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Abstract

In this thesis, we study an analytic approach to global well-posedness and long-time

behavior for weak solutions to Itô-SDEs with rough coefficients. Using elliptic and

parabolic regularity theory and generalized Dirichlet form theory, we show existence

of a pre-invariant measure for a large class of elliptic second order partial differential

operators and show that these are in fact infinitesimal generators of a Hunt process.

Subsequently, this Hunt process is identified for every starting point as a weak solution

to an Itô-SDE in Rd up to its explosion time. The Hunt process has continuous sample

paths on the one-point compactification of Rd and by a known local well-posedness

result, it is a pathwise unique and strong solution up to its explosion time to the SDE

that it weakly solves. Using analytic and probabilistic methods, we derive general strong

Feller properties, including the classical strong Feller property, Krylov type estimates,

moment inequalities and various non-explosion criteria. Using a parabolic Harnack

inequality, we show irreducibility and strict irreducibility of the process and derive

explicit conditions for recurrence and ergodic behavior. Moreover, we investigate well-

posedness of weak solutions to Itô-SDEs with degenerate and rough diffusion coefficients

whose points of degeneracy form a set of Lebesegue measure zero. In the final part we

consider the case where the pre-invariant density is explicitly given. In contrast to the

previous case, where we only knew its existence with a certain regularity, we investigate

how far our previous methods can be extended and applied in case of a non-degenerate,

possibly non-symmetric and discontinuous diffusion matrix. For this, we develop some

variational approach to regularity theory for linear parabolic PDEs involving divergence

form operators with weight in the term where time derivative appear.

Key words: generalized Dirichlet form, invariant measure, Hunt process, Itô-SDE,

elliptic and parabolic regularity, strong Feller property, non-explosion, conservativeness,

irreducibility, strict irreducibility, recurrence, transience, ergodicity, weak uniqueness,

Krylov type estimate
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Chapter 1

Introduction

The main subject of our studies is an analytic approach to invariant measures,

global well-posedness and long-time behavior of weak solutions to time-homogeneous

Itô-Stochastic Differential Equations (Itô-SDEs) with rough coefficients. Different from

previous approaches using Krylov type estimates, Girsanov transformation to show

weak existence of Itô-SDEs, our main tools are elliptic and parabolic regularity theory

and the theory of generalized Dirichlet forms.

This thesis consists of four parts which are closely related to one another. Part I is

based on the contents of [49] where the main analytic and probabilistic methods for

studying pre-invariant measures and non-degenerate time-homogeneous Itô-SDEs with

rough coefficients are developed. For various results of Part II, III, IV, we adapt many

methods and techniques from Part I. Throughout, we assume that the dimension d is

greater or equal to two, i.e. d ≥ 2. Consider the following time-homogeneous Itô-SDE

with measurable coefficients

Xt = x0 +

ˆ t

0

σ(Xs)dWs +

ˆ t

0

G(Xs)ds, 0 ≤ t < ζ, x0 ∈ Rd, (1.1)

where W = (W 1, ...,W l) is a standard l-dimensional Brownian motion starting from

zero, A = (aij)1≤i,j≤d = σσT , σ = (σij)1≤i≤d,1≤j≤l and G = (g1, ..., gd) and

ζ := inf{t ≥ 0 : Xt /∈ Rd} = lim
n→∞

inf{t ≥ 0 : Xt /∈ Bn}

1



CHAPTER 1. INTRODUCTION

is the explosion time (or life time) of X, i.e. the time when X has left any Euclidean

ball Bn of radius n about the origin.

First, we present some previous results for global and strong well-posedness of (1.1).

By a classical result, if σ,G consist of locally Lipschitz continuous functions and satisfy

a linear growth condition, then (1.1) with ζ =∞ has a pathwise unique solution that

is strong, i.e. adapted to the filtration generated by W ([34, IV. Theorems 2.4 and

3.1]). Note that the just mentioned reference and most of those below also treat the

time inhomogeneous case but we only discuss results in the time homogeneous case,

i.e. results related to (1.1). We call a solution that is pathwise unique and strong up to

ζ (ζ being possibly finite, cf. [34, IV. Definition 2.1]) strongly unique up to ζ.

Strong uniqueness results for (1.1) with ζ = ∞ for only measurable coefficients

were given starting from [86], [80], [81]. In these works σ is non-degenerate and σ,G

are bounded. Regarding bounded coefficients one can also mention the later work [4].

To our knowledge the first strong uniqueness results for locally unbounded measurable

coefficients start with [30, Theorem 2.1], while weak existence results appeared to exist

earlier (cf. introduction of [30]). In [30, Theorem 2.1] σ may be chosen locally Lipschitz,

with σσT globally uniformly strictly elliptic and gi ∈ L
2(d+1)
loc (Rd) with the following

growth condition to ensure non-explosion ([30, Assumption 2.1]): there exists a constant

M ≥ 0 and a non-negative function F ∈ Ld+1(Rd) such that almost everywhere

‖G‖ =

(
d∑
i=1

g2
i

)1/2

≤M + F.

However, the above condition does not allow for linear growth of drift coefficient.

In [83], the following result was obtained: if σ consists of continuous functions and

is globally uniformly non-degenerate, i.e. A(x) ≥ C · Id in the quadratic form sense for

some constant C > 0 and every x ∈ Rd and gi, ∂kσij ∈ L2(d+1)
loc (Rd) for any i, j, k, then

(1.1) has a strongly unique solution up to its explosion time. In [83, Theorem 1.1(i)

and (ii)] two non-explosion conditions are given. Both require the global boundedness

of σ and then only depend on G. The first one is similar to the one of [30] given above.

The second one is as follows: there exist a constant M ≥ 0, and vector fields H, Fi,

2



CHAPTER 1. INTRODUCTION

with ‖Fi‖ ∈ Lpi(Rd), pi ≥ 2(d+ 1), such that almost everywhere

G =
k∑
i=1

Fi + H with ‖H(x)‖ ≤M
(
1 + 1{‖x‖>e}‖x‖ log ‖x‖

)
.

This non-explosion condition allows for linear growth and can cover singularities of G,

a phenomenon that can not occur for SDEs with continuous coefficients, since these

are of course locally bounded.

Prior to [83], the following was obtained in [43]: if σ is the identity matrix, so

that the local martingale part in (1.1) is just a d-dimensional Brownian motion W =

(W 1, ...,W d) and G ∈ Lploc(Rd,Rd) for some p > d, with

ˆ t

0

‖G(Xs)‖rds <∞ Px0-almost surely on {t < ζ}, (1.2)

where r = 2 and Px0 is the distribution on the paths starting form x0, then (1.1) has

a strongly unique solution up to its explosion time. Besides a global Lp-integrability

condition which does not allow for linear growth a rather special and not really explicit

non-explosion condition is presented in [43, Assumption 2.1]. Its formulation is quite

long but roughly one can say it is given by assuming that G is the weak gradient of a

function which is a kind of Lyapunov function for (1.1).

The strong uniqueness result of [43] was generalized among others in [84, Theorem

1.3] to the case of non-trivial d × d-dispersion matrix σ with corresponding locally

uniformly strictly elliptic diffusion matrix σσT and σij ∈ H1,p
loc (Rd) where p > d is the

same as for G, relaxing condition (1.2) to the natural one, i.e. r = 1 (although we show

here that this does at least in the time-homogeneous case not play a role, since it is

always satisfied with r = 2, cf. Remark 3.1.7(i)) but no non-explosion condition related

to the local conditions of [84, Theorem 1.3] is given. Only a global Lp-integrability

condition in space is given in [84, Theorem 1.2], which again does not allow for linear

growth. Note that [84, Theorem 1.3] also holds under the conditions of Remark 3.1.3(ii)

and that we can handle this case but disregard it for the reasons mentioned in Remark

3.1.3. The strong uniqueness results of [43] were also recovered in [23] using a different

method of proof which allowed to obtain additional insight on the solution. For instance,

the α-Hölder continuity of the solution for arbitrary α ∈ (0, 1) and the differentiability

3



CHAPTER 1. INTRODUCTION

in L2(Ω × [0, T ],Rd) (here Ω is the path space) with respect to the initial condition.

For the latter result see [24].

Finally, we mention a result from [22]. There, strong uniqueness up to life time is

obtained for continuous coefficients σ,G satisfying a log-Lipschitz condition (see [22,

Theorem B]). The growth condition ([22, Theorem A]) is for a typical choice of growth

function as follows∑
i,j

σ2
ij(x) ≤ C(‖x‖2 log(‖x‖) + 1), ‖G(x)‖ ≤ C(‖x‖ log(‖x‖) + 1), ∀x ∈ Rd \BN0

for some N0 ∈ N, but G can of course not have any singularities inside BN0 , because

of its continuity. This allows for linear growth but not for more in the sense that there

cannot be any compensation since the growth conditions are formulated separately for

dispersion and drift coefficient.

In Part I, Chapter 3 we develop the analysis to define rigorously the infinitesimal

generator L that a solution to (1.1) should have under our assumptions. We first use a

result of [69], i.e. that a strongly continuous semigroup of contractions and a generalized

Dirichlet form on some L2-space associated to an extension of L as in (3.3) below, can

be constructed. For this construction, one needs some weak divergence free property of

the anti-symmetric part of the drift. Theorem 3.1.2 (from [12, Theorem 2.4.1]) implies

that one can obtain this property with respect to a measure m = ρ dx, where ρ is some

strictly positive continuous function, under our basic assumptions on A = (aij)1≤i,j≤d

and G as in Theorem 3.1.2. Typically, the density ρ is not explicit and not a probability

density but has the regularity ρ ∈ H1,p
loc (Rd) ∩ C0,1−d/p

loc (Rd). Subsequently, we use the

elliptic regularity result Proposition 3.1.4 (from [8, Theorem 5.1]) and our parabolic

regularity result Theorem 3.1.8 which we derive from results in [2] to obtain the regular-

ity as stated in Proposition 3.1.10 and (H2)′. Following the basic idea from [1], we may

then use the Dirichlet form method to obtain the existence of a Hunt process M with

transition function (Pt)t>0 associated to the mentioned extension of L, with continuous

sample paths on the one point compactification Rd
∆ of Rd with ∆ (see Theorem 3.2.1).

To obtain its existence we crucially make use of the existence of such a Hunt process

having continuous sample paths on Rd
∆ for merely almost every starting point which

4



CHAPTER 1. INTRODUCTION

we obtain from [79, 78]. Once M is constructed, we can use standard methods from [34]

(see Theorem 3.2.8 and Remark 3.2.9) to arrive at the identification of a weak solution

to (1.1) up to ζ.

In Chapter 4, we first develop non-explosion criteria for M. We proved that the

solution is non-explosive, if there exists a constant M > 0 and some N0 ∈ N, such that

−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x) +

〈
G(x), x

〉
≤M

(
‖x‖2 + 1

) (
ln(‖x‖2 + 1) + 1

)
(1.3)

for a.e. x ∈ Rd\BN0 . The conditions (1.3) allow for linear growth, for locally unbounded

drifts and an interplay between diffusion and drift coefficients such that (even outside

BN0) superlinear growth of G is possible if 〈G(x), x〉 is non-positive and superlinear

growth of G and A is possible if diffusion and drift coefficients compensate each other.

Hence (1.3) allows coefficients of (1.1) to be more general than those of existing liter-

ature ([30], [22], [43], [83], [23], [84], [85]) in regard to non-explosion criteria for time-

homogeneous Itô-SDEs.

Once we have constructed a weak solution up to its explosion time and we restrict

our assumptions further to any set of assumptions as in the papers [84, 43, 22] or

vice versa, we must by the pathwise uniqueness results of the mentioned papers have

that the solutions coincide. Hence our non-explosion criteria (1.3), can be seen as new

non-explosion criteria for all the mentioned papers. This idea was first employed in

[62]. As application of this idea, we obtain strong uniqueness of (1.1) up to ∞ just

under the additional non-explosion condition (1.3) (see Theorem 4.3.1). But we obtain

far more than only new non-explosion results. Namely, the pathwise unique solution

(Xt)t≥0 in Theorem 4.3.1 is not only strong but satisfies all previously derived proper-

ties. Our general strong Feller property results improved the previous results obtained

in [1, Propositions 3.2 and 3.8] and [8, Theorem 2.8] and show the non-optimality of the

results in [85]. There M should be non-explosive to obtain merely the classical strong

Feller property (cf. also Remark 3.1.9(iii)). Also, the irreducibility here is just obtained

under the mentioned basic assumptions on A and G, whereas the assumptions to obtain

irreducibility in [85] appear to be quite strong (see Remark 4.2.15). Additionally, our

method provides implicitly a candidate for an invariant measure as well as for a station-

ary distribution and we derive several explicit sufficient conditions for recurrence and

5



CHAPTER 1. INTRODUCTION

ergodicity, including existence and uniqueness of invariant measures (see Section 4.2).

Moreover, we derive moment inequalities for the solution (see Theorem 4.1.4) which

complements [23, Proposition 14] and [52, Lemma 3.2 of Section 2.3, Theorem 4.1 of

Section 2.4]. All these are advantages over the methods that were previously employed

in [30], [43], [84], [85], [23], and we are able to generalize and even improve many of the

classical results in the time-homogeneous case for locally bounded coefficients (see [6]

and the standard reference [58]) to the case of locally unbounded coefficients (see for

instance Remark 4.2.3 and Theorem 4.2.9).

In Section 4.2 we discuss recurrence and other ergodic properties involving and not

involving the density ρ. As previously mentioned, ρ is usually not explicit but can be

assumed to be explicit (if needed) as explained in Remark 4.2.1, (see also Remark 5.3.7

and Part IV). Using a pointwise parabolic Harnack inequality from [2, Theorem 5],

we then show that the underlying generalized Dirichlet form is strictly irreducible in

Corollary 4.2.4(i). Consequently, we can apply explicit volume growth conditions from

[29] to obtain not only recurrence (cf. Theorem 4.2.7) but also existence of an invariant

measure. In the general case, when ρ is not explicitly known, we can also derive explicit

recurrence criteria. Theorem 4.2.9, that is applicable just under our basic assumptions

on A = (aij)1≤i,j≤d and G, generalizes [58, Chapter 6, Theorem 1.2] which assumes

the drift to be locally bounded. Moreover the proof of Theorem 4.2.9 is different from

the one of [58, Chapter 6, Theorem 1.2] and uses basic results of [29], as well as strict

irreducibility from Corollary 4.2.4(i) and Proposition 4.2.5. In Proposition 4.2.13, we

derive again just under our basic assumptions on A and G an explicit criterion for

ergodicity of M, including the existence of a unique invariant measure. Section 4.3 is

devoted to the mentioned application to pathwise uniqueness results and Theorem 4.3.1

is our main result in Part I.

Our work not only presents a new approach to existence of weak solutions to time-

homogeneous Itô-SDEs with rough coefficients through a Hunt process, but also com-

plements and improves substantially existing literature in regard to general strong Feller

properties, non-explosion, irreducibility, recurrence and ergodicity, including existence

as well as uniqueness of invariant measures. This is done by profiting a lot from many

authors’ previous achievements. The most important are found in [1], [2], [12], [13],

[29], [34], [62], [69], [78], [79], [84]. In particular, the transition function of the Hunt

6



CHAPTER 1. INTRODUCTION

process that we construct as a weak solution to (1) has so a nice regularity that then

all presumably optimal classical conditions for the properties of a solution to (1) above,

carry over to our situation of non-smooth coefficients by using classical probabilistic

techniques. In conclusion, our main result, Theorem 4.3.1, seems to be the most general

result in non-degenerate time-homogeneous Itô-SDEs.

An important subject of our research is the existence of invariant measures. A lo-

cally finite Borel measure m on Rd is called an invariant measure for a sub-Markovian

C0-semigroup of contractions (T t)t>0 on L1(Rd,m) if

ˆ
Rd
T tfdm =

ˆ
Rd
fdm, f ∈ L1(Rd,m). (1.4)

(There also exists a consistent Definition 6.2.2 related to right processes). Invariant

measures have been studied since long ago, both through analytic and probabilistic

approaches (see [46], [32], [6], [59], [33], [11], [12], [44]). Often, only invariant measures

that are probability measures, or finite measures are regarded (see for instance, [59],

[33], [11], [12], [44]). Especially in [12], one of the main references that study invariant

measures through an analytic approach, those invariant measures are always considered

as probability measures. However in our case, we study pre-invariant measures whose

existence results from (3.2), (5.8), (8.30), (11.3) and these do not need to be finite or

probability measures. Our pre-invariant measures are invariant measures if and only if

the dual semigroup to (T t)t>0 in (1.4) is conservative, and moreover serve as reference

measures to get an L1(Rd,m)-closed extension of the second order partial differential

operator which is formally associated as infinitesimal generator (on the test functions

C∞0 (Rd)) to the solution to (1.1). The latter is used crucially used for the construction

of a generalized Dirichlet form. The existence of a pre-invariant measure is proven by a

purely analytic method which is the existence and regularity theory of elliptic partial

differential equations. Throughout all parts in this thesis, our pre-invariant measures

play a key role to obtain our various results.

Part II consists of the contents in [50] and we investigate a quite general class of

divergence form operators with respect to a possibly non-symmetric diffusion matrix

7



CHAPTER 1. INTRODUCTION

A = (aij)1≤i,j≤d and perturbation H = (h1, ..., hd), which can be written as

Lf =
1

2
div(A∇f) + 〈H,∇f〉, f ∈ C∞0 (Rd). (1.5)

Precise conditions on the coefficients are given in assumptions (a) and (b) in Section

5.2, see in particular Remark 5.2.1, where it is also shown that such operators cover a

fairly general class of non-divergence form operators.

Our first observation is that just under assumption (a), there exists a pre-invariant

density ρ, which further determines a pre-invariant measure m = ρ dx, and has a

nice regularity (see Theorem 5.2.2). This leads by a construction method of [69] to a

sub-Markovian C0-semigroup of contractions (Tt)t≥0 on L1(Rd,m), whose generator is

an extension of (L,C∞0 (Rd)), i.e. we have found a suitable functional analytic frame

for the description of (L,C∞0 (Rd)). This functional analytic frame is also described

by a generalized Dirichlet form. Subsequently in Section 5.3, we investigate the reg-

ularity properties of the semigroup (Tt)t≥0 and its corresponding resolvent (Gα)α>0,

which can in fact be considered in every Lr(Rd,m), r ∈ [1,∞]. The regularity prop-

erties comprise strong Feller properties, i.e. the existence of continuous versions Ptf ,

f ∈ L1(Rd,m) +L∞(Rd,m) and Rαg, g ∈ Lq(Rd,m) +L∞(Rd,m), q defined as in Sec-

tion 5.2, of Ttf and Gαg, as well as the irreducibility of (Pt)t>0 and strict irreducibility

of the associated L2(Rd,m)-semigroup (Tt)t>0 (Lemma 4.2.2).

For more general coefficients A, G than those in [13, Theorem 1 (i)], we prove by

different method the existence of a pre-invariant measure of L in Theorem 5.2.2, es-

pecially making use of Lemma 5.1.3, Lemma 5.1.4. Although the proofs of Theorem

5.3.1, Theorem 5.3.3, Theorem 5.3.5 seem to be similar to those of (3.9), Theorem

3.1.8, Theorem 4.2.2, the details are slightly different. In contrast to previous results

([10], [1], [8], [62]), where regularity theory of equations whose solutions are measures

is used, we use elliptic and parabolic regularity theory for divergence form operators,

which allows the diffusion and drift coefficients to be more general.

In Chapter 6, we investigate the stochastic counterpart of (Pt)t>0. Adding just as-

sumption (b) to assumption (a) suffices to obtain that (Pt)t>0 is the transition function

of a Hunt process M and to carry over most of the probabilistic results from Part I to

the more general situation considered here (see Remark 6.1.2 and Theorem 6.1.3 which

8



CHAPTER 1. INTRODUCTION

states that M solves weakly the stochastic differential equation with coefficients given

by L), i.e. for all x0 ∈ Rd,

Xt = x0 +

ˆ t

0

σ(Xs)dWs +

ˆ t

0

(
1

2
∇AT + H

)
(Xs)ds, Px0- a.s. 0 ≤ t < ζ. (1.6)

where σ = (σij)1≤i,j≤d is any matrix of functions satisfying Ã = σσT . Our conditions for

weak existence of Itô-SDEs allow the drift vector field to be in Lqloc(Rd,Rd), q ∈ (d
2
, d). It

seems to be the most general condition for drift vector fields in the literature up to now.

However our condition to obtain weak existence requires the components of the diffusion

coefficient Ã to be in H1,2
loc (Rd) and ∇AT ∈ Lqloc(Rd,Rd), which is slightly less general

than previous results that allow for bounded and continuous diffusion coefficients as

in [71, Theorem 7.2.1] or just bounded and measurable diffusion coefficients as in [38,

Chapter 2, Theorem 6.1]. Under our assumptions (a), (b), it is not clear at present

whether pathwise uniqueness for (6.1) holds or not. We present some new non-explosion

condition, which leads to a moment inequality. It also allows for Lq(Rd,m)-singularities

outside an arbitrarily large compact set and linear growth at the same time. This is

illustrated in the Example 6.1.5. In Section 6.2, we discuss the relation of L1(Rd,m)-

uniqueness from [69], the strong Feller property derived here and uniqueness in law.

More precisely, we obtain a result on uniqueness in law among all right processes that

have m as sub-invariant measure (see Propositions 6.2.3 and 6.2.4).

In order to obtain the strong Markov property of a weak solution to (1.6) through

the method developed by Strook and Varadhan as in [37, Theorem 4.20], the knowledge

of uniqueness in law is crucially needed (see [82, Proposition 2]). But since our weak

solution to (1.6) is a Hunt process, it automatically satisfies the strong Markov property

independently of uniqueness in law. Moreover, different from the previous methods that

require the result for uniqueness in law to obtain a local weak solution to Itô-SDEs

whose coefficients are locally bounded (see [71, Chapter 10.1]), we directly obtain a local

weak solution without using uniqueness in law even in the case of locally unbounded

drift vector fields.

Finally, we would like to discuss a special aspect of our work, which we think is

remarkable and to relate our work to some other references. The Hunt process M which

is constructed in Part II satisfies the following Krylov type estimate: let g ∈ Lr(Rd,m)

9
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for some r ∈ [q,∞]. Then for any Euclidean ball B there exists a constant cB,r,t,

depending in particular on B, t, and r, but not on g ∈ Lr(Rd,m), such that for all

t ≥ 0

sup
x∈B

Ex
[ˆ t

0

g(Xs) ds

]
< cB,r,t ‖g‖Lr(Rd,m). (1.7)

Using Theorem 5.3.1 below, (1.7) can be shown exactly as in Lemma 3.2.3 (ii). Such

type of estimate is an important tool for the analysis of diffusions (see for instance [38]

and in particular [38, p.54, 4. Theorem] for the original estimate involving conditional

expectation, or also [30] and [84]). A priori (1.7) only holds for the Hunt process M
constructed here. However, if pathwise uniqueness holds (for instance if the coefficients

here are locally Lipschitz or under the conditions in [84]), or more generally uniqueness

in law holds for the SDE solved by M with certain given coefficients, then (1.7) holds

generally for any diffusion with the given coefficients. If further g ∈ Lr(Rd) has compact

support, then ‖g‖Lr(Rd,m) in (1.7) can be replaced by ‖g‖Lr(Rd), when cB,r,t is replaced by

a constant cB,r,t,ρ that also depends on the values of ρ on the support of g. If Ã, Ǎ, ρ, B̃

are explicitly given, as described in Remark 5.3.7(i), i.e. the case where the generalized

Dirichlet form is explicitly given as in [69], then (1.7) holds with explicit ρ and (1.7)

can be seen as a Krylov type estimate for a large class of time-homogeneous generalized

Dirichlet forms. As a particular example, consider the non-symmetric divergence form

case, i.e. the case where H ≡ 0 in (1.5). Then the explicitly given ρ ≡ 1 defines a pre-

invariant density. Hence m in (1.7) can be replaced by Lebesgue measure in this case.

The latter together with some further results of this article complements analytically as

well as probabilistically aspects of the works [72], [63], and [75] where also divergence

form operators are treated, but where more emphasis is put on the mere measurability

of the diffusion matrix and not on the generality of the drift.

In Part III, we present a well-posedness (weak existence and uniqueness in law) result

for degenerate Itô-SDEs whose diffusion coefficients and drift vector fields are possibly

discontinuous. In the case where the diffusion coefficient is non-degenerate, bounded

and uniformly continuous, and the drift vector field is bounded, Strook and Varadhan

showed weak existence and uniqueness in law (see [71, Theorem 7.2.1]). However in

the case where the diffusion coefficient is degenerate, somewhat restrictive conditions

10
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on the diffusion and drift coefficients, namely local Lipschitz continuity and global

boundedness are required in [71, Theorem 6.3.4]. On the other hand, the condition for

mere weak existence of degenerate Itô-SDEs can be relaxed to bounded and continuous

diffusion coefficients and bounded drift vector fields ([37, Theorem 4.22]). To obtain our

weak existence, we use the theory of generalized Dirichlet form based on a functional

analytic frame and elliptic and parabolic regularity results for PDEs. To do this, we

study an analytic theory for second order partial differential operators with possibly

degenerate and discontinuous diffusion coefficients, which are given by

Lf =
1

2
trace(Â∇2f) + 〈G,∇f〉, f ∈ C∞0 (Rd), (1.8)

where Â := 1
ψ
A and A, ψ, G satisfy (A1) in Section 8.3.

In Chapter 7, we investigate some regularity results for linear parabolic PDEs in-

volving divergence form operators with weight function in the time derivative term as

in (7.1). The weight function is bounded below by a positive constant. Developing the

arguments in [2], we derive an L∞-estimate of solutions of weighted parabolic PDEs

in terms of the L
2p
p−2 -norm, where p > d is arbitrary but fixed. Besides, we present

the standard elliptic Hölder regularity and Hölder estimate of solutions in terms of the

L2-norm which were proved in [67].

In Sections 8.1, 8.2 of Chapter 8, using the main ideas and techniques from [69], we

improve the L1-existence result for elliptic second order partial differential operators

with degenerate diffusion coefficients defined as (1.8). Our pre-invariant density is ρψ

and ρψÂ = ρA is non-degenerate since ρ ∈ L∞loc(Rd) is a positive function satisfying
1
ρ
∈ L∞loc(Rd), so that our arguments are connected with the methods of [69] and regu-

larity results of Chapter 7 involving a non-degenerate matrix of functions. In Section

8.3, we first show in Theorem 8.3.1 the existence of a pre-invariant measure ρψdx for

L in (1.8) and ρ has nice regularity. Although we did not derive parabolic Hölder regu-

larity, by combining regularity results of Chapter 7 and our main arguments developed

in Part I and II, we derive general strong Feller properties of our semigroup as well as

resolvent (Theorem 8.3.3, Lemma 8.3.4, Theorem 8.3.6).

In Chapter 9, using one of the main arguments from Part I, Theorem 3.2.1, we con-

struct a Hunt process associated with a general strong Feller semigroup (Pt)t>0. Then

11
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we identify our constructed Hunt process with a weak solution to the corresponding

degenerate Itô-SDE whose diffusion coefficients are possibly discontinuous. To obtain

the existence of a Hunt process as a weak solution to degenerate Itô-SDEs starting

at every point in Rd, we should make use of the existence of such a Hunt process for

merely almost every starting point, which is showed in Proposition 9.1.1.

Note that Krylov type estimate in Remark 9.1.4 are derived by an elliptic Hölder

regularity and an estimate of the resolvent (Theorem 7.2.2), which is distinct from

Theorem 5.3.1 that is induced by elliptic H1,p-regularity results. The integral orders in

the right-hand side of the Krylov type estimate are usually bigger than those of (1.7),

but the constant CB,r,t of (9.1) does not depend on the VMO condition of the diffu-

sion coefficient. We mention that some of the conservativeness criteria which are anal-

ogous to those of Part I, for instance, Theorem 4.1.2, Theorem 4.1.4 (i) as well as [69,

Proposition 1.10](a) also can be applied to our constructed Hunt process. Furthermore

if we consider a special weight function like ψ := 1
‖x‖α for some α > 0 which has only

one singular point in Rd, we can show that strict irreducibility holds (Lemma 9.2.1,

Corollary 9.2.2). Therefore recurrence and transience results as in Proposition 4.2.5,

Theorem 4.2.7, Lemma 4.2.8, Theorem 4.2.9 can be applied to our constructed Hunt

process if ψ = 1
‖x‖α . We present a concrete example in Example 9.2.3 that satisfies our

results for weak existence and strict irreducibility.

In Section 9.3, assuming (A4′), we show uniqueness in law for our degenerate Itô-

SDEs whose dispersion matrix and drift vector field are possibly discontinuous. Our

results are new in the sense that examples for uniqueness in law in the case of fully

discontinuous dispersion matrix seem to be unknown. The local Krylov type estimate

for the solution of our degenerate Itô-SDE plays an important role to derive a time

dependent Itô’s formula for weak differentiable functions with certain regularity. More-

over, we apply elliptic H2,2d+2- regularity results for non-divergence form operators to

our resolvent and use the properties of the semigroup which directly solves the Cauchy

problem. Since our semigroup is closely related to our resolvent which has nice regular-

ity, parabolic regularity results involving degenerate matrix of functions are not needed

in our case. Our result for uniqueness in law allows for fully discontinuous dispersion

matrix and it partially improves [41, Theorem 3.11] as well as [74, Theorem 3.1] in the

case of time-homogeneous Itô-SDEs.

12
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In Part IV, we generalize the results of Part I, II, considering the case where pre-

invariant measures with general conditions are given. Using [29, Lemma 13] which im-

proves [69, Theorem 1.5], more general pre-invariant measures than those in [69] can

be investigated. We expect that results in Part IV can be used to show not only gen-

eral strong Feller properties of transition functions of Hunt processes which have skew

reflections or normal reflections, but also to show weak existence for SDEs with reflec-

tion terms (see Remark 11.1.1, 11.1.8, 11.2.2). For the sectorial case, one can use the

analyticity of the semigroup and the conservativeness of the resolvent to obtain the

classical strong Feller property of the semigroup as in [1], [8], [9], [7], [62]. But since we

use generalized Dirichlet form techniques and the elliptic and parabolic regularity the-

ory for divergence form operator, it is possible to derive not only general strong Feller

properties including the classical strong Feller property but also strict irreducibility

and irreducibility of the semigroup without sector condition assumption.

To do this, in Chapter 10, we generalize some parabolic regularity results of [2] in

the case where the weight function ψ in the time derivative term is bounded below

and above by some positive constants. Different from Part III, since the weight in Part

IV is bounded below and above by some positive constants, we can derive a parabolic

Harnack inequality as well as the L∞- estimate in terms of the L2-norm. Thus we can

show that the solutions of linear parabolic PDEs involving divergence form operators

with a weight function ψ in the time derivative term satisfy a Hölder regularity result

and a pointwise parabolic Harnack inequality, which allow us to show general strong

Feller properties, irreducibility and strict irreducibility of our semigroup. The proof

of the Harnack inequality is based on the fundamental inequality (10.5) and Lemma

10.2.1 which involve the weight function ψ. Then using the technique of the proof of [2,

Theorem 3] and [53, Main Lemma], we derive the parabolic Harncak inequality (The-

orem 10.2.2), which also partially improves the result [73, Property II] where symmet-

ric Dirichlet forms on abstract spaces are treated and their pre-invariant measures are

more general than ours. Since we only treat about weighted parabolic PDEs of linear

type and assume boundedness of solutions of our PDEs, some procedures to derive

regularity results of solutions are simpler than those in [2] that considers quasi-linear

parabolic PDEs and does not assume the boundedness of the solution. However since

our parabolic PDEs are always formulated with weight functions in the time derivative
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term, we rigorously check the details.

In Chapter 11, using methods as in Part I, II, III and regularity results of Chapter

10, we present a weak existence result in the case where a general pre-invariant mea-

sure and diffusion coefficients are given, and we obtain analytic and probabilistic re-

sults which are analogous to those of Part II, general strong Feller properties including

classical strong Felller property, strict irreducibility and irreducibility, non-explosion,

recurrence and transience, ergodic properties (see Theorem 11.2.4). We would like to

emphasize that the Krylov type estimates (11.8) of our constructed Hunt process also

hold. But since we use elliptic Hölder regularity and estimates in Theorem 7.2.2 like

in the case of (9.1), the constant CB,r,t > 0 does not depend on the VMO condition

of its diffusion matrix. We expect that in our later research, this Krylov type estimate

would play an important role to study some approximations of stochastic processes

with merely measurable diffusion coefficients which have no weak differentiability. In

Section 11.2, we consider the case where general diffusion coefficients and drifit vector

fields which are possibly discontinuous, are explicitly given. In Theorem 11.3.1, we find

a pre-invariant measure using Theorem 5.2.2, hence obtain exactly the same framework

as in Part IV where general pre-invariant measures are explicitly given. Through this

work, we obtain in Theorem 11.3.2 up to our best knowledge the present most gen-

eral results for global well-posedness and ergodic properties of non-degenerate time-

homogeneous Itô-SDEs whose dispersion coefficients are possibly discontinuous

The work also shown that the previously used techniques to handle the Itô-SDE

(1.1) for the last 20 years, mainly based on Krylov type estimates and Girsanov trans-

formation, seem not to be the appropriate and optimal ones. Through the research in

this thesis which is an analytic approach to time-homogeneous Itô-SDEs with rough

coefficients using generalized Dirichlet form theory and elliptic and parabolic regularity

theory, we hope to provide a new tool for the study of Itô-SDEs and their applications.
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Chapter 2

Notations

Throughout, we consider the Euclidean space Rd, d ≥ 2, equipped with the Eu-

clidean inner product 〈·, ·〉, the Euclidean norm ‖ · ‖ and the Borel σ-algebra B(Rd).

