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Abstract

Multivariate Homomorphic Encryption
for Approximate Matrix Arithmetics

Andrey Kim
Department of Mathematical Sciences
The Graduate School

Seoul National University

Homomorphic Encryption for Arithmetics of Approximate Numbers
(HEAAN) is a homomorphic encryption (HE) scheme for approximate
arithmetics intoroduced by Cheon et.al. [CKKS17]. Its vector packing tech-
nique proved its potential in cryptographic applications requiring approx-
imate computations, including data analysis and machine learning.

Multivariate Homomorphic Encryption for Approximate Matrix Arith-
metics (MHEAAN) is a generalization of HEAAN to the case of a tensor
structure of plaintext slots. Our design takes advantage of the HEAAN
scheme, that the precision losses during the evaluation are limited by the
depth of the circuit, and it exceeds no more than one bit compared to un-
encrypted approximate arithmetics, such as floating point operations. Due
to the multi-dimensional structure of plaintext slots along with rotations
in various dimensions, MHEAAN is a more natural choice for applications

involving matrices and tensors.
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The concrete two-dimensional construction shows the efficiency of the
MHEAAN scheme on matrix operations, and was applied to several Ma-
chine Learning algorithms on encrypted data and encrypted model such as
Logistic Regression (LR) training algorithm, Deep Neural Network (DNN)
and Recurrent Neural Network (RNN) classification algorithms. With the
efficient bootstrapping, the implementation can be easily be scaled to the
case of arbitrary LR, DNN or RNN structures.

Key words: homomorphic encryption, privacy protection, machine learn-
ing
Student Number: 2014-31408
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Chapter 1
Introduction

Homomorphic Encryption (HE) [RAD78] allows to perform certain arith-
metics operations in encrypted state. Following Gentry’s blueprint |Gen09],
a numerous HE schemes have been proposed [DGHV10, BV1laj, BV11b;
Bral2, BGV12,|GHS12, LATV12, BLLN13,|GSW13| |CLT14} [CS15,[DMT15),
DHS16, (CKKS17, |(CGGI18]. The most asymptotically efficient HE schemes
are based on the hardness of RLWE, and they normally have a common
structure of ciphertexts with noised encryption for security.

In calculations, floating-point arithmetic (FP) is arithmetic using the
formal representation of real numbers as an approximation to maintain a
compromise between range and accuracy. For this reason, floating point
calculations are often found in systems that include very small and very
large real numbers (e.g. floating point numbers) that require fast processing
time. The number, as a rule, is presented approximately to a fixed number
of significant digits (values) and is scaled using the exponent in some fixed
base. Over the years, a variety of floating-point representations have been

used in computers systems.
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Recently Cheon et. al. [CKKS17] presented a method of constructing
an HE scheme for arithmetics of approximate numbers (called HEAAN).
The idea of the construction is to treat encryption noise as a part of error
occurring during approximate computations. In other words, a ciphertext
ct of a plaintext m € R encrypted by a secret key sk for an underlying
ciphertext modulus ¢ will have a decryption structure of the form {ct, sk) =
m + e (mod R/qR) for some small error e. HEAAN is based on an RLWE
structure over a power-of-two M = 2-N cyclotomic ring modulo ¢, R/¢R =
Zo| X]/(XN +1). A vector of complex values of size up to N/2 can be
encoded using a variant of canonical embedding map.

HEAAN showed its potential by providing the winning solution of Track 3
(Homomorphic Encryption Based Logistic Regression Model Learning) at
the iDASH privacy and security competition in 2017 [KSK™|. In the iDASH
2018, all the participants used HEAAN scheme as an underlying scheme for
the Secure Parallel Genome Wide Association Studies using Homomorphic
Encryption (Track 2) [CKK™17].

In both years in their solutions authors packed a matrix of inputs in
a vector. Even though the authors could provide all computations using
matrix to vector packing in that particular task, due to absence of row-
wise matrix rotation functionality they had to circumvent and consume
an additional level during the computations. With the growth of more
complex algorithms, such as deep learning and recommendation systems
which require lots of matrix operations, the possibility of performing ma-
trix operations is becoming crucial for homomorphic encryptions. Despite
the diversity of HE schemes that achieve a variety of circuit evaluations,

practical matrix operations such as matrix multiplications is still a problem
in HE.
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1.1 Multidimensional Variant of HEAAN

We present generalization of HEAAN with a tensor packing method, along
with natural rotations in various dimensions, which is, called the hyper-
cube structure, also applied in HElib [HS14, HS15, HS18|. The straightfor-
ward attempt could be based on the Multivariate RLWE (m-RLWE) prob-
lem as an underlying hardness problem, introduced by Pedrouzo-Ulloa et
al. [PUTPPG15, PUTPPG16| as a multivariate variant of RLWE problem
with an underlying ring Z[xo, 21]/(z5° + 1, 22" + 1) where both Ny and N,
are powers-of-two. However this problem succumbs to the following eval-
uation attack: without loss of generality assume Ny > Nj, and substitute
21 = 0™ then the RLWE problem over Z[zo,z1]/(z)° + 1,2 + 1)
reduces to a problem over Z[xo]/(x5° + 1).

So instead, we provide a scheme MHEAAN based on the m-RLWE problem
with indeterminates xy and z; (or in general case zy, ..., x;) satisfying re-
lations given by cyclotomic polynomials corresponding to relatively prime
orders. The hardness of the m-RLWE problem over this ring is shown to
have reduction from the origina RLWE problem. MHEAAN enjoys all the ben-
efits of HEAAN such as a rescaling procedure, which enables us to preserve
the precision of the message after approximate computations and to reduce
the size of ciphertexts significantly. Thus, the scheme can be a reasonable
solution for approximate computation over the complex values. Moreover,
with a multivariable structure of m-RLWE, we provide a general technique
for tensor plaintext slots packing in a single ciphertext. We provide a con-
crete two-dimensional construction which supports matrix operations as
well as standard HE operations.

For two-dimensional case corresponding to natural matrix structure of

plaintext slots, matrix multiplication in MHEAAN is achieved in very simple
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way using Fox matrix multiplication algorithm [FOS87]. In contrast to the
method of Mishra et al. [MRDY]| our method does not require exponen-
tially large degree of the base ring and we can use matrix multiplication
as a part of more complex algorithms. The matrix size is also not a prob-
lem, as our method preserves matrix structure, and can combined with
divide-and-conquer algorithm. Moreover MHEAAN enjoys other matrix re-
lated operations, like matrix transposition.

MHEAAN supports faster bootstrapping procedure than that of HEAAN
when number of slots is sufficiently large. For base ring degree N, the boot-
strapping procedure for large number of slots in MHEAAN is approximately
requires O(N ﬁ) of ciphertext rotations and O(N ﬁ) of constant mul-
tiplications where s + 1 is the number of factors of base ring. The original
HEAAN requires about O(+/N) of ciphertext rotations and O(N) of constant
multiplications. In our implementation s is equal to 1 and the degree of
ring is factored into values close to v/N, so the bootstrapping complexity
is reduced from O(v/N) to O(~/N) rotations and from O(N) to O(v/N)

constant multiplications.

1.2 Applications To Machine Learning

Machine Learning is a class of artificial intelligence methods whose char-
acteristic feature is not a direct solution of a problem, but learning in
the process of applying solutions to a multitude of similar tasks. To build
such methods, the tools of mathematical statistics, numerical methods,
optimization methods, probability theory, graph theory, and various tech-
niques of working with data in digital form are used.

The scope of ML applications is constantly expanding, however, with
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the rise of ML, the security problem has become an important issue. For
example, many medical decisions rely on logistic regression model, and
biomedical data usually contain confidential information about individuals
which should be treated carefully. Therefore, privacy and security of data
are the major concerns, especially when deploying the outsource analysis
tools. In most of the ML based online services, model-service providers have
a common strategy that a trained model resides on a server and returns
computed values of data uploaded by the user instead of releasing the
trained model in public. This is because not only the trained models with
the massive amount of data have high economic values, but also publicly
available models are vulnerable to adversarial attacks. On the other hand,
in perspectives of such service users, one of the major concerns is about
privacy of their data. Users lose control over the data after uploading it
to the online services. In other words, it is impossible for users to know
who will access their data and how the data will be used. And Even if
model-service providers are honest, there is always a risk of information
leakage due to external adversaries. For this reason, users become reluctant
to use such services, despite how helpful those services are. Therefore it is
essential to execute inferences of the trained ML models while preserving
data privacy.

Homomorphic encryption can be a solution to this problem, which is
an encryption scheme that allows calculations on several operations on en-
crypted data without decryption. We show several applications of MHEAAN
to different machine learning algorithms.

Logistic Regression Training Phase.

Before iDASH 2017 several papers already discussed ML with HE tech-

niques. Wu et al. [WS13] used Paillier cryptosystem [LP13] and approx-
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imated the logistic function using polynomials, but it required an expo-
nentially growing computational cost in the degree of the approximation
polynomial. Aono et al. [AHTPW16] and Xie et al. [XWBB16] used an ad-
ditive HE scheme to aggregate some intermediate statistics. However, the
scenario of Aono et al. relies on the client to decrypt these intermediary
statistics and the method of Xie et al. requires expensive computational
cost to calculate the intermediate information. The most related research
of our approach is the work of Kim et al. [KSW™| which also used HE based
ML. However, the size of encrypted data and learning time were highly de-
pendent on the number of features, so the performance for a large dataset
was not practical in terms of storage and computational cost.

We propose a general practical solution for MHEAAN based logistic regres-
sion learning algorithm over encrypted data. Our approach demonstrates
good performance and low storage costs. In practice, our output quality
is comparable to the one of an unencrypted learning case. To improve the
performance, we apply several additional techniques including a matrix
packing method, which reduce the required storage space and optimize the
computational time. We also adapt Nesterov’s accelerated gradient [Nes83]
to improve the convergence rate. As a result, we used less number of iter-
ations than the other solutions, resulting in a much faster time to learn a
model.

Deep Neural Network Classification.

A deep neural network is an artificial neural network with multiple
layers between the input and output layers. The DNN finds the correct
mathematical manipulation to turn the input into the output, whether it
be a linear relationship or a non-linear relationship.

Previous implementations of encrypted prediction [BMMP17, HTG17]
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are done over the plain models, and limited number of hidden layers. The
result of [BMMP17| has an impressive performance, but it is restricted
only for a binary model, and is expected to have huge drowning in the
efficiency when expanding to a non-binary model.

We constructed MHEAAN based Deep Neural Network classification al-
gorithm with 2 and 6 number of layers. With matrix packing we with the
rotation technique we optimized the storage space and computational time.
The encrypted predictions achieve the accuracy similar to the accuracy of
the predictions on the plain data. With our practical bootstrapping method
our approach is flexible and can be generalized to the DNN architecture
with large number of hidden layers.

Recurrent Neural Network Classification.

