkpxq and tkpxq for k “ 3, 5, 7. The approximate polynomials gkpxq and

38

CHAPTER 4. APPLICATIONS

tkpxq of degree 3, 5, and 7 are computed as follows:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

g3pxq “ 0.5´ 1.20096 ¨ px{8q ` 0.81562 ¨ px{8q3,

g5pxq “ 0.5´ 1.53048 ¨ px{8q ` 2.3533056 ¨ px{8q3 ´ 1.3511295 ¨ px{8q5,

g7pxq “ 0.5´ 1.73496 ¨ px{8q ` 4.19407 ¨ px{8q3´

´5.43402 ¨ px{8q5 ` 2.50739 ¨ px{8q7.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

t3pxq “ 0.5´ 1.20096 ¨ px{8q ` 0.81562 ¨ px{8q3,

t5pxq “ 0.5´ 1.53048 ¨ px{8q ` 2.3533056 ¨ px{8q3 ´ 1.3511295 ¨ px{8q5,

t7pxq “ 0.5´ 1.73496 ¨ px{8q ` 4.19407 ¨ px{8q3´

´5.43402 ¨ px{8q5 ` 2.50739 ¨ px{8q7.

A low-degree polynomial requires a smaller evaluation depth while a

high-degree polynomial has a better precision. The maximum errors be-

tween σp´xq and the least squares g3pxq, g5pxq, and g7pxq are approxi-

mately 0.114, 0.061 and 0.032, respectively, and the maximum errors be-

tween tanhpxq and the least squares t3pxq, t5pxq, and t7pxq are approxi-

mately 0.114, 0.061 and 0.032, respectively

4.2 Homomorphic LR Training Phase

4.2.1 Database Encoding

For an efficient computation, it is crucial to find a good encoding method

for the given database. The MHEAAN scheme supports the encryption of a

plaintext matrix and the slot-wise operations over encryption. Our learning

39

CHAPTER 4. APPLICATIONS

data is represented by a matrix pzijq1ďiďn,0ďjďf . A recent work [?] used the

column-wise approach, i.e., a vector of specific feature data pzijq1ďiďn is

encrypted in a single ciphertext. Consequently, this method required pf`1q

number of ciphertexts to encrypt the whole dataset. Another work [KSK`]

used a more efficient encoding method to encrypt a matrix in a single

ciphertext. A training dataset consists of n samples zi P Rf`1 for 1 ď i ď n,

which can be represented as a matrix Z as follows:

Z “

»

—

—

—

—

—

–

z10 z11 ¨ ¨ ¨ z1f

z20 z21 ¨ ¨ ¨ z1f

...
...

. . .
...

zn0 zn1 ¨ ¨ ¨ znf

fi

ffi

ffi

ffi

ffi

ffi

fl

.

For simplicity, the authors assumed that n and pf ` 1q are power-of-two

integers satisfying log n`logpf`1q ď logpN{2q, and they packed the whole

matrix in a single ciphertext in a row-by-row manner. It is necessary to

perform shifting operations of row and column vectors for the evaluation

of the GD algorithm, and the authors used circumvent algorithm to do row

shifting.

In our approach we pack the whole matrix in a natural way, making it

more easy to perform row and column rotations.

4.2.2 Homomorphic Evaluation of the GD

This section explains how to securely train the logistic regression model us-

ing the MHEAAN scheme. To be precise, we explicitly describe a full pipeline

of the evaluation of the GD algorithm. We adapt the same assumptions as

in the previous section so that the whole database can be encrypted in a

40

CHAPTER 4. APPLICATIONS

single ciphertext. The generalization to arbitrary number of features and

samples can be done in a straightforward way using divide-and-conquer

algorithm.

First of all, a client encrypts the dataset and the initial (random) weight

vector βp0q and sends them to the public cloud. The dataset matrix Z of

size nˆ pf ` 1q is encrypted to a ctZ , and the transposed weight vector is

encrypted in ct
p0q

βT . The plaintext matrices of the resulting ciphertexts are

described as follows:

ctZ “ Enc

»

—

—

–

z10 ¨ ¨ ¨ z1f

...
. . .

...

zn0 ¨ ¨ ¨ znf

fi

ffi

ffi

fl

, ct
p0q

βT “ Enc
”

β
p0q
0 ¨ ¨ ¨ β

p0q
f

ı

.

As mentioned before, both Z and βp0q are scaled by a factor of 2p before

encryption to maintain the precision of plaintexts. We skip to mention

the scaling factor in the rest of this section since every step will return a

ciphertext with the scaling factor of 2p.

The public server takes two ciphertexts ctZ and ct
ptq

βT and evaluates

the GD algorithm to find an optimal modeling vector. The goal of each

iteration is to update the modeling vector βptq using the gradient of loss

function:

βpt`1q
Ð βptq `

αt
n

n
ÿ

i“1

σp´zTi β
ptq
q ¨ zi

where αt denotes the learning rate at the t-th iteration. Each iteration

consists of the following eight steps.

Step 1: For given two ciphertexts ctZ and ct
ptq

βT , compute their vector by

matrix multiplication MHEAAN.VecMatMult. The output ciphertext ctZβT

encrypts zTi β
ptq as column:

41

CHAPTER 4. APPLICATIONS

ctZβT “ Enc

»

—

—

—

—

—

–

zT1 β
ptq

zT2 β
ptq

...

zTnβ
ptq

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Step 2: This step simply evaluates an approximating polynomial of the

sigmoid function, i.e., ctσ Ð gpctZβT q for some g P tg3, g5, g7u. The output

ciphertext encrypts the values of gpzTi β
ptqq in its plaintext slots:

ctσ “ Enc

»

—

—

—

—

—

–

gpzT1 β
ptqq

gpzT2 β
ptqq

...

gpzTnβ
ptqq

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Step 3: The public cloud multiplies the ciphertext ctσ with the encrypted

dataset ctZ multiplication and rescales the resulting ciphertext by p bits:

ctσZ Ð ReScalepMultpctσ, ctZq; pq.

The output ciphertext encrypts the n vectors gpzTi β
ptqq ¨ zi in each row:

ctσZ “ Enc

»

—

—

—

—

—

–

gpzT1 β
ptqq ¨ z10 ¨ ¨ ¨ gpz

T
1 β

ptqq ¨ z1f

gpzT2 β
ptqq ¨ z20 ¨ ¨ ¨ gpz

T
2 β

ptqq ¨ z2f

...
. . .

...

gpzTnβ
ptqq ¨ zn0 ¨ ¨ ¨ gpz

T
nβ

ptqq ¨ znf

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Step 4: This step aggregates the vectors gpzTi β
ptqq to compute the gradient

42

CHAPTER 4. APPLICATIONS

of the loss function. It is obtained by applying ColSum operation to ctσZ :

ctΣ Ð ColSumpctσZq

The output ciphertext is

ctΣ “ Enc
”

ř

i gpz
T
i β

ptqq ¨ zi0 ¨ ¨ ¨
ř

i gpz
T
i β

ptqq ¨ zif

ı

,

as desired.