We write | · | for the absolute value in R. For r ∈ R, r > 0 and x ∈ Rd, let

Br(x) := {y ∈ Rd | ‖x − y‖ < r} and denote its closure by Br(x) (similarly for a

subset A ⊂ Rd, let A denote its closure). If x = 0, we simply write Br and Br. We call

a subset B ⊂ Rd, for which B = Br(x) for some r > 0 and x ∈ Rd, a ball. Let Rx(r)

denote the open cube in Rd with edge length r > 0 and center x ∈ Rd and denote its

closure by Rx(r). The minimum of two values a and b is denoted by a ∧ b := min(a, b)

and the maximum is denoted by a ∨ b := max(a, b). For two sets A,B, we define

A+B := {a+ b | a ∈ A and b ∈ B}.
The set of all B(Rd)-measurable f : Rd → R which are bounded, or nonnegative

are denoted by Bb(Rd), B+(Rd) respectively. Let U ⊂ Rd, be an open set. The usual

Lq-spaces Lq(U, µ), q ∈ [1,∞] of Borel measurable or classes of Borel measurable

functions (depending on the context) are equipped with Lq-norm ‖ · ‖Lq(U,µ) with

respect to the measure µ on U and Lqloc(Rd, µ) := {f | f · 1U ∈ Lq(Rd, µ), ∀U ⊂
Rd, U relatively compact open}, where 1A denotes the indicator function of a set A ⊂
Rd. Define Lqloc(Rd,Rd, µ) := {G = (g1, ..., gd) : Rd → Rd | gi ∈ Lqloc(Rd, µ), 1 ≤ i ≤ d}.
Given any open set U in Rd, define Lq(U,Rd, µ) := {F = (f1, ..., fd) : U → Rd |
fi ∈ Lq(U, µ), 1 ≤ i ≤ d}, equipped with the norm, ‖F‖Lq(U,µ) := ‖‖F‖‖Lq(U,µ), F ∈
Lqloc(Rd,Rd, µ). The Lebesgue measure on Rd is denoted by dx and we write Lq(U),

Lqloc(Rd), Lqloc(Rd,Rd), Lq(U,Rd) for Lq(U, dx), Lqloc(Rd, dx), Lqloc(Rd,Rd, dx), Lq(U,Rd, dx)
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respectively.

For an open set U in Rd, define |U | :=
´
U

1dx. For an open interval I in R and

p, q ∈ [1,∞], denote by Lp,q(U × I) the set of Borel measurable function f on U × I
such that

‖f‖Lp,q(U×I) := ‖‖f(·, ·)‖Lp(U)‖Lq(I) <∞.

In order to avoid notational complications, we assume that locally integrable functions

are whenever necessary pointwisely given (not for instance equivalence classes) and

hence measurable. Moreover, whenever a function f possesses a continuous version,

we will assume it is given by it. However, if in a situation, it should be necessary

or important to distinguish between classes and pointwisely given functions, we will

mention it. If A is a set of measurable functions f : Rd → R, we define A0 := {f ∈ A |
supp(f) : = supp(|f |dx) is compact in Rd} and Ab : = A∩ L∞(Rd). As usual, we also

denote the set of continuous functions on Rd, the set of continuous bounded functions

on Rd, the set of compactly supported continuous functions in Rd by C(Rd), Cb(Rd),

C0(Rd), respectively. Two Borel measurable functions f and g are called µ-versions of

each other, if f = g µ-a.e.

Given Borel measurable function f on open subset U of Rd, let ∇f := (∂1f, . . . , ∂df),

where ∂jf is the j-th weak partial derivative of f on U of Rd and ∂ijf := ∂i(∂jf),

i, j = 1, . . . , d. The Sobolev space H1,q(U), q ∈ [1,∞] is defined to be the set of

all functions f ∈ Lq(U) for which ∂jf ∈ Lq(U), j = 1, . . . , d, and H1,q
loc (U) := {f :

f ·ϕ ∈ H1,q(U), ∀ϕ ∈ C∞0 (U)}. Here Ck
0 (U), k ∈ N∪{∞}, denotes the set of all k-fold

continuously differentiable functions with compact support in U , and C∞(U) denote the

set of continuous functions vanishing at infinity, i.e. given ε > 0, there exists a compact

set K ⊂ U such that |f(x)| < ε for all x ∈ U \ K. For Borel measurable function g

on open subset Q of Rd × R, given i ∈ {1, . . . d}, denote by ∂ig the i-th weak spatial

derivative on Q and by ∂tg the weak time derivative on Q. For p, q ∈ [1,∞], let W 2,1
p,q (Q)

be a set of locally integrable functions g : Q → R such that ∂tg, ∂ig, ∂i∂jg ∈ Lp,q(Q)

for all 1 ≤ i, j ≤ d. Let W 2,1
p (Q) := W 2,1

p,p (Q).

Let V be a bounded open set in Rd and f : V → R be a continuous function. Define
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‖f‖C(V ) := supV f . For β ∈ (0, 1) define

hölβ(f, V ) := sup

{
|f(x)− f(y)|
‖x− y‖β

: x, y ∈ V , x 6= y

}
∈ [0,∞],

and the Hölder continuous functions of order β ∈ (0, 1) on V by

C0,β(V ) := {f ∈ C(V ) : hölβ(f, V ) <∞}.

Then C0,β(V ) is a Banach space with norm

‖f‖C0,β(V ) := sup
x∈V
|f(x)|+ hölβ(f, V ).

The space of all locally Hölder continuous functions of order β ∈ (0, 1) on Rd is defined

by

C0,β
loc (Rd) := {f : f ∈ C0,β

loc (B) for any ball B}.

Let Q be a bounded open set in Rd × R and g : Q → R be a function. For δ ∈ (0, 1)

denote

phölδ(g,Q) := sup

 |g(x, t)− g(y, s)|(
‖x− y‖+

√
|t− s|

)δ : (x, t), (y, s) ∈ Q, (x, t) 6= (y, s)

 ∈ [0,∞],

and the parabolic Hölder continuous functions of order δ ∈ (0, 1) on Q by

Cδ; δ
2 (Q) := {g ∈ C(Q) : phölδ(g,Q) <∞}.

Then Cδ; δ
2 (Q) is a Banach space with norm

‖g‖
Cδ;

δ
2 (Q)

:= sup
(x,t)∈Q

|g(x, t)|+ phölδ(g,Q).

g is called locally parabolic Hölder continuous, if for any bounded and open set Q,

there exists δ = δ(Q), such that g ∈ Cδ; δ
2 (Q). Here δ may be different for different Q.

In particular, if t ∈ R is fixed, we then say that g(·, t) is locally Hölder continuous with
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possibly changing Hölder exponents.

For a matrix A, let AT denote the transposed matrix of A. If A = (aij)1≤i,j≤d consists

of weakly differentiable functions aij, we define

∇A = ((∇A)1, . . . , (∇A)d), (∇A)i :=
d∑
j=1

∂jaij, 1 ≤ i ≤ d.

If f is two times weakly differentiable, let ∇2f denote the Hessian matrix of second

order weak partial derivatives of f . In particular

trace(A∇2f) =
d∑

i,j=1

aij∂i∂jf.

If ρ is weakly differentiable and a.e. positive then

βρ,A = (βρ,A1 , . . . , βρ,Ad ) :=
1

2

(
∇A+

A∇ρ
ρ

)
,

is called the logarithmic derivative of ρ associated with A. Hence

βρ,Ai =
1

2

d∑
j=1

(
∂jaij + aij

∂jρ

ρ

)
, 1 ≤ i ≤ d.

For a Borel measurable function ψ, define βρ,A,ψ := 1
ψ
βρ,A. For a bounded open subset

U of Rd and a possibly non-symmetric matrix of functions A = (aij)1≤i,j≤d on U , we

say that A is uniformly strictly elliptic and bounded on U , if there exists λ > 0 and

M > 0 such that for any ξ = (ξ1, . . . , ξd) ∈ Rd, x ∈ U ,

d∑
i,j=1

aij(x)ξiξj ≥ λ‖ξ‖2, max
1≤i,j≤d

|aij(x)| ≤M.

In that case, λ is called the elliptic constant and M is called the upper bound constant

of A.
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Chapter 3

Weak solutions via analytic theory

3.1 Analytic theory of generalized Dirichlet forms

Let φ ∈ H1,2
loc (Rd) be such that the measure m := ρ dx, ρ := φ2, has full support on

Rd. Let H1,2
0 (Rd,m) be the closure of C∞0 (Rd) in L2(Rd,m) with respect to the norm

(
´
Rd(‖∇f‖

2 + f 2) dm)1/2 and H1,2
loc (Rd,m) := {f : f ·ϕ ∈ H1,2

0 (Rd,m), ∀ϕ ∈ C∞0 (Rd)}.
Let A = (aij)1≤i,j≤d with aij ∈ H1,2

loc (Rd,m) be a symmetric matrix of functions and

locally uniformly strictly elliptic, i.e. for every (open) ball B ⊂ Rd there exist real

numbers λB,ΛB > 0, such that

λB ‖ξ‖2 ≤
〈
A(x)ξ, ξ

〉
≤ ΛB ‖ξ‖2 for all ξ ∈ Rd, x ∈ B. (3.1)

Let G = (g1, ..., gd) ∈ L2
loc(Rd,Rd,m) be such that with

Lf :=
1

2

d∑
i,j=1

aij∂i∂jf +
d∑
i=1

gi∂if, f ∈ C∞0 (Rd),

it holds
ˆ
Rd
Lf dm = 0, ∀f ∈ C∞0 (Rd). (3.2)
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Then it is shown in [69, Theorem 1.5] that there exists a closed extension (L1, D(L1)) on

L1(Rd,m) of (L,C∞0 (Rd)) that generates a sub-Markovian C0-semigroup of contractions

(Tt)t>0. Restricting (Tt)t>0 to L1(Rd,m)b, it is well-known by Riesz-Thorin interpolation

that (Tt)t>0 can be extended to a sub-Markovian C0-semigroup of contractions on each

Lr(Rd,m), r ∈ [1,∞). Denote by (Lr, D(Lr)) the corresponding closed generator with

graph norm

‖f‖D(Lr) := ‖f‖Lr(Rd,m) + ‖Lrf‖Lr(Rd,m),

and by (Gα)α>0 the corresponding resolvent. For (Tt)t>0 and (Gα)α>0 we do not explic-

itly denote in the notation on which Lr(Rd,m)-space they act. We assume that this

is clear from the context. Moreover, (Tt)t>0 and (Gα)α>0 can be uniquely defined on

L∞(Rd,m), but are no longer strongly continuous there.

Writing

Lf =
1

2

d∑
i,j=1

aij∂i∂jf +
d∑
i=1

βρ,Ai ∂if +
d∑
i=1

(gi − βρ,Ai )∂if (3.3)

with

βρ,Ai =
1

2

d∑
j=1

(
∂jaij + aij

∂jρ

ρ

)
, 1 ≤ i ≤ d, βρ,A = (βρ,A1 , ..., βρ,Ad )

we observe that (3.2) is equivalent to

ˆ
Rd
〈G− βρ,A,∇f〉 dm = 0, ∀f ∈ C∞0 (Rd), (3.4)

hence
ˆ
Rd
L̂f dm = 0, ∀f ∈ C∞0 (Rd), (3.5)
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where

L̂f =
1

2

d∑
i,j=1

aij∂i∂jf +
d∑
i=1

βρ,Ai ∂if −
d∑
i=1

(gi − βρ,Ai )∂if (3.6)

Noting that ĝi := 2βρ,Ai −gi ∈ L2
loc(Rd,m), we see that L and L̂ have the same structural

properties, i.e. they are given as the sum of a symmetric second order elliptic differential

operator and a divergence free first order perturbation with same integrability condition

with respect to the measure m. Therefore all what will be derived below for L will hold

analogously for L̂. Denote the operators corresponding to L̂ (again defined through [69,

Theorem 1.5]) by (L̂r, D(L̂r)) for the co-generator on Lr(Rd,m), r ∈ [1,∞), (T̂t)t>0

for the co-semigroup, (Ĝα)α>0 for the co-resolvent. By [69, Section 3], we obtain a

corresponding bilinear form with domain D(L2)× L2(Rd,m) ∪ L2(Rd,m)×D(L̂2) by

E(f, g) :=

{
−
´
Rd L2f · g dm for f ∈ D(L2), g ∈ L2(Rd,m),

−
´
Rd f · L̂2g dm for f ∈ L2(Rd,m), g ∈ D(L̂2).

E is called the generalized Dirichlet form associated with (L2, D(L2)). Using integration

by parts, it is easy to see that

E(f, g) =
1

2

ˆ
Rd
〈A∇f,∇g〉 dm−

ˆ
Rd
〈G− βρ,A,∇f〉g dm, f, g ∈ C∞0 (Rd). (3.7)

The following lemma, see [69, Remark 1.7(iii)], will be used later:

Lemma 3.1.1. Let u ∈ D(L1)b. Then u2 ∈ D(L1)b and

L1u
2 = 〈A∇u,∇u〉+ 2uL1u.

We are going to restrict our previous assumptions to the ones of the following

theorem. The theorem itself is an immediate consequence of an important result [12,

Theorem 2.4.1] (see also [13, Theorem 1] for the original result), which itself is derived

by using elliptic regularity results from [76] in an essential way.

Theorem 3.1.2. Let p > d be arbitrary but fixed. Let A := (aij)1≤i,j≤d be a symmetric

d × d matrix of functions aij ∈ H1,p
loc (Rd) satisfying (3.1). Let G = (g1, . . . , gd) ∈

22



CHAPTER 3. WEAK SOLUTIONS VIA ANALYTIC THEORY

Lploc(Rd,Rd). Then there exists ρ ∈ C0,1−d/p
loc (Rd)∩H1,p

loc (Rd) with ρ(x) > 0 for all x ∈ Rd

and such that ˆ
Rd
〈G− βρ,A,∇ϕ〉ρ dx = 0, ∀ϕ ∈ C∞0 (Rd),

with

βρ,A ∈ Lploc(R
d,Rd).

In particular, setting

B = (b1, ..., bd) := G− βρ,A,

we have obtained a representation of an arbitrary G ∈ Lploc(Rd,Rd) as the sum of the

logarithmic derivative βρ,A associated to A and ρ and a ρdx-divergence free vector field

B ∈ Lploc(Rd,Rd), namely

G = βρ,A + B.

Remark 3.1.3. It is possible and not difficult to generalize Theorem 3.1.2 (and basi-

cally everything that follows below) in two directions. We do not do this here because it

only leads to technical and notational complications, which are better to be investigated

and overcome elsewhere. But all necessary tools can be found in this work. The two

directions are:

(i) Theorem 3.1.2 also holds with Rd replaced by any open set U ⊂ Rd, H1,p
loc (U)

defined as in Chapter 2, and

Lploc(U) := {f : f1V ∈ Lp(U), ∀V relatively compact open with V ⊂ U},

C
0,1−d/p
loc (U) := {f : f ∈ C0,1−d/p(V ), ∀V relatively compact open with V ⊂ U},

by considering an exhaustion with bounded and open sets (Vn)n≥1 of U , i.e.

Vn ⊂ V n ⊂ Vn+1 for all n ∈ N and ∪∞n=1 Vn = U.

(ii) As in [12, Theorem 2.4.1], the regularity conditions on aij, gi, 1 ≤ i, j ≤ d, can be

generalized to aij ∈ H1,pn(Bn) and gi ∈ Lpn(Bn) with pn > d. The only interesting

case is when limn→∞ pn = d, which leads to a slight but technical improvement of

the conditions of Theorem 3.1.2. Note that (Bn)n≥1 here is a special exhaustion
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with bounded and open sets of Rd but one can generalize this to an arbitrary

exhaustion with bounded and open sets (Vn)n≥1 of Rd.

From now on unless otherwise stated, we fix one density ρ as in Theorem 3.1.2 and

hence assume that

A := (aij)1≤i,j≤d, G = (g1, . . . , gd), β
ρ,A = (βρ,A1 , ..., βρ,Ad ), B = (b1, ..., bd),

are as in Theorem 3.1.2 with

p > d.

This implies all assumptions prior to Theorem 3.1.2 and we fix from now on the cor-

responding generalized Dirichlet form E associated with (L2, D(L2)) and all the corre-

sponding objects under the assumptions of Theorem 3.1.2. As before, we set

m := ρ dx.

Note, that due to the properties of ρ in Theorem 3.1.2, we have that Lploc(Rd) =

Lploc(Rd,m) as well as Lploc(Rd,Rd) = Lploc(Rd,Rd,m).

We will use the following result from [8, Theorem 5.1], adapted to our needs.

Proposition 3.1.4. Let d ≥ 2 and µ a locally finite (signed) Borel measure on Rd that

is absolutely continuous with respect to Lebesgue measure on Rd. Let A = (aij)1≤i,j≤d

and p > d be as in Theorem 3.1.2. Let hi, c, f ∈ Lploc(Rd) and assume that

ˆ
Rd

( d∑
i,j=1

aij
2
∂ijϕ+

d∑
i=1

hi∂iϕ+ cϕ
)
dµ =

ˆ
Rd
ϕf dx, ∀ϕ ∈ C∞0 (Rd),

where hi, c are locally µ-integrable. Then µ has a density in H1,p
loc (Rd) that is locally

Hölder continuous.

We further state a result originally due to Morrey (see the wrong statement in the

original monograph [55, Theorem 5.5.5’] and [12, Theorem 1.7.4] and Corollaries for its

correction).
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Proposition 3.1.5. Assume p > d ≥ 2. Let B′ ⊂ Rd be a ball, h = (h1, ..., hd) : B′ →
Rd and c, e : B′ → R such that

hi ∈ Lp(B′), 1 ≤ i ≤ d, and c, e ∈ Lq(B′) for q :=
dp

d+ p
.

Let A = (aij)1≤i,j≤d be as in Theorem 3.1.2. Assume that u ∈ H1,p(B′) is a solution of

ˆ
B′

d∑
i=1

(
∂iϕ
( d∑
j=1

aij
2
∂ju+ hiu

))
+ ϕ(cu+ e) dx = 0, ∀ϕ ∈ C∞0 (B′),

Then for every ball B with B ⊂ B′, we obtain the estimate

‖u‖H1,p(B) ≤ c0(‖e‖Lq(B′) + ‖u‖L1(B′)),

where c0 <∞ is some constant independent of e and u.

Now, we will apply the standard arguments from [1] whose details have been exposed

in a very clear way in [8]. We will briefly explain (until and including Remark 3.1.7)

the line of arguments how Propositions 3.1.4 and 3.1.5 lead to elliptic regularity results

for (Gα)α>0 and (Tt)t>0 by using well-known arguments (see for instance [1], [8], or

[62]). However, as we will see later, we will slightly improve some regularity results

compared to the just mentioned papers. First, we choose an arbitrary g ∈ C∞0 (Rd),

α > 0. Applying Proposition 3.1.4 with

µ = −ρGαg dx, hi = βρ,Ai − bi, 1 ≤ i ≤ d, c = −α, f = gρ ∈ Lploc(R
d),

we obtain ρGαg ∈ H1,p
loc (Rd). Then, we apply Proposition 3.1.5 with

u = ρGαg, hi =
d∑
j=1

(
∂jaij

2
− (βρ,Ai − bi)

)
, 1 ≤ i ≤ d,

and

c = α, e = ρg ∈ Lq(B′),
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where

q :=
dp

d+ p
∈ (d/2, p/2). (3.8)

By the properties of ρ, we obtain

‖ρGαg‖H1,p(B) ≤ c0

(
‖g‖Lq(B′,m) + ‖Gαg‖L1(B′,m)

)
,

where c0 is possibly different form the constant in Proposition 3.1.5, but also doesn’t

depend on g. The last inequality is easily seen to extend to g ∈ Lr(Rd,m), r ∈ [q,∞],

using the contraction properties of (Gα)α>0. From that we then get that for any r ∈
[q,∞], α > 0

‖ρGαg‖H1,p(B) ≤ c0

(
‖g‖Lr(B′,m) + ‖Gαg‖L1(B′,m)

)
, ∀g ∈ Lr(Rd,m), (3.9)

where c0 is a constant that may be different for different α and r, but doesn’t depend

on g. Using the contraction properties of (Gα)α>0, (3.9) immediately implies

‖ρGαg‖H1,p(B) ≤ c0‖g‖Lr(Rd,m), ∀g ∈ Lr(Rd,m), (3.10)

where c0 in (3.9) may be different from c0 in (3.10) but has the same properties.

Writing T0 := id and

Ttf = G1(1− Lr)Ttf, f ∈ D(Lr), r ∈ [q,∞), t ≥ 0,

we can see by (3.9) that for any r ∈ [q,∞), t ≥ 0

‖ρ Ttf‖H1,p(B) ≤ c0‖Ttf‖D(Lr), ∀f ∈ D(Lr), (3.11)

where c0 is a constant that may be different for different r, but doesn’t depend on f .

By Morrey’s inequality applied to an arbitrary ball B, there exists a constant c > 0

independent of f such that

‖f̃‖C0,β(B) ≤ c‖f‖H1,p(B), ∀f ∈ H1,p(B),
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where f̃ on the left hand side is the unique continuous dx-version of f ∈ H1,p(B) and

β := 1− d/p. (3.12)

In our situation ρ ∈ C0,β(B) for any ball B ⊂ Rd and since infx∈B ρ(x) > 0, we obtain

that 1
ρ
∈ C0,β(B). Now for f, g ∈ C0,β(B) it holds f · g ∈ C0,β(B) and

‖f · g‖C0,β(B) ≤ ‖f‖C0,β(B)‖g‖C0,β(B). (3.13)

For any ball B, t ≥ 0, α > 0, g ∈ Lr(Rd,m), r ∈ [q,∞], f ∈ D(Lr), r ∈ [q,∞)

‖ρGαg‖H1,p(B), ‖ρTtf‖H1,p(B)

are bounded and so by Morrey’s inequality applied to each ball B and (3.13) there exist

unique locally Hölder continuous m-versions Rαg, Ptf of Gαg, Ttf , where we set

P0 := id,

with

‖Rαg‖C0,β(B) ≤ ‖ρ−1‖C0,β(B)‖ρRαg‖C0,β(B) ≤ ‖ρ−1‖C0,β(B)c ‖ρGαg‖H1,p(B)

and

‖Ptf‖C0,β(B) ≤ ‖ρ−1‖C0,β(B)c ‖ρTtf‖H1,p(B)

Applying (3.9), (3.10), (3.11) to the last two inequalities, we get for any t ≥ 0, α > 0,

g ∈ Lr(Rd,m), r ∈ [q,∞], f ∈ D(Lr), r ∈ [q,∞), and any ball B′ with B ⊂ B′

‖Rαg‖C0,β(B) ≤ c0

(
‖g‖Lr(B′,m) + ‖Gαg‖L1(B′,m)

)
, (3.14)

‖Rαg‖C0,β(B) ≤ c0‖g‖Lr(Rd,m), (3.15)

‖Ptf‖C0,β(B) ≤ c0‖Ttf‖D(Lr), (3.16)
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where c0 is a constant that may be different for different r (and different in each

inequality (3.14), (3.15), and (3.16)), but doesn’t depend on f , nor on g. We summarize

consequences of the derived estimates in the following proposition.

Proposition 3.1.6. Let t ≥ 0, α > 0 be arbitrary and q, β be defined as in (3.8),

(3.12). Then under the conditions of Theorem 3.1.2, it holds:

(i) Gαg has a locally Hölder continuous m-version

Rαg ∈ C0,β
loc (Rd), ∀g ∈

⋃
r∈[q,∞]

Lr(Rd,m).

(ii) Ttf has a locally Hölder continuous m-version

Ptf ∈ C0,β
loc (Rd), ∀f ∈

⋃
r∈[q,∞)

D(Lr).

(iii) For any f ∈
⋃
r∈[q,∞) D(Lr) the map

(x, t) 7→ Ptf(x)

is continuous on Rd × [0,∞).

Proof (i) and (ii) are direct consequences of (3.14), (3.15), (3.16). In order to show

(iii), let f ∈ D(Lr) for some r ≥ q and ((xn, tn))n≥1 be a sequence in Rd × [0,∞)

that converges to (x0, t0) ∈ Rd × [0,∞). Then there exists a ball B such that xn ∈ B
for all n ≥ 0. By (3.16) applied with t = 0 to Ptnf − Pt0f ∈ D(Lr), noting that

Lr(Ptnf −Pt0f) = PtnLrf −Pt0Lrf and using the continuity for each g ∈ Lr(Rd,m) of

t 7→ Ptg on [0,∞), we obtain that Ptnf → Pt0f in C0,β(B). Then it is clear from (ii)

that

|Ptnf(xn)− Pt0f(x0)| ≤ |Ptnf(xn)− Pt0f(xn)|+ |Pt0f(xn)− Pt0f(x0)|

converges to zero as n→∞.
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Remark 3.1.7. (i) In comparison to [1], [8], [62], we obtained in Proposition 3.1.6(i)

that (Gα)α>0 is Lr(Rd,m)-strong Feller for any r ∈ [q,∞], which is an improve-

ment to the mentioned papers since there it is only obtained for r ∈ [p,∞]. This

plays a role, since it will imply (1.2) for r = 2 . Indeed, we will see later in Lemma

3.2.4(ii) that
´ t

0
|f |2(Xs)ds is finite in the sense of (1.2), whenever f ∈ L2q

loc(Rd).

But 2q ∈ (d, p), hence Lploc(Rd) ⊂ L2q
loc(Rd).

(ii) We can use Proposition 3.1.6(i) to get a resolvent kernel and a resolvent kernel

density for any x ∈ Rd. Indeed, for any α > 0, x ∈ Rd, Proposition 3.1.6(i)

implies that

Rα(x,A) := lim
l→∞

Rα(1Bl∩A)(x), A ∈ B(Rd) (3.17)

defines a finite measure Rα(x, dy) on (Rd,B(Rd)) (such that αRα(x, dy) is a sub-

probability measure) that is absolutely continuous with respect to m. The Radon-

Nikodym derivative

rα(x, ·) :=
Rα(x, dy)

m(dy)
(3.18)

then defines the desired resolvent kernel density.

(iii) If the L2(Rd,m)-semigroup (Tt)t>0 is analytic (for instance, if the bilinear form

in (3.7) satisfies a sector condition) then by Stein interpolation (Tt)t>0 is also

analytic on Lr(Rd,m) for any r ∈ (2,∞) (cf. [62, Remark 2.5]). Hence by [56,

Ch. 2, Theorem 5.2(d)], we have for any r ∈ [2,∞), f ∈ Lr(Rd,m)

Ttf ∈ D(Lr), and ‖LrTtf‖Lr(Rd,m) ≤
const.

t
‖f‖Lr(Rd,m).

Therefore, (3.16) can be improved and extended as follows: for any r ∈ [q∨2,∞),

t > 0, f ∈ Lr(Rd,m) and any ball B

‖Ptf‖C0,β(B) ≤ c0

(
1 +

const.

t

)
‖f‖Lr(Rd,m). (3.19)
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We can then use (3.19) to get a heat kernel and a heat kernel density for any

x ∈ Rd. Indeed, for any t > 0, x ∈ Rd, (3.19) implies that

Pt(x,A) := lim
l→∞

Pt(1Bl∩A)(x), A ∈ B(Rd) (3.20)

defines a sub-probability measure Pt(x, dy) on (Rd,B(Rd)) that is absolutely con-

tinuous with respect to m. The Radon-Nikodym derivative

pt(x, ·) :=
Pt(x, dy)

m(dy)
(3.21)

then defines the desired heat kernel density. However, in general (Tt)t>0 is not

analytic and therefore we cannot impose analyticity. Moreover it is in general

difficult to check analyticity, in particular the sector condition of the corresponding

bilinear form (see for instance [62, Section 5]).

Unfortunately, by what is explained in Remark 3.1.7(iii) the semigroup estimate

(3.16) which leads to Proposition 3.1.6(ii) seems just not good enough to obtain a point-

wise heat kernel from which one could then try to build a transition function of a nice

Markov process. We will proceed by deriving more regularity in the following Theorem

3.1.8.

Theorem 3.1.8. Let A := (aij)1≤i,j≤d, G, ρ, βρ,A, and B be as in Theorem 3.1.2. For

each s ∈ [1,∞], consider the Ls(Rd,m)-semigroup (Tt)t>0. Then for any f ∈ Ls(Rd,m)

and t > 0, Ttf has a continuous m-version Ptf on Rd. More precisely, P·f(·) is locally

parabolic Hölder continuous on Rd × (0,∞) and for any bounded open sets U , V in

Rd with U ⊂ V and 0 < τ3 < τ1 < τ2 < τ4, i.e. [τ1, τ2] ⊂ (τ3, τ4), we have for some

γ ∈ (0, 1) the following estimate for all f ∈ ∪s∈[1,∞]L
s(Rd,m) with f ≥ 0,

‖P·f(·)‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ C6‖P·f(·)‖L1(V×(τ3,τ4),m⊗dt), (3.22)

where C6, γ are constants that depend on U × [τ1, τ2], V × (τ3, τ4), but are independent

of f .

Proof First assume f ∈ C∞0 (Rd), f ≥ 0 and set u(x, t) := ρ(x)Ptf(x). Then f ∈ D(Lp)

and by Proposition 3.1.6(iii) Ptf(x) is jointly continuous on Rd× [0,∞). Therefore the
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same is true for u(x, t). Let L̂ be as in (3.6) and T > 0 be arbitrary. Then exactly as

in [10, (4.7)] (note that there the underlying measure m = µ is a probability measure

but it doesn’t matter), we get for any ϕ ∈ C∞0 (Rd × (0, T ))

0 = −
ˆ T

0

ˆ
Rd

(
∂tϕ+ L̂ϕ

)
u dxdt. (3.23)

Note that u ∈ H1,2(O × (0, T )) for any bounded and open set O ⊂ Rd. We can hence

use integration by parts in the right hand term of (3.23) and see that

0 =

ˆ T

0

ˆ
Rd

(
1

2
〈A∇u,∇ϕ〉+ u〈β,∇ϕ〉 − u∂tϕ

)
dxdt,

where β := 1
2
∇A+ G− 2βρ,A ∈ Lploc(Rd,Rd), (∇A)i :=

∑d
j=1 ∂jaij, 1 ≤ i ≤ d.

Let τ ∗2 := τ2+τ4
2

and take r > 0 so that

r < min

(
1

9

√
τ4 − τ2

14
,
1

9

√
τ1

2

)
and Rx̄(9r) ⊂ V, ∀x̄ ∈ U.

Then for all (x̄, t̄) ∈ U × [τ1, τ
∗
2 ], we have t̄− 2(9r)2 > 0 and

Rx̄(9r)× (t̄+ 6(9r)2, t̄+ 7(9r)2)) ⊂ V × (τ3, τ4).

Using [2, Theorem 4], for any (x, t), (y, s) ∈ Rx̄(r)× (t̄− r2, t̄) we have

|u(x, t)− u(y, s)| ≤ C1r
−γ
(
‖x− y‖+

√
|t− s|

)γ
sup

Rx̄(3r)×(t̄−(3r)2,t̄)

u,

where C1 and γ ≤ 1 − d
p

are constants independent of f , r and (x̄, t̄). Thus u ∈
Cγ; γ

2

(
R̄r(x̄)× [t̄− r2, t̄]

)
and

‖u‖
Cγ;

γ
2

(
R̄r(x̄)×[t̄−r2,t̄]

) ≤ (1 + C1r
−γ) sup

Rx̄(3r)×(t̄−(3r)2,t̄)

u.

Using the compactness of U × [τ1, τ2], there exist (xi, ti) ∈ U × [τ1, τ
∗
2 ], i = 1, . . . , N ,
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such that

U × [τ1, τ2] ⊂
N⋃
i=1

Rxi(r)× (ti − r2, ti) =: Q.

Take a smooth partition of unity (φi)i=1,...,N subordinate to (Rxi(r)× (ti − r2, ti))i=1,...,N .

For each 1 ≤ i ≤ N , φiu ∈ Cγ; γ
2 (Q), so that u =

∑N
i=1 φiu in U × [τ1, τ2] implies

u ∈ Cγ; γ
2 (U × [τ1, τ2]). Furthermore, we have

‖u‖
Cγ;

γ
2 (U×[τ1,τ2])

≤
N∑
i=1

‖φiu‖Cγ;
γ
2 (U×[τ1,τ2])

≤
N∑
i=1

‖φiu‖Cγ;
γ
2 (Q)

≤
N∑
i=1

‖φi‖Cγ;
γ
2 (Q)
‖u‖

Cγ;
γ
2

(
R̄r(xi)×[ti−r2,ti]

)
≤

(
N∑
i=1

‖φi‖Cγ;
γ
2 (Q)
· (1 + C1r

−γ)

)
︸ ︷︷ ︸

:=C2

· max
1≤i≤N

(
sup

Rxi(3r)×(ti−(3r)2,ti)

u

)
.