Recurrent Neural Networks (RNNs) are popular models that have shown
great promise in many sequential data and among others used by Apples
Siri and Googles Voice Search. Their great advantage is that the algorithm
remembers its input, due to an internal memory. RNN model has much
more complex structure than standard DNN model, thus it is much harded
to adapt it with HE.

We chose as an application a model designed in deepTarget (Lee et
al.) [LBPY16] as a validation of MHEAAN scheme. We evaluate the scalability
of MHEAAN on a sequential model with RNA sequences, where privacy is
critical. As far as our knowledge, this is the first attempt to implement
RNN using FHE.
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1.3 List Of Papers

Andrey Kim was a co-author for original HEAAN papers. The contribution
of Andrey Kim was researching and drafting the source code. The original

papers for HEAAN scheme are:

e [CKKS17| Jung Hee Cheon, Andrey Kim, Miran Kim, Yongsoo Song,
Homomorphic Encryption for Arithmetic of Approximate Numbers,
978-3-319-70693-1, ASTACRYPT 2017, Part 1, LNCS 10624.

e [CHK"1§] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran
Kim, Yongsoo Song, Bootstrapping for Approrimate Homomorphic
Encryption, EUROCRYPT 2018.

This thesis is based on the following papers:

e [KSK™] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, Jung
Hee Cheon, Logistic Regression Model Training based on the Ap-
proximate Homomorphic Encryption, BMC Medical Genomics 2018,
vol. 11 (suppl. 4) :83, (SCI) doi: 10.1186/s12920-018-0401-7

e [CKY1§| Jung Hee Cheon, Andrey Kim, Donggeon Yhee Multi-dimensional
Packing for HEAAN for Approximate Matrix Arithmetics

e [JKNT19| Jachee Jang, Andrey Kim, Byunggook Na, Byunghan Lee,
Sungroh Yoon and Junghee Cheon. Privacy-Preserving Inference for

Gated RNNs with Matrix Homomorphic Encryptions

In [KSK™] and [CKY18] Andrey Kim was the main author and con-
tributor. In [JKN™19] Andrey Kim designed the source code.



Chapter 2
Background Theory

To avoid an ambiguity, we define tensors following linear algebras :

Definition 2.0.1. A tensor is an assign from a multi-indices set to values.
A tensor is of rank k if the multi-indices set consists of k-tuple of indices.

A wector is a rank 1 tensor and a matriz is a rank 2 tensor.

2.1 Basic Notations

All logarithms are base 2 unless otherwise indicated. We denote vectors in
bold, e.g. a, and every vector in this paper will be a column vector. For
vectors a and b we denote by {(a,b) the usual dot product. We denote
matrices by bold capital letters, e.g. A, and general tensors by a. For a
real number r, |r| is the nearest integer to r, rounding upwards in case
of a tie. For an integer ¢, we identify the ring Z, with (—q/2,¢/2] as a
representative interval and for integer r we denote by |r], the reduction
of » modulo ¢ into that interval. We use a < x to denote the sampling

a according to a distribution y. If x is a uniform distribution on a set D,
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we use a < D rather than a < y. For rank k tensors a, b e Crxxms we
denote a component-wise product by a®b. For vectors r = (ri,...,7) and
g = (g1,...,9x) we denote by g = (g1*,...,g;*) component powers, and
by rt(a, r) a tensor obtained from a by cyclic rotating by r; in corresponding

index i. For example, in case of matrices i.e. rank 2 tensors, we have:

ap,o Qo,1 T ag,n;y—1
ai,o ai,1 T A1,ny—-1
A =
| @no—1,0 Ano—1,1 """ Ang—1,n1—1 |
Arg,r1 Qrg,ri+1 e Qrg,ri—1
Arog+1,r1 Qro+lr+1 "0 OQrog+lr—1
rt(A, (7’0, 7“1)) =
_am—l,rl Arg—1,71+1 =~ aro—l,rl—l_

where indices are taken modulus n;. Denote the security parameter
throughout the paper: all known valid attacks against the cryptographic

scheme under scope should take bit operations.

2.2 Machine Learning Algorithms

2.2.1 Logistic Regression

Logistic regression or logit model is a ML model used to predict the proba-

bility of occurrence of an event by fitting data to a logistic curve [Har01]. It

10
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is widely used in various fields including machine learning, biomedicine [LLI0],

genetics [LK12], and social sciences [GL09].

Throughout this paper, we treat the case of a binary dependent vari-
able, represented by +1. Learning data consists of pairs (x;,y;) of a vector
of co-variates x; = (21, ..., zif) € R/ and a dependent variable y; € {£1}.
Logistic regression aims to find an optimal 8 € R/*! which maximizes the
likelihood estimator
HPr(yi‘Xi) = 1 ! A
o - 1+ exp(—ui(1,x;)"5)

]

or equivalently minimizes the loss function, defined as the negative log-

likelihood: .
T(8) =~ Ylog(1 + exp(~a] )

=1

where z; = y; - (1,x;) fori =1,... n.

Gradient Descent

Gradient Descent (GD) is a method for finding a local extremum (mini-
mum or maximum) of a function by moving along gradients. To minimize
the function in the direction of the gradient, one-dimensional optimization
methods are used.

For logistic regression, the gradient of the cost function with respect to

[ is computed by

n

VIB) = Do(-5B) -z

i=1

where o(x) = L 3 Starting from an initial 3y, the gradient descent

1+exp(—z

11
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method at each step ¢t updates the regression parameters using the equation

n

Wm*ﬂm+%ZkPﬁWW%
n

i=1

where «; is a learning rate at step t.

Nesterov’s Accelerated Gradient

The method of GD can face a problem of zig-zagging along a local optima
and this behavior of the method becomes typical if it increases the number
of variables of an objective function. Many GD optimization algorithms
are widely used to overcome this phenomenon. Momentum method, for
example, dampens oscillation using the accumulated exponential moving
average for the gradient of the loss function.

Nesterov’s accelerated gradient [Nes83| is a slightly different variant
of the momentum update. It uses moving average on the update vector
and evaluates the gradient at this “looked-ahead” position. It guarantees a
better rate of convergence O(1/t?) (vs. O(1/t) of standard GD algorithm)
after t steps theoretically, and consistently works slightly better in prac-
tice. Starting with a random initial vo = [y, the updated equations for

Nesterov’s Accelerated GD are as follows:

BED v g, (v),

(2.2.1)
v = (1= ) - BOFD 4, - O,

where 0 < 74 < 1 is a moving average smoothing parameter.

12
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2.2.2 Deep Learning

Deep Learning is a set of machine learning algorithms (with a training, with
partial involvement of a training, without a training, with reinforcement),
based on the representation learning, rather than specialized algorithms
for specific tasks. Many deep learning methods were known as early as the
1980s, but the results were unimpressive, while advances were made in the
theory of artificial neural networks. And the computational power of the
mid-2000s did not allow creating complex technological architectures of
neural networks with sufficient productivity and did not allow to solve a
wide range of tasks in computer vision, machine translation, speech recog-
nition. However nowadays deep learning has shown amazing performance
in diverse areas including academic research as well as industrial develop-

ments, and is applied to the increasing number of real-life applications.

DNN Classification Algorithm

We briefly describe the flow of DNN classification algorithm. DNN model
consists of £ + 1 number of fully connected (FC) layers. For simplicity we
enumerate the layers starting from 0. Each layer contains n; number of
nodes for [ = 0, ... L. The layer 0 is input layer, the layer [ is output layer,
and the others are hidden layers. Each of the hidden layers and the output
layer has a corresponding weight matrix W; e R™*™-1 and a bias vector
b; € R™. For the input vector ag € R™, we consecutively calculate the

linear transformation part

Z, = Wlal,l + bl

and for acitivation function g; the activation part

13
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a = gz(Zz)

at the each hidden layer. For the output layer we calculate the linear
transformation part z; = W_a,_ 1 + b, and the index of largest value in

z. is the classification output.

RNN Classification Algorithm

Most neural networks currently used in research based on deep learning are
deep sequential models. In the deep sequential models, a prediction value
or vector corresponding to input data is computed by going through their
critical operations (i.e., matrix multiplication, activation function). A RNN
is one of the most popular deep sequential model. The RNN has recurrent
operations to get knowledge from sequence data. Connections of neurons in
the RNNs form computational directed graphs, and types of the directed
graphs can diverse. RNN can learn dynamic temporal representation of
input data by recurrently calculating internal states of the neurons.

We briefly describe the flow of RNN classification algorithm based on
gated recurrent units (GRU). RNN model consists of 7 number of GRU
layers and £ + 1 number of FC layers.

Each GRU layer has hidden state h;,_; and input x; as inputs, and
hidden state h; as output. Each of the GRU layers has a corresponding
weight matrices W, U,, W,., U, W, U, and a bias vectors by, by._,

bW»,«) bUra bWha bUh'

14
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(update gate) z; = o(W,x; + by, + U.x; + by.,) (2.2.2)
(reset gate) ry = o(W,x; + bw, + U,x; + by,) (2.2.3)
(hidden cell) h, = tanh(W),x, + bw, + 1, * (Upyx, + by,))  (2.2.4)
(output) hy =z, «h;_; + (1 —z) = h, (2.2.5)

For FC layers the algorithm is same as DNN case. Our input vector for

FC is hy.

2.3 The Cyclotomic Ring and Canonical Em-
bedding

For an integer M consider its decomposition into primes M = 2ko . p’fl :

cphe = T15_, M;, where My = 2%, and M; = plfori = 1,...,s.
We will consider the cases kg > 2. Let N; = ¢(M;) = (1 — pi)MZ for
i=0,...,s,and N = ¢(M) = [[;_, N;. Denote tensors N = Ny x Ny x

- x Ny, N, = No/2 x Ny x -+ x Ny, and vectors N = (Ng, Ny,..., Ny),
Ny, = (No/2, Ny, ..., N;). Let ®p/(x) be M-th cyclotomic polynomial. Let
R = Z[z]/Pp(z) and S = R[z]/®Pp(z). The canonical embedding 75 of
a(z) € Q[z]/(®yr(x)) into CV is the vector of evaluation values of a(x) at
the roots of ®/(x). We naturally extend it to the set of real polynomials
S, 1ar : 8 — €V, s0 myr(a(z)) will be defined as (a(&);))jezs, € CV for any
a € R where & = exp(—2mi/M) is a primitive M-th roots of unity. The
loo-norm of Ty (a(X)) is called the canonical embedding norm of a, denoted

can

by [a|$" = ||7ar(a)|w. The canonical embedding norm |-[S"

" satisfies the

following properties:

15
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e For all a,be R, we have ||a - b|2" < [la|8" - [b]S2"

e For all a € R, we have |a|3" < ||a];.

can

e For all a € R, we have |a]y < ||la|8".

Refer |DPSZ12] for more details.

2.4 m-RLWE Problem

Here we set up an underlying hardness problem.