Step 5: For the learning rate αt, it uses the parameter p to compute the

scaled learning rate ∆ptq “ t2p ¨ αts. The public cloud updates βptq using

the ciphertext ctΣ and the constant ∆ptq:

ct∆ Ð ReScalep∆ptq
¨ ctΣ; pq,

ct
pt`1q

βT Ð Addpct
ptq

βT , ct∆q.

Finally it returns a ciphertext encrypting the updated modeling vector

ct
pt`1q

βT “ Enc
”

β
pt`1q
0 β

pt`1q
1 ¨ ¨ ¨ β

pt`1q
f

ı

.

where β
pt`1q
j “ β

ptq
j ` αt

n

ř

i gpz
T
i β

ptqq ¨ zij.

We have to note here that original algorithm with HEAAN required

much more steps due to impossibility to perform VecMatMult operation

directly [KSK`].

4.2.3 Homomorphic Evaluation of NLGD

The performance of leveled HE schemes highly depends on the depth of a

circuit to be evaluated. The bottleneck of homomorphic evaluation of the

43

CHAPTER 4. APPLICATIONS

GD algorithm is that we need to repeat the update of weight vector βptq

iteratively. Consequently, the total depth grows linearly on the number of

iterations and it should be minimized for practical implementation.

For the homomorphic evaluation of Nesterov’s accelerated gradient, a

clients sends one more ciphertext ct
p0q

vT
encrypting the initial vector vp0q

to the public cloud. Then the server uses an encryption ctZ of dataset

Z to update two ciphertexts ct
ptq

vT
and ct

ptq

βT at each iteration. One can

securely compute βpt`1q in the same way as the previous section. Nesterov’s

accelerated gradient requires one more step to compute the second equation

of (2.2.1) and obtain an encryption of vpt`1q from ct
ptq

βT and ct
pt`1q

βT .

Step 5: Let ∆
ptq
1 “ t2p ¨ γts and let ∆

ptq
2 “ 2p ´∆

ptq
1 . It obtains the cipher-

text ct
pt`1q

vT
by computing

ct
pt`1q

vT
Ð Addp∆

ptq
2 ¨ ct

pt`1q

βT ,∆
ptq
1 ¨ ct

ptq

βT q,

ct
pt`1q

vT
Ð ReScalepct

pt`1q

vT
; pq.

Then the output ciphertext is

ct
pt`1q

vT
“ Enc

”

v
pt`1q
0 v

pt`1q
1 ¨ ¨ ¨ v

pt`1q
f

ı

,

which encrypts v
pt`1q
j “ p1´ γtq ¨ β

pt`1q
j ` γt ¨ β

ptq
j in the plaintext slots.

4.3 Homomorphic DNN Classification

In this section we propose a homomorphic DNN classification algorithm

classification algorithm that was explained in the Section 2.2.2. We will

first describe how the one FC layer in DNN is implementated

For the linear transformation part we use Algorithms 9 and 10. For

44

CHAPTER 4. APPLICATIONS

Algorithm 9 Linear Transformation Column to Row

procedure MHEAAN.LTCR(cta, ctWT , ctbT P R12` , p P Z)
ctpWaqT Ð MHEAAN.VecMatMultpcta, ctWT , pq
ctzT Ð MHEAAN.AddpctpWaqT , ctbT q

return ctz
end procedure

Algorithm 10 Linear Transformation Row to Column

procedure MHEAAN.LTRC(ctaT , ctW, ctb P R12` , p P Z)
ctWa Ð MHEAAN.MatVecMultpctaT , ctW, pq
ctz Ð MHEAAN.AddpctWa, ctbq
return ctz

end procedure

simplicity we assume that weight matrices as well as input vectors can

be encrypted in a single ciphertext. For general case we use divide-and-

conquer straightforward algorithm. Consider the encryptions of weight ma-

trix W1 P Rn1ˆn0 , bias vector b1 P Rn1 , and input vector a0 P Rn0 .

ctWT
1
“ Enc

»

—

—

–

w11 ¨ ¨ ¨ w1n1

...
. . .

...

wn01 ¨ ¨ ¨wn0n1

fi

ffi

ffi

fl

, cta0 “ Enc

»

—

—

–

a1

...

an0

fi

ffi

ffi

fl

, ctbT “ Enc
”

b0 ¨ ¨ ¨bn1

ı

,

For linear transformation part we apply LTCR algorithm to cta0 , ctWT
1
,

ctbT
1

and obtain

ctzT1 “ Enc
”

z1 ¨ ¨ ¨ zn1

ı

“ Enc
”

pW1a0 ` b1q1 ¨ ¨ ¨ pW1a0 ` b1qn1

ı

Then we evaluate ctaT
1

using polynomial approximation gpxq of sigmoid

45

CHAPTER 4. APPLICATIONS

function.

ctaT
1
“ Enc

”

a1 ¨ ¨ ¨ an1

ı

“ Enc
”

gpz1q ¨ ¨ ¨ gpzn1q

ı

After then we apply LTRC to ctaT1 , ctW2 , ctb2 to obtain ctz2 and etc.

Finally we output ctaL .

4.4 Homomorphic RNN Classification

In this section we propose a homomorphic RNN classification algorithm

that was explained in the Section ??. As we can see the complexity of

RNN circuit is much more complicated that the one of DNN. In our imple-

mentation we used different techniques of MHEAAN as matrix transposition,

which cannot be implemented in HEAAN in a straightforwards way. As RNN

circuit consist of FC and GRU layers we first show how one GRU layer

can be implemented using MHEAAN techniques. At GRU step t we have en-

cryptions of xt, ht´1, corresponding weight matrices WT
z , UT

z , WT
r , UT

r ,

WT
h , UT

h and a bias vectors bWT
z
, bUT

z
, bWT

r
, bUT

r
, bWT

h
, bUT

h
. Remind the

GRU circuit for unencrypted case

(update gate) zt “ σpWzxt ` bWz `Uzxt ` bUzq (4.4.1)

(reset gate) rt “ σpWrxt ` bWr `Urxt ` bUrq (4.4.2)

(hidden cell) h̃t “ tanhpWhxt ` bWh
` rt d pUhxt ` bUh

qq (4.4.3)

(output) ht “ zt d ht´1 ` p1´ ztq d h̃t (4.4.4)

For encrypted case the update gate ctzTt , the reset gate ctrTt the hidden

cell h̃Tt could be obtained using similar ideas to DNN with LTCR and ap-

46

CHAPTER 4. APPLICATIONS

proximate evaluations g and t of sigmoid and tanh function as described

in Section ??, with one more step of hadamard multiplication of ctrTt and

ctpUhxt`bUh
qT using Mult operation. For the output gate the main problem

occurs in hadamard multiplication of zt d ht´1, as we have encryptions of

zTt and ht´1. So we first transpose ctht´1 to obtain cthT
t´1

, and evaluate the

following circuit

cthT
t
“ AddpMultpctzTt , cthT

t´1
, Multpp1´ ctzTt q, cth̃T

t
qqq

Finally we transpose back cthT
t

and obtain ctht . The full flow of the

algorithm is shown in Algorithm ??