(3.24)

Then, by [2, Theorem 2], for each 1 ≤ i ≤ N

sup
Rxi (3r)×(ti−(3r)2,ti)

u ≤ C3‖u‖L2(Rxi(9r)×(ti−(9r)2,ti))

≤ C3(18r)
d
2 · (9r) sup

Rxi (9r)×(ti−(9r)2,ti)

u

≤ C3(18r)
d
2 · (9r) · C4 inf

Rxi (9r)×(ti+6(9r)2,ti+7(9r)2)
u

≤ C3C4(18r)−
d
2 · (9r)−1‖u‖L1(Rxi (9r)×(ti+6(9r)2,ti+7(9r)2))

≤ C3C4(18r)−
d
2 (9r)−1︸ ︷︷ ︸

:=C5

‖u‖L1(V×(τ3,τ4)), (3.25)

where C3 and C4 are constants which are independent of f and xi. Combining (3.24),
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(3.25) we have for s ∈ [1,∞)

‖P·f(·)‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ ‖ρ−1‖Cγ(U×[τ1,τ2])‖ρ(·)P·f(·)‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ ‖ρ−1‖Cγ(U×[τ1,τ2])C2C5︸ ︷︷ ︸
:=C6

‖P·f(·)‖L1(V×(τ3,τ4),m⊗dt)

≤ C6(τ4 − τ3)‖ρ‖
s−1
s

L1(V )‖f‖Ls(Rd,m). (3.26)

For f ∈ Ls(Rd,m) define

P·f(·) := lim
n→∞

P·fn(·) in Cγ; γ
2 (U × [τ1, τ2]), (3.27)

where (fn)n≥1 ⊂ C∞0 (Rd) is any sequence converging to f in Ls(Rd,m). Then P·f(·)
is well-defined, i.e. independent of the choice of (fn)n≥1, and (3.26) (including all

intermediate inequalities) extends to f ∈ Ls(Rd,m). In particular, (3.22) holds for

f ∈ Ls(Rd,m), f ≥ 0, s ∈ [1,∞).

Moreover, given f ∈ Ls(Rd,m) and fn ∈ C∞0 (Rd) with fn → f in Ls(Rd,m), for each

t > 0 we have Ttfn → Ttf in Ls(U,m) and also Ptfn → Ptf in Ls(U,m) by (3.27) holds

for s ∈ [1,∞). Thus

Ptf = Ttf m-a.e. on U for each t > 0. (3.28)

This holds for arbitrary bounded open U , hence also on Rd. Thus Ptf is an m-version

of Ttf .

For f ∈ L∞(Rd,m), take fn := 1Bn · f with n ≥ 1. Then for each t > 0,

Ttf = lim
n→∞

Ttfn = lim
n→∞

Ptfn, m-a.e. on Rd. (3.29)

For each fixed (x, t) ∈ V × (τ3, τ4), (Ptfn(x))n≥1 is an increasing sequence of real

numbers that is bounded by one by the sub-Markovian property and continuity of

z 7→ Ptfn(z). Thus (3.22) for s = 1 and Lebesgue’s dominated convergence theorem

imply that (P·fn(·))n≥1 is a Cauchy sequence in Cγ; γ
2 (U × [τ1, τ2]). Hence we can again

define

P·f(·) := lim
n→∞

P·fn(·) in Cγ; γ
2 (U × [τ1, τ2])
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and (3.22) also holds for s =∞. Moreover for each t > 0, Ptfn converges uniformly to

Ptf in U , hence in view of (3.29), (3.28) also holds for s =∞. Since U is an arbitrary

bounded open subset in Rd, we have hence shown that for any f ∈ ∪s∈[1,∞]L
s(Rd,m),

P·f(·) is locally parabolic Hölder continuous in Rd×(0,∞) and for each t > 0, Ptf = Ttf

m-a.e. on Rd.

Remark 3.1.9. (i) (3.22) easily implies for any s ∈ [1,∞], f ∈ Ls(Rd,m), t > 0 (cf.

for instance (3.26) for s ∈ [0,∞) and use the sub-Markovian property for s =∞) that

‖Ptf‖C0,γ(U) ≤ C6(τ4 − τ3)‖ρ‖
s−1
s

L1(V ) · ‖f‖Ls(Rd,m), (3.30)

where s−1
s

:= 1 for s =∞. (3.30) is an improvement over (3.19) in regard to analyticity,

which is no more required for (3.30), and in regard to the integrability order which is

s ∈ [1,∞] for (3.30) but r ∈ [q∨2,∞) for (3.19). Only the Hölder exponent γ in (3.30)

depends on the domain and may vary, whereas in (3.19) it is always β as in (3.12),

independently of the domain.

Using Theorem 3.1.8, we can define Pt(x,A) as in (3.20) and we see that there exist

unique sub-probability measures Pt(x, dy) on (Rd,B(Rd)), absolutely continuous with

respect to m and with Radon-Nikodym derivatives pt(x, ·) defined by (3.21).

(ii) Let A := (aij)1≤i,j≤d, G, ρ, βρ,A, and B be as in Theorem 3.1.2, but suppose

p > d + 2 and that m is a probability measure. In this case similar results to Theorem

3.1.8 and the following Proposition 3.1.10(ii) and some additional structure with respect

to duality is derived in [10, Theorem 4.1]. The technique of proof is different to ours but

also applies if m is not restricted to be a probability measure (cf. [10, Remark 4.2(ii)]).

However, we insist that Kt(x, dy) as occurring in [10, Remark 4.2(ii)] is in contrast to

what is mentioned in [10, Remark 4.2(ii)] always a sub-probability measure and hence

finite and moreover in case of merely locally finite measure only the L1(Rd,m)-strong

Feller property follows, whereas we derive the L[1,∞](Rd,m)-strong Feller property (see

Theorem 3.1.8 and Proposition 3.1.10 for the definition), that includes the classical

strong Feller property.

(iii) As opposed to [1, Proposition 3.8], we do not need the condition αRα1Rd ≡ 1 in

order to derive the classical strong Feller property of (Pt)t>0. Also in [85], non-explosion
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(see (4.2) below) is used to obtain the classical strong Feller property.

Using Theorem 3.1.8, we obtain the following improvement of Proposition 3.1.6:

Proposition 3.1.10. Let t > 0, α > 0 be arbitrary. Let q, β be defined as in (3.8),

(3.12), rα(x, y) as in Remark 3.1.7, and pt(x, y) as in Remark 3.1.9. Then under the

conditions of Theorem 3.1.2, it holds:

(i) Gαg has a locally Hölder continuous m-version of order β = 1− d/p

Rαg =

ˆ
Rd
f(y)Rα(·, dy) =

ˆ
Rd
f(y)rα(·, y)m(dy), ∀g ∈

⋃
r∈[q,∞]

Lr(Rd,m). (3.31)

In particular, (3.31) extends by linearity to all g ∈ Lq(Rd,m) + L∞(Rd,m), i.e.

(Rα)α>0 is L[q,∞](Rd,m)-strong Feller.

(ii) Ttf has a continuous m-version

Ptf =

ˆ
Rd
f(y)Pt(·, dy) =

ˆ
Rd
f(y)pt(·, y)m(dy), ∀f ∈

⋃
s∈[1,∞]

Ls(Rd,m). (3.32)

(Ptf is locally Hölder continuous of order β = 1 − d/p, if f ∈
⋃
r∈[q,∞) D(Lr))

and locally Hölder continuous with possibly changing Hölder exponents, if f ∈⋃
s∈[1,∞] L

s(Rd,m) \
⋃
r∈[q,∞)D(Lr). In particular, (3.32) extends by linearity to

all f ∈ L1(Rd,m) + L∞(Rd,m), i.e. (Pt)t>0 is L[1,∞](Rd,m)-strong Feller.

Finally, for any α > 0, x ∈ Rd, g ∈ Lq(Rd,m) + L∞(Rd,m)

Rαg(x) =

ˆ ∞
0

e−αtPtg(x) dt.

Proof Fix α > 0, t > 0, x ∈ Rd. Let A ∈ B(Rd). Using (3.17), (3.18), monotone

integration and (3.14), we can see that

ˆ
Rd

1A(y)rα(x, y)m(dy) =

ˆ
1A(y)Rα(x, dy) = lim

l→∞
Rα(1Bl∩A)(x) = Rα1A(x). (3.33)
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Using (3.20), (3.21), monotone integration and (3.22) (cf. proof of Theorem 3.1.8) , we

can see that
ˆ
Rd

1A(y)pt(x, y)m(dy) =

ˆ
Rd

1A(y)Pt(x, dy) = lim
l→∞

Pt1Bl∩A(y) = Pt1A(x). (3.34)

(3.33), resp. (3.34) extends to g ∈ Lr(Rd,m), r ∈ [q,∞], resp. g ∈ Ls(Rd,m), s ∈
[1,∞] in the following way. Split g, f in positive and negative parts. We may hence

assume that g, f are positive. Then we use a monotone approximation of g, resp. f with

simple functions involving indicator functions like above, i.e. there exists an increasing

sequence of simple functions (gn)n≥1 with 0 ≤ gn ↗ g, resp. (fn)n≥1 with 0 ≤ fn ↗ f .

By this we can use monotone integration for the two left hand terms of (3.33), resp.

(3.34), and (3.14), resp. (3.22) for the left hand term. Thus (i) and (ii) follow.

The last statement follows similarly noting that for A ∈ B(Rd)

Rα1A =

ˆ ∞
0

e−αtPt1A dt

m-a.e. hence everywhere since both sides define continuous functions and we can as

before use monotone integration as well as (3.14) and (3.22) to prove the remaining

assertion.

Remark 3.1.11. We obtain analogously to [1] that (Pt)t>0 defined on

L∞(Rd,m) = L∞(Rd) ⊃ Bb(Rd)

determines a (temporally homogeneous) sub-markovian transition function (cf. [17,

1.2]). Thus (Pt)t>0 satisfies condition (H1) of [66]. Moreover, Ptf , t > 0, is by Propo-

sition 3.1.10(ii) independent of the m-version chosen for f ∈ L∞(Rd,m).
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3.2 Construction of a weak solution

By the results of [78, Section 4.1], the generalized Dirichlet form E associated with

(L2, D(L2)) is strictly quasi-regular. In particular, by [78, Theorem 6] there exists a

Hunt process

M̃ = (Ω̃, F̃ , (F̃)t≥0, (X̃t)t≥0, (P̃x)x∈Rd∪{∆})

with life time ζ̃ := inf{t ≥ 0 | X̃t = ∆} and cemetery ∆ such that E is (strictly properly)

associated with M̃.

For some fixed ϕ ∈ L1(Rd,m)b, 0 < ϕ ≤ 1, consider the strict capacity cap1,Ĝ1ϕ
of E

as defined in [78, Definition 1]. Due to the properties of smooth measures with respect

to cap1,Ĝ1ϕ
in [78, Section 3] one can consider the work [79] with capϕ (as defined in

[79]) replaced by cap1,Ĝ1ϕ
. In particular [79, Theorem 3.10 and Proposition 4.2] apply

with respect to the strict capacity cap1,Ĝ1ϕ
and therefore the paths of M̃ are continuous

P̃x-a.s. for strictly E-q.e. x ∈ Rd on the one-point-compactification Rd
∆ of Rd with ∆ as

point at infinity, i.e. for strictly E-q.e. x ∈ Rd,

P̃x
({

ω ∈ Ω̃ | X̃·(ω) ∈ C
(
[0,∞),Rd

∆

)
, X̃·(ω) = ∆ ∀t ≥ ζ(ω)

})
= 1.

We may hence assume that

Ω̃ = {ω = (ω(t))t≥0 ∈ C([0,∞),Rd
∆) | ω(t) = ∆ ∀t ≥ ζ(ω)}

and

X̃t(ω) = ω(t), t ≥ 0.

Now, we can apply the Dirichlet form method of [66, Section 2.1.2]. There it was only

developed in a symmetric setting. But here we are in the non-sectorial setting. However

one can readily check that it works nearly in the same way using Lemma 3.1.1 instead

of [66, Lemma 2.5(i)] and modifying (H2)′ of [66, Section 2.1.2] in the following way:
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(H2)′ We can find {un | n ≥ 1} ⊂ D(L1) ∩ C0(Rd) satisfying:

(i) For all ε ∈ Q ∩ (0, 1) and y ∈ D, where D is any given countable dense set in

Rd, there exists n ∈ N such that un(z) ≥ 1, for all z ∈ B ε
4
(y) and un ≡ 0 on

Rd \B ε
2
(y),

(ii) R1

(
[(1− L1)un]+

)
, R1

(
[(1− L1)un]−

)
, R1

(
[(1− L1)u2

n]+
)
, R1

(
[(1− L1)u2

n]−
)

are

continuous on Rd for all n ≥ 1,

and

(iii) R1C0(Rd) ⊂ C(Rd),

(iv) For any f ∈ C0(Rd) and x ∈ Rd, the map t 7→ Ptf(x) is right-continuous on

(0,∞).

It is well known that u ∈ D(L2) such that u, L2u ∈ Lr(Rd,m) for some r ∈ [1,∞)

implies u ∈ D(Lr). Hence C2
0(Rd) ⊂ D(L1) ∩ C0(Rd) and moreover obviously (1 −

L1)u, (1 − L1)u2 ∈ Lp(Rd)0 for any u ∈ C2
0(Rd). Consequently, by Theorem 3.1.8 and

Proposition 3.1.10, (H2)′ is satisfied for some countable subset of C2
0(Rd).

Therefore, we obtain:

Theorem 3.2.1. There exists a Hunt process

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈Rd∪{∆})

with state space Rd and life time

ζ = inf{t ≥ 0 |Xt = ∆} = inf{t ≥ 0 |Xt /∈ Rd},

having the transition function (Pt)t≥0 as transition semigroup, such that M has contin-

uous sample paths in the one point compactification Rd
∆ of Rd with the cemetery ∆ as

point at infinity, i.e. for all x ∈ Rd,

Px
({

ω ∈ Ω | X·(ω) ∈ C
(
[0,∞),Rd

∆

)
, X·(ω) = ∆ ∀t ≥ ζ(ω)

})
= 1.
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Remark 3.2.2. Checking the details of [1, Section 4] one by one with possibly only few

modifications one may possibly also obtain Theorem 3.2.1.

Lemma 3.2.3. Let Ex denote the expectation with respect to Px, x ∈ Rd.

(i) For any x ∈ Rd, α > 0, t > 0, we have

Rαg(x) =

ˆ
Rd
rα(x, y)g(y)m(dy) = Ex

[ˆ ∞
0

e−αsg(Xs)ds

]
,

for any g ∈ Lq(Rd,m) + L∞(Rd,m), and

Ptf(x) =

ˆ
Rd
pt(x, y)f(y)m(dy) = Ex [f(Xt)] ,

for any f ∈ L1(Rd,m) + L∞(Rd,m).

In particular, integrals of the form
´∞

0
e−αsh(Xs)ds,

´ t
0
h(Xs)ds, t ≥ 0 are for any

x ∈ Rd, whenever they are well-defined, Px-a.s. independent of the measurable m-

version chosen for h.

(ii) Let g ∈ Lr(Rd,m) for some r ∈ [q,∞]. Then for any ball B there exists a constant

cB,r, depending in particular on B and r, such that for all t ≥ 0

sup
x∈B

Ex
[ˆ t

0

|g|(Xs) ds

]
< etcB,r‖g‖Lr(Rd,m). (3.35)

(iii) Let u ∈ D(Lr), for some r ∈ [q,∞) and α > 0, t > 0. Then for any x ∈ Rd

Rα

(
(α− Lr)u

)
(x) = u(x),

and

Ptu(x)− u(x) =

ˆ t

0

Ps(Lru)(x) ds.

Proof (i) By Remark 3.1.11 and Theorem 3.2.1, we have for any t > 0, x ∈ Rd,
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h ∈ L∞(Rd,m)

Pth(x) =

ˆ
Rd
pt(x, y)h(y)m(dy) = Ex [h(Xt)] , (3.36)

and the expressions in (3.36) are all well-defined, i.e. do not change in value for any

m-version of h. Now the resolvent and semigroup representations follow by splitting

functions in g ∈
⋃
r∈[q,∞] L

r(Rd,m) and f ∈
⋃
s∈[1,∞] L

s(Rd,m) into their positive and

negative parts, using monotone approximations of these with functions in L∞(Rd,m)

and finally linearity, which is possible since all expressions are finite by Proposition

3.1.10. In particular, the limits will as the original expressions in (3.36) also not depend

on the chosen m-versions, which concludes the proof.

(ii) Using in particular (i) and (3.15), we get

sup
x∈B

Ex
[ˆ t

0

|g|(Xs) ds

]
≤ et sup

x∈B
Ex
[ˆ ∞

0

e−s|g|(Xs) ds

]
= et sup

x∈B
R1|g|(x) ≤ etcB‖g‖Lr(Rd,m).

Using (i), the proof of (iii) works exactly as in [1, Lemma 5.1]. However, we emphasize

that due to the increased regularity r ≥ q from (i) (coming from Proposition 3.1.6) in

comparison to r ≥ p in [1], we obtain more general statements in (ii) and (iii).

For A ∈ B(Rd), define

σA := inf{t > 0 : Xt ∈ A}

and

σn := σRd\Bn , n ≥ 1.

Lemma 3.2.4. (i) For any x ∈ Rd, we have

Px
(

lim
n→∞

σn ≥ ζ
)

= 1.
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(ii) For any x ∈ Rd, t ≥ 0, we have

Px
(ˆ t

0

|f |(Xs)ds <∞
)

= 1, if f ∈
⋃

r∈[q,∞]

Lr(Rd,m)

and if f ∈ Lqloc(Rd,m)

Px
({ˆ t

0

|f |(Xs)ds <∞
}
∩ {t < ζ}

)
= Px ({t < ζ}) ,

Proof (i) By Proposition 3.1.10 and Lemma 3.2.3(i), we have that

E·
[´∞

0
e−αsg(Xs)ds

]
is an m-version of Gαg, for all α > 0 and g ∈ L∞(Rd,m). It hence

follows by [68, IV. Theorem 3.1] (or [78, Proposition 2(ii)]) that E is quasi-regular.

Therefore by [68, IV. Definition 1.7] there exists an E-nest (Ek)k≥1 of compact subsets

of Rd. Then [68, IV. Lemma 3.10] implies, Px
(

limk→∞ σRd\Ek ≥ ζ
)

= 1 for E-q.e.

x ∈ Rd, hence in particular for m-a.e. x ∈ Rd by [68, III. Remark 2.6]. Since (Bn)n≥1

is an open cover of Ek for each k, and σA ≤ σB whenever B ⊂ A, we then obtain

Px
(

limn→∞ σn ≥ ζ
)

= 1 for m-a.e. x ∈ Rd. Now the result follows exactly as in [62,

Lemma 3.3].

(ii) The first statement immediately follows from Lemma 3.2.3(ii). For the second state-

ment it is enough to show that for any t ≥ 0 and x ∈ Rd

Px
(

1{t<ζ}

ˆ t

0

|f |(Xs)ds <∞
)

= 1, if f ∈ Lqloc(R
d,m). (3.37)

It holds Px(n ∧ σn < ζ) = 1 for any n ≥ 1 and x ∈ Rd, since M has continuous sample

paths on the one-point-compactification Rd
∆. Thus using (i), we get that the left hand

side of (3.37) equals

lim
n→∞

Px
(

1{t<n∧σn}

ˆ t

0

|f |(Xs)ds <∞
)
. (3.38)

Now, fix x ∈ Rd. Then there exists N0 ∈ N with x ∈ Bn for any n ≥ N0. Consequently,

for any n ≥ N0 we have Px-a.s. that Xs ∈ Bn for any s ∈ [0, t], if t < σn. It follows
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with the help of Lemma 3.2.3(ii)

Ex
[
1{t<n∧σn}

ˆ t

0

|f |(Xs)ds
]
≤ Ex

[ˆ t

0

|f |1Bn(Xs)ds

]
<∞, ∀n ≥ N0.

Thus each sequence member in (3.38) is equal to one and therefore (3.37) holds.

Proposition 3.2.5. Let u ∈ D(Lr), for some r ∈ [q,∞). Then

Mu
t := u(Xt)− u(x)−

ˆ t

0

Lru(Xs) ds, t ≥ 0.

is a continuous (Ft)t≥0-martingale under Px for any x ∈ Rd. If r ≥ 2q, then Mu is

square integrable.

Proof The first result is an immediate consequence of Lemma 3.2.3 (see for instance

[19, Chapter 7, (1.6) Theorem]). The second follows from Lemma 3.2.3(i) and (ii).

Proposition 3.2.6. Let u ∈ C2
0(Rd), t ≥ 0. Then the quadratic variation process 〈Mu〉

of the continuous martingale Mu satisfies Px-a.s for any x ∈ Rd, t ≥ 0

〈Mu〉t =

ˆ t

0

〈A∇u,∇u〉(Xs)ds.

In particular, by Lemma 3.2.3(ii) 〈Mu〉t is Px-integrable for any x ∈ Rd, t ≥ 0 and so

Mu is square integrable.

Proof For g ∈ C2
0(Rd), we have g ∈ D(Lr) and L1g = Lrg for any r ∈ [1, p]. Thus for

u ∈ C2
0(Rd), we get by Proposition 3.2.5 and Lemma 3.1.1

u2(Xt)− u2(x) = Mu2

t +

ˆ t

0

(
〈A∇u,∇u〉(Xs) + 2uL1u(Xs)

)
ds.
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Applying Itô’s formula to the continuous semimartingale (u(Xt))t≥0, we obtain

u2(Xt)− u2(x) =

ˆ t

0

2u(Xs)dM
u
s +

ˆ t

0

2uLru(Xs) ds+ 〈Mu〉t.

The last two equalities imply that
(
〈Mu〉t −

´ t
0
〈A∇u,∇u〉(Xs)ds

)
t≥0

is a continuous

Px-martingale of bounded variation for any x ∈ Rd. This implies the assertion.

For the following result, see for instance [16, Theorem 1.1, Lemma 2.1], that we can

apply locally.

Lemma 3.2.7. Under the assumptions of Theorem 3.1.2 on the diffusion matrix A,

there exists a unique matrix of functions σ = (σij)1≤i,j≤d with σij ∈ C(Rd) for all i, j

such that

A(x) = σ(x)σT (x), ∀x ∈ Rd,

i.e.

aij(x) =
d∑

k=1

σik(x)σjk(x), ∀x ∈ Rd, 1 ≤ i, j ≤ d.

and

det(σ(x)) > 0, ∀x ∈ Rd.

Theorem 3.2.8. Let A := (aij)1≤i,j≤d, G, be as in Theorem 3.1.2. Consider the Hunt

process M from Theorem 3.2.1 with coordinates Xt = (X1
t , ..., X

d
t ) and suppose that M

is non-explosive, i.e.

Px(ζ =∞) = 1 for any x ∈ Rd.

(i) Let (σij)1≤i,j≤d be as in Lemma 3.2.7. Then it holds Px-a.s. for any x = (x1, ..., xd) ∈
Rd, i = 1, . . . , d

X i
t = xi +

d∑
j=1

ˆ t

0

σij(Xs) dW
j
s +

ˆ t

0

gi(Xs) ds, 0 ≤ t <∞, (3.39)
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in short

Xt = x0 +

ˆ t

0

σ(Xs)dWs +

ˆ t

0

G(Xs)ds, 0 ≤ t <∞,

where W = (W 1, . . . ,W d) is a standard d-dimensional Brownian motion starting

from zero.

(ii) Let (σij)1≤i≤d,1≤j≤l, l ∈ N arbitrary but fixed, be any matrix consisting of contin-

uous functions σij ∈ C(Rd) for all i, j, such that A = σσT (where A satisfies the

assumptions of Theorem 3.1.2), i.e.

aij(x) =
l∑

k=1

σik(x)σjk(x), ∀x ∈ Rd, 1 ≤ i, j ≤ d.

Then on a standard extension of (Ω,F , (Ft)t≥0,Px), x ∈ Rd, that we denote for

notational convenience again by (Ω,F , (Ft)t≥0,Px), x ∈ Rd, there exists a stan-

dard l-dimensional Brownian motion W = (W 1, . . . ,W l) starting from zero such

that (3.39) holds with
∑d

j=1 replaced by
∑l

j=1.

Proof (i) Consider the stopping times

Dn := DRd\Bn := inf{t ≥ 0 : Xt ∈ Rd \Bn} n ≥ 1.

Since M is non-explosive, it follows from Lemma 3.2.4(i) that Dn ↗∞ Px-a.s. for any

x ∈ Rd. Let v ∈ C2(Rd). Then we claim that

M v
t := v(Xt)− v(x)−

ˆ t

0

(
1

2

d∑
i,j=1

aij∂i∂jv +
d∑
i=1

gi∂iv

)
(Xs) ds, t ≥ 0,

is a continuous square integrable local Px-martingale with respect to the stopping times

(Dn)n≥1 for any x ∈ Rd. Indeed, let (vn)n≥1 ⊂ C2
0(Rd) be such that vn = v pointwise

on Bn, n ≥ 1. Then for any n ≥ 1, we have Px-a.s

M v
t∧Dn = M vn

t∧Dn , t ≥ 0,
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and (M vn
t∧Dn)t≥0 is a square integrable Px-martingale for any x ∈ Rd by Proposition

3.2.6. Now let ui ∈ C2(Rd), i = 1, . . . , d, be the coordinate projections, i.e. ui(x) = xi.

Then by Proposition 3.2.6, polarization and localization with respect to (Dn)n≥1, the

quadratic covariation processes satisfy

〈Mui ,Muj〉t =

ˆ t

0

aij(Xs) ds, 1 ≤ i, j ≤ d, t ≥ 0.

Using Lemma 3.2.7 we obtain by [34, II. Theorem 7.1] that there exists a d-dimensional

Brownian motion (Wt)t≥0 = (W 1
t , . . . ,W

d
t )t≥0 on (Ω,F , (Ft)t≥0,Px), x ∈ Rd, such that

Mui
t =

d∑
j=1

ˆ t

0

σij(Xs) dW
j
s , 1 ≤ i ≤ d, t ≥ 0. (3.40)

Since for any x ∈ Rd, Px-a.s.

Mui
t = X i

t − xi −
ˆ t

0

gi(Xs) ds, t ≥ 0, (3.41)

the assertion follows.

(ii) The proof of (ii) is similar to the proof of (i) but uses [34, II. Theorem 7.1’] instead

of [34, II. Theorem 7.1] (see [34, IV. Proposition 2.1])

Remark 3.2.9. Theorem 3.2.8 holds in general only up to ζ, when one does not impose

non-explosion. Here, we only sketch in detail the proof in case of Theorem 3.2.8(i). (The

case of Theorem 3.2.8(ii) is nearly the same but one has to work on a standard extension

of the underlying probability space). One first uses that for vk ∈ C2
0(Rd), 1 ≤ k ≤ d,

one has by Proposition 3.2.6

〈M vk ,M vl〉t =

ˆ t

0

Φkl(Xs) ds, 1 ≤ k, l ≤ d, t ≥ 0,
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where Φkl =
∑d

i,j=1 aij∂jvk∂ivl, so that

Φkl =
d∑

m=1

ΨkmΨlm, with Ψkm =
d∑
i=1

σim∂ivk, 1 ≤ k, l,m ≤ d.

Note that we then do no longer have

det((Ψkm)1≤k,m≤d) 6= 0 (3.42)

globally as opposed to Lemma 3.2.7. However, choosing vk(x) = vnk (x) = xk on Bn,

1 ≤ k ≤ d, n ≥ 1, we can obtain (3.42) locally on Bn, hence (3.40) locally on {t ≤ Dn}
for each n ≥ 1. Consequently, we also get (3.41) locally on {t ≤ Dn} for each n ≥ 1.

Then showing consistency of the local martingale and drift parts, we obtain (3.39) up

to ζ by Lemma 3.2.4(i).
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Chapter 4

Conservativeness and ergodic

properties

In this chapter, we investigate long time behavior like non-explosion (conservativeness),

recurrence and ergodicity. We also investigate some moment inequalities that are well-

known for classical Itô-SDEs with continuous coefficients. We saw in Theorem 3.2.8

and Remark 3.2.9 that we can obtain a weak solution up to the life time ζ. We first

provide explicit non-explosion criteria, i.e. explicit criteria that imply the assumption

Px(ζ =∞) = 1 for any x ∈ Rd

of Theorem 3.2.8.

4.1 Non-explosion criteria and moment inequalities

4.1.1 Non-explosion criteria and moment inequalities without

involving the density ρ

In this subsection we consider non-explosion criteria that only depend on the coefficients

of the underlying SDE. We first derive a lemma that is a variant of the construction in

[12, page 197] and then a non-explosion criterion by following a probabilistic technique

which traces back at least to [71, 10.2].
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Lemma 4.1.1. Let f ∈ C2(Rd) be a positive, strictly increasing and unbounded radial

function, i.e. f ≥ 0 pointwise, f(x) ≡ cr on ∂Br with 0 < cr < cr′ whenever 0 < r < r′,

and inf∂Bn f →∞ as n→∞. Suppose that there exist M > 0, N0 ∈ N such that

Lf ≤Mf a.e. on Rd \BN0 .

Let φ ∈ C2(R), such that φ, φ′ ≥ 0 pointwise, such that

φ(t) =

{
supBN0

f if t ≤ supBN0
f,

t if t ≥ supBN0+1
f,

and let for arbitrary α ≥ 0

ψ := φ ◦ f + Cφ,A + α,

where

Cφ,A := M
(
cφ sup

BN0+1

f +
cφ

2M
sup
BN0+1

〈A∇f,∇f〉
)

and

cφ := sup
BN0+1\BN0

φ′ ◦ f + sup
BN0+1\BN0

|φ′′ ◦ f |.

Then ψ ∈ C2(Rd), ψ > 0 pointwise, inf∂Bn ψ ↗∞ as n→∞, n ≥ N0, and

Lψ ≤Mψ a.e. on Rd.

Proof Using the formula

L(φ(f)) = φ′(f)Lf +
1

2
φ′′(f)〈A∇f,∇f〉.

the assertion is easily verified.

Theorem 4.1.2. Suppose that (1.3) holds. Then

Px(ζ =∞) = 1 for any x ∈ Rd.
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Proof We first show the statement corresponding to (1.3). Let un ∈ C2
0(Rd), n ≥ 1,

be positive functions such that

un(x) =

{
‖x‖2 if x ∈ Bn,

0 if x ∈ Rd \Bn+1.

Then by Proposition 3.2.5

Y n
t := un(Xt), t ≥ 0,

is a positive continuous Px-semimartingale for any x ∈ Rd, n ≥ 1.

Let f(x) = ln(‖x‖2 + 1) + 1, x ∈ Rd and let ψ, φ and Cφ,A be as in Lemma 4.1.1 with

α = 0. By Itô’s formula applied to Y n with the function e−Mtϕ(y),

ϕ(y) := φ(ln(1 + y) + 1) + Cφ,A,

we obtain Px-a.s. for any x ∈ Bn

e−Mtϕ(Y n
t ) = ϕ(Y n

0 ) +

ˆ t

0

e−Msϕ′(Y n
s )dMun

s +

ˆ t

0

e−Ms(L−M)(ϕ ◦ un)(Xs) ds.

Note that (L −M)(ϕ ◦ un) = (L −M)ψ ≤ 0 m-a.e. on Bn for each n ≥ 1. Therefore,

using the last part of Lemma 3.2.3(i), we can see that

e−Mt∧σnϕ ◦ un(Xt∧σn), t ≥ 0,

is a positive continuous Px-supermartingale for any x ∈ Bn, n ≥ 1. Since M has

continuous sample paths on the one-point-compactification Rd
∆, we have that ‖Xt∧σn‖ =

n Px-a.s. on {σn ≤ t} for any x ∈ Bn. Now let x ∈ Rd be arbitrary. Then x ∈ Bk0 for

some k0 ∈ N and since supermartingales have decreasing expectations, we get for any
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n > k0

φ
(
ln(‖x‖2 + 1) + 1

)
+ Cφ,A = Ex[ϕ ◦ un(X0)]

≥ Ex[e−Mt∧σnϕ ◦ un(Xt∧σn)]

≥ e−MtEx[ϕ ◦ un(Xt∧σn)1{σn≤t}]

≥ e−Mt
(
φ
(
ln(n2 + 1) + 1

)
+ Cφ,A

)
Px(σn ≤ t).

Consequently

Px(ζ ≤ t) = lim
n→∞

Px(σn ≤ t) = 0

for any t ≥ 0, which implies the assertion.

Remark 4.1.3. (i) Suppose that for the semigroup (Tt)t>0 defined on L∞(Rd,m) it

holds

Tt1Rd = 1 m-a.e. for some (and hence all) t > 0. (4.1)

Then, since Tt1Rd = Pt1Rd m-a.e. and Pt1Rd is continuous by the strong Feller property

(cf. Proposition 3.1.10(ii))

Pt1Rd(x) = 1 for any x ∈ Rd, t > 0, or equivalently M is non-explosive. (4.2)

(ii) Using (i), the non-explosion criterion (1.3) can be recovered form the dual version

of [69, Proposition 1.10]. Indeed, (4.1) holds, if and only if m is invariant for the

L1(Rd,m)-semigroup (T̂t)t>0. Then Theorem 4.1.2 follows by applying the dual version

of [69, Proposition 1.10(b)] to the C2-function ψ as defined in the proof of Theorem

4.1.2 and then using (4.2).