Proposition 2.4.1. If My, M, --- , M, are pairwisely coprime, then there

1S a ring isomorphism
S = R[z]/Pun(x) = Rlzo, ..., 2]/ (Prsy (20), - .. Pas, (25)) = S

and the map induces a ring isomorphism
R = Z[z]/Pur(x) = Z[xo, . . ., 7]/ (Pagy (o), - .- Por.(zs)) = R'.

We refers [BGV12] for RLWE-problem.

Definition 2.4.1. A decisional RLWE problem RLWER , is a distinguish-
ing problem between uniform distribution (a(z),b(x)) and a distribution
(a(x),a(x)s(x)+e(x)) such that a(x),b(zx), s(x) < R/qR and e(x) is given
by the image of a sample in R whose canonical embedding has components

2

following a Gaussian distribution of variance o independently.

Definition 2.4.2. A decisional m-RLWE problem m-RLWEg: , is a distin-
guishing problem between uniform distribution (a(x),b(x)) and a distribu-
tion (a(x), a(x)s(x) + e(x)) such that a(x),b(x), s(x) € R'/qR' and e(x) is

16
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given by the image of a sample in R’ whose coefficients follow a Gaussian

distribution of variance o' independently.

The m-RLWE problem is suspected to be weak under evaluation attacks
such as in case of the ring Z|xo, x1]/(P s, (x0), Pagy (21)) for the powers-of-
two My, M. The attack also seems to be expanding at least partially to the
case ged(M;, M;) > 1. We design our scheme using relatively prime M,’s
to avoid this case. Further we show the hardness of our case by devising
a reduction from the original RLWE problem to m-RLWE problem with

relatively prime M;’s.

Lemma 2.4.1. (Hardness of m-RLWE) Let R and R’ be given as proposi-
tion|2.4.1. Then RIWEg , reduces to m-RIWEg, .,, where

czzf[(pi_l ><(2+127T))

ie1 Di Di

In particular, ¢ is less than v/3 if p; = 41 > 127 or p; = 3,37. As p

increases, ¢ tends to be v/2. The followings are approximations of c :

(pi,c) = (5,2.8),(7,2.6),(11,2.3), (13,2.2), (17, 2.0),
(19,2.0), (23,1.9), (29,1.8), (31, 1.9)

For p; = 3 and 37, the norm is given 2/\/5 and bounded by 1.72, respec-
tively.

Remark 2.4.1. Our implementation covers cases of s = 1 and p = 17,257.

In these cases, ¢ is approzimately 2.06,2.01, respectively.

Remark 2.4.2. Since ||la|y < |a|w, the distinguishing problem given by £y,

norm is at least as hard as the problem given by ls norm. In other words,
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m-RLWE sample can be chosen by an error distribution following o, norm
rather than {5 norm. From now on, the norm of m-RLWE samples, or their

errors, are measured by L, norm.

2.5 HEAAN Scheme

The following is the instantiation of the RLWE-based HEAAN scheme [CKKS16,

CKKS17]. For a power-of-two N > 4 and M = 2N, denote ®y(x) =
(zV +1), R = Z[x]/®p(x). For a positive integer £, denote Ry = R/2R =
Zoe|x]/® () the residue ring of R modulo 2°. The variant of the canonical

embedding map defined as

TN m(x) >z = (20,...,2n/2-1)

such that z; = m(£3)).

Sparse packing. For a power-of-two n < N /2 consider a subring R =
Z[2']/(z* + 1) € R where 2’ = 2N/®", For R™ define an isomorphism
' m(a’) = m(aN/C) -z = (z9,..., z,_1) such that z; = m(¢}), where
= 5;\7/ ") We can pack n complex values via isomorphism 7/, ! In this
case if we apply 7’/ to m(z') € R we will get a vector obtained from z by
concatenating itself N/n times. For a message m(z) encoding a vector z
and a ciphertext ct encrypting m(z), ct is also said to be encrypting vector

Zz.

e HEAAN.KeyGen(1%).

- For an integer L that corresponds to the largest ciphertext mod-
ulus level, given the security parameter A\, output the ring di-

mension N which is a power of two.

18
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- Set the small distributions Xxey, Xerr; Xene Over R for secret, er-

ror, and encryption, respectively.

- Sample a secret s <« Xpey, a random a < Ry and an error
€ < Xerr- Set the secret key as sk < (s,1) and the public key
as pk < (a,b) € R? where b < —as + e (mod 2%).

HEAAN.KSGeng (s'). For s’ € R, sample a random a’ < R, and an

error € <« Y. Output the switching key as swk < (a’,0') € R3

where b/ <« —a’s + ¢’ + 255" (mod 221).
- Set the evaluation key as evk < HEAAN.KSGeng,(s?).

HEAAN.Encode(z, p). For a vector z € C", with of a power-of-two

n < N/2 and an integer p < L corresponding to precision bits,

output the polynomial m « 7/,' (27 - z) € R.

HEAAN.Decode(m, p). For a plaintext m € R, the encoding of a vector

consisting of a power-of-two n < N /2 complex messages and precision

bits p, output the vector z «— 7/,,(m/2?) e C".

HEAAN.Enc,k(m). For m € R, sample v <« Xene and €, €1 < Xepr-

Output v - pk + (eg, €1 +m) (mod 2F).

HEAAN.Decg(ct). For ct = (cg, ¢1) € RZ, output ¢y - s + ¢; (mod 2°).

HEAAN.Add(ct,, cty). For cty, cty € R2, output ctogq < cty+cty (mod 2°).

HEAAN.CMultex(ct, c,p). For ¢t € R? and ¢ € C", compute ¢ «
HEAAN.Encode(c;p) and output ct’ < ¢ ct (mod 2°).

HEAAN.PolyMult_,(ct,g,p). For ct € R? and g € Ry, output ct’ «
g-ct (mod 2°).

19
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o HEAAN.M'Lllter<Ct1, Ctg). For cty = (al, bl>, cty = (CLQ, bg) € R%, let
(do, dl, dg) = (a1 cag, a7y * bQ +as - bl, b1 : bg) (mod QZ) Output Ctmult <«
(di,ds) + 271 - dy - evk] (mod 2°).

e HEAAN.ReScale(ct,p). For a ciphertext ct € R? and an integer p,
output ct’ « [277 - ct] (mod 2¢77).

e HEAAN.ModDown(ct,p). For a ciphertext ct € R? and an integer p,

output ct’ < ct (mod 2¢7P).

For an integer k co-prime with M, let k : m(x) — m(x*) (mod @y (z)).
This transformation can be used to provide more functionalities on plain-

text slots.

o HEAAN.Conjugate (ct). Set the conjugation key as cjk < HEAAN.KSGeng, (5 1(s)).
For ct = (a,b) € R? encrypting vector z, let (a’,0') = (k_1(a), k_1(D))
(mod 2°). Output ct « (0,0') + |27F - @’ - ¢jk] (mod 2°). cty is a ci-

phertext encrypting z - the conjugated plaintext vector of ct.

e HEAAN.Rotatey(ct;r). Set the rotation key as rtk < HEAAN.KSGeng (k5r($)).

For ct = (a,b) € R encrypting vector z, let (a/,b') = (ks (a), k5 (b))
(mod 2%). Output ct,y < (0,8') + [27L - @’ - rtk] (mod 2°). ct, is a ci-
phertext encrypting rt(z,7) = (2-,..., 2n_1, 20, - - -, 2r_1) - rotated by

r positions plaintext vector of ct.

Refer [CKKS17, CHK™18] for the technical details and noise analysis.

2.5.1 Bootstrapping for HEAAN

Consider a ciphertext ct € R’ ?, an encryption of message m(x) encoding a

vector of size n. Then the coefficients of m(z) are non-zero only at degrees
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k - % for k =1,2,---,2n — 1. Consider ct as an element of R’% for L » (.
We can treat ct as an encryption of m(z) + 2°- I(z) in R’y i.e. Dec(ct) =
m(z) + e(x) +2°- I(z) (mod R) for some polynomial I(z) of degree < N.
With a choice of sparse sk, coefficients of I(x) are bounded with some

constant. Now the bootstrapping procedure is defined as followings.

e HEAAN.SubSum(ct,n) As the number of slots is n, then nonzero co-

efficients of m(z) are only at degrees k - % The output encrypts a

message m(x) + 2° - I'(x) where I'(z) derived from I(x) by vanishing

the coefficients at degrees other than multiples of %

Algorithm 1 SubSum procedure

1: procedure SuBSuM(ct € R’ n | N/2,n > 1)
2 ct/ «—ct

3 for j =0 to log(%) —1do

4 ct; < HEAAN.Rotate(ct’;27 - n)

5: ct’ < HEAAN.Add(ct’, ct;)

6 end for

7 ct” < HEAAN.ReScale(ct’; log(2"))

8 return ct”

9: end procedure

Let m(z) +2°- I'(x) = Z;V;Ol t;x? encoding vector z = (2g,. .., 2,-1).

Then for the following matrix ¥ we have equation:
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& & o & % th + it
5 g & g & o+ it
. Z frnd . ==
1 .
| nt Saot 5371_ | “n—1 | _t;«ﬁl + v t/2n71_
(2.5.6)

where & = exp(%QL:j) and t), = b

e HEAAN.SlotToCoeff(ct). Multiply ct by a matrix ¥~!. The output is

the ciphertext that encrypts coefficients of m(z)+2°-I'(x) in real and

imaginary parts: tk.Qﬂ +1- t(kJrn)_Qﬂ in slot k for k=1,2,--- ,n—1.

e HEAAN.RemoveIPart(ct) Extract real and imaginary parts of slots and

evaluate the polynomial function, close to f(z) = 5= exp(35%) for

both parts. Combine the two ciphertexts to obtain a ciphertext that

encrypts coeflicients of m(z) in real and imaginary parts: m, ~ + -
2n

My X 1D slot k for k=1,2,--- ,n—1.