Algorithm 11 Gated Recurrent Unit

1: procedure MHEAAN.GRU(ctxi
P R12` , T, p P Z i=1 ... T)

2: cth0 Ð 0
3: for t “ 1 ... T do
4: ctzt “ gpAddpLTCRpctxt , ctWz , ctbWzq, LTCRpctht´1 , ctUz , ctbUz

qqq

5: ctrt “ gpAddpLTCRpctxt , ctWr , ctbWr
q, LTCRpctht´1 , ctUr , ctbUr

qqq

6: cth̃t
“ MultpLTCRpctht´1 , ctUh

, ctbUh
q, ctrtqq

7: cth̃t
“ tpAddpLTCRpctxt , ctWh

, ctbWh
q, cth̃t

q

8: cthT
t´1
“ MatTrpctht´1q

9: cthT
t
“ AddpMultpctzt , cthT

t´1
q, MultpSubp1, ctztq, cth̃t

qq

10: ctht “ MatTrpcthT
t
q

11: if lcur ă L and t ă T ´ 1 then
12: Bootstrappctht , lcur, Lq
13: end if
14: end for
15: return cthT
16: end procedure

The output of the GRU algorithm is cthT
T

and then we proceed with

FC layers as was described in Section ??

47

Chapter 5

Implementation Results

In this chapter, we provide implementation results with concrete parameter

setting. Our implementation is based on the NTL C̀ ` library running over

GMP. Every experimentation was performed on a machine with an 2.9

GHz Intel Core i5 processor, 8 GB 1867 MHz DDR3 memory, with only 4

CPUs using a parameter set with 80-bit security level.

Parameters Setting The dimensions of a cyclotomic ring R1 are chosen

following the security estimator of Albrecht et al. [APS15] for the learning

with errors problem.

Table 5.1: Parameter settings for MHEAAN

parameter N “ N0 ¨N1 σ h Lmax

Set1 213

6.4 64

« 155

Set2 214 « 310

Set3 215 « 620

Set4 216 « 1240

We use the discrete Gaussian distribution of standard deviation σ to

48

CHAPTER 5. IMPLEMENTATION RESULTS

sample error polynomials and set the Hamming weight h in a multivariate

representation of a secret key spxq.

We skip the results of the evaluation of component wise operations such

as inverse, exponent, sigmoid functions, etc. Please refer to [CKKS17] for

more details on evaluating these circuits.

Bootstrapping In Table 5.2, we present the parameter setting and per-

formance results for full slots bootstrapping. Parameters r, p, Lin have the

same meaning as r, logppq, logpqq in [CHK`18] and similarly were cho-

sen experimentally based on the bootstrapping error. For sufficiently large

number r we maintain the precision of the output plaintext. Lin and Lout

corresponds to the number of modulus bits before and after bootstrapping

respectively. The running times are only for ciphertext operations and ex-

clude encryption and decryption procedures.

Table 5.2: Implementation results for bootstrapping

parameter N0 N1 r p Lin Lmax Lout precision time amor

Boot1
256 256

7 35 40 1240 517 16 bits 2.5min 4.58ms

Boot2 8 43 50 1240 312 20 bits 2.63min 4.83ms

Evaluation of Matrix Circuits In Table 5.3, we present the parameter

setting and performance results for matrix multiplication, matrix 16-th

power, and inverse. Lin and Lout corresponds to the number of modulus

bits before and after operations respectively. The running times are only for

ciphertext operations and exclude encryption and decryption procedures.

The homomorphic evaluation of the circuit M16 can be evaluated by

squaring a matrix 4 times. Computing the matrix inverse homomorphically

is done by evaluating a matrix polynomial up to degree 15 as was shown

in Algorithm 8.

49

CHAPTER 5. IMPLEMENTATION RESULTS

Table 5.3: Implementation results for n ˆ n matrices M, M1, M2

Function n N0 N1 p Lin Lout time

MT

16 512 16

30

65 35

0.15s

16 64 256 0.27s

64 128 256 1.82s

M1M2

16 512 16

100 40

0.51s

16 64 256 0.98s

64 128 256 10.72s

M16

16 1024 16

300 60

6.82s

16 64 256 17.23s

64 128 256 87.65s

M´1

16 1024 16

300 60

10.61s

16 64 256 12.87s

64 128 256 2.1min

5.1 Evaluation of NLGD Training

Parameters settings We explain how to choose the parameter sets for

the homomorphic evaluation of the NLGD algorithm. We start with the

parameter Lstep - number of bits required for one iteration. The modulus of

a ciphertext is reduced after the ReScale operations and the evaluation of

an approximate polynomial gpxq. The ReScale procedures after homomor-

phic multiplications reduce the ciphertext modulus by p bits. We choose

degree 5 sigmoid approximation g5pxq. The ciphertext modulus is reduced

by p3p` 3q bits for the evaluation of g5pxq. For the final step we consume

p bits. Therefore, we obtain the following bound on the parameter Lstep:

50

CHAPTER 5. IMPLEMENTATION RESULTS

Lstep “ 5p` 3

We also have to keep some L0 bits to be able to decrypt a ciphertext.

So if the number of iterations in training I satisfies the conditon

L ą I ¨ Lstep ` L0

we can evaluate all the training without bootstrapping, otherwise we

use bootstrapping as soon as as our current Lcur is less than Lstep ` L0.

Implementation results In Table 5.4 we present parameter settings,

performances, and accuracy results for genomic data privacy and security

protection competition 2017, the goal of Track 3. It was to devise a weight

vector to predict the disease using the genotype and phenotype data. This

dataset consists of 1579 samples, each of which has 102 features and a

cohort information (disease vs. healthy). Since we use the ring dimension

N0 ¨ N1 “ 216, we can only pack up to N0{2 ¨ N1 “ 27 ˆ 28 “ 215 dataset

values in a single ciphertext but we have totally 1579 ˆ 103 ą 215 values

to be packed. We can overcome this issue by using divide-and-conqure

algorithm

The smoothing parameter γt is chosen in accordance with [Nes83]. The

choice of proper GD learning rate parameter αt normally depends on the

problem at hand. Choosing too small αt leads to a slow convergence, and

choosing too large αt could lead to a divergence, or a fluctuation near a

local optima. It is often optimized by a trial and error method, which we

are not available to perform. Under these conditions harmonic progression

seems to be a good candidate and we choose a learning rate αt “
10
t`1

in

our implementation.

51

CHAPTER 5. IMPLEMENTATION RESULTS

In order to estimate the validity of our method, we utilized 10-fold

cross-validation (CV) technique: it randomly partitions the dataset into

ten folds with approximately equal sizes, and uses every subset of 9 folds

for training and the rest one for testing the model. The performance of our

solution including the average running time (encryption and evaluation)

and the storage (encrypted dataset) are shown in Table 5.4. This table also

provides the average accuracy and the AUC (Area Under the Receiver

Operating Characteristic Curve) which estimate the quality of a binary

classifier.

Table 5.4: Implementation results for NLGD training

parameter p Lin Lout #s #f I Accuracy AUC time

iDASH 30 1071 40 1579 103 7 69.87% 0.729 9.6min

We also compared our method with one used in [KSW`].