As a further example consider the following condition: for some N0 ∈ N ∪ {0}(
‖x‖

‖x‖ −N0

− 1

2
− 3(‖x‖ −N0)2‖x‖

2(‖x‖ −N0)3 + 1

)
〈A(x)x, x〉
‖x‖2 +

1

2
trace(A(x)) +

〈
G(x), x

〉
≤M

(
‖x‖ −N0 +

1

(‖x‖ −N0)2

)
‖x‖

(
ln
(
(‖x‖ −N0)3 + 1

)
+ 1
)

(4.3)
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for a.e. x ∈ Rd \ BN0 (B0 := ∅). Then (4.3) implies conservativeness, i.e. (4.1) holds,

by applying [69, Proposition 1.10(b)] to the C2-function

ψ̃(x) := ln
(

(‖x‖ −N0)3 · 1Rd\BN0
(x) + 1

)
+ 1, x ∈ Rd. (4.4)

Indeed (4.3), implies Lψ̃ ≤ Mψ̃ a.e. so that we can apply [69, Proposition 1.10(b)].

But (4.3) also implies non-explosion, i.e. (4.2), by following the proof of Theorem 4.1.2,

replacing the ψ there with ψ̃ in (4.4) and un by positive functions uN0
n ∈ C2

0(Rd), n > N0,

such that

uN0
n (x) =

{
(‖x‖ −N0)3 · 1Rd\BN0

(x) if x ∈ Bn,

0 if x ∈ Rd \Bn+1.

(iii) In general, M will be non-explosive whenever there exists ψ ∈ C2(Rd) and M > 0,

such that inf∂Bn ψ → ∞ as n → ∞ and Lψ ≤ Mψ a.e. on Rd. This follows from

[69, Proposition 1.10] and (i), and can be shown as well by applying the technique of

supermartingales from Theorem 4.1.2, using a generalized version of Lemma 4.1.1 (see

[12, page 197]), and noting that (M v
t∧Dn)t≥0, is a martingale for any v ∈ C2(Rd) (see

proof of Theorem 3.2.8(i)). Note the subtle difference that [69, Proposition 1.10] is

proved by analytic means (starting from the L1-generator or L1-semigroup) and only

leads to (4.1), whereas Theorem 4.1.2 is proven by probabilistic means (starting from

Proposition 3.2.5) and directly leads to (4.2) regardless of the classical strong Feller

property.

Theorem 4.1.4. (i) Assume for some N0 ∈ N and some p > 0, there exists M > 0

such that(
p− 2

2

)
〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x) +

〈
G(x), x

〉
≤M

(
‖x‖2 + 1

)
, (4.5)

for a.e. x ∈ Rd \ BN0. Then M is non-explosive and for any open ball B there

exists a constant CB > 0, such that

sup
x∈B

Ex [‖Xt‖p] ≤ CB · eM ·t, ∀t ≥ 0.
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(ii) Let σ = (σij)1≤i,j≤d be as in Lemma 3.2.7 and and G as in Theorem 3.1.2. Assume

that for some N0 ∈ N and C1 > 0

max
1≤i,j≤d

|σij(x)|+ max
1≤i≤d

|gi(x)| ≤ C1(‖x‖+ 1) for a.e. x ∈ Rd \BN0 . (4.6)

Then M is non-explosive and for any T > 0, and open ball B, there exist constants

CT,B, CT such that

sup
x∈B

Ex
[
sup
s≤t
‖Xs‖2

]
≤ CT,B · eCT ·t, ∀t ≤ T.

Proof (i) Let f(x) = (‖x‖2 + 1)
p
2 . Then (4.5) implies Lf(x) ≤ Mp · f(x) for a.e.

x ∈ Rd \BN0 . Let φ, ψ, and Cφ,A be as in Lemma 4.1.1 with α := supBN0+1
f .

Let ϕ(y) := φ((y + 1)
p
2 ) + Cφ,A + α. Applying Itô’s formula to un(X·), where un is as

in the proof of Theorem 4.1.2, with the function e−Mp·tϕ(y), we obtain exactly as in

the proof of Theorem 4.1.2 that M is non-explosive. For arbitrary n ∈ N and x ∈ Bn it

holds (
Cφ,A + 2 sup

BN0+1

f
)
f(x) ≥ ψ(x) ≥ Ex[e−(M ·p)t∧σnϕ ◦ un(Xt∧σn)].

Using f ≤ ψ pointwise, σn ↗∞, Fatou’s lemma and the previous inequality, we get

e−Mp·tEx[f(Xt)] ≤ lim inf
n→∞

Ex[e−(M ·p)t∧σnϕ ◦ un(Xt∧σn)] ≤
(
Cφ,A + 2 sup

BN0+1

f
)
f(x).

Thus,

Ex[‖Xt‖p] ≤
(
Cφ,A + 2 sup

BN0+1

f
)
(‖x‖2 + 1)

p
2︸ ︷︷ ︸

:=Cx

eMp·t.

Now set CB := supx∈B Cx.
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(ii) (4.6) implies

trace(A(x)) =
d∑

i,j=1

σij(x)2 ≤ 2d2C2
1(‖x‖2 + 1) for a.e. x ∈ Rd \BN0

and

〈
G(x), x

〉
≤

(
d∑
i=1

gi(x)2

) 1
2

‖x‖ ≤ 2dC1(‖x‖2 + 1) for a.e. x ∈ Rd \BN0 .

Thus (1.3) holds, so that M is non-explosive by Theorem 4.1.2 and (3.39) holds. Con-

sequently, Px-a.s. for any 1 ≤ i ≤ d

sup
0≤s≤t∧σRd\Bn

|X i
s|2

≤ (d+ 2)

(
x2
i +

d∑
j=1

sup
0≤s≤t∧σn

∣∣∣∣ˆ s

0

σij(Xu) dW
j
u

∣∣∣∣2 + t

ˆ t∧σn

0

|gi(Xu)|2 du

)
. (4.7)

Note that
∑d

i,j=1 σij(x)2 = trace(A(x)) ≤ d ·ΛBN0
≤ d ·ΛBN0

(‖x‖2 +1) for a.e. x ∈ BN0 .

Thus by Doob’s maximal inequality,

d∑
i,j=1

Ex

[
sup

0≤s≤t∧σn

∣∣∣∣ˆ s

0

σij(Xu) dW
j
u

∣∣∣∣2
]

≤ 4Ex

[
d∑

i,j=1

〈ˆ ·
0

σij(Xu) dW
j
u

〉
t∧σn

]

≤ 4Ex

[
d∑

i,j=1

ˆ t∧σn

0

σ2
ij(Xu)du

]

≤ 4
(
2d2C2

1 + dΛBN0

)︸ ︷︷ ︸
:=C2

Ex
[ˆ t∧σn

0

(‖Xu‖2 + 1) du

]

≤ C2

ˆ t

0

Ex
[

sup
0≤s≤u∧σn

‖Xs‖2

]
du+ C2T. (4.8)
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Now let x ∈ B, and t ≤ T . Then using (3.35), (4.6), for any n ∈ N and 1 ≤ i ≤ d

Ex
[ˆ t∧σn

0

|gi(Xu)|2 du
]

≤ Ex
[ˆ T

0

|gi1BN0
|2(Xu) du

]
+ Ex

[ˆ t∧σn

0

|gi1Rd\BN0
|2(Xu) du

]
≤ cB,pe

T
∥∥gi1BN0

∥∥2

Lp(Rd,m)
+ 2C1Ex

[ˆ t∧σn

0

(‖Xu‖2 + 1) du

]
≤ cB,pe

T sup
BN0

|ρ|
2
p · ‖gi‖2

Lp(BN0
) + 2C1

ˆ t

0

Ex
[

sup
0≤s≤u∧σn

‖Xs‖2

]
du+ 2C1T. (4.9)

Now let hn(t) := Ex
[
sup0≤u≤t∧σRd\Bn

‖Xu‖2
]
. Then by (4.7), (4.8), (4.9), we obtain

hn(t) ≤ (d+ 2)‖x‖2 + C2T + cB,pe
T T sup

BN0

|ρ|
2
p · ‖G‖2

Lp(BN0
,Rd) + 2dC1T

2

︸ ︷︷ ︸
:=CT,B

+(2dC1T + C2︸ ︷︷ ︸
:=CT

)

ˆ t

0

hn(u)du.

By Gronwall’s inequality, hn(t) ≤ CT,B · eCT ·t. Since none of the involved constants

depends on n, we can use Fatou’s lemma letting n→∞, and obtain

Ex
[
sup
s≤t
‖Xs‖2

]
≤ CT,Be

CT ·t, ∀t ≤ T.

Since x ∈ B was arbitrary, the desired result follows.

4.1.2 Non-explosion criteria involving the density ρ

By [69, Proposition 1.10](a) we know that (4.1) holds, whenever

aij, gi − βρ,Ai ∈ L1(Rd,m), 1 ≤ i, j ≤ d. (4.10)
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Thus (4.10) provides a sufficient condition for non-explosion by (4.2) which obviously

depends on the knowledge of the density ρ. Furthermore, one can directly check by

(4.11) below that if (4.10) holds, then the L1(Rd,m)-semigroup (T̂t)t>0 is conservative,

hence m is an invariant measure for (Tt)t>0.

A systematic study of non-explosion conditions, more precisely results implying (4.1)

and involving the density ρ can be found in [28, Corollary 15].

4.2 Recurrence criteria and other ergodic proper-

ties involving and not involving the density ρ

The measure m = ρ dx, where the density ρ is as at the beginning of Section 3.1 or as in

Theorem 3.1.2, can be seen to define a stationary distribution. In fact, if the L1(Rd,m)-

semigroup (T̂t)t>0 is conservative, for instance if there exists a constant M ≥ 0 and

some N0 ∈ N, such that

−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
trace(A(x)) +

〈 (
2βρ,A −G

)
(x), x

〉
≤M(‖x‖2 + 1)(ln(‖x‖2 + 1) + 1)

for a.e. x ∈ Rd \ BN0 , as one can see from the dual version of Theorem 4.1.2 or [69,

Proposition 1.10(c)], then m is an invariant measure (for (Tt)t>0), i.e. for any f ∈
L1(Rd,m) ˆ

Rd
Ttf dm =

ˆ
Rd
fT̂t1Rd dm =

ˆ
Rd
f dm (4.11)

so that for any A ∈ B(Rd) and t ≥ 0

Pm(Xt ∈ A) :=

ˆ
Rd

Px(Xt ∈ A)m(dx) =

ˆ
Rd
Tt1A(x)m(dx)

= lim
n→∞

ˆ
Rd
Tt1A∩Bn(x)m(dx) = lim

n→∞

ˆ
Rd

1A∩Bn(x)m(dx) = m(A).

However, usually m is not a probability measure, hence Pm is also not such a measure.

But if it is, then Pm is a stationary distribution (if (T̂t)t>0 is conservative). Main parts
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of the monograph [12] focus on the density ρ or more generally on m, in case m is a

probability measure and aim in deriving properties of both (since both are in general

not explicit).

We will first consider possibly infinite m and we may assume that ρ is explicit as is

explained in the following remark.

Remark 4.2.1. All results up to now and further hold exactly in the same form, if we

assume that ρ ∈ C0,1−d/p
loc (Rd) ∩H1,p

loc (Rd) for some p > d with ρ(x) > 0 for all x ∈ Rd

is explicitly given from the beginning, that A := (aij)1≤i,j≤d is as in Theorem 3.1.2 and

that B = (b1, ..., bd) ∈ Lploc(Rd,Rd) satisfies

ˆ
Rd
〈B,∇f〉 dm = 0, ∀f ∈ C∞0 (Rd).

Indeed, we then just have to set G := βρ,A + B. Then all conclusions of Theorem

3.1.2 hold with the explicitly chosen density from above. Note that this also includes the

setting of Theorem 3.1.2 since by its conclusion a ρ like above exists and can hence be

“explicitly” chosen.

We want to derive explicit conditions for recurrence involving and not involving

the density ρ in two general cases where m is a general σ-finite measure and where

m is a finite, yet without loss of generality a probability measure. First, we derive a

lemma which leads to irreducibility and strict irreducibility (see Corollary 4.2.4) and

as a byproduct leads to a weaker condition for non-explosion (see Remark 4.2.3).

Lemma 4.2.2. (i) Let A ∈ B(Rd) be such that Pt01A(x0) = 0 for some t0 > 0 and

x0 ∈ Rd. Then m(A) = 0.

(ii) Let A ∈ B(Rd) be such that Pt01A(x0) = 1 for some t0 > 0 and x0 ∈ Rd. Then

Pt1A(x) = 1 for all (x, t) ∈ Rd × (0,∞).

Proof (i) Suppose m(A) > 0. Choose an open ball Br(x0) ⊂ Rd such that

0 < m (A ∩Br(x0)) <∞.
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Let u := ρP·1A∩Br(x0). Then 0 = u(x0, t0) ≤ ρ(x0)Pt01A(x0) = 0. Take fn ∈ C∞0 (Rd)

with fn ≥ 0 such that fn → 1A∩Br(x0) in L1(Rd,m). Then by (3.26) and the explanation

right after it, for arbitrary bounded open set U in Rd and [τ1, τ2] ⊂ (0,∞), there is

some γ ∈ (0, 1) such that

P·fn(·)→ P·1A∩Br(x0)(·) in Cγ; γ
2 (U × [τ1, τ2]),

hence

un := ρP·fn → u in Cγ; γ
2 (U × [τ1, τ2]). (4.12)

Fix T > t0 and U ⊃ Br(x0). Then (see proof of Theorem 3.1.8) for all ϕ ∈ C∞0 (U ×
(0, T ))

ˆ T

0

ˆ
U

(
1

2
〈A∇un,∇ϕ〉+ un〈β,∇ϕ〉 − un∂tϕ

)
dxdt = 0,

where β is defined as in the proof of Theorem 3.1.8. Now take arbitrary but fixed

(x, t) ∈ Br(x0)× (0, t0) By [2, Theorem 5]

0 ≤ un(x, t) ≤ un(x0, t0) exp

(
C
(‖x0 − x‖2

t0 − t
+

t0 − t
min(1, t)

+ 1
))

and (4.12) applied with U ⊃ Br(x0), [τ1, τ2] ⊃ [t, t0] then leads to

0 ≤ u(x, t) ≤ u(x0, t0) exp

(
C
(‖x0 − x‖2

t0 − t
+

t0 − t
min(1, t)

+ 1
))

= 0.

Thus, Pt1A∩Br(x0)(x) = 0 for all x ∈ Br(x0) and 0 < t < t0, so that

0 =

ˆ
Rd

1A∩Br(x0)Pt1A∩Br(x0)dm −→
t→0+

m(Br(x0) ∩ A) > 0,

which is contradiction. Therefore, we must have m(A) = 0.

(ii) Let y ∈ Rd and 0 < s < t0 be arbitrary but fixed and let r := 2‖x0 − y‖ and

let B be any open ball. Take gn ∈ C∞0 (Rd) with 0 ≤ gn ≤ 1 such that gn → 1A∩B in

L1(Rd,m). Then by (3.26) and the explanation right after it, there is some γ ∈ (0, 1)
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such that

P·gn(·) −→ P·1A∩B(·) in Cγ; γ
2 (Br(x0)× [s/2, 2t0]). (4.13)

Fix T > 0 and U ⊃ Br(x0). Using the property

β =
1

2
∇A+ G− 2βρ,A = B− βA,ρ +

1

2
∇A = B− 1

2
A
∇ρ
ρ
,

and (3.2), we directly get for all ϕ ∈ C∞0 (U × (0, T ))

ˆ T

0

ˆ
U

(
1

2
〈A∇ρ,∇ϕ〉+ ρ〈β,∇ϕ〉 − ρ∂tϕ

)
dxdt =

ˆ T

0

(ˆ
U

〈B,∇ϕ〉ρdx
)
dt = 0,

(4.14)

and (cf. the proof of Theorem 3.1.8) we also get

ˆ T

0

ˆ
U

(
1

2
〈A∇ (ρP·gn) ,∇ϕ〉+ (ρP·gn)〈β,∇ϕ〉 − (ρP·gn)∂tϕ

)
dxdt = 0. (4.15)

Now let un(x, t) := ρ(x) (1− Ptgn(x)). Then un ∈ H1,2(U × (0, T )) and un ≥ 0. Sub-

tracting (4.15) from (4.14) implies

ˆ T

0

ˆ
U

(
1

2
〈A∇un,∇ϕ〉+ un〈β,∇ϕ〉 − un∂tϕ

)
dxdt = 0.

Thus, by [2, Theorem 5]

0 ≤ un(y, s) ≤ un(x0, t0) exp

(
C
(‖x0 − y‖2

t0 − s
+

t0 − s
min(1, s)

+ 1
))

︸ ︷︷ ︸
=:C2

.

By (4.13)

0 ≤ ρ(y) (1− Ps1A∩B(y)) ≤ C2ρ(x0) (1− Pt01A∩B(x0)) .

Note that for all (x, t) ∈ Rd × (0,∞), Pt1A∩Bn1(x)↗ Pt1A(x) as n→∞. Thus,

0 ≤ ρ(y) (1− Ps1A(y)) ≤ C2ρ(x0) (1− Pt01A(x0)) = 0.
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Consequently, Ps1A(y) = 1 for any (y, s) ∈ Rd × (0, t0) which can be extended on

Rd × (0, t0] by continuity. And by sub-Markovian property, Pt01Rd(y) = 1 for any

y ∈ Rd. Now let t ∈ (0,∞) be given. Then there extist k ∈ N ∪ {0} such that

kt0 < t ≤ (k + 1)t0

and so Pt1A = Pkt0+(t−kt0)1A = Pt0 ◦ · · · ◦ Pt0︸ ︷︷ ︸
k−times

◦Pt−kt01A = 1.

Remark 4.2.3. By Lemma 4.2.2(ii) we know that M is non-explosive, if Px(ζ =∞) =

1 for some x ∈ Rd. More precisely, if Px0(Xt0 ∈ Rd) = 1 for some (x0, t0) ∈ Rd ×
(0,∞), then M is non-explosive. This (together with Proposition 3.1.10, Lemma 3.2.3)

generalizes and improves [6, Lemma 2.5] to possibly locally unbounded drift coefficient

using a completely different and genuine proof.

A ∈ B(Rd) is called weakly invariant relative to (Tt)t>0, if

Tt(f · 1A)(x) = 0, for m-a.e. x ∈ Rd \ A,

for any t > 0, f ∈ L2(Rd,m). (Tt)t>0 is said to be strictly irreducible, if for any weakly

invariant set A relative to (Tt)t>0, we have m(A) = 0 or m(Rd \ A) = 0.

Corollary 4.2.4. (i) (Tt)t>0 is strictly irreducible.

(ii) Let A ∈ B(Rd) with m(A) > 0. Then Px(Xt ∈ A) > 0 for all x ∈ Rd, t > 0, i.e.

(Pt)t>0 is irreducible.

Proof (i) Let A ∈ B(Rd) be a weakly invariant set with m(Rd \ A) 6= 0. Then by

monotone approximation with the L2-functions 1Bn , n ≥ 1, we get for any t > 0

Pt1A(x) = 0, for m-a.e. x ∈ Rd \A. Then there exists t0 > 0 and x0 ∈ Rd \A such that

Pt01A(x0) = 0. By Lemma 4.2.2(i), we have m(A) = 0, as desired.

(ii) By contraposition of Lemma 4.2.2(i), Px (Xt ∈ A) = Pt1A(x) > 0, for all x ∈ Rd, t >

0.
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4.2.1 Explicit recurrence criteria for possibly infinite m

We continue with some further definitions. Define the last exit time LA from A ∈ B(Rd)

by

LA := sup{t ≥ 0 : Xt ∈ A}, (sup ∅ := 0).

M is called recurrent (in the probabilistic sense), if for any ∅ 6= U ⊂ Rd, U open, we

have

Px(LU =∞) = 1, ∀x ∈ Rd. (4.16)

Let (ϑt)t≥0 be the shift operator of M. Using the shift invariance of Λ := {LU = ∞},
the Markov property and the strong Feller property of (Pt)t>0, we get for all x ∈ Rd,

t > 0

Px(Λ) = Px(ϑ−1
t (Λ)) = Ex[Ex[1Λ ◦ ϑt | Ft]] = Ex[EXt [1Λ]] = PtE·[1Λ](x).

Thus

(4.16) ⇐⇒ Px(LU =∞) = 1 for m-a.e. x ∈ Rd. (4.17)

The following is now a consequence of the results obtained here, in [29] and [26]. More-

over it generalizes [6, Theorem 3.2] that only treats non-explosive weak solutions to

time-homogeneous Itô-SDEs whose drift coefficients are locally bounded.

Proposition 4.2.5. (Tt)t>0 (or equivalently M) is either transient or recurrent in the

sense of [29].

(i) Suppose (Tt)t>0 is transient in the sense of [29]. Then for any compact K ⊂ Rd,

it holds Px(LK <∞) = 1 for all x ∈ Rd. In particular

Px( lim
t→∞

Xt = ∆ in Rd
∆) = 1 for any x ∈ Rd. (4.18)

(ii) Suppose (Tt)t>0 is recurrent in the sense of [29]. Then M is non-explosive and

recurrent (in the probabilistic sense), i.e. (4.16) holds for any nonempty open

U ⊂ Rd.
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Proof The first assertion follows from Corollary 4.2.4(i) and [29, Remark 3(b)].

(i) Applying [29, Lemma 6] and the last part of Lemma 3.2.3(i) we get the existence of

g ∈ L1(Rd,m)∩L∞(Rd,m) with g > 0 everywhere, such that Rg := E·
[´∞

0
g(Xt)dt

]
∈

L∞(Rd,m). Using that Rg is lower semicontinuous by the strong Feller property and

essentially bounded, we deduce Rg(x) < ∞ for any x ∈ Rd. Obviously, 0 < Rg(x) for

any x ∈ Rd. Modifying the proof of [29, Proposition 10] (which originates from [26])

with the open sets Un := {Rg > 1
n
}, n ≥ 1, and using the strong Feller property of

(Pt)t>0, we obtain Px(LUn < ∞) = 1 for all x ∈ Rd, n ≥ 1. Now the first assertion

follows easily since (Un)n≥1 is an open cover of any compact set K ⊂ Rd. The second

assertion follows from the first since the paths of M are continuous on the one point

compactification Rd
∆.

(ii) (4.1) is a consequence of [29, Corollary 20] and M is hence non-explosive by (4.2).

Moreover, the right hand side of (4.17) holds for any ∅ 6= U ⊂ Rd, U open, by [29,

Proposition 11(d)]. Therefore M is recurrent in the probabilistic sense.

Remark 4.2.6. In Proposition 4.2.5, we get actually equivalences in (i) and (ii).

Namely, (4.18) implies that [29, Condition (8) of Proposition 10] is satisfied. Thus

(4.18) implies transience of M (or equivalently (Tt)t>0) in the sense of [29] by [29,

Proposition 10]. Likewise, if M is recurrent (in the probabilistic sense), then it cannot

satisfy (4.18). Therefore, by Proposition 4.2.5(i) and its first part, (Tt)t>0 must be re-

current in the sense of [29].

Define for r ≥ 0,

v1(r) :=

ˆ
Br

〈A(x)x, x〉
‖x‖2

m(dx), v2(r) :=

ˆ
Br

|〈B(x), x〉|m(dx),

where B is defined as in Theorem 3.1.2 and let

v(r) := v1(r) + v2(r), an :=

ˆ n

1

r

v(r)
dr, n ≥ 1.
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Theorem 4.2.7. (Corollary of [29, Theorem 21]) Suppose that

lim
n→∞

an =∞ and lim
n→∞

log(v2(n) ∨ 1)

an
= 0.

Then M is recurrent (in the probabilistic sense) and non-explosive. Moreover m is an

invariant measure for (Tt)t>0.

Proof By [29, Theorem 21] applied with ρ(x) = ‖x‖ (the ρ of [29] is different from the

ρ defined here), the given assumption implies that (Tt)t>0 is not transient in the sense

of [29]. Then apply Proposition 4.2.5 to show recurrence of M.

Since v2(r) :=
´
Br
|〈−B(x), x〉|m(dx), (T̂t)t>0 is not transient in the sense of [29]. Thus

applying Proposition 4.2.5 again, (T̂t)t>0 is conservative. Using (4.11), m is an invariant

measure for (Tt)t>0.

Lemma 4.2.8. For any x ∈ Rd and N ∈ N, we have Px(σN <∞) = 1.

Proof Suppose to the contrary that there exists N ∈ N and x ∈ BN such that Px(σN =

∞) ≥ δ > 0. Then M is not recurrent in the probabilistic sense. Applying Proposition

4.2.5, we obtain Px(LK <∞) = 1 for all x ∈ Rd and any compact K ⊂ Rd. Therefore

Px(σN =∞) ≥ δ > 0 cannot hold and the assertion follows.

The following theorem extends [58, Chapter 6, Theorem 1.2] to locally unbounded drift

coefficient.

Theorem 4.2.9. Suppose that there exists a positive ψ ∈ C2(Rd) and some N0 ∈ N
such that Lψ ≤ 0 a.e. on Rd \BN0 and inf∂Bn ψ →∞ as n→∞. Then M is recurrent

(in the probabilistic sense) and non-explosive. In particular, the assumptions above are

satisfied (take ψ(x) = ln (‖x‖2 + 1) + 1), if there is some N0 ∈ N, such that

−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x) +

〈
G(x), x

〉
≤ 0

for a.e. x ∈ Rd \BN0.
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Proof Clearly, M is non-explosive by Remark 4.1.3(iii). Let n ≥ N0 and x ∈ Rd\Bn be

arbitrary. Choose any N ∈ N with x ∈ BN . We will first show that Px(σBn <∞) = 1.

Using that Lψ ≤ 0 a.e. on Rd \BN0 we can see that

Ex[ψ(Xt∧σBn∧σN )] ≤ ψ(x).

Since Px(σN <∞) = 1 by Lemma 4.2.8, we can let t→∞ and obtain with elementary

calculations (cf. for instance the proof of Theorem 4.1.2)

( inf
∂BN

ψ) · Px(σBn =∞) ≤ Ex[ψ(XσN )1{σBn=∞}] ≤ Ex[ψ(XσBn∧σN )] ≤ ψ(x).

Letting N →∞ and using the further assumption on ψ, we get Px(σBn =∞) = 0 and

the claim is shown. From now on let n := N0 + 1. Then obviously Px(σBn < ∞) = 1

for any x ∈ Bn and by the claim Px(σBn < ∞) = 1 for any Rd \ Bn. If x ∈ ∂Bn, then

by the claim again Px(σBN0
<∞) = 1 and since σBN0+1

≤ σBN0
, we finally get

Px(σBn <∞) = 1 for any x ∈ Rd.

Let z ∈ Rd, s > 0 be arbitrary. Then by the Markov property and since M is non-

explosive

Pz(Xt ∈ Bn for some t ∈ [s,∞)) = Pz(σBn ◦ ϑs <∞) = Ez[PXs(σBn <∞)] = 1.

Hence Pz(LBN0+1
<∞) = 0 and the assertion now follows from Proposition 4.2.5.

4.2.2 Uniqueness of invariant measures and ergodic properties

in case m is a probability measure

In this subsection, we suppose (except at the very end of it) that m is a finite measure.

Dividing by a normalizing constant, which will not change the generator L, we may

without loss of generality assume that m is a probability measure. Coming back to the

situation at the beginning of Section 4.2, we have the following:

Remark 4.2.10. If m is a probability measure, then m is (Tt)t>0-invariant, if and
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only if it is (T̂t)t>0-invariant (cf. [69, Proposition 1.10(b)]). In either case Pm is then

a stationary distribution.

It is clear that the (T̂t)t>0-invariance of m is equivalent to the conservativeness of

(Tt)t>0, i.e. to (4.1). Consequently, using Remark 4.2.10, we see that m is an invariant

(probability) measure for (Tt)t>0, if (4.1) holds. Therefore, (1.3) provides an explicit

criterion for m to be an invariant (probability) measure. Now, we have the following:

Theorem 4.2.11. Suppose that m is a probability measure and that (4.1) holds. Then:

(i) m is strongly mixing (cf. [59]) and for arbitrary x ∈ Rd and A ∈ B(Rd)

lim
t→∞

Px(Xt ∈ A) = m(A).

(ii) m is the unique probability measure that is (Tt)t>0-invariant.

(iii) m is equivalent to Px ◦X−1
t for any (x, t) ∈ Rd × (0,∞).

(iv) Let A ∈ B(Rd) be such that m(A) > 0 and (tn)n≥1 ⊂ (0,∞) be any sequence with

limn→∞ tn =∞. Then Px(Xtn ∈ A for infinitely many n ∈ N) = 1 ∀x ∈ Rd.

In particular, M is recurrent.

Proof By Theorem 3.1.8, Lemma 3.2.3(i) and Corollary 4.2.4(i), (Pt)t>0 is strong Feller

and irreducible. Then [59, Proposition 4.1.1] implies that (Pt)t>0 is regular. Therefore

the assertions (i)-(iii) follow by Doob’s Theorem, see [59, Theorem 4.2.1]. Then using

(i), assertion (iv) follows by [59, Theorem 3.4.5].

Remark 4.2.12. Assume that as in Remark 4.2.1, ρ, A, B are explicitly given and

that m = ρ dx is a probability measure such that (4.1) holds. Then Theorem 4.2.11

applies. This result seems to be new even if B ≡ 0.

For the rest of the section we do not assume that m is a finite measure and present a

condition that is independent of ρ and makes Theorem 4.2.11 applicable. The following

proposition is a variant of [58, Chapter 6, Theorem 1.3] which can be applied to locally

unbounded drift coefficients.
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Proposition 4.2.13. Suppose that there exists a positive ψ ∈ C2(Rd), some N0 ∈ N
and C > 0, such that Lψ ≤ −C a.e. on Rd \ BN0 and inf∂Bn ψ → ∞ as n → ∞.

Then m is finite and M is non-explosive. In particular, (4.1) holds and by normalizing

m if necessary, we can see that the assumptions of Theorem 4.2.11 are satisfied. Thus

Theorem 4.2.11(i)-(iv) hold. In particular, the assumptions above are satisfied (take

ψ(x) = ln (‖x‖2 + 1) + 1), if there exists a constant C > 0 and some N0 ∈ N, such that

−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x) +

〈
G(x), x

〉
≤ −C

(
‖x‖2 + 1

)
(4.19)

for a.e. x ∈ Rd \BN0.

Proof Using Lψ(x) ≤ −C for a.e. x ∈ Rd \ BN0 , the finiteness of m follows by [12,

Corollary 2.3.3] or [13, Theorem 2] for the original result. Since Lψ(x) ≤ Mψ(x) for

a.e. x ∈ Rd \ BN0 for any M > 0, M is non-explosive by Remark 4.1.3(iii). We may

hence assume that the conditions of Theorem 4.2.11 are satisfied.

In the next example, we shall give a sufficient condition for (4.19) to hold.

Example 4.2.14. Let I be the identity matrix consisting of ones on the diagonal and

zeros outside and set A(x) := Ψ(x)I where Ψ(x) ∈ H1,p
loc (Rd)∩C1−d/p

loc (Rd) with Ψ(x) > 0

for all x ∈ Rd. Let φ1 ∈ Lploc(Rd), φ1 ≥ 0 a.e. and G(x) :=
(
−φ1(x)1Rd\BN0

+ φ2(x)1BN0

)
x

for some φ2 ∈ Lploc(Rd). Suppose that for some N0 ∈ N ∪ {0},

d

2
Ψ(x) + C(‖x‖2 + 1) ≤ φ1(x)‖x‖2 a.e. x ∈ Rd \BN0 . (4.20)

Then (4.20) implies (4.19).

Now we compare our results with results of [85].

Remark 4.2.15. As one can see from the proof of Theorem 4.2.11 in order to derive

the conclusions Theorem 4.2.11(i)-(iv) one needs for instance the classical strong Feller

property and the irreducibility. In our case, these are directly implied under the condi-

tions of Theorem 3.1.2 (cf. Theorem 3.1.8 and Corollary 4.2.4(ii)). But the conditions

65



CHAPTER 4. CONSERVATIVENESS AND ERGODIC PROPERTIES

to obtain the strong Feller property and irreducibility in [85] are quite strong, and there

are many cases where (4.19) is satisfied but one cannot obtain the strong Feller prop-

erty nor irreducibility from the results of [85]. The following provides a comparison of

(4.19) and the rather strong conditions of [85]:

(i) a) If G is not bounded on an open ball, in order to get the strong Feller property

and the irreducibility, [85, Theorem 1.7] needs very strong conditions [85,

(H1’), (H2’)] such as global uniform ellipticity and boundedness of A and

Lipschitz continuity of A,G and the growth condition ‖G(x)‖ ≤ C(1 + ‖x‖)
outside an open ball. For example if we take A(x) = (1 + ‖x‖)I and φ1(x) =

‖x‖2, then (4.20) holds, but (H1’) and (H2’) in [85] are both not satisfied.

Thus the conditions of [85] do not neither provide global well-posedness, nor

strong Feller properties, nor irreducibility and so on, whereas we get the full

conclusions of Proposition 4.2.13.

b) If G is locally bounded on Rd, to get the strong Feller property and the irre-

ducibility, [85, Theorem 1.2] also requires quite strong conditions. For exam-

ple, a diffusion matrix with strong decay such as A(x) = exp(− exp(‖x‖2))I

cannot be handled by results of [85], since [85, (1.4)] is not satisfied, but

we do not have such restrictions. Moreover, if A(x) = I and φ1(x) =

exp(exp(‖x‖2))), then clearly (4.20) is satisfied, but [85, (1.7)] is not satis-

fied. Note that [85, (1.6), (1.8)] requires A to be (besides an H1,q
loc -condition,

q > d + 2) locally Lipschitz outside an open ball, if b ≡ 0 in [85]), which is

also stronger than our condition aij ∈ H1,p
loc (Rd) for 1 ≤ i, j ≤ d for some

p > d.