2n

e HEAAN.CoeffToSlot(ct) Multiply ct by a matrix X!, The result is

a ciphertext that encrypts m(zx) in a higher power-of-two modulus
L'>» ¢

SlotToCoeff and CoeffToSlot parts of the algorithm require O(4/n)
ciphertext rotations and O(n) constant multiplications when performing
so-called ‘baby-giant step’ optimization. The algorithm also requires to

store O(4/n) rotations keys, which is impractical for large number of slots.
For more details refer to [CHK'18, CKKS16].
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MHEAAN Scheme

3.1 MHEAAN Scheme

3.1.1 Structure of MHEAAN

In this section we will use notations from Section MHEAAN is a general-
ization of HEAAN to a case of non power-of-two M. The encryption process
in MHEAAN scheme can be shown in the following outline: we encode a ten-
sor of complex values of size N using 7/ &i into m(x) € R'. We mask the
result with m-RLWE instance (a(x),b(x)) in the corresponding ring Rj.
For a message m(x) encoding a tensor z and a ciphertext ct encrypting

m(x), we also say that ct encrypts tensor z.

sparse packing. For divisors ng of Ny/2 and n; of N; for i = 1,...,s,
denote n = ng X ny X -+ X ng, n = (ng,nq,...,ns). We can imitate sparse
tensor packing similar to the HEAAN case. We can encode a sparse tensor of
complex values of size n using 7’ l:lt applied to a tensor of size N, consisting

of same blocks of size fi. We denote this embedding as 7/,
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We can treat HEAAN scheme as a special case of MHEAAN with s = 0:

20
—1
1 o RLWE
Z = — m(r) —— ct
. Encode Enc
Zno—l

and for two-dimensional packing (s = 1) we have:

20,0 20,1 s Zni—1
“ e —1
21,0 21,1 “lini—1 ™ o1 m—RLWE
7 - IO (g, ) R, o
. . - . Encode Enc
Zng—1,0 “no—1,1 " Zng—1l;ni—1

3.1.2 Concrete Construction

For a positive integer ¢ denote R}, = R'/2°R’ the residue ring of R’ mod-
ulo 2¢. For a real o > 0, DG(0?) samples a multivariate polynomial in R’
by drawing its coefficient independently from the discrete Gaussian dis-
tribution of variance o?. For an positive integer h, HWT (h) is the set of
signed binary tensors in {0, J_rl}N whose Hamming weight is exactly h. For
a real 0 < p < 1, the distribution ZO(p) draws each entry in the tensor
from {0, il}N, with probability p/2 for each of —1 and +1, and probability

being zero 1 — p.

e MHEAAN KeyGen(1?).

- Given the security parameter A, set an integer M that corre-
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sponds to a cyclotomic ring, an integer L that corresponds to
the largest ciphertext modulus level and distribution parame-
ters (p, o, h).

- Set the distributions Xenc = ZO(p)’ Xerr = Dg(o), Xkey =
HWT (h) over R for secret, error, and encryption, respectively.

- Sample a secret s <« Xpey, & random a «— R’y and an error
€ < Xerr- Set the secret key as sk < (s,1) and the public key
as pk — (a,b) € R'7 where b — —a -5 + e (mod 2%).

MHEAAN.KSGeng(s). For s € R’, sample a random a < R’y and an

EITOr € «— Yerr. Output the switching key as swk «— (a,b) € R'5

where b < —a - s + e+ 2Fs (mod R'5.1).
- Set the evaluation key as evk < MHEAAN.KSGeng (s?).

MHEAAN.Encode(Z, p). For a tensor z € C", an integer p < L — 1

corresponding to precision bits, output the two-degree polynomial

m e (27 - 2) e R,

MHEAAN.Decode(m, p). For a plaintext m € R’, the encoding of a

tensor of complex messages z € C®, precision bits p, output the

tensor '« 7', (m/2") € C™,

MHEAAN.Encp(m). For m € R/, sample v < Xene and eg, €1 < Xerr-

Output ct = v - pk + (eg, €1 + m) (mod R'y).

MHEAAN Decg(ct). For ct = (co, 1) € Ry, output ¢o-s+¢; (mod R').

MHEAAN.Add(cty, cty). For cty, cty € RS - encryption of tensors zy, 2, €

C™ output ctagg < cty+cty (mod 2%). ctuqq is a ciphertext encrypting

tensor z; + Zs.
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e MHEAAN.CMult.,(ct, C,p). For ct € R? - encryption of z € C?, and a

constant tensor ¢ € C®, compute ¢ < MHEAAN.Encode(¢, p) the encod-
ing of ¢ and output ctemuy < ¢ - ct (mod R'y). Ctemur 1S a ciphertext

encrypting tensor z © c.

e MHEAAN.PolyMult_,(ct,g,p). For ct € R? - encryption of z € C®,

and a constant g € Ry output Ctemue < ¢ - ct (mod R'y). Ctemur 18 a

ciphertext encrypting tensor z ©® ¢, where ¢ is decoding of g.

Multiplication by polynomial is similar to a constant multiplication,
however in the next section we will show why it is important to define it

separately.

o MHEAAN.Multevk(Ctl,Ctg). For cty = (a17b1>,ct2 = ((lg,bg) € ng -

encryptions of tensors z;,2o € C?, let (do,dy,dy) = (ayas, arbs +

asb1,b1by) (mod R'y). Output
Ctmult < (dl, dg) + [2_L ~dy - er] (HlOd R/g)

Ctmule 18 a ciphertext encrypting tensor z; © Zo.

e MHEAAN.ReScale(ct,p). For a ciphertext ct € R’? and an integer p,
output ct’ « [277 - ct|] (mod R'p—_,).

For an integer vector k = (ko, ..., k) with k; co-prime with M;, let
ki m'(x) — m/(x¥)  (mod R/y)

This transformation can be used to provide conjugation and rotations in

different dimensions on the plaintext matrix.
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e MHEAAN.Conjugate,(ct). Set the conjugation key as

cjk < MHEAAN.KSGeng (k_1(s))
For ct = (a,b) € R’} encrypting matrix Z, let
(@) = (k-1(a), i-1(b))  (mod R'y)

Output
ctg < (0,6') + 275 - a’ - cjk] (mod Ry)

ctg is a ciphertext encrypting 7 - the conjugated plaintext tensor of

ct.

e MHEAAN.Rotaten(ct;r). Set the rotation key as

rtk <— MHEAAN.KSGeng (kgr(s))

For ct = (a,b) € R’} encrypting matrix Z, let (a/, ) = (kgr(a), kigr (D))
(mod R/;). Output cty < (0,0') + |27% - @ - rtk| (mod R/y). cty is a
ciphertext encrypting rt(z,r) - cyclic rotated plaintext tensor by r;

in i-th dimension.

Throughout this paper, we use real polynomials as plaintexts for conve-
nience of analysis. A ciphertext ct € R’ ? will be called a valid encryption of
m € § with the encryption noise bounded by §, and plaintext bounded by
w, if {ct,sky = m +e (mod R';) for some polynomial e € S with |e|3" <
and |m|32" < p. We will use a corresponding tuple (ct,d, u, ¢) for such
an encryption of m. The following lemmas give upper bounds on noise

growth after encryption, rescaling and homomorphic operations. Refer to

27



CHAPTER 3. MHEAAN SCHEME

Appendix [A] for proofs.

Lemma 3.1.1 (Encoding & Encryption). For m <« MHEAAN.Encode(z,p)
and ct «— MHEAAN.Encp(m) the encryption noise is bounded by cean =

8v/2-oN + 60v/N + 160+/hN.

Lemma 3.1.2 (Rescaling). Let (ct,d, i, £) be a valid encryption of m and
ct’ < MHEAAN.ReScale(ct,p). Then (ct’,0/2P + dscate, pt/27, € — p) is a valid

encryption of m/2P where dscate = 64/ N /12 + 164/hN /12

Remark 3.1.1. We can slightly change the public key generation and the
encryption process to obtain a ciphertext with initial noise reduced from
Oclean 10 almost dscaie. For this we generate public key in R’gL instead of
”R’i. Also in the encryption process we encode the plaintext m with p + L
precision bits, instead of p bits with the following rescaling of the encryption
ct of m by L bits. With a slightly slower encryption process we end up with a
valid encryption in R’%, with the initial noise bounded by Sgean/2" + Oscate =~

§sca|e .

Lemma 3.1.3 (Addition & Multiplication). Let (ct;, d;, is, £) be encryp-

tions of m; € R' and let

Ctadd < MHEAAN.Add(cty, cty)

and
Ctiut < MHEAAN.Mul tevk(Ctb Ct2)
then
(Ctadd7 51 + 52, 251 + Ha, E)
and

(Ctmults 41 - 02 + fio - 01 + 01 - 02 + Omute, f1 - 2, )
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are valid encryptions of my + mo and my - ma, respectively, where dys =

80N/\/§ and Smure = 277 - Sk + Oscale-

Lemma 3.1.4 (Conjugation & Rotation). Let (ct,d, u, £) be encryption of

m € R’ that encodes tensor z, r- integer vector, and let
Cty = MHEAAN.Rotatey(ct;r)

Ctej = MHEAAN.Conjugate (ct)

then (cty, d + 04, p1, 0) and (ctg, § + 0, i1, £) are valid encryptions of tensors
rt(z,r) and z respectively where where dys = SoN/A/3 and 0, = 275 - §is +

5sca|e

Relative Error As discussed in [CKKS17] the decryption of a ciphertext
is an approximate value of plaintext, so it needs to dynamically manage
the bound of noise of ciphertext. It is sometimes convenient to consider the
relative error defined by 8 = /1. When two ciphertexts with relative errors
B; = &;/1; are added the output ciphertext has a relative error bounded by
max;(/3;). When two ciphertexts are multiplied with the following rescaling

by p bits the output ciphertext has a relative error bounded by

mult T 27P. 5scale
My fi2

5/:51+52+5152+5

according to Lemmas [3.1.2| and [3.1.3] This relative error is close to 51 + 32

which is similar to the case of unencrypted floating-point multiplication
under an appropriate choice of parameters.

For convenience of analysis, we will assume that for two ciphertexts
with relatives errors §; and [y the relative error after multiplication and

rescaling is bounded by 1 + S5 + 5* for some fixed [*
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3.2 Bootstrapping for MHEAAN

Similar to HEAAN scheme, consider a ciphertext ct € R'; as an element of
R’ for L » (, with Dec(ct) = m(x) + e(x) + 2° - I(x) (mod R'L). For
simplicity we only consider boostrapping for full packing. However some
cases of sparse packing (as sparse packing in dimension corresponding to

M) could be achieved using similar to HEAAN case techniques.

e MHEAAN.SlotToCoeff(ct). From the equation (in appendix) we
notice that linear transformation can be split into consecutive linear
transformations consisting of 3 from the equation and X! from
the equations applying to different dimensions i of m(x). Out-
put is the ciphertext that encrypts coefficients of m(x)+e(x)+2% 1 (x)

in real and imaginary parts.

e MHEAAN.RemoveIPart(ct) This part of algorithm is same to HEAAN.

Extract real and imaginary parts of slots, evaluate polynomial func-

5= exp(25) for both parts. Combine two ci-

tion, close to f(x) =
phertexts to obtain ciphertext that encrypts coefficients of m(x) in

real and imaginary parts.

e HEAAN.CoeffToSlot(ct) Apply consecutively linear transformations

Y and X7 ! The result is a ciphertext that encrypts same vector

as initial ct in a higher modulus R, with L’ » /.

The noise, correctness and performance analysis are similar to [CHK" 18]
with the differences that now SlotToCoeff and CoeffToSlot parts of the
algorithm require O(3;_,+/N;) ciphertext rotations and O(3;_, N;) con-
stant multiplications when performing ‘baby-giant step’ optimization. This
is much smaller than O(v/N) and O(N) corresponding to HEAAN case for
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a full slot packing N/2. We now also have to store only O(3;]_, v/N;) ro-
tations keys instead of O(v/N) keys for HEAAN case. The only drawback
is that when applying consecutively linear transformations, we use more
rescaling operations. For small s such as s = 1, however, it is not a big

1ssue.