5.2 Evaluation of DNN Classification

Parameters settings We explain how to choose the parameter sets for

the homomorphic evaluation of the DNN Classification algorithm. For each

linear transformation part we consume p modulus bits. The ciphertext

modulus is reduced by p3p` 3q bits for the evaluation of g5pxq. Therefore,

we obtain the following lower bound on the parameter LFC :

LFC “ 4p` 3

Similar to NLGD algorithm if the number of layers L satisfies the con-

52

CHAPTER 5. IMPLEMENTATION RESULTS

Table 5.5: Implementation results for other datasets with 5-fold CV

Dataset #s #f Method I time Accuracy AUC

Edinburgh 1253 9
Ours 7 3.2min 91.04% 0.958

[KSW`] 25 114min 86.03% 0.956
[KSW`] 20 114min 86.19% 0.954

lbw 189 9
Ours 7 3.1min 69.19% 0.689

[KSW`] 25 99min 69.30% 0.665
[KSW`] 20 86min 69.29% 0.678

nhanes3 15649 15
Ours 7 6.9min 79.22% 0.717

[KSW`] 25 235min 79.23% 0.732
[KSW`] 20 208min 79.23% 0.737

pcs 379 9
Ours 7 3.2min 68.27% 0.740

[KSW`] 25 103min 68.85% 0.742
[KSW`] 20 97min 69.12% 0.750

uis 575 8
Ours 7 3.2min 74.44% 0.603

[KSW`] 25 104min 74.43% 0.585
[KSW`] 20 96min 75.43% 0.617

diton

L ą L ¨ LFC ` L0

we can evaluate all the DNN classification without bootstrapping, oth-

erwise we use bootstrapping as soon as as our current Lcur is less than

LFC ` L0.

Implementation results In Table 5.6 we present the parameter settings,

performances, and accuracy results with one, two and four hidden lay-

ers. Our DNN classification algorithm applied to MNIST dataset [LCB10]

with sigmoid activation functions. Accuracy is similar to the accuracy of

predictions on unencrypted data, which is about 97.9%.

53

CHAPTER 5. IMPLEMENTATION RESULTS

Table 5.6: Implementation results for DNN classification

parameter p Lin Lout L n0, n1, . . . , nL Accuracy time

DNN1 30 193 40 2 784,1024,10 92.9% 57s

DNN2 30 316 40 3 784,1024,256,10 94.3% 79s

DNN3 30 562 40 5 784,1024,1024,1024,256,10 97.9% 3.6min

5.3 Evaluation of RNN Classification

Parameters settings We explain how to choose the parameter sets for

the homomorphic evaluation of the RNN Classification algorithm. For each

GRU step we consume p modulus bits for linear transformations parts and

p3p ` 3q bits for each of the g5 and t5 evaluations. For transposition and

multiplication we consume p bits. Therefore, we obtain the following lower

bound on the parameter LGRU :

LGRU “ 11p` 6

We evaluate first several GRU steps without bootstrapping, and then

we use bootstrapping as soon as our current Lcur is less than LGRU ` L0.

Implementation results In Table 5.6 we present the parameter set-

tings, performances, and accuracy results for homomorphic evaluations

with gated RNNs with a real-life genomic dataset. We validate our method-

ology through a RNN-based model that solves microRNA(miRNA) target

prediction problem [LBPY16]. The miRNA is an RNA molecule that is

central in protein expression, and the model consists of RNN-based au-

toencoders with additional stacked RNNs; hence, the model of [LBPY16] is

appropriate to validate our methodology. In this experiment, we encrypted

miRNA and mRNA sequences, and subsequently trained the RNN-based

54

CHAPTER 5. IMPLEMENTATION RESULTS

model with these encrypted sequences. We used the site-level miRNA–mRNA

pairing information dataset and the negative training dataset from [LBPY16].

The dataset obtained target sites from miRecords database and miRNA

sequences from mirBase database. From the experimental results, we ver-

ified that the GRUs evaluated with MHEAAN were accurate and scalable to

longer sequences.

In implementation we set p “ 35 and L0 “ 45 and thus LGRU ` L0 ă

517 so we have enough capacity after bootstrapping to perform one GRU

iteration.

Table 5.7: Implementation results for RNN classification

parameter p Lin Lout T #x #h n1 Accuracy time

GRU1 30 1200 40 40 16 256 2 99.9% 254min

GRU2 30 1200 40 40 32 64 10 99.9% 243min

55

Chapter 6

Conclusions

In this work, we present MHEAAN - a variant of the HEAAN homomorphic en-

cryption scheme. MHEAAN takes advantage of HEAAN by supporting standard

approximate HE operations. With a multi-dimensional packing MHEAAN en-

joys more functionality like efficient operations on matrices and practical

bootstrapping even for large number of slots. As applications of MHEAAN we

propose a non-interactive logistic regression training, deep neural network

and recurrent neural network classifications algorithms.

One of the future works could be applying MHEAAN to classification

algorithms for general Neural Network architectures. Another interesting

problem is to achieve learning phase of the Neural Networks with multiple

layer structure. We believe that the idea of multi-dimensional variant could

have a great potential for these as well as for other applications requiring

computations on matrices and tensors.

56

Bibliography

[AHTPW16] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and Li-

hua Wang. Scalable and secure logistic regression via ho-

momorphic encryption. In Proceedings of the Sixth ACM

Conference on Data and Application Security and Privacy,

pages 142–144. ACM, 2016.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On

the concrete hardness of learning with errors. Journal of

Mathematical Cryptology, 9(3):169–203, 2015.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(Leveled) fully homomorphic encryption without bootstrap-

ping. In Proc. of ITCS, pages 309–325. ACM, 2012.

[BLLN13] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael

Naehrig. Improved security for a ring-based fully homo-

morphic encryption scheme. In Cryptography and Coding,

pages 45–64. Springer, 2013.

[BMMP17] Florian Bourse, Michele Minelli, Matthias Minihold, and

Pascal Paillier. Fast homomorphic evaluation of deep dis-

57

BIBLIOGRAPHY

cretized neural networks. IACR Cryptology ePrint Archive,

2017:1114, 2017.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without

modulus switching from classical GapSVP. In Advances in

Cryptology–CRYPTO 2012, pages 868–886. Springer, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully

homomorphic encryption from (standard) LWE. In Proceed-

ings of the 2011 IEEE 52nd Annual Symposium on Founda-

tions of Computer Science, FOCS’11, pages 97–106. IEEE

Computer Society, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homo-

morphic encryption from Ring-LWE and security for key

dependent messages. In Advances in Cryptology–CRYPTO

2011, pages 505–524. Springer, 2011.

[cDSM15] Gizem S. Çetin, Yarkın Doröz, Berk Sunar, and William J.

Martin. An investigation of complex operations with word-

size homomorphic encryption. Cryptology ePrint Archive,

Report 2015/1195, 2015. http://eprint.iacr.org/2015/

1195.

[CGGI18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Ma-

lika Izabachène. Tfhe: Fast fully homomorphic encryption

over the torus. IACR Cryptology ePrint Archive, 2018:421,

2018.

[CHK`18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim,

and Yongsoo Song. Bootstrapping for approximate homo-

58

http://eprint.iacr.org/2015/1195
http://eprint.iacr.org/2015/1195

BIBLIOGRAPHY

morphic encryption. Cryptology ePrint Archive, Report

2018/153, 2018. https://eprint.iacr.org/2018/153.