(ii) We will give a simple example which has a global pathwise unique solution sat-

isfying all conclusions of Proposition 4.2.13, but the non-explosion conditions in

[85] do even not allow to obtain the existence of global solution. Choose Ψ(x) =

φ1(x) = (1 + ‖x‖)2. Then (4.20) is satisfied, so that by Example 4.2.14 we may

apply Proposition 4.2.13 and get a global pathwise unique solution satisfying (i)-

(iv) of Theorem 4.2.11. Now consider

φ2(x) =
1

‖x− (N0

2
, 0, · · · , 0)‖d/(p+1)

, x ∈ Rd.
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Then φ2 ∈ Lploc(Rd) and lim
x→(

N0
2
,0,··· ,0)

φ2(x) = ∞, so that G as defined in Ex-

ample 4.2.14 satisfies

〈
G(x), x

〉
−→∞ as x→ (

N0

2
, 0, · · · , 0).

Thus, the non-explosion condition [85, (1.5)] is not satisfied and obviously global

boundedness of A and linear growth of ‖G‖ do not hold, which means [85, [H1’] [H2’]]

are not satisfied. In particular, no non-explosion condition of [85] holds.

(iii) By our method we have directly a candidate for invariant measure, namely m. In

[85] no candidate for invariant measure can be deduced.
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4.3 An application to pathwise uniqueness and strong

solutions

In this section, we present an application of our weak existence and non-explosion

results to pathwise uniqueness and existence of strong solutions up to ∞.

Theorem 4.3.1. Let A = (aij)1≤i,j≤d, G, be as in Theorem 3.1.2 and let (σij)1≤i,j≤d

be as in Lemma 3.2.7. Suppose that (1.3) holds for A and G. Then the stochastic

differential equation

Xt = x0 +

ˆ t

0

σ(Xs)dWs +

ˆ t

0

G(Xs)ds, t ≥ 0,

where W = (W 1, . . . ,W d) is a standard d-dimensional Brownian motion starting from

zero, has a pathwise unique and strong solution. In particular, and without any further

assumption, (Xt) is a Hunt process (by Theorem 3.2.1), satisfies more than classical

strong Feller properties (see Theorem 3.1.8, Proposition 3.1.10 and Lemma 3.2.3), has

integrability properties as in Lemma 3.2.4, is irreducible (by Corollary 4.2.4), satisfies

the long time behavior as in Proposition 4.2.5 and Remark 4.2.6, and has further ad-

ditional properties like in Lemma 4.2.2, Remark 4.2.3, Lemma 4.2.8. Moreover, there

are diverse explicit further conditions to guarantee moment inequalities, recurrence and

ergodicity, including existence and uniqueness of invariant measures for (Xt), see The-

orems 4.1.4, 4.2.7, 4.2.9 and Proposition 4.2.13.

Proof The existence of a weak solution up to ζ = ∞ under the present assumptions

follows from Theorems 3.2.8(i) and 4.1.2. The weak solution is then pathwise unique

and strong by [84, Theorem 1.3] and [82, Corollary 1].
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Chapter 5

Analytic results

5.1 Elliptic H1,p-regularity and estimates

The VMO(Rd) space is defined as the space of all locally integrable functions f on Rd

for which there exists a positive continuous function γ on [0,∞) with γ(0) = 0, such

that

sup
z∈Rd,r<R

r−2d

ˆ
Br(z)×Br(z)

|f(x)− f(y)|dxdy ≤ γ(R), ∀R > 0. (5.1)

If f is uniformly continuous on Rd, we can define

γ(r) :=
( ˆ

B1

1 dx
)−2

· sup
|x−y|<2r,x,y∈Rd

|f(x)− f(y)|, γ(0) := 0.

Then γ is continuous on [0,∞) and (5.1) holds, hence f ∈ VMO(Rd). For a bounded

open subset U of Rd and a function g on U , we call g ∈ VMO(U) if g extends to a

function on Rd, again called g, such that g ∈ VMO(Rd).

For measurable functions aij, bi, βi, c on Rd, 1 ≤ i, j ≤ d, let A := (aij)1≤i≤d,

b := (b1, . . . , bd), β := (β1, . . . , βd). Consider the divergence form operator L, defined in
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distribution sense

−Lu := −

(
d∑

i,j=1

∂i(aij∂ju) +
d∑
i=1

∂i(biu)

)
+

d∑
i=1

βi∂iu+ cu.

The following theorem is a simple generalization of (1.2.3) in [12, Theorem 1.2.1], where

only symmetric matrices of functions are considered.

Theorem 5.1.1. Consider a possibly non-symmetric matrix of functions A = (aij)1≤i,j≤d

and suppose that aij ∈ VMO(Rd), 1 ≤ i, j ≤ d, and that there exists ε,K > 0 such

that

d∑
i,j=1

aij(x)ξiξj ≥ ε‖ξ‖2
Rd for all ξ ∈ Rd, a.e. x ∈ Rd,

d∑
i,j=1

‖aij‖L∞(Rd) +
d∑
i=1

‖bi‖L∞(Rd) +
d∑
i=1

‖βi‖L∞(Rd) + ‖c‖L∞(Rd) ≤ K.

Then, for every p ∈ (1,∞), there are numbers λ0 and M depending only p, d,K, ε

and a common γ that ensures the VMO(Rd) condition (5.1) simultaneously for all aij,

1 ≤ i, j ≤ d, such that for all λ ≥ λ0, v ∈ H1,p
0 (Rd), we have

‖v‖H1,p(Rd) ≤M‖Lv − λv‖H−1,p(Rd).

Proof Take constants λ0, N as in [42, Theorem 2.8], which depend only on p, d,K, ε.

Let λ > λ0 be given. By [14, Proposition 9.20], there exists f ∈ Lp(Rd) and g =

(g1, . . . , gd) ∈ Lp(Rd,Rd) such that

Lv − λv = f + divg in H−1,p(Rd),

where

‖Lv − λv‖H−1,p(Rd) = max(‖f‖Lp(Rd), ‖g1‖Lp(Rd), . . . , ‖gd‖Lp(Rd)).

Thus

‖f‖Lp(Rd) +
d∑
i=1

‖gi‖Lp(Rd) ≤ (d+ 1)‖Lv − λv‖H−1,p(Rd).
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By [42, Theorem 2.8],

‖v‖H1,p(Rd) ≤ N

(
‖f‖Lp(Rd) +

d∑
i=1

‖gi‖Lp(Rd)

)
≤ N(d+ 1)︸ ︷︷ ︸

=:M

‖Lv − λv‖H−1,p(Rd).

We shall make a general remark concerning the monograph [12].

Remark 5.1.2. In what follows, we shall use in particular the statements 1.7.4, 1.7.6,

1.8.3, 2.1.4, 2.1.6, 2.1.8 of [12] which are formulated for a symmetric matrix of func-

tions A = (aij)1≤i,j≤d on a bounded smooth domain Ω, such that each function aij is

VMO(Ω) and A is uniformly strictly elliptic and bounded on Ω. However, a closer look

at the corresponding proofs shows that the symmetry is not a neccessary assumption.

More precisely, (1.7.10) in the proof of [12, Theorem 1.7.4] follows from (1.2.3) of

[12, Theorem 1.2.1]. But we have shown that symmetry of (aij)1≤i,j≤d is not essential

in Theorem 5.1.1. Consequently, [12, Corollary 1.7.6], whose proof is based on [12,

Theorem 1.7.4], also holds for a non-symmetric matrix of functions (aij)1≤i,j≤d which

is uniformly strictly elliptic and bounded on Ω. The proof of [12, Proposition 2.1.4]

is based on the Lax-Milgram Theorem which only uses a coercivity assumption that is

well-known to extend to a non-symmetric matrix of functions. [12, Theorem 2.1.8] is

taken from [77], where not only non-symmetric matrices of functions are permitted but

also even more general conditions on the functions aij, 1 ≤ i, j ≤ d. [12, Corollary

2.1.6] is a consequence of [12, Corollary 1.7.6 , Proposition 2.1.4 and Theorem 2.1.8].

Finally, the proof of [12, Theorem 1.8.3] follows from [12, Corollary 1.7.6 and Propo-

sition 2.1.4]. Therefore all the above mentioned statements from [12] extend to a non-

symmetric matrix of functions A = (aij)1≤i,j≤d, such that each function aij is VMO(Ω)

and A is uniformly strictly elliptic and bounded on Ω. However, we will assume more

than VMO(Ω), more precisely H1,2
loc (Rd) ∩C(Rd), in what follows since we need an in-

tegration by parts formula.

The following Lemma 5.1.3 will be used in the proof of Lemma 5.1.4 for a compact-

ness argument.
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Lemma 5.1.3. Let A := (aij)1≤i,j≤d, An := (anij)1≤i,j≤d be uniformly strictly elliptic

and bounded on an open ball B, satisfying anij → aij in L2(B) as n→∞, 1 ≤ i, j ≤ d.

Moreover, let An, n ∈ N, and A have the same elliptic constant λn ≡ λ and upper

bound constant Mn ≡M . Let for some p > d, b ∈ Lp(B,Rd), bn ∈ Lp(B,Rd) such that

bn → b in Lp(B,Rd) as n → ∞. Given F ∈ L2(B,Rd), suppose that un,F ∈ H1,2
0 (B)

satisfies

ˆ
B

〈An∇un,F + bnun,F ,∇ϕ〉 dx =

ˆ
B

〈F,∇ϕ〉 dx, for every ϕ ∈ C∞0 (B).

Then

‖un,F‖L2(B) ≤ C‖F‖L2(B,Rd),

where C > 0 is a constant which is independent of n and F .

Proof Assume that the assertion does not hold, i.e. given k ∈ N there exists F̃k ∈
L2(B,Rd) and nk ∈ N such that

‖unk,F̃k‖L2(B) > k‖F̃k‖L2(B,Rd).

Define Fk :=
F̃k

‖unk,F̃k‖L2(B)

. By [12, Proposition 2.1.4, Theorem 2.1.8] and Remark

5.1.2, and using the maximum principle, we get unk,Fk =
unk,F̃k

‖unk,F̃k‖L2(B)

. Thus we have

‖unk,Fk‖L2(B) = 1 and ‖Fk‖L2(B,Rd) <
1

k
.

By [12, Corollary 1.7.6] and and Remark 5.1.2,

‖unk,Fk‖H1,2
0 (B) ≤ C1(‖unk,Fk‖L2(B) + ‖Fk‖L2(B,Rd)) ≤ 2C1,

where C1 is independent of k. By the weak compactness of balls in H1,2
0 (B) and the

Rellich-Kondrachov Theorem, there exists a subsequence (unkj ,Fkj )j ⊂ (unk,Fk)k and
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u ∈ H1,2
0 (B) such that

unkj ,Fkj → u weakly in H1,2
0 (B), unkj ,Fkj → u in L2(B).

In particular, ‖u‖L2(B) = 1 and using the assumption, we can see that u satisfies

ˆ
B

〈A∇u+ bu, ∇ϕ〉dx = 0, for every ϕ ∈ C∞0 (B).

By [12, Theorem 2.1.8] and Remark 5.1.2, we have u = 0 a.e. on B, which is a contra-

diction. Therefore the assertion must hold.

The following is well known in the case where b ≡ 0 (see for instance [31, Lemma 4.6]).

Lemma 5.1.4. Let A = (aij)1≤i,j≤d be uniformly strictly elliptic and bounded on U ,

which is supposed to a Lipschitz boundary. Let for some p > d, b ∈ Lp(U,Rd) and

assume that u ∈ H1.2(U) satisfies

ˆ
U

〈A∇u+ bu,∇ϕ〉dx ≤ 0, for every ϕ ∈ C∞0 (U), ϕ ≥ 0.

Then we have
ˆ
U

〈A∇u+ + bu+,∇ϕ〉dx ≤ 0, for every ϕ ∈ C∞0 (U), ϕ ≥ 0.

Proof Let B be an open ball such that U ⊂ B. By [21, Theorem 4.7], u ∈ H1,2(U) can

be extended to a function u ∈ H1,2
0 (B). And by [21, Theorem 4.4], u+ ∈ H1,2

0 (B) with

∇u+ =

{
∇u a.e. on {u > 0} ,

0 a.e. on {u ≤ 0} .

Given ε > 0 define

fε(z) :=

{
(z2 + ε2)1/2 − ε if z ≥ 0,

0 if z < 0.
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Then fε ∈ C1(R) ∩H2,∞(R) satisfies

f ′ε(z) =


z√

z2 + ε2
if z ≥ 0,

0 if z < 0,
and f ′′ε (z) =


ε2

(z2 + ε2)3/2
if z > 0,

0 if z < 0.

Note that fε(z) −→ z+, f ′ε(z) −→ 1(0,∞)(z) as ε → 0 for every z ∈ R. Extend aij ∈
H1,2(U)∩C(U) to H1,2

loc (Rd)∩Cb(Rd) with elliptic constant λ and upper bound constant

M and extend b ∈ Lp(U,Rd) to Lp(Rd,Rd) by setting b zero outside U . Define F :=

A∇u + bu ∈ L2(Rd,Rd). For ε̃ > 0 let η ε̃ ∈ C∞0 (Bε̃) be a standard mollifer and let

anij := aij ∗ η 1
n
, An := (anij)1≤i,j≤d, bn := b ∗ η 1

n
, Fn := F ∗ η 1

n
on Rd. Then anij ∈ C∞(B),

bn, Fn ∈ C∞(B,Rd) satisfy

anij −→ aij, in L2(B), bn −→ b in Lp(B,Rd), Fn −→ F in L2(B,Rd). (5.2)

Moreover, each An, n ∈ N, is uniformly strictly elliptic and bounded on B with same

elliptic constant λ and upper bound constant M as A. Let V be a fixed open set with

V ⊂ U . Choose δ > 0 with Bδ(z) ⊂ U for all z ∈ V and take N ∈ N with 1
N
< δ. Then

by the assumption, for any n ≥ N and ϕ ∈ C∞0 (V ) with ϕ ≥ 0

ˆ
U

〈Fn,∇ϕ〉dx =

ˆ
U

〈A∇u+ bu,∇(ϕ ∗ η 1
n
)〉 dx ≤ 0. (5.3)

By [12, Proposition 2.1.4, Theorem 2.1.8] and Remark 5.1.2, there exists un ∈ H1.2
0 (B)

such that
ˆ
B

〈An∇un + bnun,∇ϕ̃〉dx =

ˆ
B

〈Fn,∇ϕ̃〉dx, for all ϕ̃ ∈ C∞0 (B). (5.4)

By [12, Corollary 1.7.6], Remark 5.1.2 and Lemma 5.1.3,

‖un‖H1,2
0 (B) ≤ C1‖Fn‖L2(B,Rd) ≤ C1‖F‖L2(B,Rd).

where C1 is independent of n. By weak compactness of balls in H1,2
0 (B), [12, Theorem
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2.1.8] and Remark 5.1.2, there exists subsequence (unk)k ⊂ (un)n, such that

unk → u and u+
nk
→ u+ weakly in H1,2

0 (B). (5.5)

Indeed, (5.5) first holds with u replaced by some ũ ∈ H1,2
0 (B). Then letting n → ∞

in (5.4) and using the maximum principle, we get ũ = u. For simplicity, write (un) for

(unk). By [27, Theorem 8.13], we have un ∈ C∞(B). Now define

Lnun :=
d∑

i,j=1

anij∂i∂jun + 〈bn +∇ATn ,∇un〉+ (div bn) · un

Then for any n ≥ N and ϕ ∈ C∞0 (V ) with ϕ ≥ 0, we obtain using (5.3), (5.4)

−
ˆ
U

Lnun ϕdx ≤ 0.

Hence Lnun(x) ≥ 0 for all x ∈ V , n ≥ N . Define fkε := fε ∗ η 1
k
, k ∈ N. Then (fkε )′ ≥ 0,

(fkε )′′ ≥ 0 since f ′ε ≥ 0, f ′′ε ≥ 0. Moreover, (fkε )′(un) → f ′ε(un) uniformly on U as

k →∞. Then, for any n ≥ N and ϕ ∈ C∞0 (V ) with ϕ ≥ 0, we obtain

ˆ
U

〈An∇fε(un) + bnfε(un),∇ϕ〉dx = lim
k→∞

ˆ
U

〈An∇fkε (un) + bnf
k
ε (un),∇ϕ〉dx

= lim
k→∞

(
−
ˆ
U

(
(fkε )′(un)Lnun + (fkε )′′(un)〈An∇un,∇un〉

)
· ϕdx

)
− lim

k→∞

ˆ
U

div bn(fkε (un)− un(fkε )′(un)) · ϕdx

≤ −
ˆ
U

div bn
(
fε(un)− unf ′ε(un)

)
ϕdx.

Since the latter term converges to zero as ε→ 0, for any n ≥ N , we obtain

ˆ
U

〈An∇u+
n + bnu

+
n ,∇ϕ〉dx ≤ 0, ∀ϕ ∈ C∞0 (V ), ϕ ≥ 0.
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Consequently, using (5.2), (5.5), we get

ˆ
U

〈A∇u+ + bu+,∇ϕ〉dx ≤ 0, ∀ϕ ∈ C∞0 (V ), ϕ ≥ 0.

Since V is an arbitrary open set with V ⊂ U , the assertion follows.

5.2 Existence of a pre-invariant measure and con-

struction of a generalized Dirichlet form

Throughout, the real number q shall be given by

q :=
pd

p+ d
.

We consider the following second order partial differential operator

Lf =
1

2

d∑
i,j=1

ãij∂i∂jf +
d∑
i=1

gi∂if, f ∈ C∞0 (Rd). (5.6)

where ãij and gi are throughout as in the following assumption.

(a) A = (aij)1≤i,j≤d is a matrix of functions satisfying aij ∈ H1,2
loc (Rd) ∩ C(Rd) for all

1 ≤ i, j ≤ d. Let Ã = (ãij)1≤i,j≤d := A+AT

2
and Ǎ := A−AT

2
. For every open ball

B ⊂ Rd, there exist positive real numbers λB, ΛB with

λB‖ξ‖2 ≤ 〈Ã(x)ξ, ξ〉 ≤ ΛB‖ξ‖2 for all ξ ∈ Rd, x ∈ B. (5.7)

H = (h1, . . . , hd) ∈ Lploc(Rd,Rd) and let

G = (g1, . . . , gd) =
1

2
∇AT + H,
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Assumption (a) implies that

F :=
1

2
∇AT −G = −H ∈ Lploc(R

d,Rd).

For later purpose we shall also consider the following assumption

(b) G = (g1, . . . , gd) ∈ Lqloc(Rd,Rd).

Remark 5.2.1. Under assumption (a), L as in (5.6) can be rewritten as non-symmetric

divergence form operator with coefficients in H1,2
loc (Rd)∩C(Rd) and Lploc(Rd)-perturbation,

i.e. L can be written as in (1.5). Assumption (b) then just means that 1
2
(∇AT )i ∈

Lsloc(Rd), 1 ≤ i ≤ d, for some s > d
2
.

But we can also consider non-divergence form operators. If for instance 1
2
(∇AT )i ∈

Lploc(Rd), 1 ≤ i ≤ d, for some p > d, then set

H = H̃− 1

2
∇AT

for arbitrarily chosen H̃ = (h̃1, ..., h̃d) ∈ Lploc(Rd,Rd). Then assumptions (a) and (b)

both hold and (5.6) (as well as (1.5)) can be rewritten as

Lf =
1

2

d∑
i,j=1

ãij∂ijf +
d∑
i=1

h̃i∂if, f ∈ C∞0 (Rd).

This covers as a special case the assumptions of [13, Theorem 1] (see also [12, Theorem

2.4.1]).

Theorem 5.2.2 (Existence of a pre-invariant measure). Suppose assumption (a) holds.

Then there exists ρ ∈ H1,p
loc (Rd) ∩ C1−d/p

loc (Rd) with ρ(x) > 0 for all x ∈ Rd such that

ˆ
Rd
Lϕρdx = 0, for all ϕ ∈ C∞0 (Rd). (5.8)
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Proof Using integration by parts, (5.8) is equivalent to

ˆ
Rd
〈1
2
AT∇ρ+ ρF,∇ϕ〉dx = 0 for all ϕ ∈ C∞0 (Rd). (5.9)

By [12, Proposition 2.1.4, Corollary 2.1.6, Theorem 2.1.8] and Remark 5.1.2, for every

n ∈ N, there exists a unique vn ∈ H1,p
0 (Bn) ∩ C1−d/p(Bn) such that

ˆ
Bn

〈1
2
AT∇vn + vn F,∇ϕ〉dx =

ˆ
Bn

〈−F,∇ϕ〉dx for all ϕ ∈ C∞0 (Bn).

Let un := vn + 1. Then un(x) = 1 for all x ∈ ∂Bn and

ˆ
Bn

〈1
2
AT∇un + un F,∇ϕ〉dx = 0, for all ϕ ∈ C∞0 (Bn).

Since u−n ≤ v−n , we see u−n ∈ H
1,p
0 (Bn) ∩ C1−d/p(Bn). Thus by Lemma 5.1.4, we get

ˆ
Bn

〈1
2
AT∇u−n + u−n F,∇ϕ〉dx ≤ 0, for all ϕ ∈ C∞0 (Bn), ϕ ≥ 0.

By [12, Theorem 2.1.8] and Remark 5.1.2, u−n ≤ 0, so that un ≥ 0. Suppose there exists

x0 ∈ Bn with un(x0) = 0. Then, applying [76, Corollary 5.2 (Harnack inequality)] to

un on Bn, we get un(x) = 0 for all x ∈ Bn, which contradicts un ∈ C1−d/p(Bn), since

un = 1 on ∂Bn. Hence un(x) > 0 for all x ∈ Bn. Now let ρn(x) := un(0)−1un(x),

x ∈ Bn, n ∈ N. Then ρn(0) = 1 and

ˆ
Bn

〈1
2
AT∇ρn + ρnF, ∇ϕ〉dx = 0 for all ϕ ∈ C∞0 (Bn).

Fix r > 0. Then, by [76, Corollary 5.2]

sup
x∈B2r

ρn(x) ≤ C1 inf
x∈B2r

ρn(x) for all n > 2r,
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where C1 is independent of ρn, n > 2r. Thus

sup
x∈B2r

ρn(x) ≤ C1 for all n > 2r.

By [12, Theorem 1.7.4] and Remark 5.1.2

‖ρn‖H1,p(Br) ≤ C2‖ρn‖L1(B2r) ≤ C1C2|B2r|, for all n > 2r,

where C2 is independent of (ρn)n>2r. By weak compactness of balls in H1,p
0 (Br) and

the Arzela-Ascoli Theorem, there exists (ρn,r)n≥1 ⊂ (ρn)n>2r and ρ(r) ∈ H1,p(Br) ∩
C1−d/p(Br) such that

ρn,r → ρ(r) weakly in H1,p(Br), ρn,r → ρ(r) uniformly on Br.

Considering (ρn,k)n≥1 ⊃ (ρn,k+1)n≥1, k ∈ N, we get ρ(k) = ρ(k+1) on Bk, hence we can

well-define ρ as

ρ := ρ(k) on Bk, k ∈ N.

Then ρ ∈ H1,p
loc (Rd) ∩ C1−d/p

loc (Rd) with ρ(x) ≥ 0, x ∈ Rd, ρ(0) = 1 and for any n ∈ N
ˆ
Bn

〈1
2
AT∇ρ+ ρF,∇ϕ〉dx = 0 for all ϕ ∈ C∞0 (Bn).

By applying the Harnack inequality to ρ on Br with n > r

1 = ρ(0) ≤ sup
x∈Br

ρ(x) ≤ C3 inf
x∈Br

ρ(x),

hence ρ(x) > 0 for all x ∈ Br. Therefore ρ(x) > 0 for all x ∈ Rd and (5.8) holds.

From now on unless otherwise stated, we fix ρ as in Theorem 5.2.2. Set

m := ρ dx.

Using integration by parts the following can be easily shown.
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Lemma 5.2.3. If Q := (qij)1≤i,j≤d is a d × d matrix of functions with −qji = qij ∈
H1.2
loc (Rd) ∩ L∞loc(Rd), 1 ≤ i, j ≤ d. Then βρ,Q ∈ L2

loc(Rd,Rd;m) and βρ,Q is weakly

divergence free with respect to m, i.e.

ˆ
Rd
〈βρ,Q,∇f〉dm = 0, for all f ∈ C∞0 (Rd).

Define

B := G− βρ,AT .

Note that B =
(
G− 1

2
∇AT

)
− AT∇ρ

2ρ
∈ Lploc(Rd,Rd). Moreover, using (5.8) and Lemma

5.2.3, we can see that βρ,Ǎ
T

+B ∈ L2
loc(Rd,Rd;m) is weakly divergence free with respect

to m, i.e. ˆ
Rd
〈βρ,ǍT + B,∇f〉dm = 0 for all f ∈ C∞0 (Rd).

For f, g ∈ C∞0 (Rd), define

E0(f, g) :=

ˆ
Rd
〈Ã∇f,∇g〉 dm.

Then (E0, C∞0 (Rd)) is closable in L2(Rd,m). We denote its closure by (E0, D(E0)) and its

associated generator by (L0, D(L0)). Since C∞0 (Rd) ⊂ D(L0)0,b we have that D(L0)0,b

is a dense subset of L1(Rd,m), and furthermore

L0f =
1

2
trace(Ã∇2f) + 〈βρ,Ã,∇f〉 ∈ L2(Rd,m) for all f ∈ C∞0 (Rd).

Define

Lf = L0f + 〈βρ,ǍT + B,∇f〉, f ∈ D(L0)0,b.

Then (L,D(L0)0,b) is an extension of (L,C∞0 (Rd)) as defined in 5.6. By [69, Theorem

1.5], there exists a L1(Rd,m) closed extension (L,D(L)) of (L,D(L0)0,b) in L1(Rd,m)

which generates sub-Markovian C0 semigroup of contractions (Tt)t>0 on L1(Rd,m).

Restricting (Tt)t>0 to L1(Rd,m)b, it is well-known that (Tt)t>0 can be extended to a

sub-Markovian C0-semigroup of contractions on each Lr(Rd,m), r ∈ [1,∞). Denote by
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(Lr, D(Lr)) the corresponding closed generator with graph norm

‖f‖D(Lr) := ‖f‖Lr(Rd,m) + ‖Lrf‖Lr(Rd,m),

and by (Gα)α>0 the corresponding resolvent. For (Tt)t>0 and (Gα)α>0 we do not explic-

itly denote in the notation on which Lr(Rd,m)-space they act. We assume that this

is clear from the context. Moreover, (Tt)t>0 and (Gα)α>0 can be uniquely defined on

L∞(Rd,m), but are no longer strongly continuous there.

For f ∈ C∞0 (Rd)

L̂f := L0f − 〈βρ,ǍT + B,∇f〉 =
1

2
trace(Ã∇2f) + 〈Ĝ,∇f〉,

with

Ĝ := (ĝ1, · · · , ĝd) = 2βρ,Ã −G = βρ,A −B ∈ L2
loc(Rd,Rd,m).

We see that L and L̂ have the same structural properties, i.e. they are given as the

sum of a symmetric second order elliptic differential operator and a divergence free first

order perturbation with same integrability condition with respect to the measure m.

Therefore all what will be derived below for L will hold analogously for L̂. Denote the

operators corresponding to L̂ (again defined through [69, Theorem 1.5]) by (L̂r, D(L̂r))

for the co-generator on Lr(Rd,m), r ∈ [1,∞), (T̂t)t>0 for the co-semigroup, (Ĝα)α>0

for the co-resolvent. By [69, Section 3], we obtain a corresponding bilinear form with

domain D(L2)× L2(Rd,m) ∪ L2(Rd,m)×D(L̂2) by

E(f, g) :=

{
−
´
Rd L2f · g dm for f ∈ D(L2), g ∈ L2(Rd,m),

−
´
Rd f · L̂2g dm for f ∈ L2(Rd,m), g ∈ D(L̂2).

E is called the generalized Dirichlet form associated with (L2, D(L2)). Using integration

by parts, it is easy to see that for f, g ∈ C∞0 (Rd)

E(f, g) =
1

2

ˆ
Rd
〈Ã∇f,∇g〉 dm−

ˆ
Rd
〈βρ,ǍT + B,∇f〉g dm

=
1

2

ˆ
Rd
〈A∇f,∇g〉 dm−

ˆ
Rd
〈B,∇f〉g dm,
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and

L2f =
1

2

d∑
i,j=1

ãij∂i∂jf +
d∑
i=1

gi∂if =
1

2
trace(Ã∇2f) + 〈βρ,AT ,∇f〉+ 〈B,∇f〉,

L̂2f =
1

2

d∑
i,j=1

ãij∂i∂jf +
d∑
i=1

ĝi∂if =
1

2
trace(Ã∇2f) + 〈βρ,A,∇f〉 − 〈B,∇f〉.

5.3 Regularity results for resolvent and semigroup

Theorem 5.3.1. Assume (a). Then

ρGαg ∈ H1,p
loc (Rd), ∀g ∈ ∪r∈[q,∞]L

r(Rd,m),

and for any open balls B, B′ with B ⊂ B′,

‖ρGαg‖H1,p(B) ≤ c0

(
‖g‖Lq(B′,m) + ‖Gαg‖L1(B′,m)

)
,

where c0 is independent of g.

Proof Let g ∈ C∞0 (Rd) and α > 0. Then for all ϕ ∈ C∞0 (Rd),

ˆ
Rd

(α− L̂2)ϕ ·
(
Gαg

)
dm =

ˆ
Rd
Ĝα(α− L̂2)ϕ · g dm =

ˆ
Rd
ϕg dm. (5.10)

Note that Gαg ∈ D(L)b ⊂ D(E0) by [69, Theorem 1.5]. Since ρ is locally bounded

below and Ã satisfies (5.7), we have D(E0) ⊂ H1,2
loc (Rd) and it follows ρGαg ∈ H1,2

loc (Rd).

Define

F̂ :=
1

2
∇A− Ĝ = −A∇ρ

2ρ
+ B ∈ Lploc(R

d,Rd). (5.11)

Given any open ball B′′ and ϕ ∈ C∞0 (B′′), we have using integration by parts in the
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left hand side of (5.10)

ˆ
B′′

[
〈1
2
A∇(ρGαg) + (ρGαg)F̂,∇ϕ〉+ α(ρGαg)ϕ

]
dx =

ˆ
B′′

(ρg)ϕdx.

By [12, Theorem 1.8.3] and Remark 5.1.2, for any open ball B′ with B′ ⊂ B′′, we have

ρGαg ∈ H1,p(B′). Thus by [12, Theorem 1.7.4] and Remark 5.1.2, we obtain for any

open ball B with B ⊂ B′, r ∈ [q,∞)

‖ρGαg‖H1,p(B) ≤ c1

(
‖ρg‖Lq(B′,dx) + ‖ρGαg‖L1(B′,dx)

)
≤ c1(sup

B′
ρ
q−1
q ∨ 1)︸ ︷︷ ︸

=:c0

(
‖g‖Lq(B′,m) + ‖Gαg‖L1(B′,m)

)
(5.12)

By denseness of C∞0 (Rd) in Lr(Rd,m), (5.12) extends to g ∈ Lr(Rd,m), r ∈ [q,∞). For

g ∈ L∞(Rd,m), let gn := g1Bn ∈ Lq(Rd,m), n ≥ 1. Then ‖g − gn‖Lq(B′,m) + ‖Gα(g −
gn)‖L1(B′,m) → 0 as n→∞. Hence (5.12) also extends to g ∈ L∞(Rd,m).

Remark 5.3.2. Proposition 3.1.6 of Part I holds in our more general situation with

exactly the same proof.

Theorem 5.3.3. Assume (a). For each s ∈ [1,∞], consider the Ls(Rd,m)-semigroup

(Tt)t>0. Then for any f ∈ Ls(Rd,m) and t > 0, Ttf has a locally Hölder continuous

m-version Ptf on Rd. More precisely, P·f(·) is locally parabolic Hölder continuous on

Rd × (0,∞) and for any bounded open sets U , V in Rd with U ⊂ V and 0 < τ3 < τ1 <

τ2 < τ4, i.e. [τ1, τ2] ⊂ (τ3, τ4), we have for some γ ∈ (0, 1) the following estimate for all

f ∈ ∪s∈[1,∞]L
s(Rd,m) with f ≥ 0,

‖P·f(·)‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ C6‖P·f(·)‖L1(V×(τ3,τ4),m⊗dt),

where C6, γ are constants that depend on U × [τ1, τ2], V × (τ3, τ4), but are independent

of f .

Proof The proof is similar to the corresponding proof in Theorem 3.1.8, but there
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are some subtle differences. First assume f ∈ D(L)b ∩D(L2) ∩D(Lq) with f ≥ 0. Set

u(x, t) := ρ(x)Ptf(x). Then Ptf ∈ D(Lq) and ρ ∈ C(Rd) implies u ∈ C
(
Rd × [0,∞)

)
by Proposition 5.3.2(iii). Let T > 0 be arbitrary. Then for any ϕ ∈ C∞0 (Rd × (0, T ))

0 = −
ˆ T

0

ˆ
Rd

(
∂tϕ+ L̂2ϕ

)
u dxdt. (5.13)

Since u ∈ H1,2(O× (0, T )) for any bounded and open set O ⊂ Rd, using integration by

parts in the right hand term of (5.13), we get

0 =

ˆ T

0

ˆ
Rd

(
1

2
〈A∇u,∇ϕ〉+ u〈F̂,∇ϕ〉 − u∂tϕ

)
dxdt, (5.14)

where F̂ is as in (5.11). Then as in Theorem 3.1.8.