3.3 Homomorphic Evaluations of Matrix Op-

erations

One of the purposes to design MHEAAN is to run the matrix operations
naturally. Since a matrix multiplication consists of multiplications and ad-
ditions for each components, every HE scheme should support the opera-
tion. However, the there is no known general practical result yet. With the
structure of MHEAAN we provide algorithms for homomorphic evaluation of
approximate matrix multiplication, transposition and inverse functions.
Let n be a divisor of both of Ny/2 and Ny, in particular n is a power-
of-two. For simplicity we will consider only square power-of-two size ma-
trix case for multiplication, transposition and inverse. One can keep in
mind parameters (s, My, M) = (1,2%,257), in which case n can be up to
min(28=2,256), and parameters (s, My, M) = (1,2%,17), in which case n
can be up to min(2¥=2,16). We start with several simple auxiliary algo-

rithms.

Remark 3.3.1. Multiplication and transposition algorithms can be ex-
tended to a non-square matrices case. Also for bigger matrices we can
split them into smaller ones and use divide-and-conquer algorithm. We
will omit the details as we need to consider many cases, although they are

essentially similar.
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Row and Column Sums Let ctp - encryption of matrix A € C"*". Then
the algorithm [2| return the ciphertext encrypting row sums of A. Similarly

we can define algorithm ColSum for column sums of A.

Algorithm 2 Row Sum
procedure MHEAAN.RowSuM(cty € R'7)

1:
2 Ctg < cta

3 for j = 0 to logn do

4 ct; «— MHEAAN.Rotate(cts, 27, 0)
5: ctg <« MHEAAN.Add(ctg, ct;)

6 end for

7 return ctg

8: end procedure

Diagonal Extraction Let I € C*"*" be the identity matrix with I, =
rt(I, (k,0)). We can obtain encryption of shifted diagonal of A by multi-
plying cta with Ij. The procedure is described in Algorithm [3]

Algorithm 3 Diagonal Extraction

1: procedure MHEAAN.DIAG(cty € RS, k,p)
2: Cta, «— MHEAAN.CMult (CtA, Ik)

3:  cta, < MHEAAN.ReScale(cta,,p)

4: return ctp,

5: end procedure

3.3.1 Matrix by Vector Multiplication

Let ciphertext ct, encrypts vector v as a matrix of size n x 1. Remind
that cty can be viewed as encryption of matrix of size n x n, consisting of

same columns v. If we multiply ctar by cty and apply ColSum algorithm
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we obtain ciphertext encrypting w! = (Av)? as a matrix of size 1 x n.

Matrix by vector multiplication is stated in algorithm . Similarly for w’
of size n x 1 we can define VecMatMult algorithm that evaluates encryption

of Aw.

Algorithm 4 Matrix by Vector Multiplication

1: procedure MHEAAN.MATVECMULT(ctor, cty, € R',p € Z)
2 Ct(av)r < MHEAAN Mult(ctar, cty)

3 Ct(Av)T «— MHEAAN.RGSC&le(Ct(AV)T,p)

4 Ctayyr < MHEAAN.ColSum(ct(ay)r)
5
6:

return ctar
end procedure

3.3.2 Matrix Multiplication

We adapt Fox matrix multiplication algorithm [FO87] to encrypted matrix
multiplication. For cta,ctg be encryptions of matrices A, B € C"*" with

power-of-two n we define Algorithm [5

Lemma 3.3.1 (Matrix Multiplication). Let (cta, 5a-2?, 2P, () and (ctg, Op-
2P 2P () be encryptions of matrices A,B € C"*" respectively. The Algo-
rithm[3 outputs (ctc, Bo-n-2P,n-2P, 0 —2p) the valid encryption of C = AB
where fc = fa + P + (logn + 1) - 5*.

Remark 3.3.2. The plain matriz multiplication algorithm has complez-
ity O(n3). The Algorithm @ requires totally O(n) ciphertext multiplication

(each of provides multiplication in parallel of n* values) and O(nlogn)

ciphertext rotations. This is almost optimal, compare to unencrypted case.
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Algorithm 5 Matrix Multiplication

1: procedure MHEAAN.MATMULT(cty, ctg € R'7, p)
2 ctg <0

3 for k=0ton—1do

4 ctp, < MHEAAN.Diag, (ctg,p)
5: for j =1 to log(n) — 1 do
6

7

8

9

ctp, < MHEAAN.Add(ctg, ,MHEAAN Rotate(ctp,, (0,27))
end for
Cta, < MHEAAN.ModDown(MHEAAN.Rotate(cta, (% — k,0)),p)
: ctc, < MHEAAN.Mult(cta,,ctp,)
10: ctc < MHEAAN.Add(ctc, ctc,)
11: end for
12: Ctc < MHEAAN.ReScale(ctc, p)
13: return ctg

14: end procedure

Matrix Multiplications with Permutations

We will mention about more efficient algorithm for matrix multiplication.
If we consider the following permutations of matrices B’ and C” of B and

C = AB respectively.

bo,o bl,nfl s bnfl,l €o0,0 Co,n—1 s Co,1
, bo,l bl,O T bn71,2 p C11 C1,0 T C1,2
B = C" =
bO,nfl bl,n72 ce bnfl,O Cn—1n—-1 Cn—1n—2 " Cn—10

Then for given encryptions of A and B’, Algorithm [6] outputs encryp-
tion of C” - permutation of matrix C. The Algorithm [6] requires totally

O(n) ciphertext multiplication (each of provides multiplication in parallel
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CHAPTER 3. MHEAAN SCHEME

of n? values) and O(n) ciphertext rotations. This is asymptotically opti-
mal, compare to unencrypted case. However this algorithm is seems to be
not practical for more complicated tasks as it does not preserve the matrix

structure in slots.

Algorithm 6 Matrix Multiplication with Permutations

1: procedure MHEAAN.MATMULTPERMUTE(cty, ctg € R'7, p)
2 ctgr < 0

3 for k=0ton—1do

4 cta, < MHEAAN.Rotate(cta, (k,0))
5: ctp, < MHEAAN.Rotate(ctm, (k,k))
6 Ctgy < MHEAAN.Mult(cta,,cts; )

7 ctor «— MHEAAN.Add(th, thz)

8 end for

9 ctor «— MHEAAN.RGSC&IG(CtCN,p)

10: return ctcr

11: end procedure

3.3.3 Matrix Transposition

With Diag algorithm we can extract all the shifted diagonals of matrix
A. We can notice that transposed matrix A” is actually consist of same
shifted diagonals Ay of matrix A, rotated by (k, —k) slots.

Lemma 3.3.2 (Matrix Transposition). Let (cta, Sa-2F, 2P, () be an encryp-
tion of matriz A € C"". The Algorithm[7 outputs (ctar, Bar -27, 27, —p)
the valid encryption of AT where Bar = Ba + B*. So we have that the

output message bound is close to 0.
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Algorithm 7 Matrix Transposition

1: procedure MHEAAN.MATTRANSPOSE(cts € R'2,p)
2 ctar <0

3 for k=0ton—1do

4 cta, < MHEAAN.Diag, (cta,p)

5: cta, < MHEAAN.Rotate(cta,, (k, —K))

6 ctar < MHEAAN.Add(ctpr, Cta,)

7 end for

8 cta, < MHEAAN.ReScale(cta,,p)

9: return cty,

10: end procedure

3.3.4 Matrix Inverse

For matrix inverse we can adapt Schulz algorithm [Sch33| to encrypted
approximate inverse circuit. However for MHEAAN we use a matrix version
algorithm described in [cDSM15] and adopted in [CKKS17] as it more prac-
tical due to power-of-two degrees of matrix in the circuit. The algorithm
is described below.
Assume that invertible square matrix A satisfies |[A| < ¢ < 1 for
A=1- %A, for some ¢t > 0 then we get
1

S AT+ A)(I+A%). . (I+ A ) = 1- A%

We can see that [A? | < |A|* < €¥', hence [T I+AY) = A1 (1—

J=0
or

A_ZT) is an approximate inverse of A for ¢ « 1. We will slightly strengthen

the condition on € in the following lemma:

Lemma 3.3.3 (Matrix Inverse). Let (ctg, 8- €2P/n, 2P /n, () be an encryp-
tion of matriz A € C*", and |A| = |[I— SA| < e < 2L for some t.

The Algorithm @ outputs (cty,, By, -n'/m2P=t nl/m2r=t ¢ 2pr —t) the valid
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CHAPTER 3. MHEAAN SCHEME

Algorithm 8 Matrix Inverse

10:

1:
2:
3
4:
5:
6
7
8
9

procedure MHEAAN.MATINV(ctz € R'2,7,p € Z)

i = MHEAAN.Encode(I, p)

Cta, < Ctax

cty, < MHEAAN.ModDown(i + ctg, p)

for j=0tor—1do
Cta, < MHEAAN ReScale(MHEAAN.MatMult(cta, ,,Cta, ), D)
Cty,,, < MHEAAN.ReScale(MHEAAN.MatMult(cty,,i + cta,),p)

end for

cty, < MHEAAN.ReScale(cty,,t)

return cty,

11: end procedure

encryption of A~" where By, =28+ (r + 1) - (1 + logn) - 8*. So we have

that the output message bound is close to 2P=t and error growth linearly in

.
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Applications

4.1 Sigmoid & Tanh Approximations

One limitation of the existing HE cryptosystems is that they only support
polynomial arithmetic operations. However many machine learning algo-
rithms require evaluation of the sigmoid or tanh functions, which become
an obstacle for the implementation since they cannot be expressed as a
polynomials.

Kim et al. [KSW™| used the least squares approach to find a global
polynomial approximation of the sigmoid function. We adapt this approx-
imation method and consider the degree 3, 5, and 7 least squares polyno-
mials of the sigmoid and tanh functions over the domain [—8, 8].

Let a least squares polynomial of o(z) and tanh(x) will be denoted by

gr(x) and tg(z) for k = 3,5,7. The approximate polynomials gx(z) and
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tr(x) of degree 3, 5, and 7 are computed as follows:

-

gs(z) = 0.5 —1.20096 - (2/8) + 0.81562 - (x/8)?,

gs(z) = 0.5 —1.53048 - (2/8) + 2.3533056 - (/)3 — 1.3511295 - (2/8)°,
<

gr(x) = 0.5 —1.73496 - (2/8) + 4.19407 - (/8)3—

—5.43402 - (z/8)% + 2.50739 - (x/8)".

ts(z) = 0.5—1.20096 - (z/8) + 0.81562 - (/8)3,
) ts(z) = 0.5—1.53048 - (x/8) + 2.3533056 - (2/8)% — 1.3511295 - (/8)°,
tz(z) = 0.5—1.73496 - (x/8) + 4.19407 - (/8)3—

—5.43402 - (z/8)% + 2.50739 - (x/8)7.