[CKK`17] Jung Hee Cheon, Andrey Kim, Miran Kim, Keewoo Lee,

and Yongsoo Song. Implementation for idash competition

2017, 2017. https://github.com/kimandrik/IDASH2017.

[CKKS16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo

Song. Implementation of HEAAN, 2016. https://github.

com/kimandrik/HEAAN.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo

Song. Homomorphic encryption for arithmetic of approx-

imate numbers. In Advances in Cryptology–ASIACRYPT

2017: 23rd International Conference on the Theory and

Application of Cryptology and Information Security, pages

409–437. Springer, 2017.

[CKY18] Jung Hee Cheon, Andrey Kim, and Donggeon Yhee. Multi-

dimensional packing for heaan forapproximate matrix arith-

metics. 2018.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Ti-

bouchi. Scale-invariant fully homomorphic encryption over

the integers. In Public-Key Cryptography–PKC 2014, pages

311–328. Springer, 2014.

[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic

encryption over the integers revisited. In Advances in

Cryptology–EUROCRYPT 2015, pages 513–536. Springer,

2015.

59

https://eprint.iacr.org/2018/153
https://github.com/kimandrik/IDASH2017
https://github.com/kimandrik/HEAAN
https://github.com/kimandrik/HEAAN

BIBLIOGRAPHY

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod

Vaikuntanathan. Fully homomorphic encryption over the

integers. In Advances in Cryptology–EUROCRYPT 2010,

pages 24–43. Springer, 2010.

[DHS16] Yarkın Doröz, Yin Hu, and Berk Sunar. Homomorphic AES

evaluation using the modified LTV scheme. Designs, Codes

and Cryptography, 80(2):333–358, 2016.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping

homomorphic encryption in less than a second. In Ad-

vances in Cryptology–EUROCRYPT 2015, pages 617–640.

Springer, 2015.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Za-

karias. Multiparty computation from somewhat homomor-

phic encryption. In Advances in Cryptology–CRYPTO 2012,

pages 643–662. Springer, 2012.

[FO87] G.C. Fox and S.W. Otto. Matrix algorithms on a hypercube

i: Matrix multiplication. Parallel Computing, 4:17–31, 1987.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme.

PhD thesis, Stanford University, 2009. http://crypto.

stanford.edu/craig.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. Homo-

morphic evaluation of the AES circuit. In Advances in

Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

60

http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig

BIBLIOGRAPHY

[GL09] Vernon Gayle and Paul S. Lambert. Logistic regression mod-

els in sociological research. 2009.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomor-

phic encryption from learning with errors: Conceptually-

simpler, asymptotically-faster, attribute-based. In Advances

in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

[Har01] Frank E Harrell. Ordinal logistic regression. In Regression

modeling strategies, pages 331–343. Springer, 2001.

[HS14] Shai Halevi and Victor Shoup. Algorithms in helib. In Ad-

vances in Cryptology - CRYPTO 2014 - 34th Annual Cryp-

tology Conference, Santa Barbara, CA, USA, August 17-21,

2014, Proceedings, Part I, pages 554–571, 2014.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for helib.

In Advances in Cryptology–EUROCRYPT 2015, pages 641–

670. Springer, 2015.

[HS18] Shai Halevi and Victor Shoup. Faster homomorphic lin-

ear transformations in helib. In Advances in Cryptology

- CRYPTO 2018 - 38th Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 19-23, 2018,

Proceedings, Part I, pages 93–120, 2018.

[HTG17] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi.

Cryptodl: Deep neural networks over encrypted data.

CoRR, abs/1711.05189, 2017.

61

BIBLIOGRAPHY

[JKN`19] Jaehee Jang, Andrey Kim, Byunggook Na, Lee Byunghan,

Yoon Sungroh, and Cheon Junghee. Privacy-preserving in-

ference for gated rnns withmatrix homomorphic encryp-

tions, 2019.

[KSK`] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee,

and Jung Hee Cheon. Logistic regression model train-

ing based on the approximate homomorphic encryption.

https://eprint.iacr.org/2018/254.

[KSW`] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and

Xiaoqian Jiang. Privacy-preserving logistic regression based

on homomorphic encryption. preprint.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikun-

tanathan. On-the-fly multiparty computation on the cloud

via multikey fully homomorphic encryption. In Proceedings

of the 44th Symposium on Theory of Computing Conference,

STOC 2012, pages 1219–1234. ACM, 2012.

[LBPY16] Byunghan Lee, Junghwan Baek, Seunghyun Park, and Sun-

groh Yoon. deeptarget: end-to-end learning framework for

microrna target prediction using deep recurrent neural net-

works. In Proceedings of the 7th ACM International Confer-

ence on Bioinformatics, Computational Biology, and Health

Informatics, pages 434–442. ACM, 2016.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-

written digit database. AT&T Labs [Online]. Available:

http://yann. lecun. com/exdb/mnist, 2, 2010.

62

BIBLIOGRAPHY

[LK12] Cathryn M Lewis and Jo Knight. Introduction to ge-

netic association studies. Cold Spring Harbor Protocols,

2012(3):pdb–top068163, 2012.

[LL90] Edmund G Lowrie and Nancy L Lew. Death risk in

hemodialysis patients: the predictive value of commonly

measured variables and an evaluation of death rate differ-

ences between facilities. American Journal of Kidney Dis-

eases, 15(5):458–482, 1990.

[LP13] Tancrède Lepoint and Pascal Paillier. On the minimal num-

ber of bootstrappings in homomorphic circuits. In WAHC

2013, Lecture Notes in Computer Science. Springer, 2013.

[MRDY] Pradeep Kumar Mishra, Deevashwer Rathee, Dung Hoang

Duong, and Masaya Yasuda. Fast secure matrix multiplica-

tions over ring-based homomorphic encryption.

[Nes83] Yurii Nesterov. A method of solving a convex programming

problem with convergence rate o (1/k2). In Soviet Mathe-

matics Doklady, volume 27, pages 372–376, 1983.

[PUTPPG15] Alberto Pedrouzo-Ulloa, Juan Ramón Troncoso-Pastoriza,

and Fernando Pérez-González. Multivariate lattices for en-

crypted image processing. In IEEE ICASSP. 2015.

[PUTPPG16] Alberto Pedrouzo-Ulloa, Juan Ramón Troncoso-Pastoriza,

and Fernando Pérez-González. On ring learning with errors

over the tensor product of number fields. 2016. https:

//arxiv.org/abs/1607.05244.

63

https://arxiv.org/abs/1607.05244
https://arxiv.org/abs/1607.05244

BIBLIOGRAPHY

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos.

On data banks and privacy homomorphisms. Foundations

of secure computation, 4(11):169–180, 1978.

[Sch33] G. Schulz. Iterative berechnung der reziproken ma-

trix. Zeitschrift für angewandte Mathematik und Mechanik,

13:57–59, 1933.

[WS13] Kikuchi H. Wu S., Teruya T. Kawamoto J. Sakuma J.

Privacy-preservation for stochastic gradient descent appli-

cation to secure logistic regression. The 27th Annual Con-

ference of the Japanese Society for Artificial Intelligence,

(1-4), 2013.