‖P·f(·)‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ ‖ρ−1‖Cγ(U×[τ1,τ2])‖ρ(·)P·f(·)‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ ‖ρ−1‖Cγ(U×[τ1,τ2])C2C5︸ ︷︷ ︸
:=C6

‖P·f(·)‖L1(V×(τ3,τ4),m⊗dt)

≤ C6(τ4 − τ3)‖ρ‖
s−1
s

L1(V )‖f‖Ls(Rd,m), s ∈ [1,∞], (5.15)

where C2, C5 is as in Theorem 3.1.8 in Part I.

For f ∈ L1(Rd,m) ∩ L∞(Rd,m) with f ≥ 0 let fn := nGnf . Then fn ∈ D(L)b ∩
D(L2) ∩ D(Lq) with fn ≥ 0 and fn → f in Ls(Rd,m) for any s ∈ [1,∞). Thus

(5.15) including all intermediate inequalities extend to f ∈ L1(Rd,m) ∩ L∞(Rd,m)

with f ≥ 0. If f ∈ Ls(Rd,m), f ≥ 0 and s ∈ [1,∞), let fn := 1Bn · (f ∧ n). Then fn ∈
L1(Rd,m) ∩ L∞(Rd,m) with fn ≥ 0 and fn → f in Ls(Rd,m). Thus (5.15) including

all intermediate inequalities extend to f ∈ Ls(Rd,m) with f ≥ 0. For f ∈ L∞(Rd,m),

the result follows exactly as in Theorem 3.1.8.

Remark 5.3.4. Besides the possible non-symmetry of A (that also occurs in F̂), the

difference between the proof of Theorem 3.1.8 and Theorem 5.3.3 is the approxima-

tion method. The proof of Theorem 3.1.8 uses the denseness of C∞0 (Rd) in L1(Rd,m).

The proof of Theorem 5.3.3 uses the denseness of ∪α>0Gα

(
L1(Rd,m) ∩ L∞(Rd,m)

)
in
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L1(Rd,m). Using the latter, we can get the corresponding result to Lemma 4.2.2 in the

following Lemma 5.3.5.

Lemma 5.3.5. (i) Let A ∈ B(Rd) be such that Pt01A(x0) = 0 for some t0 > 0 and

x0 ∈ Rd. Then m(A) = 0.

(ii) Let A ∈ B(Rd) be such that Pt01A(x0) = 1 for some t0 > 0 and x0 ∈ Rd. Then

Pt1A(x) = 1 for all (x, t) ∈ Rd × (0,∞).

Proof (i) Suppose m(A) > 0. Choose an open ball Br(x0) ⊂ Rd such that

0 < m (A ∩Br(x0)) <∞.

Let u := ρP·1A∩Br(x0). Then 0 = u(x0, t0) ≤ ρ(x0)Pt01A(x0) = 0. Set fn := nGn1A∩Br(x0).

Then fn ∈ D(L)b ∩D(L2)∩D(Lq) with fn ≥ 0 such that fn → 1A∩Br(x0) in L1(Rd,m).

Let un := ρP·fn. Fix T > t0 and U ⊃ Br(x0). Since un ∈ H1,2(U × (0, T )) satis-

fies (5.13) (see proof of Theorem 5.3.3), (5.14) holds with u replaced by un for all

ϕ ∈ C∞0 (U × (0, T )). The rest of the proof is then exactly as in Lemma 4.2.2 (i).

(ii) Let y ∈ Rd and 0 < s < t0 be arbitrary but fixed and let r := 2‖x0 − y‖ and let

B be any open ball. Take gn := nGn1B∩A. Then gn ∈ D(L)b ∩ D(L2) ∩ D(Lq) with

0 ≤ gn ≤ 1 satisfying gn → 1A∩B in L1(Rd,m). The rest of the proof is now exactly as

in Lemma 4.2.2 (ii).

Remark 5.3.6. Using the Lemma 5.3.5, Corollary 4.2.4 holds in our more general

situation with exactly the same proof.

Remark 5.3.7. (i) (cf. Remark 4.2.1 in Part I) Consider A, ρ, B̃ which are explicitly

given by following assumptions. Let A = (aij)1≤i,j≤d be a matrix of functions as in

assumption (a) and Ǎ = (ǎij)1≤i,j≤d := A−AT
2

. Suppose that for some p > d, we are

given ρ ∈ H1,p
loc (Rd) ∩ C0,1−d/p(Rd), ρ(x) > 0 for all x ∈ Rd, such that for some B̃ ∈

Lploc(Rd,Rd) it holds

ˆ
Rd
〈B̃,∇f〉ρdx = 0 for all f ∈ C∞0 (Rd). (5.16)
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Let

L̃f = L0f + 〈βρ,ǍT + B̃,∇f〉, f ∈ D(L0)0,b.

Then (5.8) holds for L replaced with L̃. Moreover, everything that was developed for

(L,D(L0)0,b) right after Theorem 5.2.2 until and including Corollary 5.3.6 (and even

beyond until the end of this article if additionally βρ,Ǎ
T

+ B̃ ∈ Lqloc(Rd,Rd), i.e. as-

sumption (b) holds, cf. Remark 6.1.2) holds analoguously for (L̃,D(L0)0,b). Now sup-

pose again that assumption (a) holds. Then by Theorem 5.2.2, there exists ρ as right

above such that B̃ := B = 1
2
∇AT + H− βρ,AT ∈ Lploc(Rd,Rd) and such that B̃ satisfies

(5.16). Thus all that has been done up to now is in fact a special realization of the just

explained explicit case.

(ii) (cf. Remark 3.1.3) It is possible to realize the results of this article with Rd re-

placed by an arbitrary open set U ⊂ Rd. Moreover as it is well-known the Lploc-condition

can be relaxed by an Lpnloc-condition on an exhaustion (Vn)n∈N of Rd (or U), where pn > d

for all n ∈ N and limn→∞ pn = d.
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Chapter 6

Probabilistic results

6.1 The underlying SDE

Additionally to assumption (a) we assume throughout this section that assumption (b)

holds. Then C2
0(Rd) ⊂ D(L1) ∩ D(Lq) and assumption (H2)′ of Part I holds. Here,

assumption (b) was needed to get the continuity property of the resolvent in (H2)′(ii)

of Part I. Thus, through the exactly same method as in Theorem 3.2.1, we arrive at

the following theorem:

Theorem 6.1.1. There exists a Hunt process

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈Rd∪{∆})

with state space Rd and life time

ζ = inf{t ≥ 0 : Xt = ∆} = inf{t ≥ 0 : Xt /∈ Rd},

having the transition function (Pt)t≥0 as transition semigroup, such that M has contin-

uous sample paths in the one point compactification Rd
∆ of Rd with the cemetery ∆ as

point at infinity.

Remark 6.1.2. Actually, under assumptions (a) and (b) most of the results from Part I

generalize to the more general coefficients considered here, i.e. the analogues of Lemmas
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3.14, 3.15, 3.18, Propositions 3.16, 3.17 Theorem 3.19, Remark 3.20 and the analogues

of the results in Chapter 4 of Part I hold. These results include, various non-explosion

criteria, moment inequalities, a general Krylov type estimate, recurrence criteria and

criteria for ergodicity including uniqueness of the invariant measure ρdx.

According to Remark 6.1.2, we obtain.

Theorem 6.1.3. Consider the Hunt process M from Theorem 6.1.1 with coordinates

Xt = (X1
t , ..., X

d
t ). Let (σij)1≤i≤d,1≤j≤l, l ∈ N arbitrary but fixed, be any matrix con-

sisting of continuous functions σij ∈ C(Rd) for all 1 ≤ i ≤ d, 1 ≤ j ≤ l, such that

Ã = σσT , i.e.

ãij(x) =
l∑

k=1

σik(x)σjk(x), ∀x ∈ Rd, 1 ≤ i, j ≤ d.

Then on a standard extension of (Ω,F , (Ft)t≥0,Px), x ∈ Rd, that we denote for no-

tational convenience again by (Ω,F , (Ft)t≥0,Px), x ∈ Rd, there exists a standard l-

dimensional Brownian motion W = (W 1, . . . ,W l) starting from zero such that Px-a.s.

for any x = (x1, ..., xd) ∈ Rd, i = 1, . . . , d

X i
t = xi +

l∑
j=1

ˆ t

0

σij(Xs) dW
j
s +

ˆ t

0

gi(Xs) ds, 0 ≤ t < ζ, (6.1)

in short

Xt = x0 +

ˆ t

0

σ(Xs)dWs +

ˆ t

0

G(Xs)ds, 0 ≤ t < ζ.

The non-explosion result in the following theorem is new and allows for linear

growth together with Lq(Rd,m)-singularities of the drift. It completes various other

non-explosion results form Part I and existing literature.

Theorem 6.1.4. Let σ = (σij)1≤i,j≤d be as in Theorem 6.1.3, i.e. l = d (such σ always

exists, cf. Lemma 3.2.7) and assume that for some h1 ∈ Lp(Rd,m), h2 ∈ Lq(Rd,m)

and C > 0 it holds for a.e. x ∈ Rd

max
1≤i,j≤d

|σij(x)| ≤ |h1(x)|+ C(
√
‖x‖+ 1), max

1≤i≤d
|gi(x)| ≤ |h2(x)|+ C(‖x‖+ 1).
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Then M is non-explosive and for any T > 0, and any open ball B, there exist constants

C5,T , C6 such that

sup
x∈B

Ex
[
sup
s≤t
‖Xs‖

]
≤ C5,T · eC6·t, ∀t ≤ T.

Proof Let x ∈ B and n ∈ N such that x ∈ Bn (Bn is the open ball about zero with

radius n in Rd). Let 0 ≤ t ≤ T . Then with σn := inf{t > 0 : Xt ∈ Rd \Bn}, n ≥ 1, we

obtain Px-a.s. for any 1 ≤ i ≤ d

sup
0≤s≤t∧σn

|X i
s| ≤ |xi|+

d∑
j=1

sup
0≤s≤t∧σn

∣∣∣∣ˆ s

0

σij(Xu) dW
j
u

∣∣∣∣+ sup
0≤s≤t∧σn

ˆ s

0

|gi(Xu)| du.

By the Burkholder-Davis-Gundy inequality [61, Chapter IV. (4.2) Corollary] and (1.7),

there exists a constant cx,B,q, depending on q and the open ball B, such that

d∑
j=1

Ex
[

sup
0≤s≤t∧σn

∣∣∣∣ˆ s

0

σij(Xu) dW
j
u

∣∣∣∣]

≤
d∑
j=1

√
32Ex

[ˆ t∧σn

0

σ2
ij(Xu)du

]1/2

≤ d
√

96Ex
[ˆ t∧σn

0

|h2
1(Xu)|du

]1/2

+ dC
√

96T + C
√

96d · Ex
[ˆ t∧σn

0

‖Xu‖du
]1/2

≤ d
√

96eT cx,B,q‖h1‖L2q(Rd,m) + dC(
√

96T +
√

32)︸ ︷︷ ︸
=:C3,T

+C
√

96d

ˆ t

0

Ex
[

sup
0≤s≤u∧σn

‖Xs‖
]
du,
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and

Ex
[

sup
0≤s≤t∧σn

ˆ s

0

|gi(Xu)|du
]

≤ Ex
[ˆ t∧σn

0

|h2(Xu)|du
]

+ CEx
[ ˆ t∧σn

0

(
‖Xu‖+ 1

)
du
]

≤ Ex
[ˆ T

0

|h2(Xu)|du
]

+ CT + CEx
[ˆ t

0

sup
0≤s≤u∧σn

‖Xs‖du
]

≤ eT cx,B,q‖h2‖Lq(Rd,m) + CT︸ ︷︷ ︸
=:C4,T

+C

ˆ t

0

Ex
[

sup
0≤s≤u∧σn

‖Xs‖
]
du.

Hence

Ex
[

sup
0≤s≤t∧σn

‖Xs‖
]
≤

d∑
i=1

Ex
[

sup
0≤s≤t∧σn

|X i
s|
]

≤ (
√
d‖x‖+ dC3,T + dC4,T )︸ ︷︷ ︸

=:C5,T

+ dC(1 +
√

96d)︸ ︷︷ ︸
=:C6

ˆ t

0

Ex
[

sup
0≤s≤u∧σn

‖Xs‖
]
du. (6.2)

Now let pn(t) := Ex
[
sup0≤s≤t∧σn ‖Xs‖

]
. Then by (6.2), we obtain

pn(t) ≤ C5,T + C6

ˆ t

0

pn(u)du, 0 ≤ t ≤ T.

By Gronwall’s inequality, pn(t) ≤ C5,T ·eC6·t for any t ∈ [0, T ]. By the Markov inequality,

Px(σn ≤ T ) = Px

(
sup
s≤T
|Xs| > n

)
≤ Px

(
sup

s≤T∧σn
|Xs| ≥ n

)
≤ 1

n
Ex
[

sup
s≤T∧σn

|Xs|
]

≤ 1

n
C5,T · eC6·T → 0 as n→∞.

91



CHAPTER 6. PROBABILISTIC RESULTS

Therefore Px(ζ =∞) = 1. Finally applying Fatou’s lemma to pn(t), we obtain

Ex
[
sup
s≤t
‖Xs‖

]
≤ C5,T · eC6·t, ∀t ≤ T.

Example 6.1.5. Let η ∈ C∞0 (B1/4) be given. Define w : Rd → R by

w(x1, . . . , xd) := η(x1, . . . , xd) ·
ˆ x1

−2

1

|y1|1/d
1[−1,1](y1)dy1.

Then w ∈ H1,q(Rd) ∩ C0(B1/4) but ∂1w /∈ Ldloc(Rd). Define v : Rd → R by

v(x1, . . . , xd) := w(x1, . . . , xd) +
∞∑
i=1

1

2i
w(x1 − i, . . . , xd)

Then v ∈ H1,q(Rd) ∩ C(Rd) but ∂1v /∈ Ldloc(Rd). Now define P = (pij)1≤i,j≤d as

p1d := v, pd1 := −v, pij := 0 if (i, j) /∈ {(1, d), (d, 1)}.

Let Q = (qij)1≤i,j≤d be a matrix of functions such that qij = −qij ∈ H1,2
loc (Rd) ∩ C(Rd)

for all 1 ≤ i, j ≤ d and assume there exists a constant C > 0 satisfying

‖∇Q‖ ≤ C(‖x‖+ 1), for a.e. on Rd.

Let Ã := id, Ǎ := P + Q and H ≡ 0. Then Ã and Ǎ satisfy assumption (a) with

G := 1
2
∇AT and G satisfies assumption (b). Define ρ ≡ 1 on Rd. Then ρ satisfies (5.8)

and B ≡ 0. Obviously σ = id and G satisfy the conditions of Theorem 6.1.4. Thus

M from Theorem 6.1.1 is non-explosive. Note that the non-explosion criterion of this

example can not be derived from [69, Proposition 1.10], nor from (1.3) or for instance

[30, Assumption 2.1] (one of the pioneering works on local and global well posedness

of SDEs with unbounded merely measurable drifts), since G has a part with infinitely

many singular points outside an arbitrarily large compact set and may have a part with

linear growth.
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6.2 Uniqueness in law under low regularity

Let M̃ = (Ω̃, F̃ , (X̃t)t≥0, (P̃x)x∈Rd∪{∆}) be a right process (see for instance [78]). For a

σ-finite or finite Borel measure ν on Rd we define

P̃ν(·) :=

ˆ
Rd

P̃x(·) ν(dx).

Consider (L,C∞0 (Rd)) as defined in (5.6). According to [69, Definition 2.5], we define:

Definition 6.2.1. A right process M̃ = (Ω̃, F̃ , (X̃t)t≥0, (P̃x)x∈Rd∪{∆}) with state space

Rd and natural filtration (F̃t)t≥0 is said to solve the martingale for (L,C∞0 (Rd)), if for

all u ∈ C∞0 (Rd):

(i)
´ t

0
Lu(X̃s) ds, t ≥ 0, is P̃m-a.e. independent of the measurable m-version chosen

for Lu.

(ii) u(X̃t) − u(X̃0) −
´ t

0
Lu(X̃s) ds, t ≥ 0, is a continuous (F̃t)t≥0-martingale under

P̃vm for any v ∈ B+
b (Rd) such that

´
Rd v dm = 1.

Definition 6.2.2. A σ-finite Borel measure ν on Rd is called sub-invariant measure

for a right process M̃ = (Ω̃, F̃ , (X̃t)t≥0, (P̃x)x∈Rd∪{∆}) with state space Rd, if

ˆ
Rd

Ẽx[f(X̃t)]ν(dx) ≤
ˆ
Rd
f(x)ν(dx) (6.3)

for any f ∈ L1(Rd, ν) ∩ Bb(Rd), f ≥ 0, t ≥ 0. ν is called invariant measure for M̃, if

“≤” can be replaced by “=” in (6.3)

Part (i) of the following proposition is proven in [69, Proposition 2.6]. And part (ii)

is a simple consequence of part (i) and the strong Feller property of (pMt )t≥0, M as in

Theorem 3.2.1.

Proposition 6.2.3. (i) Let M̃ = (Ω̃, F̃ , (X̃t)t≥0, (P̃x)x∈Rd∪{∆}) solve the martingale

for (L,C∞0 (Rd)) such that m is a sub-invariant measure for M̃ and let (L,C∞0 (Rd))

be L1-unique. Then pM̃t f(x) := Ẽx[f(X̃t)] is an m-version of Ttf for all f ∈
L1(Rd,m) ∩ Bb(Rd), t ≥ 0 and m is an invariant measure for M̃.
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(ii) If additionally (pM̃t )t≥0 is strong Feller, then P̃x = Px for any x ∈ Rd.

Proposition 6.2.4. Suppose that (a) and (b) hold, and that for any compact set K in

Rd, there exist LK ≥ 0, αK ∈ (0, 1) with

|ãij(x)− ãij(y)| ≤ LK |x− y|αK , ∀x, y ∈ K, 1 ≤ i, j ≤ d.

Suppose further that m is an invariant measure for M. Let M̃ be a right process

with strong Feller transition function (pM̃t )t≥0 that solves the martingale problem for

(L,C∞0 (Rd)) and such that m is a sub-invariant measure for M̃. Then P̃x = Px for any

x ∈ Rd.

Proof By [69, Corollary 2.2] (L,C∞0 (Rd)) is L1-unique, iff m is an invariant measure

for M. Then appy Proposition 6.2.3.

Remark 6.2.5. Note that m is an invariant measure for M as in Theorem 6.1.1, if

and only if the co-semigroup (T̂t)t>0 of (Tt)t>0 is conservative. One advantage of our

approach is that we can use all previously derived conservativeness results for generalized

Dirichlet forms (see for instance [69, Proposition 1.10], [28], Part I, but also Example

6.2.6).

Example 6.2.6. (i) Assume (a), (b) holds and that the ãij are locally Hölder con-

tinuous on Rd as in Proposition 6.2.4. If there exists a constant C > 0 and some

N0 ∈ N, such that

−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x) +

〈
G(x), x

〉
≤ −C

(
‖x‖2 + 1

)
for a.e. x ∈ Rd \BN0, then M as in Theorem 6.1.1 solves the martingale problem

for (L,C∞0 (Rd)) and m is an invariant measure for M by the analogue of Propo-

sition 4.2.13 (see Remark 6.1.2). In this situation Proposition 6.2.4 applies.
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(ii) Let Ã,Ǎ and G be as in Example 6.1.5. By Theorem 6.1.4, not only M but also its

co-process M̂ is non-explosive. Hence dx is an invariant measure for M. Now if

ãij are locally Hölder continuous on Rd as in Proposition 6.2.4, then Proposition

6.2.4 also applies.

(iii) Suppose that in the situation of Remark 5.3.7(i) the conditions of Theorem 4.2.7

hold with B = B̃ and that the ãij are locally Hölder continuous on Rd as in

Proposition 6.2.4. Then ρ dx is an invariant measure for M and Proposition 6.2.4

again applies.
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Chapter 7

Regularity of solutions

7.1 Regularity results for linear parabolic equation

with singular weight in the time derivative term

The following Lemma which will lead to our main result, is a slight modification of [2,

Lemma 6] and involves a weight function ψ.

Lemma 7.1.1. Let U be a bounded open subset of Rd and T > 0. Let w ∈ L2(U×(0, T ))

be such that supp(w) ⊂ U × (0, T ] and assume ∂tw ∈ L2(U × (0, T )), ψ ∈ L2(U). Then

for a.e. τ ∈ (0, T ), it holds

ˆ τ

0

ˆ
U

∂tw · ψ dxdt =

ˆ
U

w|t=τ ψdx.

Proof Let ψn ∈ C∞0 (U), n ≥ 1, satisfy limn→∞ ψn = ψ in L2(U). Then wψ ∈ L1,2(U ×
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(0, T )) and for any ϕ ∈ C∞0 (U × (0, T )), we have

¨
U×(0,T )

∂tϕ · wψ dxdt = lim
n→∞

¨
U×(0,T )

∂tϕ · wψn dxdt

= lim
n→∞

¨
U×(0,T )

∂t(ϕψn) · w dxdt

= − lim
n→∞

¨
U×(0,T )

ϕψn · ∂tw dxdt

= −
¨
U×(0,T )

ϕ · (∂tw · ψ)dxdt.

Thus ∂t(wψ) = ∂tw ·ψ ∈ L1,2(U × (0, T )). Now let f(t) :=
´
U
w(x, t)ψ(x)dx. Then f(t)

is defined for a.e. t ∈ (0, T ) and is in L1((0, T )). Let g ∈ C∞0
(
(0, T )

)
be given. Take

τ0 ∈ (0, T ) satisfying supp(g) ⊂ (0, τ0). Let V be a bounded open subset of Rd such

that V ⊂ U and supp(w) ∩
(
U × (0, τ0)

)
⊂ V × (0, τ0). Let χ ∈ C∞0 (U) with χ ≡ 1 on

V . Then

ˆ T

0

∂tg · f dt =

¨
U×(0,τ0)

∂tg · wψdxdt

=

¨
V×(0,τ0)

∂t(gχ) · (wψ)dxdt

= −
¨
U×(0,T )

gχ ∂tw · ψdxdt

= −
ˆ T

0

g ·
(ˆ

U

∂tw · ψdx
)
dt.

Thus ∂tf =
´
U
∂tw ·ψdx ∈ L1

(
(0, T )

)
. Then by [21, Theorem 4.20], f has an absolutely

continuous dx-version on (0, T ) and by the Fundamental Theorem of Calculus, for a.e

τ1, τ ∈ (0, T ) it holds

ˆ τ

τ1

ˆ
U

∂tw · ψdxdt =

ˆ τ

τ1

∂tfdt =

ˆ τ

τ1

f ′dt = f(τ)− f(τ1) =

ˆ
U

(w|t=τ − w|t=τ1)ψdx.

Choosing τ1 near 0, our assertion holds.
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Consider the following condition.

(I) U × (0, T ) is a bounded open set in Rd × R, T > 0. A = (aij)1≤i,j≤d is a matrix

of functions on U that is uniformly strictly elliptic and bounded, i.e. there exists

constants λ > 0, M > 0, such that for all ξ = (ξ1, . . . , ξd), x ∈ U , it holds

d∑
i,j=1

aij(x)ξiξj ≥ λ‖ξ‖2, max
1≤i,j≤d

|aij(x)| ≤M,

and let B ∈ Lp(U,Rd) with p > d, ψ ∈ Lq(U), q ∈ [2 ∨ p
2
, p). There exists c0 > 0

such that c0 ≤ ψ on U , and finally

u ∈ H1,2(U × (0, T )) ∩ L∞(U × (0, T )).

Assuming (I), we consider a divergence form linear parabolic equation with a singular

weight in the time derivative term as follows.

¨
U×(0,T )

(u∂tϕ)ψdxdt =

¨
U×(0,T )

〈
A∇u,∇ϕ

〉
+ 〈B,∇u〉ϕdxdt,

for all ϕ ∈ C∞0 (U × (0, T )). (7.1)

Using integration by parts in the left hand term, (7.1) is equivalent to

−
¨
U×(0,T )

(∂tu)ϕψdxdt =

¨
U×(0,T )

〈
A∇u,∇ϕ

〉
+ 〈B,∇u〉ϕdxdt,

for all ϕ ∈ C∞0 (U × (0, T )). (7.2)

Define A := {v ∈ L∞(U × (0, T )) | ∇v ∈ L2(U × (0, T )) and supp(v) ⊂ U × (0, T )}.
Using the standard mollification on Rd × R to approximate functions in A,

(7.2) extends to

−
¨
U×(0,T )

(∂tu)ϕψdxdt =

¨
U×(0,T )

〈
A∇u,∇ϕ

〉
+ 〈B,∇u〉ϕdxdt,

for all ϕ ∈ A. (7.3)
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Fix β ≥ 1. For t ∈ R, define functions G(t) := (t+)β, H(t) := 1
β+1

(t+)β+1, where

t+ := max(0, t). Then by [21, Theorem 4.4], G′(t) = β(t+)β−11[0,∞)(t) and H ′(t) = G(t).

Let η ∈ C∞0 (U × (0, T ]) with η ≥ 0. Given τ ∈ (0, T ), define ϕ̃ := η2G(u)1(0,τ). Then

by [21, Theorem 4.4] (or [2, Lemma 4]),

∇ϕ̃ =

{
η2G′(u)∇u+ 2η∇η G(u), 0 < t < τ,

0, τ ≤ t < T.

Thus ϕ̃ ∈ A and by (7.3), we have

−
¨
U×(0,T )

(∂tu) ϕ̃ψdxdt =

¨
U×(0,T )

〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃dxdt. (7.4)

Observe that by [21, Theorem 4.4] (or [2, Lemma 4]),

∂t(η
2H(u)) = 2η∂tη H(u) + η2G(u)∂tu.

Thus by Lemma 7.1.1

¨
U×(0,T )

ϕ̃ (∂tu)ψdxdt

=

¨
U×(0,τ)

η2G(u)∂tu · ψdxdt

=

ˆ τ

0

ˆ
U

∂t(η
2H(u))ψdxdt− 2

ˆ τ

0

ˆ
U

η∂tη H(u)ψdxdt

=

ˆ
U

η2H(u) |t=τ ψdx−
ˆ τ

0

ˆ
U

2η∂tη H(u)ψdxdt, for a.e. τ ∈ (0, T ). (7.5)

By (7.4) and (7.5), we get

ˆ
U

η2H(u) |t=τ ψdxdt+

ˆ τ

0

ˆ
U

〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃dxdt

=

ˆ τ

0

ˆ
U

2η ∂tη H(u)ψdxdt, for a.e. τ ∈ (0, T ). (7.6)
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On {ϕ̃ > 0}, it holds u > 0, so that ∇u = ∇u+. Thus on {ϕ̃ > 0}, we have〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃

=
〈
A∇u+, η2G′(u)∇u+〉+

〈
A∇u+, 2η∇η G(u)

〉
+ 〈B,∇u+〉η2G(u)

≥ η2G′(u)λ ‖∇u+‖2 − 2ηG(u)dM‖∇η‖‖∇u+‖ − η2G(u)‖B‖‖∇u+‖.

Note that on {ϕ̃ > 0}

(u+)−β−1G(u)2 ≤ G′(u),

hence using Young’s inequality, we obtain

2ηG(u)dM‖∇η‖‖∇u+‖

≤ 2 · 1

4

(√
λ (u+)−

β+1
2 G(u) η ‖∇u+‖

)2

2
+ 2 · 4

(
dM
√
λ−1 (u+)

β+1
2 ‖∇η‖

)2

2

=
λ

4
η2G′(u)‖∇u‖2 +

4d2M2

λ
‖∇η‖2 (u+)β+1,

and

η2G(u)‖B‖‖∇u+‖ ≤ 1

2
·

(√
λ (u+)−

β+1
2 G(u)η‖∇u+‖

)2

2
+ 2 ·

(√
λ−1 (u+)

β+1
2 ‖B‖η

)2

2

≤ λ

4
η2G′(u)‖∇u+‖2 +

1

λ
‖B‖2(u+)β+1η2.

Therefore on {ϕ̃ > 0}, it holds

λ

2
η2G′(u)‖∇u+‖2

≤
〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃+

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
(u+)β+1. (7.7)

Note that {ϕ̃ = 0} ∩
(
U × (0, τ)

)
= {η = 0} ∪ {u ≤ 0} and ∇u+ = 0 on {u ≤ 0}.
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Thus (7.7) holds on U × (0, τ). Combining (7.7) and (7.6), we obtain for a.e. τ ∈ (0, T )

1

β + 1

ˆ
U

η2(u+)β+1 |t=τ ψdx+
λβ

2

ˆ τ

0

ˆ
U

η2(u+)β−1‖∇u+‖2dxdt

≤
ˆ τ

0

ˆ
U

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
(u+)β+1dxdt+

2

β + 1

ˆ τ

0

ˆ
U

η|∂tη|(u+)β+1 ψdxdt.

(7.8)

Now let (x̄, t̄) be an arbitrary but fixed point in U × (0, T ). Let Rx̄(r) be the open

cube in Rd of edge length r > 0 centered at x̄. Define Q(r) := Rx̄(r)× (t̄− r2, t̄).

Theorem 7.1.2. Assume (I) and Q(3r) ⊂ U × (0, T ). Then it holds

‖u‖L∞(Q(r)) ≤ C‖u‖
L

2p
p−2 ,2(Q(2r))

, (7.9)

where C > 0 is a constant depending only on r, λ, M and ‖B‖Lp(Rx̄(3r)).

Proof Let η ∈ C∞0 (Rx̄(r) × (t̄ − 9r2, t̄]). Then (7.8) holds with U × (0, T ) replaced

by Q(3r). Using appropriate scaling arguments(cf. [2, proof of Theorem 2]), we may

assume r = 1
3
. Set v := (u+)γ with γ := β+1

2
. Then ‖∇v‖2 = γ2(u+)β−1‖∇u+‖2. By

(7.8), it holds for a.e. τ ∈ (t̄− 1, t̄)

c0

2γ

ˆ
Rx̄(1)

η2v2 |t=τ dx+
λ

2γ2

ˆ τ

t̄−1

ˆ
Rx̄(1)

η2‖∇v‖2dxdt

≤
¨
Q(1)

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
v2dxdt+

¨
Q(1)

η|∂tη|v2 ψdx.

Let l and l′ be positive numbers satisfying 1
3
< l′ < l ≤ 2

3
. Assume that η ≡ 1 in Q(l′),

η ≡ 0 outside Q(l), 0 ≤ η ≤ 1, and |∂tη|, ‖∇η‖ ≤ 2d(l − l′)−1. Then

¨
Q(1)

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
v2dxdt

≤ 4d2

λ
(l − l′)−2

¨
Q(l)

(
‖B‖2 + 4d2M2

)
v2dxdt

≤ 4d2

λ
(l − l′)−2(‖B‖2

Lp(Rx̄(1)) + 4d2M2)‖v‖2

L
2p
p−2 ,2(Q(l))

,
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and

ˆ t̄

t̄−1

ˆ
R(1)

η|∂tη|v2 ψdx ≤ 2d(l − l′)−1‖ψ‖Lq(Rx̄(1))‖v‖2

L
2q
q−1 ,2(Q(l))

≤ 2d(l − l′)−2‖ψ‖Lq(Rx̄(1))‖v‖2

L
2p
p−2 ,2(Q(l))

.

Thus we obtain

λ‖η∇v‖2
L2(Q(1)) ≤ 2C1(l − l′)−2γ2‖v‖2

L
2p
p−2 ,2(Q(l))

and

‖ηv‖2
L2,∞(Q(1)) ≤ 2c−1

0 C1(l − l′)−2γ2‖v‖2

L
2p
p−2 ,2(Q(l))

,

where C1 = 4d2

λ
(‖B‖2

Lp(Rx̄(1)) + 4d2M2) + 2d‖ψ‖Lq(Rx̄(1)).

Now set θ := 1− d
p
, and σ := 1 + θ

2
if d = 2, σ := 1 + 2θ

d
if d ≥ 3.

Set pσ :=
(

σp
p−2

)′
= σp

σp−p+2
, qσ := σ′ = σ

σ−1
. Then

d

2pσ
+

1

qσ
< 1 if d = 2,

d

2pσ
+

1

qσ
= 1 if d ≥ 3.

By [2, Lemma 3],

‖vσ‖2/σ

L
2p
p−2 ,2(Q(l′))

≤ ‖(ηv)σ‖2/σ

L
2p
p−2 ,2(Q(1))

= ‖ηv‖2

L
2σp
p−2 ,2σ(Q(1))

= ‖ηv‖2
L2(pσ)′,2(qσ)′ (Q(1))

≤ K
(
‖ηv‖2

L∞,2(Q(1)) + ‖∇(ηv)‖2
L2(Q(1))

)
≤ K

(
‖ηv‖2

L∞,2(Q(1)) + 2‖η∇v‖2
L2(Q(1)) + 8d2(l − l′)−2‖v‖2

L2(Q(l))

)
≤ C2(l − l′)−2γ2‖v‖2

L
2p
p−2 ,2(Q(l))

, (7.10)

where C2 = K(4C1λ
−1 + 2C1c

−1
0 + 8d2).
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Now for m ∈ N ∪ {0}, set l = lm := 3−1(1 + 2−m), l′ = l′m := 3−1(1 + 2−m−1),

ϕm := ‖(u+)σ
m‖2/σm

L
2p
p−2 ,2(Q(lm))

. Taking γ = σm and 1/3 < l′ = l′m < l = lm ≤ 2/3 for

m ∈ N ∪ {0}, we obtain using (7.10)

ϕm+1 ≤ (36C2)
1
σm (2σ)

2m
σmϕm. (7.11)

Iterating (7.11), we get

ϕm+1 ≤ (36C2)
∑m
i=0

1

σi (2σ)
∑m
i=0

2i

σiϕ0

≤ (36C2)
σ
σ−1 (2σ)

2σ
(σ−1)2︸ ︷︷ ︸

=:C3

‖u‖2

L
2p
p−2 ,2(Q(2/3))

.