A low-degree polynomial requires a smaller evaluation depth while a
high-degree polynomial has a better precision. The maximum errors be-
tween o(—z) and the least squares gs(x), gs(x), and g7(x) are approxi-
mately 0.114, 0.061 and 0.032, respectively, and the maximum errors be-
tween tanh(z) and the least squares t3(x), t5(x), and t;(x) are approxi-
mately 0.114, 0.061 and 0.032, respectively

4.2 Homomorphic LR Training Phase

4.2.1 Database Encoding

For an efficient computation, it is crucial to find a good encoding method
for the given database. The MHEAAN scheme supports the encryption of a

plaintext matrix and the slot-wise operations over encryption. Our learning
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data is represented by a matrix (z;;)1<i<no0<j<f- A recent work [?] used the
column-wise approach, i.e., a vector of specific feature data (z;;)1<i<n 18
encrypted in a single ciphertext. Consequently, this method required (f+1)
number of ciphertexts to encrypt the whole dataset. Another work [KSK™|
used a more efficient encoding method to encrypt a matriz in a single
ciphertext. A training dataset consists of n samples z; € R/*! for 1 < i < n,

which can be represented as a matrix Z as follows:

210 211 Z1f

220 %21 R1f
7 =

Zpn0  Anl " Znf

For simplicity, the authors assumed that n and (f + 1) are power-of-two
integers satisfying log n+log(f+1) < log(N/2), and they packed the whole
matrix in a single ciphertext in a row-by-row manner. It is necessary to
perform shifting operations of row and column vectors for the evaluation
of the GD algorithm, and the authors used circumvent algorithm to do row
shifting.

In our approach we pack the whole matrix in a natural way, making it

more easy to perform row and column rotations.

4.2.2 Homomorphic Evaluation of the GD

This section explains how to securely train the logistic regression model us-
ing the MHEAAN scheme. To be precise, we explicitly describe a full pipeline
of the evaluation of the GD algorithm. We adapt the same assumptions as

in the previous section so that the whole database can be encrypted in a
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single ciphertext. The generalization to arbitrary number of features and
samples can be done in a straightforward way using divide-and-conquer
algorithm.

First of all, a client encrypts the dataset and the initial (random) weight
vector 5 and sends them to the public cloud. The dataset matrix Z of
size n x (f + 1) is encrypted to a ctz, and the transposed weight vector is
encrypted in ctgg. The plaintext matrices of the resulting ciphertexts are

described as follows:

210 Zlf

cty=Enc| @ . ,ctg?:Enc[éo) 5}@].

Zno an

As mentioned before, both Z and 5 are scaled by a factor of 2 before
encryption to maintain the precision of plaintexts. We skip to mention
the scaling factor in the rest of this section since every step will return a
ciphertext with the scaling factor of 27.

The public server takes two ciphertexts cty; and ctg% and evaluates
the GD algorithm to find an optimal modeling vector. The goal of each
iteration is to update the modeling vector 3®) using the gradient of loss

function:
n

pE+ g X Z o(—zT B0 -z,
n

i=1
where a; denotes the learning rate at the ¢-th iteration. Each iteration

consists of the following eight steps.

(®)
8T

matrix multiplication MHEAAN.VecMatMult. The output ciphertext ctysr

Step 1: For given two ciphertexts cty and ct,;, compute their vector by

encrypts z! 3% as column:
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Ctzgr = Enc

Step 2: This step simply evaluates an approximating polynomial of the

sigmoid function, i.e., ct, < g(ctzsr) for some g € {gs, g5, g7}. The output

ciphertext encrypts the values of ¢(zZX 3®) in its plaintext slots:
p yp g\z; b

ct, = Enc

[ (2730 |
g9(z% V)

| 9(z;5Y) |

Step 3: The public cloud multiplies the ciphertext ct, with the encrypted

dataset cty multiplication and rescales the resulting ciphertext by p bits:

ctyz < ReScale(Mult(ct,,cty);p).

The output ciphertext encrypts the n vectors g(z! 3®) - z; in each row:

ct,z = Enc

g(zIBO) - 21 -+ g(zTBY) - 214
g(zIBY) - 290 - g(z8 BY) - 295

_g(z%ﬂ(ﬂ) “Zno """ g(zz;ﬂ(t)) . an_

Step 4: This step aggregates the vectors g(z! 3%)) to compute the gradient
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of the loss function. It is obtained by applying ColSum operation to ct,:
Cty, «— ColSum(ctUZ)

The output ciphertext is

Cty = Enc [Zig(zzrﬁ(t)) 20 'Zig(ziTﬁ(t)) : Zif] ;

as desired.

Step 5: For the learning rate a4, it uses the parameter p to compute the
scaled learning rate A® = |27 - o;]. The public cloud updates 5% using
the ciphertext cty and the constant A®:

cta «— ReScale(AW - cty; p),

Ct(t+1)

et <—Add(ct(t) cta).

ﬁT?

Finally it returns a ciphertext encrypting the updated modeling vector

Ct(ﬁt;l) — Enc [ﬁ(()tﬂ) 5§t+1) B 'ﬁ](ctJrl)] '

where 57 = 5+ 8 3 (2] B0) - 2

We have to note here that original algorithm with HEAAN required
much more steps due to impossibility to perform VecMatMult operation
directly [KSK™].

4.2.3 Homomorphic Evaluation of NLGD

The performance of leveled HE schemes highly depends on the depth of a

circuit to be evaluated. The bottleneck of homomorphic evaluation of the
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GD algorithm is that we need to repeat the update of weight vector 3®)
iteratively. Consequently, the total depth grows linearly on the number of
iterations and it should be minimized for practical implementation.

For the homomorphic evaluation of Nesterov’s accelerated gradient, a
clients sends one more ciphertext ctiOT) encrypting the initial vector v(©
to the public cloud. Then the server uses an encryption cty of dataset
Z to update two ciphertexts ctz()tT) and ctg% at each iteration. One can
securely compute 1) in the same way as the previous section. Nesterov’s
accelerated gradient requires one more step to compute the second equation

g% and ctg;f .

Step 5: Let Agt) = |2P - ] and let Ag) = 2P — Agt). It obtains the cipher-

text ctz(}tTJrl) by computing

t+1

of (2.2.1) and obtain an encryption of v*t1) from ct

Al pga(AL -l AY )

t+1)
T

Cti (t+1)

< ReScale(ct,; ';p).

Then the output ciphertext is

th(}H) — Fnc [U[()t+1) U§t+1) - 'U](ct+1)] ’

which encrypts Uj(t+1) =1 —)- 5§t+1) + 7 5@

;7 In the plaintext slots.

4.3 Homomorphic DNN Classification

In this section we propose a homomorphic DNN classification algorithm
classification algorithm that was explained in the Section [2.2.2] We will
first describe how the one FC layer in DNN is implementated

For the linear transformation part we use Algorithms 0] and [10} For
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Algorithm 9 Linear Transformation Column to Row

procedure MHEAAN.LTCR(ct,, ctwr, ctyr € R/g,p €Z)
Ct(wa)r < MHEAAN.VecMatMult(cta, Ctwr, D)
ct,r < MHEAAN.Add(Ct(Wa)T, Cth)
return ct,

end procedure

Algorithm 10 Linear Transformation Row to Column

procedure MHEAAN.LTRC(ct,r, ctw, ctp € R'z,p € Z)
Ctwa < MHEAAN.MatVecMult(ct,r, ctw, p)
ct, < MHEAAN.Add(Ctwa, cty)
return ct,

end procedure

simplicity we assume that weight matrices as well as input vectors can
be encrypted in a single ciphertext. For general case we use divide-and-
conquer straightforward algorithm. Consider the encryptions of weight ma-

trix Wy € R"1*" bias vector b; € R™, and input vector ag € R™.

W11 -+ Win, a1
Ctwr = Enc ST ,Cty, = Enc | ,Ctyr = Enc [bo . --bm] ,

Wno1 ** * Wnon, Any

For linear transformation part we apply LTCR algorithm to cta,, ctwr,

ct, and obtain
1

ct,r = Enc [21 e Zm] = Enc [(Wlao +bi)r - (Wiag + b1)n1]

Then we evaluate ct,r using polynomial approximation g(z) of sigmoid
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function.

ctay = Bnc [+ a, | = Bnc [g(a0) - g(z0)

After then we apply LTRC to Ctyr, Ctw,, Ctp, to obtain ct,, and etc.

Finally we output ct,,..

4.4 Homomorphic RNN Classification

In this section we propose a homomorphic RNN classification algorithm
that was explained in the Section ??. As we can see the complexity of
RNN circuit is much more complicated that the one of DNN. In our imple-
mentation we used different techniques of MHEAAN as matrix transposition,
which cannot be implemented in HEAAN in a straightforwards way. As RNN
circuit consist of FC and GRU layers we first show how one GRU layer
can be implemented using MHEAAN techniques. At GRU step t we have en-
cryptions of x;, h;_;, corresponding weight matrices W1, U7 WT UT,
W/, U} and a bias vectors bywr, byr, bwr, byr, by, byr. Remind the

GRU circuit for unencrypted case

(update gate) z; = o(W.x; + by, + U.x; + by.) (4.4.1)
(reset gate) r, = o(W,x; + bw, + U,x; + by, ) (4.4.2)
(hidden cell) h, = tanh(W),x; + bw, + 1, ® (Upx;, + by,))  (4.4.3)
(output) hy =z, @ h;_y + (1 —z,) O hy (4.4.4)

For encrypted case the update gate ct,r, the reset gate ct,r the hidden
cell h could be obtained using similar ideas to DNN with LTCR and ap-
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proximate evaluations g and t of sigmoid and tanh function as described
in Section 77, with one more step of hadamard multiplication of ct,r and
Ct(u,x;+by, ) using Mult operation. For the output gate the main problem
occurs in hadamard multiplication of z; © h;_1, as we have encryptions of
z! and h;_;. So we first transpose cty,, , to obtain ctyr , and evaluate the

following circuit

Ctyr = Add(Mult (Ctthv Ctyr Mult((1 — CtZ;r), Cth?)))

Finally we transpose back ctyr and obtain cty,. The full flow of the

algorithm is shown in Algorithm ?7?

Algorithm 11 Gated Recurrent Unit

1: procedure MHEAAN.GRU(cty, e R}, T,pe Z i=1 ... T)

2 Ctp, < 0

3 fort=1..7 do

4: ct, = g(Add(LTCR(cty,, Ctw., Ctpw, ), LTCR(Ctn,_,, Ctu., Ctpy, )))
5: cty, = g(Add(LTCR(cty,, Ctw,, Ctpy,, ), LTCR(Cty, ,, Cty,, Cthy, )))
6 cty, = Mult(LTCR(Ctn, ,, Ctu,, Cthy, ); Ctr, )

7 cty, = t(Add(LTCR(ctx,, Ctw,,, Cthyy, ), Cty;,)

8 ctpr | = MatTr(ctp, )

9: ctpr = Add(Mult(ct,,, ctyr ), Mult(Sub(l,ct,, ), cty,))
10: Ctn, = MatTr(ctyr)
11: ifl.,, < Landt<T —1 then
12: Bootstrap(cty,, lewr, L)
13: end if
14: end for
15: return ct,,

16: end procedure

The output of the GRU algorithm is Ctyr and then we proceed with

FC layers as was described in Section 77?7
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Implementation Results

In this chapter, we provide implementation results with concrete parameter
setting. Our implementation is based on the NTL C++library running over
GMP. Every experimentation was performed on a machine with an 2.9
GHz Intel Core i5 processor, 8 GB 1867 MHz DDR3 memory, with only 4

CPUs using a parameter set with 80-bit security level.