[XWBB16] Wei Xie, Yang Wang, Steven M Boker, and Donald E

Brown. Privlogit: Efficient privacy-preserving logistic re-

gression by tailoring numerical optimizers. arXiv preprint

arXiv:1611.01170, 2016.

64

Appendix A

Proofs

We follow the heuristic approach in [GHS12]. Assume that a polynomial

apxq P R1 sampled from one of above distributions, so its nonzero en-

tries are independently and identically distributed. Let ξ “ pξM0 , . . . , ξMsq

The value apξq can be obtained by consecutively computing N{Ni inner

products of vectors of coefficients of a corresponding to a power xji for

j “ 0, . . . , Ni ´ 1 by a fixed vector p1, ξMi
, . . . , ξNi

Mi
q of Euclidean norm

?
Ni. Then apξq has variance V “ σ2

śs
i“0Ni “ σ2N , where σ2 is the vari-

ance of each coefficient of a. Hence apξq has the variances VU “ 22`N{12,

VG “ σ2N and VZ “ ρN , when a is sampled from R`, DGpσ2q, ZOpρq
respectively. In particular, apξq has the variance VH “ h when apxq is

chosen from HWT phq. Moreover, we can assume that apξq is distributed

similarly to a Gaussian random variable over complex plane since it is a

sum of φM0¨¨¨Ms{2 independent and identically distributed random complex

variables. Every evaluations at roots of unity pξq share the same variance.

Hence, we will use 6σ as a high-probability bound on the canonical embed-

ding norm of apxq when each coefficient has a variance σ2. For a multiplica-

65

APPENDIX A. PROOFS

tion of two independent random variables close to Gaussian distributions

with variances σ2
1 and σ2

2, we will use 16σ1σ2 as a high-probability bound.

Proof of Proposition 2.4.1

Proof. One of such maps R1 Ñ R is given by

xj ÞÑ xM{Mj mod ΦMpxq for all j “ 0, 1, ¨ ¨ ¨ , s

and it extends to

S 1 “ R
â

Z
R1 Ñ S “ R

â

Z
R

At first we check that this map is well-defined. This means that, for all

j, xj and xj ` ΦMj
pxjq have same image in S, or simply ΦMj

pxM{Mjq is

divisible by ΦMpxq. Since

ΦKpxq “
ź

pk,Kq“1,1ďkďK

px´ ζkKq

for any positive integer K and a primitive K-th root of unity ζK “ e2πi{K ,

we have the following divisibility

ΦMpxq “
ź

pk,Mq“1,1ďkďM

px´ζkMq
ˇ

ˇ

ź

pk,Mq“1,1ďkďM

pxM{Mj´ζ
kM{Mj

M q “
`

ΦMj
pxM{Mjq

˘Mj
.

Note that x ´ a is always a factor of px˚ ´ a˚q “ px ´ aqpx˚´1 ` x˚´2a `

¨ ¨ ¨`a˚´1q. The divisibility formula concludes that ΦMpxq and ΦMj
pxM{Mjq

shares a nontrivial common factor, and the irreducibility of ΦMpxq implies

that the common factor is ΦMpxq itself.

Secondly we check the map is surjective. In particular, x lies in the

image of the map. Since M{M0,M{M1, ¨ ¨ ¨ ,M{Ms are coprime, integers

66

APPENDIX A. PROOFS

r0, r1, ¨ ¨ ¨ , rs can be chosen so that r0M{M0`r1M{M1`¨ ¨ ¨`rsM{Ms “ 1.

In other words, xr00 x
r1
1 ¨ ¨ ¨ x

rs
s goes to x. Thus the map, or the restricted one

on R, is surjective.

Since both sides have same dimension, here we complete the proof.

Proof of Lemma 2.4.1

Proof. From the isomorphisms above, we can consider a variant of canon-

ical embedding map to a complex tensors:

τ 1Nh
paq “ papξg0

j0

M0
, . . . ξgs

js

Ms
qq P CNh

where a P S 1, ξMi
is Mi-th root of unity, g0 “ 5, 0 ď j0 ă N0{2, gi are

primitive elements in Z˚Mi
, 0 ď ji ă Ni for i “ 1, . . . , s. The map τ 1Nh

can

be written as a composition of maps

τ 1Nh
“ τ 1

p0q
N0{2

˝ τ 1
p1q
N1
˝ ¨ ¨ ¨ ˝ τ 1

psq
Ns

(A.0.1)

where τ 1piq is given by a tensor of following linear transforms

Σ1i “

»

—

—

—

—

—

–

ξ0
Mi,0

ξ1
Mi,0

¨ ¨ ¨ ξNi´1
Mi,0

ξ0
Mi,1

ξ1
Mi,1

¨ ¨ ¨ ξNi´1
Mi,1

...
...

. . .
...

ξ0
Mi,Ni´1 ξ

1
Mi,Ni´1 ¨ ¨ ¨ ξ

Ni´1
Mi,Ni´1

fi

ffi

ffi

ffi

ffi

ffi

fl

(A.0.2)

and Ij the identity matrix of size Nj, where ξMi,j “ expp2πi¨gi
j

Mi
q.

By using the formula of the linear transforms, we can compare norms;

67

APPENDIX A. PROOFS

}a}can2 ď p
ś

i }Σ
1
i}q }a}2, }a}2 ď p

ś

i }Σ
1
i}
´1q }a}can2

where }L} for a linear operator L on a complex-valued space is given

by the supremum of }Lx}{}x} along all x. In above, it’s square is the sum

of maginitude squares of all components in the matrix, or just TrpL˚Lq.

Σ1i
´1 has components

lab“p´1qNi´a
eNi´apξMi,b

q
ś

c‰bpξMi,b ´ ξMi,cq
(A.0.3)

For the pk-th cyclotomic polynomial

Φpkpxq “ Φppx
pk´1

q “ xp
k´1pp´1q

` xp
k´1pp´2q

` ¨ ¨ ¨ ` xp
k´1

` 1

, the roots ξ1, ¨ ¨ ¨ , ξpk´1pp´1q, and an index b “ 1, 2, ¨ ¨ ¨ , pk´1pp ´ 1q, we

have

d

dx

´

pxp
k´1

´ 1qΦpk´1pxq
¯

“ pk´1xp
k´1´1Φpk´1pxq ` pxp

k´1

´ 1q
d

dx
Φpk´1pxq

Φ1pk´1pξbq“
pkξp

k´1
b

ξp
k´1

b ´ 1

where ξb is a vector consisting of all roots but ξb of Φp and ejpxq is an

elementary symmetric polynomial of degree j in p´ 2 variables. Note that

the denominator is of form ‘p-th root of unity ´1’, not depending on k.

For N “ φppkq “ pk´ pk´1, p´1qN´aeN´apξbq is the degree a coefficient

of

ź

c‰b

px´ ξcq“
Φpkpxq

x´ ξb

68

APPENDIX A. PROOFS

, which is in fact ξ
N´a´rN´as
b p1 ` ξp

k´1

b ` ¨ ¨ ¨ ` ξ
rN´as
b q with rN ´ as is the

largest multiple of pk´1 less or eqaul to N ´ a.