Letting m→∞, we get

‖u+‖L∞(Q(1/3)) ≤
√
C3‖u‖

L
2p
p−2 ,2(Q(2/3))

.

Exactly in the same way, but with u replaced by −u, we obtain (7.9) with C = 2
√
C3.
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7.2 Elliptic Hölder regularity and estimates

Lemma 7.2.1. Let U be a bounded open ball in Rd. Let f ∈ Lq̃(U) with d
2
< q̃ < d.

Then there exists F = (f1, . . . , fd) ∈ H1,q̃(U,Rd) such that divF = f in U and

d∑
i=1

‖fi‖H1,q̃(U) ≤ C‖f‖Lq̃(U),

where C > 0 only depends on q̃, U . In particular, applying the Sobolev inequality, we

get
d∑
i=1

‖fi‖
L

dq̃
d−q̃ (U)

≤ C ′‖f‖Lq̃(U),

where C ′ > 0 only depends on q̃, U .

Proof By [27, Theorem 9.15 and Lemma 9.17], there exists u ∈ H2,q̃(U) ∩ H1,q̃
0 (U)

such that ∆u = f in U and

‖u‖H2,q̃(U) ≤ C1‖f‖Lq̃(U),

where C1 > 0 is a constant only depending on q̃, U . Let F := ∇u. Then F ∈ H1,q̃(U,Rd)

with divF = f in U and it holds

d∑
i=1

‖fi‖H1,q̃(U) =
d∑
i=1

‖∂iu‖H1,q̃(U) =
d∑
i=1

(
‖∂iu‖q̃Lq̃(U)

+
d∑
j=1

‖∂j∂iu‖q̃Lq̃(U)

) 1
q̃

=
d∑
i=1

‖∂iu‖Lq̃(U) +
d∑
i=1

d∑
j=1

‖∂j∂iu‖Lq̃(U)

≤
(
d+ d2

) q̃−1
q̃

( d∑
i=1

‖∂iu‖q̃Lq̃(U)
+

d∑
i=1

d∑
j=1

‖∂j∂iu‖q̃Lq̃(U)

) 1
q̃

≤
(
d+ d2

) q̃−1
q̃ ‖u‖H2,q̃(U)

≤ C1

(
d+ d2

) q̃−1
q̃ ‖f‖Lq̃(U).
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Theorem 7.2.2. Let U be a bounded open ball in Rd. Let A = (aij)1≤i,j≤d be a matrix

of bounded functions on U that is uniformly strictly elliptic. Assume B ∈ Lp(U,Rd),

c ∈ Lq(U), f ∈ Lq̃(U) for some p > d, q, q̃ > d
2
. If u ∈ H1,2(U) satisfies

ˆ
U

〈A∇u,∇ϕ〉+ (〈B,∇u〉+ cu)ϕ dx =

ˆ
U

fϕ dx, for all ϕ ∈ C∞0 (U), (7.12)

then for any open ball U1 in Rd with U1 ⊂ U , we have u ∈ C0,γ(U1) and

‖u‖C0,γ(U1) ≤ C
(
‖u‖L1(U) + ‖f‖Lq̃(U)

)
,

where γ ∈ (0, 1) and C > 0 are constants which are independent of u and f .

Proof Without loss of generality, we may assume d
2
< q̃ < d. Let U2 be an open ball

in Rd satisfying U1 ⊂ U2 ⊂ U2 ⊂ U . By Lemma 7.2.1, we can find F = (f1, · · · , fd) ∈
H1,q̃(U2,Rd) ⊂ L

dq̃
d−q̃ (U2,Rd) such that

divF = f in U2,
d∑
i=1

‖fi‖
L

dq̃
d−q̃ (U2)

≤ C1‖f‖Lq̃(U2),

where C1 > 0 is a constant only depending on q̃ and U2. Then (7.12) implies

ˆ
U2

〈A∇u,∇ϕ〉+ (〈B,∇u〉+ cu)ϕ dx =

ˆ
U2

〈−F,∇ϕ〉 dx for all ϕ ∈ C∞0 (U2).

Given x ∈ U1, r > 0 with r < dist(x, U2), set ωx(r) := supBx(r) u − infBx(r) u. By [67,

Théorème 7.2] and Lemma 7.2.1,

ωx(r) ≤ K

(
‖u‖L2(U2) +

d∑
i=1

‖fi‖
L

dq̃
d−q̃ (U2)

)
rγ

≤ K(1 + C ′)
(
‖u‖L2(U2) + ‖f‖Lq̃(U2)

)
rγ,

where γ ∈ (0, 1) and K,C ′ > 0 are constants which are independent of x, r, u, F, f .
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Thus we have
ˆ
Br(x)

|u(y)− ux,r|2dy ≤ (K ′)2
(
‖u‖L2(U2) + ‖f‖Lq̃(U2)

)2
rd+2γ,

where ux,r := 1
|Br(x)|

´
Br(x)

u(u) dy and (K ′)2 := K2 · πd/2

Γ( d
2

+1)
(1 + C ′)2. Finally by [31,

Theorem 3.1], [12, Theorem 1.7.4], we obtain

‖u‖C0,γ(U1) ≤ c
(
K ′
(
‖u‖L2(U2) + ‖f‖Lq̃(U2)

)
+ ‖u‖L2(U2)

)
≤ (cK ′ ∨ c)

(
‖u‖H1,2(U2) + ‖f‖Lq̃(U2)

)
≤ (cK ′ ∨ c)

(
C1‖u‖L1(U) + C1‖f‖Lq̃(U) + ‖f‖Lq̃(U2)

)
≤ (C1 + 1) (cK ′ ∨ c)

(
‖u‖L1(U) + ‖f‖Lq̃(U)

)
,

where c > 0, C1 > 0 are constants which are independent of u and f .
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Chapter 8

Analytic theory for degenerate

second order partial differential

operators

8.1 Framework

Let ρ ∈ H1,2
loc (Rd) ∩ L∞loc(Rd), ψ ∈ L1

loc(Rd) be a.e positive functions satisfying 1
ρ
,

1
ψ
∈ L∞loc(Rd) and set ρ̂ := ρψ, µ := ρ̂ dx. If U is any open subset of Rd, then the

bilinear form
´
U
〈∇u,∇v〉dx, u, v ∈ C∞0 (U) is closable in L2(U, µ) by [51, Subsec-

tion II.2a)]. Define Ĥ1,2
0 (U, µ) as the closure of C∞0 (U) in L2(U, µ) with respect to

the norm
(´

U
‖∇u‖2dx+

´
U
u2dµ

)1/2
. Thus u ∈ Ĥ1,2

0 (U, µ), if and only if there exists

(un)n≥1 ⊂ C∞0 (U) such that

lim
n→∞

un = u in L2(U, µ), lim
n,m→∞

ˆ
U

‖∇(un − um)‖2dx = 0, (8.1)

and moreover Ĥ1,2
0 (U, µ) is a Hilbert space with the inner product

〈u, v〉Ĥ1,2
0 (U,µ) = lim

n→∞

ˆ
U

〈∇un,∇vn〉dx+

ˆ
U

uv dµ,

where (un)n≥1, (vn)n≥1 ⊂ C∞0 (U) are arbitrary sequences that satisfy (8.1).
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If u ∈ Ĥ1,2
0 (V, µ) for some bounded open subset V of Rd, then u ∈ H1,2

0 (V ) ∩ L2(V, µ)

and there exists (un)n≥1 ⊂ C∞0 (V ) such that

lim
n→∞

un = u in H1,2
0 (V ) and in L2(V, µ).

Consider a symmetric matrix of functions A = (aij)1≤i,j≤d satisfying

aij = aji ∈ H1.2
loc (Rd), 1 ≤ i, j ≤ d,

and assume A is locally uniformly strictly elliptic, i.e. for every open ball B, there exist

constants λB,ΛB > 0 such that

λB‖ξ‖2 ≤ 〈A(x)ξ, ξ〉 ≤ ΛB‖ξ‖2, for all ξ ∈ Rd, x ∈ B. (8.2)

Define Â := 1
ψ
A. By [51, Subsection II.2b)], the symmetric bilinear form

E0(f, g) :=
1

2

ˆ
Rd
〈Â∇f,∇g〉dµ, f, g ∈ C∞0 (Rd),

is closable in L2(Rd, µ) and its closure (E0, D(E0)) is a symmetric Dirichlet form in

L2(Rd, µ) (see [51, (II. 2.18)]). Denote the corresponding generator of (E0, D(E0)) by

(L0, D(L0)). Let f ∈ C∞0 (Rd). Using integration by parts, for any g ∈ C∞0 (Rd),

E0(f, g) =
1

2

ˆ
Rd
〈ρA∇f,∇g〉dx

= −1

2

ˆ
Rd

(
ρ trace(A∇2f) + 〈ρ∇A+ A∇ρ,∇f〉

)
g dx

= −
ˆ
Rd

(
1

2
trace(Â∇2f) + 〈 1

2ψ
∇A+

A∇ρ
2ρψ︸ ︷︷ ︸

=βρ,A,ψ

,∇f〉
)
g dµ.

Thus f ∈ D(L0). This implies C∞0 (Rd) ⊂ D(L0) and

L0f =
1

2
trace(Â∇2f) + 〈βρ,A,ψ,∇f〉 ∈ L2(Rd, µ).

109



CHAPTER 8. ANALYTIC THEORY FOR DEGENERATE SECOND ORDER
PARTIAL DIFFERENTIAL OPERATORS

Let (T 0
t )t>0 be the sub-Markovian C0-semigroup of contractions on L2(Rd, µ) associated

with (L0, D(L0)). By Proposition 8.4.1, T 0
t |L1(Rd,µ)∩L∞(Rd,µ) can be uniquely extended

to a sub-Markovian C0-semigroup of contractions (T 0
t )t>0 on L1(Rd, µ).

Now let B ∈ L2
loc(Rd,Rd, µ) be weakly divergence free with respect to µ, i.e.

ˆ
Rd
〈B,∇u〉dµ = 0, for all u ∈ C∞0 (Rd). (8.3)

Moreover assume

ρψB ∈ L2
loc(Rd,Rd). (8.4)

Then using Lemma 8.4.3, (8.3) can be extended to all u ∈ Ĥ1,2
0 (Rd, µ)0,b and

ˆ
Rd
〈B,∇u〉vdµ = −

ˆ
Rd
〈B,∇v〉udµ, for all u, v ∈ Ĥ1,2

0 (Rd, µ)0,b.

Define Lu := L0u+ 〈B,∇u〉, u ∈ D(L0)0,b. Then (L,D(L0)0,b) is an extension of

1

2
trace(Â∇2u) + 〈βρ,ψ,A + B,∇u〉, u ∈ C∞0 (Rd).

For any bounded open subset V of Rd,

E0,V (f, g) :=
1

2

ˆ
V

〈Â∇f,∇g〉dµ, f, g ∈ C∞0 (V ).

is also closable on L2(V, µ) by [51, Subsection II.2b)]. Denote by (E0,V , D(E0,V )) the

closure of (E0,V , C∞0 (V )) in L2(V, µ). Using (8.2) and 0 < infV ρ ≤ supV ρ < ∞, it is

clear that D(E0,V ) = Ĥ1,2
0 (V, µ) since the norms ‖ · ‖D(E0,V ) and ‖ · ‖Ĥ1,2

0 (V,µ) are equiv-

alent. Denote by (L0,V , D(L0,V )) the generator of (E0,V , D(E0,V )), by (G0,V
α )α>0 the as-

sociated sub-Markovian C0-resolvent of contractions on L2(V, µ), by (T 0,V
t )t>0 the as-

sociated sub-Markovian C0-semigroup of contractions on L2(V, µ) and by (T
0,V

t )t>0 the

unique extension of (T 0,V
t |L1(V,µ)∩L∞(V,µ))t>0 on L1(V, µ), which is a sub-Markovian C0-

semigroup of contractions on L1(V, µ). Let (L
0,V
, D(L

0,V
)) be the generator correspond-

ing to (T
0,V

t )t>0. By Proposition 8.4.1, (L
0,V
, D(L

0,V
)) is the closure of (L0,V , D(L0,V ))

on L1(Rd, µ).
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8.2 L1-existence results

In this section, we use all notations and assumptions from Section 8.1. All ideas and

techniques used here are based on [69, Chapter 1]. But the structure of the given

symmetric Dirichlet form differs from that of [69] which will enable us to cover a

degenerate diffusion matrix. Because of that subtle difference, we check the details one

by one that the methods of [69, Chapter 1] can be adapted to our situation. The main

difference between [69, Chapter 1] and what is treated here is that we consider local

convergence in the space Ĥ1,2
0 (V, µ), while [69, Chapter 1] considers the space H1,2

0 (V, µ)

where the pre-invariant density of [69, Chapter 1] does not need to be locally bounded.

Since Ĥ1,2(V, µ) is naturally included in the Sobolev space H1,2(V ), the arguments to

derive our results are at times even easier than the ones of [69, Chapter 1]. For instance,

we can use the prodcut and chain rules in Ĥ1,2(V, µ) inherited from the Sobolev space

structure (see Remark 8.2.3). Moreover, assumption (8.4) will play an important role

to apply the methods of [69, Chapter 1].

Lemma 8.2.1. Let V be a bounded open subset of Rd. Then

(i) D(L
0,V

)b ⊂ Ĥ1,2
0 (V, µ).

(ii) limt→0+ T
0,V
t u = u in Ĥ1,2

0 (V, µ) for all u ∈ D(L
0,V

)b.

(iii) E0(u, v) = −
´
V
L

0,V
u v dµ for all u ∈ D(L

0,V
)b, v ∈ Ĥ1,2

0 (V, µ)b.

(iv) Let ϕ ∈ C2(Rd), ϕ(0) = 0, and u ∈ D(L
0,V

)b. Then ϕ(u) ∈ D(L
0,V

)b and

L
0,V
ϕ(u) = ϕ′(u)L

0,V
u+

1

2
ϕ′′(u)〈Â∇u,∇u〉.

Proof Let u ∈ D(L
0,V

)b. Since (T 0,V
t )t>0 is an analytic semigroup on L2(V, µ), we get

T
0,V

t u = T 0,V
t u ∈ D(L0,V ) for all t > 0,

hence by Proposition 8.4.1,

L0,V T 0,V
t u = L0,V T

0,V

t u = L
0,V
T

0,V

t u = T
0,V

t L
0,V
u.
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Therefore

E0,V
(
T 0,V
t u− T 0,V

s u, T 0,V
t u− T 0,V

s u
)

= −
ˆ
V

L0,V
(
T 0,V
t u− T 0,V

s u
)
·
(
T 0,V
t u− T 0,V

s u
)
dµ

= −
ˆ
V

(
T

0,V

t L
0,V
u− T 0,V

s L
0,V
u
)
·
(
T 0,V
t u− T 0,V

s u
)
dµ

≤
∥∥∥T 0,V

t L
0,V
u− T 0,V

s L
0,V
u
∥∥∥
L1(V,µ)

· 2‖u‖L∞(V,µ)

−→ 0 as t, s→ 0 + .

Thus (T 0,V
t u)t>0 is an Ĥ1,2

0 (V, µ)-Cauchy sequence as t → 0+, which implies u ∈
Ĥ1,2

0 (V, µ) and limt→0+ T
0,V
t u = u in Ĥ1,2

0 (V, µ). Thus (i), (ii) are proved.

Let v ∈ Ĥ1,2
0 (V, µ)b. Then

E0,V (u, v) = lim
t→0+

E0,V (T 0,V
t u, v) = lim

t→0+
−
ˆ
V

(
L0,V T 0,V

t u
)
v dµ

= lim
t→0+

−
ˆ
V

(
T

0,V

t L
0,V
u
)
v dµ = −

ˆ
V

L
0,V
u v dµ,

hence (iii) is proved.

(iv): Note u ∈ D(L
0,V

)b ⊂ Ĥ1,2
0 (V, µ)b. Set un := nG0,V

n u, M := ‖u‖L∞(V ). Then

‖un‖L∞(V ) ≤ M . By strong continuity, limn→∞ un = u in Ĥ1,2
0 (V, µ) and there exists

a subsequence of (un)n≥1, say (un)n≥1 again, such that limn→∞ un = u µ-a.e. on V .

Thus by Lebesgue’s Theorem, limn→∞ ϕ(un) = ϕ(u) in L2(V, µ). Observe that

sup
n≥1
‖∇ϕ(un)‖L2(V,Rd) = sup

n≥1
‖ϕ′(un)∇un‖L2(V,Rd)

≤ ‖ϕ′‖L∞([−M,M ]) sup
n≥1
‖un‖Ĥ1,2

0 (V,µ) <∞.

Thus by Banach-Alaoglu Theorem, ϕ(u) ∈ Ĥ1,2
0 (V, µ). Similarly, we get ϕ′(u) ∈ Ĥ1,2

0 (V, µ).
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Let v ∈ Ĥ1,2
0 (V, µ)b. Then by [51, I. Corollary 4.15], vϕ′(u) ∈ Ĥ1,2

0 (V, µ)b and

E0,V (ϕ(u), v) =
1

2

ˆ
V

〈Â∇ϕ(u),∇v〉dµ

=
1

2

ˆ
V

〈Â∇u,∇v〉ϕ′(u)dµ

=
1

2

ˆ
V

〈Â∇u,∇(vϕ′(u))〉dµ− 1

2

ˆ
V

〈Â∇u,∇u〉ϕ′′(u)vdµ

= −
ˆ
V

(
ϕ′(u)L

0,V
u+

1

2
ϕ′′(u)〈Â∇u,∇u〉

)
v dµ.

Since ϕ′(u)L
0,V
u+ 1

2
ϕ′′(u)〈Â∇u,∇u〉 ∈ L1(V, µ), (iv) holds by [5, I. Lemma 4.2.2.1].

Recall that a densely defined operator (L,D(L)) on a Banach space X is called dissi-

pative if for any u ∈ D(L), there exists lu ∈ X ′ such that

‖lu‖X′ = ‖u‖X , lu(u) = ‖u‖2
X and lu(Lu) ≤ 0. (8.5)

Proposition 8.2.2. Let V be a bounded open subset of Rd.

(i) The operator (LV , D(L0,V )b) on L1(V, µ) defined by

LV u := L0,V u+ 〈B,∇u〉, u ∈ D(L0,V )b,

is dissipative, closable on L1(V, µ). The closure (L
V
, D(L

V
)) generates a sub-

Markovian C0-semigroup of contractions (T
V

t )t>0 on L1(V, µ).

(ii) D(L
V

)b ⊂ Ĥ1,2
0 (V, µ) and

E0,V (u, v)−
ˆ
V

〈B,∇u〉 vdµ =

ˆ
V

L
V
u ·vdµ, for all u ∈ D(L

V
)b, v ∈ Ĥ1,2

0 (V, µ)b.

(8.6)

Proof (i) Step 1: For u ∈ D(L0,V )b, we have
´
V
LV u1{u>1}dµ ≤ 0.

Let ϕε ∈ C2(R), ε > 0, be such that ϕ′′ε ≥ 0, 0 ≤ ϕε ≤ 1 and ϕε(t) = 0 if t < 1,
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ϕ′ε(t) = 1 if t ≥ 1 + ε. Then ϕε(u) ∈ D(L
0,V

) by Lemma 8.2.1(iv) and

ˆ
V

L0,V uϕ′ε(u)dµ ≤
ˆ
V

L0,V uϕ′ε(u) dµ+

ˆ
V

1

2
ϕ′′ε(u)〈Â∇u,∇u〉dµ

=

ˆ
V

L
0,V
ϕε(u)dµ

= lim
t→0+

ˆ
V

T
0,V

t ϕε(u)− ϕε(u)

t
dµ

≤ 0, (8.7)

where the last inequality followed by the L1(V, µ)-contraction property of (T
0,V

t )t>0.

Since limε→0+ ϕ
′
ε(t) = 1(0,∞)(t) for every t ∈ R, we have

lim
ε→0+

ϕ′ε(u) = 1{u>1} µ-a.e. on V and ‖ϕ′ε(u)‖L∞(V ) ≤ 1.

Thus by Lebesgue’s Theorem

ˆ
V

L0,V u 1{u>1}dµ = lim
ε→0+

ˆ
V

L0,V u ϕ′ε(u)dµ ≤ 0.

Similarly, since ϕε(u) ∈ Ĥ1,2
0 (V, µ), using (8.3) we get

ˆ
V

〈B,∇u〉1{u>1}dµ = lim
ε→0+

ˆ
V

〈B,∇u〉ϕ′ε(u)dµ = lim
ε→0+

ˆ
V

〈B,∇ϕε(u)〉dµ = 0.

Therefore
´
V
LV u1{u>1}dµ ≤ 0 and Step 1 is proved. Observe that by Step 1, for any

n ≥ 1 ˆ
V

(
LV nu

)
1{nu>1}dµ ≤ 0 =⇒

ˆ
V

LV u 1{u> 1
n
}dµ ≤ 0.

Letting n→∞ it follows from Lebesgue’s Theorem that
´
V
LV u 1{u>0}dµ ≤ 0.

Replacing u with −u, we have

−
ˆ
V

LV u 1{u<0}dµ =

ˆ
V

LV (−u) 1{−u>0}dµ ≤ 0,
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hence ˆ
V

LV u (1{u>1} − 1{u<0})dµ ≤ 0.

Setting lu := ‖u‖L1(V,µ)(1{u>1} − 1{u<0}) ∈ L∞(V, µ) = (L1(V, µ))′, (8.5) is satisfied.

Since (L0,V , D(L0,V )b) is densely defined on L1(V, µ) becasue C∞0 (V ) ⊂ D(L0,V )b,

(L0,V , D(L0,V )b) is dissipative.

Step 2: We have (1− LV )(D(L0,V )b) ⊂ L1(V, µ) densely.

Let h ∈ L∞(V, µ) = (L1(V, µ))′ be such that
´
V

(1−LV )uhdµ = 0 for all u ∈ D(L0,V )b.

Then u 7→
´
V

(1 − L0,V )uh dµ is continuous with respect to the norm on Ĥ1,2
0 (V, µ)

since ∣∣∣∣ˆ
V

(1− L0,V u)uhdµ

∣∣∣∣ =

∣∣∣∣ˆ
V

〈ρψB,∇u〉h dx
∣∣∣∣

≤ ‖h‖L∞(V )‖ρψB‖L2(V,Rd)‖∇u‖L2(V,Rd)

≤ ‖h‖L∞(V )‖ρψB‖L2(V,Rd)‖u‖Ĥ1,2
0 (V,µ).

Thus, by the Riesz representation Theorem, there exists v ∈ Ĥ1,2
0 (V, µ) such that

E0,V
1 (u, v) =

ˆ
V

(1− L0,V )u · hdµ for all u ∈ D(L0,V )b,

which implies that

ˆ
V

(1− L0,V )u · (h− v)dµ = 0 for all u ∈ D(L0,V )b. (8.8)

Since (L0,V , D(L0,V )) generates a sub-Markovian resolvent in L2(V, µ),

L1(V, µ) ∩ L∞(V, µ) ⊂ (1− L0,V )(D(L0,V )b),

hence (1 − L0,V )(D(L0,V )b) ⊂ L1(V, µ) densely. Therefore (8.8) implies h − v = 0. In
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particular, h ∈ Ĥ1,2
0 (V, µ) and

E0,V
1 (h, h) = lim

α→∞
E0,V

1 (αG0,V
α h, h)

= lim
α→∞

ˆ
V

(1− L0,V )(αG0,V
α h)hdµ

= lim
α→∞

ˆ
V

〈
ρψB,∇(αGαh)

〉
hdx

=

ˆ
V

〈
ρψB,∇h

〉
hdx =

1

2

ˆ
V

〈
B,∇h2

〉
dµ = 0,

therefore h = 0. Then applying the Hahn-Banach Theorem [14, Proposition 1.9], Step 2

is proved. By the Lumer-Phillips Theorem [45, Theorem 3.1], the closure (L
V
, D(L

V
))

of (LV , D(L0,V )b) generates a contraction C0-semigroup (T
V

t )t>0 on L1(V, µ).

Step 3: (T
V

t )t>0 is sub-Markovian.

Let (G
V

α )α>0 be the associated resolvent. It is enough to show that (G
V

α )α>0 is sub-

Markovian since T Vt u = lim
α→∞

exp
(
tα(αG

V

αu− u)
)

in L1(V, µ) by the proof of Hille-

Yoshida (cf. [51, I. Theorem 1.12]). Observe that by construction

D(L0,V )b ⊂ D(L
V

) densely with respect to the graph norm ‖ · ‖
D(L

V
)
.

Let u ∈ D(L
V

) and take un ∈ D(L
0,V

)b satisfying limn→∞ un = u in D(L
V

) and

limn→∞ un = u, µ a.e. on V . Let ε > 0 and ϕε be as in Step 1. Then by (8.7)

ˆ
V

L
V
u 1{u>1}dµ = lim

ε→0+

ˆ
V

L
V
uϕ′ε(u)dµ ≤ 0.

Let f ∈ L1(V, µ) and u := αG
V

α f ∈ D(L
V

). If f ≤ 1, then

α

ˆ
V

u1{u>1}dµ ≤
ˆ
V

(αu− LV u)1{u>1}dµ = α

ˆ
V

f1{u>1}dµ ≤ α

ˆ
V

1{u>1}dµ.

Therefore, α
´
V

(u−1)1{u>1}dµ ≤ 0, which implies u ≤ 1. If f ≥ 0, then −nf ≤ 1 for all

n ∈ N, hence −nu ≤ 1 for all n ∈ N. Thus u ≥ 0. Therefore (G
V

α )α>0 is sub-Markovian.
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(ii) Step 1: It holds D(L
0,V

)b ⊂ D(L
V

) and L
V
u = L

0,V
u+〈B,∇u〉, u ∈ D(L

0,V
)b.

Let u ∈ D(L
0,V

)b. Since (T 0,V
t )t>0 is an analytic semigroup, T 0,V

t u ∈ D(L0,V )b ⊂ D(L
V

)

and L
V
T 0,V
t u = L0,V T 0,V

t u + 〈B,∇T 0,V
t u〉 = T

0,V

t L
0,V
u + 〈B,∇T 0,V

t u〉. By Lemma

8.2.1(ii), limt→0+ T
0,V
t u = u in Ĥ1,2

0 (V, µ), which implies that

lim
t→0+

L
V
T 0,V
t u = L

0,V
u+ 〈B,∇u〉 in L1(V, µ),

by (8.4). Since limt→0+ T
0,V
t u = limt→0+ T

0,V

t u = u in L1(V, µ) and (L
V
, D(L

V
)) is a

closed operator on L1(V, µ), we obtain

u ∈ D(L
V

), L
V
u = L

0,V
u+ 〈B,∇u〉.

Step 2: Let u ∈ D(L
V

)b and take un ∈ D(L0,V )b as in Step 3 of the proof of Proposition

8.2.2(i). Let M1,M2 > 0 be such that ‖u‖L∞(V ) < M1 < M2. Then

lim
n→∞

ˆ
{M1≤|un|≤M2}

〈Â∇un,∇un〉dµ = 0. (8.9)

Indeed, let ϕ ∈ C1(R) be such that ϕ′(t) := (t −M1)+ ∧ (M2 −M1) with ϕ(0) = 0.

Then by Lemma 8.2.1(i) (iv), we have ϕ(un) ∈ Ĥ1,2
0 (V, µ). Observe that ϕ′(u) = 0,

µ-a.e. on V and

ˆ
{M1≤un≤M2}

ϕ′′(un)〈Â∇un,∇un〉dµ =

ˆ
V

〈
Â∇un,∇ϕ′(un)

〉
dµ

= E0,V (un, ϕ
′(un)) = −

ˆ
V

L0,V un ϕ
′(un)dµ

= −
ˆ
V

L0,V un ϕ
′(un)dµ−

ˆ
V

〈B,∇ϕ(un)〉dµ

= −
ˆ
V

LV un ϕ
′(un)dµ −→ −

ˆ
V

L
V
uϕ′(u)dµ = 0, as n→∞,
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where the convergence of the last limit holds by Lebesgue’s Theorem, since

lim
n→∞

ϕ′(un) = ϕ′(u) = 0, µ-a.e. on Rd

and ∣∣∣∣ˆ
V

LV un · ϕ′(un)dµ−
ˆ
V

L
V
u · ϕ′(u)dµ

∣∣∣∣
≤ ‖ϕ′‖L∞(V )

ˆ
V

∣∣∣(LV un − LV u)
∣∣∣ dµ+

ˆ
V

|LV u| · |ϕ′(un)− ϕ′(u)|dµ

−→ 0 as n→∞.

Similarly,

ˆ
{−M2≤un≤−M1}

〈Â∇un,∇un〉dµ =

ˆ
{M1≤−un≤M2}

〈Â∇(−un),∇(−un)〉dµ = 0,

hence (8.9) is proved.

Step 3: Let u, un, n ≥ 1 be as in Step 2. Let ϕ ∈ C2
0(R) be such that ϕ(t) = t if

|t| < ‖u‖L∞(V ) + 1 and ϕ(t) = 0 if |t| ≥ ‖u‖L∞(V ) + 2. Using Step 2 and Lebesgue’s

Theorem

L
V
ϕ(un) = ϕ′(un)LV un + ϕ′′(un)〈A∇un,∇un〉 −→ L

V
u in L1(V, µ) as n→∞.

Therefore

E0,V (ϕ(un)− ϕ(um), ϕ(un)− ϕ(um))

= −
ˆ
V

L
V (
ϕ(un)− ϕ(um)

)
·
(
ϕ(un)− ϕ(um)

)
dµ

≤ 2‖ϕ‖L∞(Rd)‖L
V
ϕ(un)− LV ϕ(um)‖L1(V,µ) −→ 0 as n,m→∞.

Thus limn→∞ ϕ(un) = u in Ĥ1,2
0 (V, µ) by the completeness of Ĥ1,2

0 (V, µ). Then using
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(8.4), for any v ∈ Ĥ1,2
0 (V, µ)b,

E0,V (u, v)−
ˆ
V

〈B,∇u〉 vdµ = lim
n→∞

(E0,V (ϕ(un), v)−
ˆ
V

〈B,∇ϕ(un)〉dµ)

= − lim
n→∞

ˆ
V

L
V
ϕ(un) · vdµ = −

ˆ
V

L
V
u · vdµ,

which completes the proof of (ii).

Remark 8.2.3. One can generalize the assumptions of Proposition 8.2.2 to more

general positive functions ρ as follows. Consider ψ as in Section 8.1 and assume

φ ∈ H1,2
loc (Rd) with φ > 0 a.e. on Rd and let ρ := φ2, µ := ρψdx. Let A = (aij)1≤i,j≤d be a

symmetric matrix of functions that is locally uniformly strictly elliptic on Rd and aij ∈
H1,2
loc (Rd, ρdx) for all 1 ≤ i, j ≤ d. Assume B satisfies (8.3) and ψB ∈ L2

loc(Rd, ρdx).

Let (E0, D(E0)), (L0, D(L0)) be defined in the same manner as in Section 8.1. For an

open set U in Rd, define Ĥ1,2
0,ρ(U, µ) as the closure of C∞0 (U) in L2(U, µ) with respect

to the norm
(´

U
‖∇u‖2ρdx+

´
U
u2dµ

)1/2
. Then replacing Ĥ1,2

0 (U, µ) with Ĥ1,2
0,ρ(U, µ),

one may obtain the same results as in Lemma 8.2.1 and Propsotion 8.2.2. Especially,

if ψ ≡ 1, it reduces to the framework of [69]. But considering a future goal in Theorem

8.3.1, we obtain ρ ∈ H1,p
loc (Rd) ∩ C1−d/p

loc (Rd) with ρ(x) > 0 for all x ∈ Rd, which in

particular means that ρ ∈ L∞loc(Rd) and 1
ρ
∈ L∞loc(Rd). In view of the latter, we maintain

our present assumptions in Section 8.1 because it makes the arguments in the proofs

simple.

Remark 8.2.4. Let V be a bounded open subset of Rd. Define

L∗V u := L0,V + 〈−B,∇u〉, u ∈ D(L0,V )b.