Parameters Setting The dimensions of a cyclotomic ring R’ are chosen
following the security estimator of Albrecht et al. [APS15] for the learning

with errors problem.

Table 5.1: Parameter settings for MHEAAN

parameter| N = Ny - Ni| 0 | h| Liyae
Setl 213 IS 155
Seto 214 ~ 310
6.4|64
Sets 215 ~ 620
Sety 216 ~ 1240

We use the discrete Gaussian distribution of standard deviation o to
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sample error polynomials and set the Hamming weight h in a multivariate
representation of a secret key s(x).

We skip the results of the evaluation of component wise operations such
as inverse, exponent, sigmoid functions, etc. Please refer to [CKKS17| for

more details on evaluating these circuits.

Bootstrapping In Table [5.2] we present the parameter setting and per-
formance results for full slots bootstrapping. Parameters r, p, L;, have the
same meaning as r, log(p), log(q) in [CHK™18] and similarly were cho-
sen experimentally based on the bootstrapping error. For sufficiently large
number r we maintain the precision of the output plaintext. L;, and L,
corresponds to the number of modulus bits before and after bootstrapping
respectively. The running times are only for ciphertext operations and ex-

clude encryption and decryption procedures.

Table 5.2: Implementation results for bootstrapping

parameter| Ng | N1 || p | Lin | Limae | Lowt | precision| time | amor

Boot, 9561956 7135140 [1240(517| 16 bits | 2.5min |4.58ms
Boot, 8143| 50 {12401 312 | 20 bits [2.63min|4.83ms

Evaluation of Matrix Circuits In Table [5.3] we present the parameter
setting and performance results for matrix multiplication, matrix 16-th
power, and inverse. L;, and L, corresponds to the number of modulus
bits before and after operations respectively. The running times are only for
ciphertext operations and exclude encryption and decryption procedures.

The homomorphic evaluation of the circuit M can be evaluated by
squaring a matrix 4 times. Computing the matrix inverse homomorphically
is done by evaluating a matrix polynomial up to degree 15 as was shown
in Algorithm [§
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Table 5.3: Implementation results for n x n matrices M, My, Msy

Function|n | Ny | N1 | p | Lin|Loyt| time
16| 512 | 16 0.15s

MT 16| 64 [256 65| 35 | 0.27s
64| 128 |256 1.82s

16| 512 | 16 0.51s

MM, 16| 64 |256 100| 40 | 0.98s
64| 128 |256 20 10.72s
16/1024| 16 6.82s

M 16| 64 [256| |300| 60 |17.23s
64| 128 |256 87.65s
1611024| 16 10.61s

M~' |16/ 64 [256| |300| 60 |12.87s
64| 128 |256 2.1min

5.1 Evaluation of NLGD Training

Parameters settings We explain how to choose the parameter sets for
the homomorphic evaluation of the NLGD algorithm. We start with the
parameter L., - number of bits required for one iteration. The modulus of
a ciphertext is reduced after the ReScale operations and the evaluation of
an approximate polynomial g(z). The ReScale procedures after homomor-
phic multiplications reduce the ciphertext modulus by p bits. We choose
degree 5 sigmoid approximation gs(x). The ciphertext modulus is reduced
by (3p + 3) bits for the evaluation of g5(z). For the final step we consume

p bits. Therefore, we obtain the following bound on the parameter Lgep:
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Lstep = 5p +3

We also have to keep some L bits to be able to decrypt a ciphertext.

So if the number of iterations in training Z satisfies the conditon
L>I'Lstep+[/0

we can evaluate all the training without bootstrapping, otherwise we

use bootstrapping as soon as as our current L, is less than Ly, + Lo.

Implementation results In Table we present parameter settings,
performances, and accuracy results for genomic data privacy and security
protection competition 2017, the goal of Track 3. It was to devise a weight
vector to predict the disease using the genotype and phenotype data. This
dataset consists of 1579 samples, each of which has 102 features and a
cohort information (disease vs. healthy). Since we use the ring dimension
Ny - Ny = 2% we can only pack up to Ny/2- N; = 27 x 28 = 21° dataset
values in a single ciphertext but we have totally 1579 x 103 > 2! values
to be packed. We can overcome this issue by using divide-and-conqure
algorithm

The smoothing parameter ; is chosen in accordance with [Nes83|. The
choice of proper GD learning rate parameter «; normally depends on the
problem at hand. Choosing too small o; leads to a slow convergence, and
choosing too large a; could lead to a divergence, or a fluctuation near a
local optima. It is often optimized by a trial and error method, which we
are not available to perform. Under these conditions harmonic progression

10

seems to be a good candidate and we choose a learning rate a; = 77 in

our implementation.
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In order to estimate the validity of our method, we utilized 10-fold
cross-validation (CV) technique: it randomly partitions the dataset into
ten folds with approximately equal sizes, and uses every subset of 9 folds
for training and the rest one for testing the model. The performance of our
solution including the average running time (encryption and evaluation)
and the storage (encrypted dataset) are shown in Table . This table also
provides the average accuracy and the AUC (Area Under the Receiver
Operating Characteristic Curve) which estimate the quality of a binary

classifier.

Table 5.4: Implementation results for NLGD training

parameter p L, Low #s #f Z Accuracy AUC time
iDASH 30 1071 40 1579 103 7 69.87% 0.729 9.6min

We also compared our method with one used in [KSWT].

5.2 Evaluation of DNN Classification

Parameters settings We explain how to choose the parameter sets for
the homomorphic evaluation of the DNN Classification algorithm. For each
linear transformation part we consume p modulus bits. The ciphertext
modulus is reduced by (3p + 3) bits for the evaluation of g5(z). Therefore,

we obtain the following lower bound on the parameter Lp¢:

Lpc =4p+3

Similar to NLGD algorithm if the number of layers £ satisfies the con-
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Table 5.5: Implementation results for other datasets with 5-fold CV

Dataset #s  #f Method Z  time  Accuracy AUC

Ours 7  3.2min 91.04%  0.958

Edinburgh 1253 9 [KSW*| 25 114min  86.03%  0.956
[KSW'] 20 1l4min  86.19%  0.954

Ours 7 3.1min  69.19%  0.689

lbw 189 9 [KSW*| 25 99min 69.30%  0.665
[KSW*| 20 86min 69.29%  0.678

Ours 7  6.9min  79.22%  0.717

nhanes3 15649 15 |[KSW*| 25 235min  79.23%  0.732
[KSW*| 20 208min  79.23%  0.737

Ours 7 32min  68.27%  0.740

pes 379 9 [KSW'] 25 103min  68.85%  0.742
[KSW*| 20 97min  69.12%  0.750

Ours 7  32min  74.44%  0.603

uis 575 8 [KSW'] 25 104min  74.43%  0.585
[KSW*| 20 96min 75.43%  0.617

diton
L>L- -Lprc+ Ly

we can evaluate all the DNN classification without bootstrapping, oth-
erwise we use bootstrapping as soon as as our current L., is less than
Lpc + Lyg.
Implementation results In Table [5.6| we present the parameter settings,
performances, and accuracy results with one, two and four hidden lay-
ers. Our DNN classification algorithm applied to MNIST dataset [LCB10]
with sigmoid activation functions. Accuracy is similar to the accuracy of

predictions on unencrypted data, which is about 97.9%.
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Table 5.6: Implementation results for DNN classification

parameter p L;, Lou L ng, N1, ...,Ng Accuracy time
DNN; 30193 40 2 784,1024,10 92.9% 57s
DNN, 30316 40 3 784,1024,256,10 94.3% 79s

DNN; 30562 40 5 784,1024,1024,1024,256,10 97.9% 3.6min

5.3 FEvaluation of RNN Classification

Parameters settings We explain how to choose the parameter sets for
the homomorphic evaluation of the RNN Classification algorithm. For each
GRU step we consume p modulus bits for linear transformations parts and
(3p + 3) bits for each of the g5 and t5 evaluations. For transposition and
multiplication we consume p bits. Therefore, we obtain the following lower

bound on the parameter Logry:

LGRU = llp +6

We evaluate first several GRU steps without bootstrapping, and then

we use bootstrapping as soon as our current L., is less than Lgry + L.

Implementation results In Table [5.6] we present the parameter set-
tings, performances, and accuracy results for homomorphic evaluations
with gated RNNs with a real-life genomic dataset. We validate our method-
ology through a RNN-based model that solves microRNA(miRNA) target
prediction problem |[LBPY16]. The miRNA is an RNA molecule that is
central in protein expression, and the model consists of RNN-based au-
toencoders with additional stacked RNNs; hence, the model of [LBPY16] is
appropriate to validate our methodology. In this experiment, we encrypted
miRNA and mRNA sequences, and subsequently trained the RNN-based
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model with these encrypted sequences. We used the site-level miRNA-mRNA
pairing information dataset and the negative training dataset from [LBPY16]|.
The dataset obtained target sites from miRecords database and miRNA
sequences from mirBase database. From the experimental results, we ver-
ified that the GRUs evaluated with MHEAAN were accurate and scalable to
longer sequences.

In implementation we set p = 35 and Ly = 45 and thus Lgry + Lo <
517 so we have enough capacity after bootstrapping to perform one GRU

1teration.

Table 5.7: Implementation results for RNN classification

parameter p L;, Low T #x #h ny Accuracy time

GRU; 301200 40 40 16 256 2 99.9% 254min
GRU, 301200 40 40 32 64 10 99.9% 243min
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Chapter 6
Conclusions

In this work, we present MHEAAN - a variant of the HEAAN homomorphic en-
cryption scheme. MHEAAN takes advantage of HEAAN by supporting standard
approximate HE operations. With a multi-dimensional packing MHEAAN en-
joys more functionality like efficient operations on matrices and practical
bootstrapping even for large number of slots. As applications of MHEAAN we
propose a non-interactive logistic regression training, deep neural network
and recurrent neural network classifications algorithms.