In other hands,

Φ1pk´1pξkq “
ź

l‰k

pξk ´ ξlq

which is the denominator of the formula A.0.3.

Therefore we have

}Σ1i
´1
} “

ÿ

a,b

|lab|
2
“
ÿ

a,b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1´ ξNi´a
Mi,b

pki ξ
pk´1
i
Mi,b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
Ni

p2k
i

ÿ

a mod Ni

|1´ ζNi´a|
2

where ζ is any primitive pi-th (NOT pki -th) root of unity . The right-hand

side is in fact

pif ki ą 1q
N2
i

p2k`1
i

pi´1
ÿ

i“1

p2´ 2 cos 2πi{piq

pif ki “ 1q
Ni

p2
i

pi´1
ÿ

i“1

p2´ 2 cos 2πi{piq

and since

1

p

p´1
ÿ

i“1

cosp2πi{pq“
1

p

¨

˝

pp´1q{2
ÿ

i“1

cosp2πi{pq `
p´1
ÿ

i“pp`1q{2

cosp2πi{pq

˛

‚

ě

ż 2πpp`1q{2p

2π{p

cospxq dx`

ż 2πpp´1q{p

2πpp´1q{2p

cospxq dx

“

ż 2π

0

cospxq dx´ 2

ż 2π{p

0

cospxq dx`

ż 2πpp`1q{2p

2πpp´1q{2p

cospxq dx

ě´2ˆ 2π{p´ 2π{p “ ´6π{p

69

APPENDIX A. PROOFS

for any integer p, we conclude that

}Σ1i
´1
}

2
ď
pi ´ 1

pi
ˆ p2` 12π{piq.

}apxq}2 is the `2-norm of a vector whose components consist of the

coefficients of apxq. By applying canonical embedding only on xs, we get

a new vector whose components consist of the coefficients of a polynomial

apx0, ¨ ¨ ¨ , xs´1, ξsq in s variables x0, ¨ ¨ ¨ , xs´1 and their conjugations. The

`2 norm of the new vector is given by Σ´1
s ¨ pcoefficient vector of apxqq,

thus is bounded by }Σ´1
s }}a}2. By induction on s, we have the total bound

of }a}can8 2 as
śs

i“0 }Σ
1
i
´1}. p0 “ 2 in our case and it has a special bound

}Σ10
´1} “ 1 so that our bound is in fact

śs
i“1 }Σ

1
i
´1} as desired.

Proof of Lemma 3.1.1.

Proof. We choose v Ð ZOpρq, e0, e1 Ð DGpσq, then set ct Ð v ¨ pk `

pe0, e1 `mq. The bound δclean of encryption noise is computed by the fol-

lowing inequality:

}xct, sky ´m pmod 2Lq}can8 “ }v ¨ e` e1 ` e0 ¨ s}
can
8

ď }v ¨ e}can8 ` }e1}
can
8 ` }e0 ¨ s}

can
8

ď 8
?

2 ¨ σN ` 6σ
?
N ` 16σ

?
hN.

Proof of Lemma 3.1.2.

Proof. It is satisfied that xct, sky “ m ` e pmod 2`q for some polynomial

e P S such that }e}can8 ă δ. The output ciphertext ct1 Ð t2´p ¨ cts satisfies

70

APPENDIX A. PROOFS

xct1, sky “ 2´p ¨pm`eq`escale pmod 2`´pq for the rounding error vector τ “

pτ0, τ1q “ ct1´ 2´p ¨ ct and the error polynomial escale “ xτ, sky “ τ0 ¨ s` τ1.

We may assume that each coefficient of τ0 and τ1 in the rounding error

vector is computationally indistinguishable from the random variable in

the interval 2´p ¨ Z2p with variance « 1{12. Hence, the magnitude of scale

error polynomial is bounded by

}escale}
can
8 ď }τ0 ¨ s}

can
8 ` }τ1}

can
8 ď 6

a

N{12` 16
a

hN{12

as desired.

Proof of Lemma 3.1.3.

Proof. Let cti “ pai, biq for i “ 1, 2. Then xcti, sky “ mi ` ei pmod 2`q

for some polynomials ei P S such that }ei}
can
8 ď δi. Let pd0, d1, d2q “

pa1a2, a1b2 ` a2b1, b1b2q. This vector can be viewed as an encryption of

m1 ¨m2 with an error m1 ¨ e2 `m2 ¨ e1 ` e1 ¨ e2 with respect to the secret

vector ps2, s, 1q. It follows from Lemma 3.1.2 that the ciphertext ctmult Ð

pd1, d2q ` t2´L ¨ pd0 ¨ evk pmod 2``Lqqs contains an additional error e2 “

2´L ¨ d0e
1 and a rounding error bounded by δscale. We may assume that d0

behaves as a uniform random variable on R`, so 2L}e2}can8 is bounded by

16
a

Nq2
` {12

?
Nσ2 “ 8Nσq`{

?
3 “ δks ¨2

`. Therefore, ctmult is an encryption

of m1 ¨m2 with an error and the error is bounded by

}m1e2 `m2e1 ` e1e2 ` e
2
}
can
8 ` δscale ď

µ1δ2 ` µ2δ1 ` δ1δ2`2´L ¨ 2` ¨ δks ` δscale

as desired.

71

APPENDIX A. PROOFS

Proof of Lemma 3.1.4.

Proof. Let prove the lemma for conjugation, proofs of others are the same.

The vector pa1, b1q “ pκ´1paq, κ´1pbqq pmod 2`q can be viewed as an encryp-

tion of Z̄ with and error κ´1peq with respect to the secret vector pκ´1psq, 1q.

Using proof of Lemma 3.1.3 we can get that ctcj is an encryption of Z̄ with

an error bounded by

}κ´1,1peq ` e
2
}
can
8 ` δscale ď δ ` 2´L ¨ 2` ¨ δks ` δscale

as desired.

Proof of Lemma 3.3.1.

Proof. From Lemma 3.1.4 and the following remark about the relative

error we can see that bound of message increase only after summations in

line 10 of Algorithm 5, so the bound M of the output is equal to n ¨ 2p.

Note also that these summations do not increase the bound of the relative

error. The relative error increases by β˚ after rotation and increases by β˚

after multiplication. So the relative error of each summand in line 10 is

bounded by βA ` βB ` p1` log nqβ˚.

Proof of Lemma 3.3.2.

Proof. The relative error increases by β˚ after rotation. So the relative

error of each summand ctAk
is bounded by βA ` β˚. The relative error

we can see that bound of message and bound of relative error does not

increase during summations of ctAk
.

72

APPENDIX A. PROOFS

Proof of Lemma 3.3.3.

Proof. From Lemma 3.3.1 the message of ctAj
is bounded by ε2

j
2p{n which

implies that the message of ctVr is bounded by

2p´t
r´1
ź

j“0

p1` ε2
j

{nq ă
2p´t

p1´ εq1{n
ă n1{n2p´t

The relative error βj of ctAj
is bounded by βj ď 2jpβ ` p1 ` log nqβ˚q,

which implies that the relative error β1j of ctAj
` i is bounded by

β1j ď βj{
´

1`
n

ε2j

¯

Using induction on j, we can show that a relative error β2j of ctVj
is

bounded by

β2j ď
´

j´1
ÿ

k“0

2kε2
k

n` ε2k

¯

¨ pβ ` p1` log nq ¨ β˚q ` pj ´ 1q ¨ p1` log nq ¨ pβ˚q ď

1

n

j´1
ÿ

k“0

p2kε2
k

q ¨ pβ ` p1` log nq ¨ β˚q ` pj ´ 1q ¨ p1` log nq ¨ β˚ ď

2

np1´ εq
¨ pβ ` p1` log nq ¨ β˚q ` pj ´ 1q ¨ p1` log nq ¨ β˚ ď

2β ` pj ` 1q ¨ p1` log nq ¨ β˚

73

국문초록

혜안(Homomrphic Encryption for Arithmetics of Approximate Numbers, HEAAN)

은근사계산을지원하는동형암호스킴이다.혜안의벡터패킹기술은데이터분석

및 기계 학습 분야 등 근사적인 계산이 필요한 암호화 응용 프로그램에서 효율성을

입증하였다.

다변수 혜안(Multivariate HEAAN, MHEAAN)은 평문의 텐서 구조에 대한

HEAAN의 일반화이다. 본 설계는 연산 과정에서 줄어드는 유효 숫자의 길이가 연

산 서킷의 두께로 제한된다는 HEAAN의 장점을 그대로 가지고, 평문 상태에서의

근사 연산과 비교하였을 때에도 유효 숫자 낭비가 1비트를 넘지 않는다. 평문 벡터

의회전등고차원벡터의다양한구조들이응용에많이쓰임에따라, MHEAAN은

행렬 및 텐서와 관련된 응용 프로그램에서 기존 HEAAN에 비하여 보다 효율적인

결과를 낳는다.

MHEAAN의 구체적인 2 차원 구조는 행렬 연산에 대한 MHEAAN 기법의 효

율성을 보여 주며, 로지스틱 회귀분석, 심 신경망 구조 및 회귀 신경망 구조와 같은

암호화 된 데이터 및 암호화 된 모델에 대한 여러 기계 학습 알고리즘에 적용될 수

있다. 또한 효율적인 재부팅 구현을 통하여, 이는 임의의 로지스틱 회귀 분석 등의

다양한 응용 분야에 쉽게 활용될 수 있다.

주요어휘: 동형암호, 정보보호,

학번: 2014-31408

감사의 글

대학원에 입학한 것이 엊그제 같은데 벌써 5년이라는 시간이 흘러 이렇게

논문을 쓰고 있다니 참 감회가 새롭습니다. 한국어 실력도 많이 부족하고

한국에 아는 사람 하나 없이 대학원에 입학해서 그런지 5년이라는 시간은

저에게참힘든,그러나즐거운시간이었습니다.제가대학원생활에잘적응

하고 실력도 쌓을 수 있도록 도와주신 모든 분들께 감사의 인사를 전하려고

합니다.

우선 논문을 지도해 주신, 생활적으로 지도해주신 천정희 교수님께 진

심으로 감사드립니다. 다음으로 논문 심사를 해주신 김명환 교수님, 서재홍

교수님,현동훈교수님,신지선교수님께감사드립니다.그리고그누구보다

무한한 사랑으로 부족한 저를 믿고 멀리서 지켜봐 주시고 항상 응원해 주신

부모님께 감사의 말을 드립니다.

연구실에서많은시간을함께했던홍현숙,류한솔,김미란,정희원,이창

민,송용수,이동건,김진수,한규형,이지은,정진혁,이주희,손용하,김재윤,

김두형, 한민기, 김동우, 홍승완, 조원희, 이기우 많은 도움이 주셔서 감사합

니다.

	1 Introduction
	1.1 Multidimensional Variant of HEAAN
	1.2 Applications To Machine Learning
	1.3 List Of Papers .

	2 Background Theory
	2.1 Basic Notations .
	2.2 Machine Learning Algorithms
	2.2.1 Logistic Regression
	2.2.2 Deep Learning .

	2.3 The Cyclotomic Ring and Canonical Embedding
	2.4 m-RLWE Problem .
	2.5 HEAAN Scheme .
	2.5.1 Bootstrapping for HEAAN

	3 MHEAAN Scheme
	3.1 MHEAAN Scheme .
	3.1.1 Structure of MHEAAN
	3.1.2 Concrete Construction

	3.2 Bootstrapping for MHEAAN
	3.3 Homomorphic Evaluations of Matrix Operations
	3.3.1 Matrix by Vector Multiplication
	3.3.2 Matrix Multiplication
	3.3.3 Matrix Transposition
	3.3.4 Matrix Inverse .

	4 Applications
	4.1 Sigmoid & Tanh Approximations
	4.2 Homomorphic LR Training Phase
	4.2.1 Database Encoding
	4.2.2 Homomorphic Evaluation of the GD
	4.2.3 Homomorphic Evaluation of NLGD

	4.3 Homomorphic DNN Classi�cation
	4.4 Homomorphic RNN Classi�cation

	5 Implementation Results
	5.1 Evaluation of NLGD Training
	5.2 Evaluation of DNN Classi�cation
	5.3 Evaluation of RNN Classi�cation

	6 Conclusions
	A Proofs
	Abstract (in Korean)
	Acknowledgement (in Korean)

<startpage>10
1 Introduction 1
 1.1 Multidimensional Variant of HEAAN 3
 1.2 Applications To Machine Learning 4
 1.3 List Of Papers . 8
2 Background Theory 9
 2.1 Basic Notations . 9
 2.2 Machine Learning Algorithms 10
 2.2.1 Logistic Regression 10
 2.2.2 Deep Learning . 13
 2.3 The Cyclotomic Ring and Canonical Embedding 15
 2.4 m-RLWE Problem . 16
 2.5 HEAAN Scheme . 18
 2.5.1 Bootstrapping for HEAAN 20
3 MHEAAN Scheme 23
 3.1 MHEAAN Scheme . 23
 3.1.1 Structure of MHEAAN 23
 3.1.2 Concrete Construction 24
 3.2 Bootstrapping for MHEAAN 30
 3.3 Homomorphic Evaluations of Matrix Operations 31
 3.3.1 Matrix by Vector Multiplication 32
 3.3.2 Matrix Multiplication 33
 3.3.3 Matrix Transposition 35
 3.3.4 Matrix Inverse . 36
4 Applications 38
 4.1 Sigmoid & Tanh Approximations 38
 4.2 Homomorphic LR Training Phase 39
 4.2.1 Database Encoding 39
 4.2.2 Homomorphic Evaluation of the GD 40
 4.2.3 Homomorphic Evaluation of NLGD 43
 4.3 Homomorphic DNN Classi�cation 44
 4.4 Homomorphic RNN Classi�cation 46
5 Implementation Results 48
 5.1 Evaluation of NLGD Training 50
 5.2 Evaluation of DNN Classi�cation 52
 5.3 Evaluation of RNN Classi�cation 54
6 Conclusions 56
A Proofs 65
Abstract (in Korean) 74
Acknowledgement (in Korean) 75
</body>