One of the future works could be applying MHEAAN to classification
algorithms for general Neural Network architectures. Another interesting
problem is to achieve learning phase of the Neural Networks with multiple
layer structure. We believe that the idea of multi-dimensional variant could
have a great potential for these as well as for other applications requiring

computations on matrices and tensors.
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Appendix A
Proofs

We follow the heuristic approach in |[GHS12|. Assume that a polynomial
a(x) € R’ sampled from one of above distributions, so its nonzero en-
tries are independently and identically distributed. Let € = ({uy, - - -5 &)
The value a(§) can be obtained by consecutively computing N/N; inner
products of vectors of coefficients of a corresponding to a power xz for
j=0,....,N; — 1 by a fixed vector (1,&y,- .. ,51\]2) of Euclidean norm
V/N;. Then a(&) has variance V = o[ [7_, N; = 02N, where o is the vari-
ance of each coefficient of a. Hence a(€) has the variances Vi = 22N /12,
Vg = 0*N and Vz; = pN, when a is sampled from Ry, DG(c?), ZO(p)
respectively. In particular, a(€) has the variance Vi = h when a(x) is
chosen from HWT (h). Moreover, we can assume that a(&) is distributed
similarly to a Gaussian random variable over complex plane since it is a
sum of ¢yy,...as./2 independent and identically distributed random complex
variables. Every evaluations at roots of unity (&) share the same variance.
Hence, we will use 60 as a high-probability bound on the canonical embed-

ding norm of a(x) when each coefficient has a variance 0. For a multiplica-
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tion of two independent random variables close to Gaussian distributions

with variances o7 and o2, we will use 160,05 as a high-probability bound.

Proof of Proposition [2.4.1

Proof. One of such maps R’ — R is given by
T — MM mod @y (z) forall j =0,1,--- s

and it extends to
S':]R@R’HS:R@R
Z Z

At first we check that this map is well-defined. This means that, for all
j, zj and x; + @y, (z;) have same image in S, or simply @y, (M) is
divisible by ® /(). Since

Drcl) = (v - C)
(k,K)=1,1<k<K
for any positive integer K and a primitive K-th root of unity (x = e>™/¥,
we have the following divisibility
. kM/M, A\ M;
du(r)= [ @i (MG M) = (@ (M)

(k,M)=1,1<k<M (k,M)=1,1<k<M

Note that x — a is always a factor of (z* — a*) = (z — a)(z* ™' + 2*2a +
++-+a*71). The divisibility formula concludes that ®y(z) and @, (z*/*)
shares a nontrivial common factor, and the irreducibility of ®,,(x) implies
that the common factor is @ (x) itself.

Secondly we check the map is surjective. In particular, x lies in the

image of the map. Since M /My, M /M, --- , M/M; are coprime, integers
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To,T1," "+ ,Ts can be chosen so that ro M /Mo+r{M/M;+---+r M /M, = 1.
In other words, zy’z]" - - - 27 goes to x. Thus the map, or the restricted one
on R, is surjective.

Since both sides have same dimension, here we complete the proof. [

]

Proof of Lemma [2.4.1]

Proof. From the isomorphisms above, we can consider a variant of canon-

ical embedding map to a complex tensors:

T'n,(a) = (a(€9”, .. €87)) e CN

where a € &', &y, is M;-th root of unity, go = 5, 0 < jo < No/2, g; are
primitive elements in Z},, 0 < j; < N; for i = 1,...,s. The map 7'n, can

be written as a composition of maps

N, = 7'/533/2 o T’E\lfl) 0---0 7'5\2 (A.0.1)
where 7 is given by a tensor of following linear transforms
Y, = Sur Gua o G (A.0.2)
| &0 ne1 b1 NN, 1
and [; the identity matrix of size N;, where &, ; = exp(%’i”j).

By using the formula of the linear transforms, we can compare norms;
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lalls™ < (TT; 151D lall2, Jalz < (TT; 15071 lals™

where |L| for a linear operator L on a complex-valued space is given
by the supremum of |Lz|/|z| along all z. In above, it’s square is the sum
of maginitude squares of all components in the matrix, or just Tr(L*L).

¥!~1 has components

eNi*a(EMi,b)

lap = (—1)Ni7¢
»=(=1) [ eso(nrip — Entic)

(A.0.3)

For the p*-th cyclotomic polynomial

, the roots &, ,&p-1(p-1), and an index b = 1,2,--- , p"(p — 1), we

P
have
d -1 —1 1 d
- ((xp’“ —1)<1>pk,1(x)) =P (@) + (7 = 1) (a)
ke epF—1
P&,
q);;kl(fb):é_bpkl—_l

where £, is a vector consisting of all roots but &, of ®, and e;(7) is an
elementary symmetric polynomial of degree j in p — 2 variables. Note that
the denominator is of form ‘p-th root of unity —1’, not depending on k.

For N = ¢(p*) = p* —pF=1, (=1)V"%pn_a(,) is the degree a coefficient
of
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, which is in fact & P14 ¢ 4 V) with [V — a] s the
largest multiple of p*~! less or eqaul to N — a.

In other hands,

(&) =] (& — &)

1k
which is the denominator of the formula [A.0.3]
Therefore we have

2

Ni—a

TSMb N; L

HE/ 1” = Z ‘lab‘2 Z » 1 = 2]1 Z ’1 - CNZ a‘2
a,b p%]\/}ub i a mod N;

where ( is any primitive p;-th (NOT pf-th) root of unity . The right-hand

side is in fact
2 pi—1

(if ki > 1) 55 Z (2 — 2 cos 2mi/p;)

[ =1

pi—1

(if k; = 1) ﬁ; Z (2 — 2 cos 2mi/p;)

tog=1

and since
1ot 1 (p—1)/2 p—1
- Z cos(2mi/p) = — Z cos(2mi/p) + Z cos(2mi/p)
Pia r\ = i=(pt1)/2
27 (p+1)/2p 2m(p—1)/p
>J cos(z) dr + J cos(z) dx
2m/p 2m(p—1)/2p
2 2m/p 27 (p+1)/2p
=J cos(x) dx — 2J cos(x) dx + J cos(x) dx
0 0 2m(p—1)/2p

> -2 x271/p—2n/p=—67/p
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for any integer p, we conclude that

I < B 2 4 120 /),
Di
|a(x)]2 is the fy-norm of a vector whose components consist of the
coefficients of a(x). By applying canonical embedding only on x4, we get
a new vector whose components consist of the coefficients of a polynomial
a(xg, -+ ,xs 1,&) in s variables xg, -+, x,_1 and their conjugations. The
¢y norm of the new vector is given by X! - (coefficient vector of a(x)),
thus is bounded by ||~ !||a2. By induction on s, we have the total bound
can

of [la|@"y as [T, |X:7Y]. po = 2 in our case and it has a special bound
1257 = 1 so that our bound is in fact [[_, [|X; 7" as desired. 0O O

Proof of Lemma [B3.1.11

Proof. We choose v < Z0O(p), eg,e1 <« DG(0), then set ct — v - pk +
(€0, e1 + m). The bound dgean of encryption noise is computed by the fol-
lowing inequality:
|{ct,sk) —m (mod 25)|2" = |v-e+e; + e 5|2
< v-elE" + lellS" + lleo - s[&"

<8V2- 0N + 60V N + 160vVhN.
O O

Proof of Lemma [3.1.2]

Proof. Tt is satisfied that {ct,sk) = m + e (mod 2°) for some polynomial
e € S such that |e|2" < §. The output ciphertext ct’ < |277 - ct] satisfies

09]
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{ct/,sk) = 27P-(m+e) + eseale (mod 2¢7P) for the rounding error vector 7 =
(70, 71) = ct’ —27P . ct and the error polynomial egae = (7,5k) = 79+ 5+ 71.

We may assume that each coefficient of 7y and 7y in the rounding error
vector is computationally indistinguishable from the random variable in
the interval 277 - Zg» with variance ~ 1/12. Hence, the magnitude of scale

error polynomial is bounded by

lescalel5o” < |70 - sllS" + [ a[S" < 64/ N/12 + 164/hN /12
as desired. OJ O

Proof of Lemma [3.1.3l

Proof. Let ct; = (a;,b;) for i = 1,2. Then {ct;,sk) = m; + ¢; (mod 2°)
for some polynomials e; € S such that |e;|$" < §;. Let (do,dy,dy) =
(a1as,a1by + asby, biby). This vector can be viewed as an encryption of
my - my With an error my - e + moy - €1 + €1 - e with respect to the secret
vector (s%,s,1). It follows from Lemma that the ciphertext ctyuie <
(dy,do) + 271 - (dy - evk (mod 2°FE))] contains an additional error €’ =
271 . dye’ and a rounding error bounded by dscale. We may assume that d,
behaves as a uniform random variable on Ry, so 2F[e”[2" is bounded by
16\/W\/N;a2 = 8Noqe/v/3 = is-2¢. Therefore, Ctmyy is an encryption

of my - mo with an error and the error is bounded by

Imies + maoer + e1ea + €"[E" + dgcale <

:u152 + “251 + 5162+2_L : 2£ : 5ks =+ 5scale

as desired. O ]
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Proof of Lemma [3.1.4l

Proof. Let prove the lemma for conjugation, proofs of others are the same.
The vector (a/,b') = (k_1(a), k_1(b)) (mod 2°) can be viewed as an encryp-
tion of Z with and error x_; (e) with respect to the secret vector (k_1(s), 1).
Using proof of Lemma we can get that cty is an encryption of Z with

an error bounded by

H’%—Ll(e) + eﬂHggn + 5sca|e < 0+ 27L : 28 ' 5ks + 6sca|e
as desired. O] O]

Proof of Lemma [3.3.11

Proof. From Lemma and the following remark about the relative
error we can see that bound of message increase only after summations in
line 10 of Algorithm [B] so the bound M of the output is equal to n - 2°.
Note also that these summations do not increase the bound of the relative
error. The relative error increases by g* after rotation and increases by 3*

after multiplication. So the relative error of each summand in line 10 is
bounded by Sa + B + (1 + logn)s*. ] ]

Proof of Lemma [3.3.2l

Proof. The relative error increases by [* after rotation. So the relative
error of each summand cta, is bounded by Sa + B*. The relative error
we can see that bound of message and bound of relative error does not

increase during summations of cty, . O O
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Proof of Lemma [3.3.3l

Proof. From Lemma the message of cta; is bounded by 2 op /n which

implies that the message of cty, is bounded by

r—1 _
) op—t
¢ 27 1/mnop—t
2v ||(1~|—6 /n)<—<1_6)1/n<n 2

J=0

The relative error f; of cta, is bounded by f; < 27(8 + (1 4 logn)5*),

which implies that the relative error 3} of cta; + i is bounded by
n
85 < Bj/ (1 + 67)

Using induction on j, we can show that a relative error 37 of cty, is
bounded by

Jj—1 2k62k
§ < (X255 (5 (Ut logn) - 57) + (= 1) (1 +logn) - () <

k=0

-1
DN (84 (1 +logn) 4%+ (G- 1) (1 +logn) - 5 <
k=0
2

n(l —e)
264+ (j+1)-(1+logn)-5*

(B4 (1 +1logn)-B*)+(j—1)-(1+logn)-f* <
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