Note that −B has the same structural properties as B since (8.3) and (8.4) hold. Thus

Proposition 8.2.2 holds equally with B replaced by −B. In particular, there exists a

closed extension (L
∗V
, D(L

∗V
)) of (L∗V , D(L0,V )b) on L1(V, µ), which generates a sub-

Markovian C0-resolvent of contractions (G
∗V
α ) on L1(V, µ) and

E0,V (u, v) +

ˆ
V

〈B,∇u〉vdµ = −
ˆ
V

L
∗V
u vdµ, u ∈ D(L

∗V
)b, v ∈ Ĥ1,2

0 (V, µ).
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Let (L∗V , D(L∗V )) be the part of (L
∗V
, D(L

∗V
)) on L2(V, µ) and (LV , D(LV )) be the

part of (L
V
, D(L

V
)) on L2(V, µ). Then for any u ∈ D(LV )b, v ∈ D(L∗V )b

−
ˆ
V

LV u · vdµ = E0,V (u, v)−
ˆ
V

〈B,∇u〉vdµ

= E0,V (v, u) +

ˆ
V

〈B,∇v〉udµ

= −
ˆ
V

L∗V v · udµ (8.10)

Let (GV
α )α>0 and (G∗α

V )α>0 be the resolvent associated to (LV , D(LV )), (L∗V , D(L∗V ))

on L2(V, µ), respectively. Then for any f, g ∈ L2(V, µ) ∩ L∞(V, µ),

ˆ
V

GV
α f · gdµ =

ˆ
V

GV
α f · (α− L∗

V )G∗α
V g dµ

=
(8.10)

ˆ
V

(α− LV )GV
α f ·G∗α

V g dµ

=

ˆ
V

f ·G∗α
V g dµ. (8.11)

By denseness of L2(V, µ) ∩ L∞(V, µ) in L2(V, µ), (8.11) extends to all f, g ∈ L2(V, µ).

Thus for each α > 0, G∗α
V is the adjoint operator of GV

α on L2(V, µ).

Now let V be a bounded open subset of Rd. Denote by (G
V

α )α>0 the resolvent

associated with (L
V
, D(L

V
)) on L1(V, µ). Then (G

V

α )α>0 can be extended on L1(Rd, µ)

by

G
V

α f :=

{
G
V

α (f1V ) on V

0 on Rd \ V,
f ∈ L1(Rd, µ), (8.12)

Let g ∈ L1(Rd, µ)b. Then G
V

α (g1V ) ∈ D(L
V

)b ⊂ Ĥ1,2
0 (V, µ), hence G

V

α g ∈ Ĥ
1,2
0 (V, µ).

Note that if u ∈ D(E0,V ), then by definition it holds u ∈ D(E0) and E0,V (u, u) =

E0(u, u). Therefore we obtain

E0(G
Vn
α g, G

Vn
α g) = E0,Vn

(
G
Vn
α (g1Vn), G

Vn
α (g1Vn)

)
. (8.13)

120



CHAPTER 8. ANALYTIC THEORY FOR DEGENERATE SECOND ORDER
PARTIAL DIFFERENTIAL OPERATORS

Lemma 8.2.5. Let V1, V2 be bounded open subsets of Rd and V 1 ⊂ V2. Let u ∈
L1(Rd, µ), u ≥ 0, and α > 0. Then G

V1

α u ≤ G
V2

α u.

Proof Using the denseness in L1(Rd, µ), we may assume u ∈ L1(Rd, µ)b. Let wα :=

G
V1

α u − G
V2

α u. Then clearly wα ∈ Ĥ1,2
0 (V2, µ). Observe that w+

α ≤ G
V1

α u on Rd, so that

w+
α ∈ Ĥ

1,2
0 (V1, µ) by Lemma 8.4.4. By [21, Theorem 4.4 (iii)], we obtain

ˆ
V2

〈B,∇wα〉w+
α dµ =

ˆ
V2

〈B,∇w+
α 〉w+

α dµ = 0. (8.14)

Since E0,V2 is a symmetric Dirichlet form, E0,V2(w−α , w
+
α ) = E0,V2(w+

α , w
−
α ) ≤ 0. Therefore

E0,V2(w+
α , w

+
α ) ≤ E0,V2

α (wα, w
+
α )−

ˆ
V2

〈B,∇wα〉w+
α dµ

≤
(
E0,V1
α (G

V1

α u,w
+
α )−

ˆ
V1

〈B,∇GV1

α u〉w+
α dµ

)
−
(
E0,V2
α (G

V2

α u,w
+
α )−

ˆ
V2

〈B,∇GV2

α u〉w+
α dµ

)
≤
ˆ
V1

(α− LV1
)G

V1

α uw
+
α dµ−

ˆ
V2

(α− LV2
)G

V2

α uw
+
α dµ

=

ˆ
V1

uw+
α dµ−

ˆ
V2

uw+
α dµ = 0.

Therefore w+
α = 0 in Rd, hence G

V1

α u ≤ G
V2

α u on Rd.

Remark 8.2.6. Since wα, w
+
α ∈ H1,2(V2) in Lemma 8.2.5, we could directly get (8.14)

using [21, Theorem 4.4 (iii)]. However, in the general situation as in Remark 8.2.3, if

ρ is not bounded below by a strictly positive constant, then wα, w
+
α may not be contained

in H1,2(V2). In that case by Lemma 8.4.2, we can take a sequence (fn)n≥1 ⊂ C∞0 (V2)

such that supn≥1 ‖fn‖L∞(V2) ≤ ‖wα‖L∞(V2) and

lim
n→∞

fn = wα in D(E0,V2), lim
n→∞

f+
n = w+

α weakly in D(E0,V2),

lim
n→∞

f+
n = w+

α µ-a.e. in V2.
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By [21, Theorem 4.4 (iii)]

ˆ
V2

〈B,∇fn〉f+
n dµ =

ˆ
V2

〈B,∇f+
n 〉f+

n dµ, (8.15)

and ∣∣∣∣ˆ
V2

〈B,∇w+
α 〉w+

α dµ−
ˆ
V2

〈B,∇f+
n 〉f+

n dµ

∣∣∣∣
≤

∣∣∣∣ˆ
V2

〈B,∇(w+
α − f+

n )〉w+
α dµ

∣∣∣∣︸ ︷︷ ︸
:=In

+

∣∣∣∣ˆ
V2

〈B,∇f+
n 〉(w+

α − f+
n )dµ

∣∣∣∣︸ ︷︷ ︸
=:Jn

.

Since limn→∞ f
+
n = w+

α weakly in D(E0,V2), we have limn→∞ In = 0. Using the Cauchy-

Schwarz inequality, it holds

Jn ≤
ˆ
V2

‖B‖‖∇f+
n ‖ |w+

α − f+
n |dµ

≤
(ˆ

V2

‖∇f+
n ‖2 |w+

α − f+
n | ρdx

)1/2(ˆ
V2

‖ψB‖2|w+
α − f+

n | ρdx
)1/2

≤
√

2‖wα‖1/2
L∞(V ) sup

n≥1
‖f+

n ‖Ĥ1,2
0,ρ(V2,µ)

(ˆ
V2

‖ψB‖2|w+
α − f+

n |dµ
)1/2

−→ 0 as n→∞

by Lebesgue’s Theorem. Applying the same method for the left hand side of (8.15), we

obtain ˆ
V2

〈B,∇wα〉w+
α dµ =

ˆ
V2

〈B,∇w+
α 〉w+

α dµ.

By means of Proposition 8.2.2, we will derive the following Theorem 8.2.7.

Theorem 8.2.7. There exists a closed extension (L,D(L)) of Lu := L0u + 〈B,∇u〉,
u ∈ D(L0)0,b on L1(Rd, µ) satisfying the following properties:

(a) (L,D(L)) generates a sub-Markovian C0-semigroup of contractions (T t)t>0 on

L1(Rd, µ).
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(b) Let (Un)n≥1 is a family of bounded open subsets of Rd satisfying Un ⊂ Un+1

and Rd =
⋃
n≥1 Un. Then limn→∞G

Un
α f = (α − L)−1f in L1(Rd, µ), for all

f ∈ L1(Rd, µ) and α > 0.

(c) D(L)b ⊂ D(E0) and for all u ∈ D(L)b, v ∈ Ĥ1,2
0 (Rd, µ)0,b it holds

E0(u, u) ≤ −
ˆ
Rd
Lu · udµ,

E0(u, v)−
ˆ
Rd
〈B,∇u〉vdµ = −

ˆ
Rd
Lu · vdµ.

Proof Let f ∈ L1(Rd, µ) with f ≥ 0. Let (Vn)n≥1 be a family of bounded open subsets

of Rd satisfying V n ⊂ Vn+1 for all n ∈ N. Using Lemma 8.2.5, we can define for any

α > 0

Gαf := lim
n→∞

G
Vn
α f µ-a.e. on Rd.

Using the L1-contraction property,
´
Rd αG

Vn
α fdµ =

´
Vn
αG

Vn
α (f1Vn)dµ ≤

´
Vn
fdµ ≤´

Rd fdµ. Thus by monotone integration, Gαf ∈ L1(Rd, µ) with

ˆ
Rd
αGαfdµ ≤

ˆ
Rd
fdµ,

and by Lebesgue’s Theorem, limn→∞G
Vn
α f = Gαf in L1(Rd, µ).

For any f ∈ L1(Rd, µ), define Gαf := Gαf
+ − Gαf

−. Then αGα is a contraction on

L1(Rd, µ), since

ˆ
Rd
|αGαf |dµ ≤

ˆ
Rd
αGαf

+ + αGαf
−dµ ≤

ˆ
Rd
f+dµ+

ˆ
Rd
f−dµ =

ˆ
Rd
|f |dµ.

Thus

lim
n→∞

G
Vn
α f = Gαf in L1(Rd, µ), lim

n→∞
G
Vn
α f = Gαf µ-a.e. on Rd.

Clearly, (Gα)α>0 is sub-Markovian, since (G
Vn
α )α>0 is sub-Markovian on L1(Vn, µ) for
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any n ≥ 1. By the L1(Rd, µ)-contraction property, for any α, β > 0

lim
n→∞

‖GVn
α Gβf −G

Vn
α G

Vn
β f‖L1(Rd,µ) ≤ lim

n→∞

1

α
‖Gβf −G

Vn
β f‖L1(Rd,µ) = 0. (8.16)

Using (8.16) and the resolvent equation for (G
Vn
α )α>0, we obtain for any α, β > 0

(β − α)GαGβf = lim
n→∞

(β − α)G
Vn
α Gβf = lim

n→∞
(β − α)G

Vn
α G

Vn
β f

= lim
n→∞

G
Vn
α f −G

Vn
β f = Gαf −Gβf in L1(Rd, µ).

Let f ∈ L1(Rd, µ)b and α > 0. By (8.6), G
Vn
α (f1Vn) ∈ D(L

V
)b ⊂ Ĥ1,2

0 (Vn, µ)b. Using

(8.13),

E0
α(G

Vn
α f, G

Vn
α f) = E0,Vn

α

(
G
Vn
α (f1Vn), G

Vn
α (f1Vn)

)
= −

ˆ
Vn

L
Vn
G
Vn
α (f1Vn) ·GVn

α (f1Vn)dµ+

ˆ
Vn

αG
Vn
α (f1Vn) ·GVn

α (f1Vn)dµ

=

ˆ
Vn

(f1Vn) ·GVn
α (f1Vn)dµ

≤
ˆ
Rd
f ·Gαfdµ (8.17)

≤ 1

α
‖f‖L∞(Rd,µ)‖f‖L1(Rd,µ).

Observe that limn→∞G
Vn
α f = Gαf in L2(Rd, µ) by Lebesgue’s Theorem. Thus by the

Banach-Alaoglu Theorem, Gαf ∈ D(E0) and there exists subsequence of (G
Vn
α f)n≥1,

say again (G
Vn
α f)n≥1, such that

lim
n→∞

G
Vn
α f = Gαf weakly in D(E0). (8.18)

Using the property of weak convergence and (8.17)

E0
α(Gαf,Gαf) ≤ lim inf

n→∞
E0
α(G

Vn
α f,G

Vn
α f) ≤

ˆ
Rd
fGαfdµ. (8.19)
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Let v ∈ Ĥ1,2
0 (Rd, µ)0,b. Then by Lemma 8.4.3, v ∈ D(E0). Using (8.18),

E0
α(Gαf, v)−

ˆ
Rd
〈B,∇Gαf〉v dµ

= lim
n→∞

(
E0
α(G

Vn
α f, v)−

ˆ
Rd
〈ρψB,∇GVn

α f〉v dx
)

= lim
n→∞

(
E0,Vn
α

(
G
Vn
α (f1Vn), v

)
−
ˆ
Vn

〈
B,∇GVn

α (f1Vn)
〉
v dµ

)
= lim

n→∞

ˆ
Vn

(α− LVn)G
Vn
α (f1Vn) · vdµ = lim

n→∞

ˆ
Vn

fvdµ =

ˆ
Rd
fvdµ. (8.20)

Let u ∈ D(L0)0,b be given and take j ∈ N satisfying suppu ⊂ Vj. Then by Lemma 8.4.3,

u ∈ Ĥ1,2
0 (Vj, µ). Observe that supp (Lu) ⊂ Vj and for any n ≥ j, u1Vn ∈ D(L0,Vn)b,

LVn(u1Vn) = Lu on Vn, hence G
Vn
α (α− L)u = u on Rd. Letting n→∞ we have

u = Gα(α− L)u. (8.21)

Note that

‖αGαu− u‖L1(Rd,µ) =
∥∥αGαu−Gα(α− L)u

∥∥
L1(Rd,µ)

=
∥∥GαLu

∥∥
L1(Rd,µ)

≤ 1

α
‖Lu‖L1(Rd,µ) −→ 0 as α→∞. (8.22)

Since C∞0 (Rd) ⊂ D(L0)0,b, (8.22) extends to all u ∈ L1(Rd, µ), which shows the strong

continuity of (Gα)α>0 on L1(Rd, µ). Let (L,D(L)) be the generator of (Gα)α>0. Then

(8.21) implies Lu = Lu for all u ∈ D(L0)0,b. Thus (L,D(L)) is a closed extension of

(L,D(L0)0,b) on L1(Rd, µ). By the Hille-Yosida Theorem, (L,D(L)) generates a C0-

semigroup of contractions (T t)t>0 on L1(Rd, µ).

Since T tu = limα→∞ exp
(
tα(αGαu − u)

)
in L1(Rd, µ), (T t)t>0 is also sub-Markovian,

hence (a) is proved.

Next we will show (b). Let (Un)n≥1 be a family of bounded open subsets of Rd such

that Un ⊂ Un+1 for all n ∈ N and Rd =
⋃
n≥1 Un. Let f ∈ L1(Rd, µ) with f ≥ 0.

By the compactness of V n in Rd, there exists n0 ∈ N such that V n ⊂ Un0 , so that
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G
Vn
f ≤ G

Un0f ≤ limn→∞G
Un
α f . Letting n → ∞, we obtain Gαf ≤ limn→∞G

Un
α f .

Similarly we have limn→∞G
Un
α f ≤ Gαf , which shows (b).

Finally we will show (c). Let u ∈ D(L)b be given. Then by (8.18), αGαu ∈ D(E0)

and by (8.19)

E0(αGαu, αGαu) ≤
ˆ
Rd
αu · αGαudµ− α

ˆ
Rd
αGαu · αGαudµ

=

ˆ
Rd
α
(
u− αGαu

)
· αGαu dµ

=

ˆ
Rd
−αLGαu · αGαu dµ

=

ˆ
Rd
−αGαLu · αGαudµ (8.23)

≤ ‖Lu‖L1(Rd,µ)‖u‖L∞(Rd,µ).

Therefore supα>0 E0(αGαu, αGαu) < ∞. By Banach-Alaoglu theorem, there exists a

subsequence of (αGαu)α>0, say again (αGαu)α>0, such that u ∈ D(E0) and limα→∞ αGαu =

u weakly inD(E0). Moreover by the property of weak convergence, (8.23) and Lebesgue’s

Theorem,

E0(u, u) ≤ lim inf
α→∞

E0(αGαu, αGαu) ≤ lim inf
α→∞

(
−
ˆ
Rd
αGαLu · αGαudµ

)
= −

ˆ
Rd
Luudµ.

If v ∈ Ĥ1,2(Rd, µ)0,b, then by (8.20)

E0(u, v)−
ˆ
Rd
〈B,∇u〉vdµ = lim

α→∞

(
E0(αGαu, v)−

ˆ
Rd
〈ρψB,∇αGαu〉vdx

)
= lim

α→∞

(
E0
α(αGαu, v)−

ˆ
Rd
〈B,∇αGαu〉vdµ− α

ˆ
Rd
αGαu · vdµ

)
= lim

α→∞

ˆ
Rd
α
(
u− αGαu

)
vdµ = lim

α→∞

ˆ
Rd
−αGαLu · vdµ = −

ˆ
Rd
Lu · vdµ,

as desired.
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Remark 8.2.8. In the same way as in Theorem 8.2.7, one can construct an L1(Rd, µ)

closed extension (L
∗
, D(L

∗
)) of L0u + 〈−B,∇u〉, u ∈ D(L0)0,b which generates a sub-

Markovian C0-resolvent of contractions (G
∗
α)α>0 an L1(Rd, µ). Let (Un)n≥1 be as in

Theorem 8.2.7(b). Observe that by Remark 8.2.4

ˆ
Rd
G
Un
α u · v dµ =

ˆ
Rd
u ·G∗Unα v dµ, for all u, v ∈ L1(Rd, µ) ∩ L∞(Rd, µ), (8.24)

where (G
∗Un
α )α>0 is the resolvent associated to (L

∗Un
, D(L

∗Un
)) on L1(Un, µ), which is

trivially extended to Rd as in (8.12). Letting n→∞ in (8.24),

ˆ
Rd
Gαu v dµ =

ˆ
Rd
uG

∗
αvdµ, for all u, v ∈ L1(Rd, µ) ∩ L∞(Rd, µ).

The following Theorem 8.2.9 which shows that D(L)b is an algebra is one of the

ingredients to construct a Hunt process corresponding to the strict capacity (see, SD3

in [78]). It will be used later. The proof of Theorem 8.2.9 is based on [69, Remark 1.7

(iii)], but we include its proof checking in detail some approximation arguments.

Theorem 8.2.9. D(L)b is an algebra and Lu2 = 2uLu+〈Â∇u,∇u〉 for any u ∈ D(L)b.

Proof Let u ∈ D(L)b. Since D(L)b is a linear space, it suffices to show u2 ∈ D(L)b.

Let (L
∗
, D(L

∗
)), (G

∗
α)α>0 be as in Remark 8.2.8 and set g := 2uLu+ 〈Â∇u,∇u〉. If we

can show ˆ
Rd

(L
∗
G
∗
1h)u2dµ =

ˆ
Rd
g G

∗
1h dµ, for all h ∈ L1(Rd, µ)b, (8.25)

then
ˆ
Rd
G1(u2 − g)hdµ =

ˆ
Rd

(u2 − g)G
∗
1h dµ =

(8.25)

ˆ
Rd
u2(G

∗
1h− L

∗
G
∗
1h)dµ

=

ˆ
Rd
u2h dµ, for all h ∈ L1(Rd, µ)b,

hence u2 = G1(u2−g) ∈ D(L)b and Lu2 = (1−L)G1(g−u2)−G1(g−u2) = g−u2+u2 =

g, as desired.
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Step 1: To prove (8.25), first assume u = G1f for some f ∈ L1(Rd, µ)b. Fix v = G
∗
1h

for some h ∈ L1(Rd, µ)b with h ≥ 0. Let (Un)n≥1 be as in Theorem 8.2.7(b) and

un := G
Un
1 f , vn := G

∗Un
1 h. By Proposition 8.2.2 and Theorem 8.2.7

ˆ
Rd

(L
∗Un

vn)uundµ

= −E0(vn, uun)−
ˆ
Rd
〈B,∇vn〉uundµ, ( since vn ∈ D(E0) and uun ∈ D(E0) )

= −1

2

ˆ
Rd
〈Â∇vn,∇u〉undµ−

1

2

ˆ
Rd
〈Â∇vn,∇un〉udµ+

ˆ
Rd
〈B,∇(uun)〉vndµ

= −1

2

ˆ
Rd
〈Â∇(vnun),∇u〉dµ+

1

2

ˆ
Rd
〈Â∇un,∇u〉vndµ−

1

2

ˆ
Rd
〈Â∇vn,∇un〉udµ

+

ˆ
Rd
〈B,∇u〉vnun dµ+

ˆ
Rd
〈B,∇un〉vnudµ

= −1

2

ˆ
Rd
〈Â∇u,∇(vnun)〉dµ+

ˆ
Rd
〈B,∇u〉vnun dµ+

1

2

ˆ
Rd
〈Â∇un,∇u〉vndµ

−1

2

ˆ
Rd
〈Â∇un,∇(vnu)〉dµ+

ˆ
Rd
〈B,∇un〉vnudµ+

1

2

ˆ
Rd
〈Â∇un,∇u〉vndµ

=

ˆ
Rd
Lu · vnundµ+

ˆ
Rd
L
Un
un · vnudµ+

ˆ
Rd
〈Â∇un,∇u〉vndµ. (8.26)

Observe that ∣∣∣∣ˆ
Rd
〈Â∇u,∇u〉vdµ−

ˆ
Rd
〈Â∇un,∇u〉vndµ

∣∣∣∣
≤
∣∣∣∣ˆ

Rd
〈Â∇(u− un),∇u〉vdµ

∣∣∣∣︸ ︷︷ ︸
=:In

+

∣∣∣∣ˆ
Rd
〈Â∇un,∇u〉 (v − vn) dµ

∣∣∣∣︸ ︷︷ ︸
=:Jn

(8.27)

Since limn→∞ un = u weakly in D(E0) and v is bounded on Rd, limn→∞ In = 0. Note

that vn = G
∗Un
1 h ≤ G

∗
1h = v, supn∈N E0(un, un) <∞, |vn| ≤ |v| ∈ L∞(Rd, µ) and

lim
n→∞

un = u µ-a.e. on Rd,
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hence we obtain by the Cauchy–Schwarz inequality,

Jn ≤
(ˆ

Rd
〈Â∇un,∇un〉 (v − vn) dµ

)1/2(ˆ
Rd
〈Â∇u,∇u〉 (v − vn) dµ

)1/2

≤
√

2‖v‖1/2

L∞(Rd,µ)
sup
n≥1
E0(un, un)1/2

(ˆ
Rd
〈Â∇u,∇u〉 (v − vn) dµ

)1/2

−→ 0 as n→∞,

where the latter convergence to zero followed by Lebesgue’s Theorem for which we use∣∣∣〈Â∇u,∇u〉 (v − vn)
∣∣∣ ≤ 2‖v‖L∞(Rd,µ)〈Â∇u,∇u〉 ∈ L1(Rd, µ), µ-a.e. on Rd

and

lim
n→∞
〈Â∇u,∇u〉 (v − vn) = 0, µ-a.e. on Rd.

Therefore it follows by (8.27) that

lim
n→∞

ˆ
Rd
〈Â∇un,∇u〉vndµ =

ˆ
Rd
〈Â∇u,∇u〉vdµ. (8.28)

By (8.26), (8.28) and Lebesgue’s Theorem

ˆ
Rd
L
∗
v · u2dµ

=

ˆ
Rd

(
G
∗
1h− h

)
uundµ

= lim
n→∞

ˆ
Rd

(
G
∗Un
1 h− h

)
uun dµ

= lim
n→∞

ˆ
Rd

(L
∗Un

vn)uundµ

=
(8.26)

lim
n→∞

ˆ
Rd
Lu · vnundµ+

ˆ
Rd

(G
Un
1 f − f) · vnudµ+

ˆ
Rd
〈Â∇un,∇u〉vndµ

=
(8.28)

ˆ
Rd
Lu · vudµ+

ˆ
Rd
Lu · vudµ+

ˆ
Rd
〈Â∇u,∇u〉vdµ

=

ˆ
Rd
gvdµ. (8.29)
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In the case of general h ∈ L1(Rd, µ)b, we also obtain (8.29) using h = h+ − h− and

linearity.

Step 2: Let u ∈ D(L)b be arbitrary. Set

gα := 2(αGαu)L(αGαu) + 〈Â∇αGαu,∇αGαu〉, α > 0.

By Theorem 8.2.7(c),

E0(αGαu− u, αGαu− u) ≤ −
ˆ
Rd
L(αGαu− u) · (αGαu− u)dµ

≤ 2‖u‖L∞(Rd,µ)‖αGαLu− Lu‖L1(Rd,µ)

−→ 0 as α→∞,

hence limα→∞ gα = g in L1(Rd, µ). Observe that by the resolvent equation

Gαu = G1

(
(1− α)Gαu+ u

)
and (1− α)Gαu+ u ∈ L1(Rd, µ)b. Replacing u in (8.29) with αGαu

ˆ
Rd
L
∗
v
(
αGαu

)2
dµ =

ˆ
Rd
gαvdµ.

Letting α→∞, we finally obtain by Lebesgue’s Theorem

ˆ
Rd
L
∗
v · u2dµ =

ˆ
Rd
gvdµ,

so that our assertion holds.
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8.3 Existence of a pre-invariant measure and gen-

eral strong Feller properties

Here we state some conditions which will be used as our assumptions.

(A1) p > d is fixed and A = (aij)1≤i,j≤d is a symmetric matrix of functions which is

locally uniformly strictly elliptic on Rd such that aij ∈ H1,p
loc (Rd) ∩ C0,1−d/p

loc (Rd)

for all 1 ≤ i, j ≤ d. ψ ∈ L1
loc(Rd) is a positive function such that 1

ψ
∈ L∞loc(Rd)

and G is a Borel measurable vector field on Rd satisfying ψG ∈ Lploc(Rd,Rd).

(A2) ψ ∈ Lqloc(Rd) with q > d
2
. Fix s > d

2
such that 1

q
+ 1

s
< 2

d
.

(A3) q ≥ p
2
∨ 2.

Theorem 8.3.1. Under the assumption (A1), there exists ρ ∈ H1,p
loc (Rd)∩C0,1−d/p

loc (Rd)

satisfying ρ(x) > 0 for all x ∈ Rd such that

ˆ
Rd
〈G− βρ,A,ψ,∇ϕ〉ρψdx = 0, for all ϕ ∈ C∞0 (Rd). (8.30)

Moreover ρψB ∈ Lploc(Rd,Rd), where B := G− βρ,A,ψ.

Proof By Theorem 5.2.2, there exists ρ ∈ H1,p
loc (Rd) ∩ C1−d/p

loc (Rd) satisfying ρ(x) > 0

for all x ∈ Rd such that

ˆ
Rd

〈1

2
A∇ρ+ (

1

2
∇A− ψG)ρ, ϕ

〉
dx = 0, for all ϕ ∈ C∞0 (Rd),

hence ˆ
Rd

〈
G− ∇A

2ψ
− A∇ρ

2ρψ
,∇ϕ

〉
ρψdx = 0, for all ϕ ∈ C∞0 (Rd),

and moreover

ρψB = ρψG− ρ

2
∇A− A∇ρ

2
∈ Lploc(R

d,Rd).

From now on we assume that (A1) holds and fix A, ψ, ρ, B as in Theorem 8.3.1

and set as in Section 8.1 µ := ρψ dx, Â := 1
ψ
A, ρ̂ := ρψ, âij = 1

ψ
aij for all 1 ≤ i, j ≤ d.

Then A, ψ, ρ, B satisfy all assumptions of Section 8.1.

131



CHAPTER 8. ANALYTIC THEORY FOR DEGENERATE SECOND ORDER
PARTIAL DIFFERENTIAL OPERATORS

Remark 8.3.2. If ψ ∈ H1,2(V )∩L∞(V ) for some bounded open set V in Rd, then by

the chain and product rules for weakly differentiable functions,

1

2
∇Â =

∇A
2ψ

+
−A∇ψ

2ψ2
,

Â∇ρ̂
2ρ̂

=
A∇ψ
2ψ2

+
A∇ρ
2ρψ

on V.

Set β ρ̂,Â :=
1

2
∇Â+

Â∇ρ̂
2ρ̂

on V . Then it holds β ρ̂,Â = βρ.A,ψ (a.e.) on V . If we assume

ψ ∈ H1,p(V ), then it holds

F̂ :=
1

2
∇Â+ G− 2β ρ̂,Â ∈ Lp(V,Rd).

By Theorem 8.2.7 there exists a closed extension (L,D(L)) of

Lf = L0f + 〈B,∇f〉, f ∈ D(L0)0,b,

on L1(Rd, µ) which generates the sub-Markovian C0-semigroup of contractions (T t)t>0

on L1(Rd, µ). Restricting (T t)t>0 to L1(Rd, µ)b, it is well-known by Riesz-Thorin inter-

polation that (T t)t>0 can be extended to a sub-Markovian C0-semigroup of contractions

(Tt)t>0 on each Lr(Rd, µ), r ∈ [1,∞). Denote by (Lr, D(Lr)) the corresponding closed

generator with graph norm

‖f‖D(Lr) := ‖f‖Lr(Rd,µ) + ‖Lrf‖Lr(Rd,µ),

and by (Gα)α>0 the corresponding resolvent. Also (Tt)t>0 and (Gα)α>0 can be uniquely

defined on L∞(Rd, µ), but are no longer strongly continuous there.

For f ∈ C∞0 (Rd), we have

Lf = L0f + 〈B,∇f〉 =
1

2
trace(Â∇2f) + 〈G,∇f〉.

Define

L∗f : = L0f − 〈B,∇f〉 =
1

2
trace(Â∇2f) + 〈G∗,∇f〉,
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with

G∗ := (g∗1, · · · , g∗d) = 2βρ,A,ψ −G = βρ,A,ψ −B ∈ L2
loc(Rd,Rd, µ).

We see that L and L∗ have the same structural properties, i.e. they are given as the

sum of a symmetric second order elliptic differential operator L0 and a divergence

free first order perturbation 〈B,∇· 〉 or 〈−B,∇· 〉, respectively, with same integrability

condition ρψB ∈ Lploc(Rd,Rd). Therefore all what will be derived below for L will hold

analogously for L∗. Denote by (L∗r, D(L∗r)) the operators corresponding to L∗ for the

co-generator on Lr(Rd, µ), r ∈ [1,∞), (T ∗t )t>0 for the co-semigroup, (G∗α)α>0 for the

co-resolvent. As in [69, Section 3], we obtain a corresponding bilinear form with domain

D(L2)× L2(Rd, µ) ∪ L2(Rd, µ)×D(L̂2) by

E(f, g) :=

{
−
´
Rd L2f · g dµ for f ∈ D(L2), g ∈ L2(Rd, µ),

−
´
Rd f · L

∗
2g dµ for f ∈ L2(Rd, µ), g ∈ D(L∗2).

(8.31)

E is called the generalized Dirichlet form associated with (L2, D(L2)).

Theorem 8.3.3. Assume (A1), (A2) and let f ∈ ∪r∈[s,∞]L
r(Rd, µ). Then Gαf has a

locally Hölder continuous µ-version Rαf on Rd. Furthermore for any open balls B, B′

satisfying B ⊂ B′, we have the following estimate

‖Rαf‖C0,γ(B) ≤ c2

(
‖f‖Ls(B′,µ) + ‖Gαf‖L1(B′,µ)

)
, (8.32)

where c2 > 0, γ ∈ (0, 1) are constants which are independent of f .

Proof Let f ∈ C∞0 (Rd) and α > 0. Then by Theorem 8.2.7, Gαf ∈ D(L)b ⊂ D(E0)

and

E0(Gαf, ϕ)−
ˆ
Rd
〈B,∇Gαf〉ϕdµ

= −
ˆ
Rd

(
LGαf

)
ϕdµ

=

ˆ
Rd

(f − αGαf)ϕdµ, for all ϕ ∈ C∞0 (Rd). (8.33)
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Thus (8.33) implies

ˆ
Rd

〈1

2
ρA∇Gαf,∇ϕ

〉
dx−

ˆ
Rd
〈ρψB,∇Gαf〉ϕdx+

ˆ
Rd

(αρψGαf)ϕdx

=

ˆ
Rd

(ρψf)ϕdx, for all ϕ ∈ C∞0 (Rd). (8.34)

Note that ρ is locally bounded below and above on Rd and ρψB ∈ Lploc(Rd,Rd), αρψ ∈
Lqloc(Rd). Let B, B′ be open balls in Rd satisfying B ⊂ B′. Since 1

ψ
∈ L∞(B′), Gαf ∈

H1,2(B′). Thus by Theorem 7.2.2, there exists a Hölder continuous µ-version Rαf of

Gαf on Rd and constants γ ∈ (0, 1), c1 > 0, which are independent of f such that

‖Rαf‖C0,γ(B) ≤ c1

(
‖Gαf‖L1(B′) + ‖ρψf‖

L
( 1
q+ 1

s )−1
(B′)

)
≤ c2

(
‖Gαf‖L1(B′,µ) + ‖f‖Ls(B′,µ)

)
, (8.35)

where c2 := c1

(
1

infB′ ρψ
∨ ‖ρψ‖Lq(B′)

(infB′ ρψ)1/s

)
. Using the Hölder inequality and the contraction

property, (8.35) extends to f ∈ ∪r∈[s,∞)L
r(Rd, µ). In order to extend (8.35) to f ∈

L∞(Rd,m), let fn := 1Bn · f ∈ Lq(Rd, µ)0, n ≥ 1. Then ‖f − fn‖Ls(B′,µ) + ‖Gα(f −
fn)‖L1(B′,m) → 0 as n → ∞ by Lebesgue’s Theorem. Hence (8.35) also extends to

f ∈ L∞(Rd,m).

Let f ∈ D(Lr) for some r ∈ [s,∞). Then f = G1(1−Lr)f , hence by Theorem 8.3.3,

f has a locally Hölder continuous µ-version on Rd and

‖f‖C0,γ(B) ≤ c3‖f‖D(Lr),

where c3 > 0, γ ∈ (0, 1) are constants, independent of f . In particular, Ttf ∈ D(Lr)

and Ttf has hence a continuous µ-version, say Ptf with

‖Ptf‖C0,γ(B) ≤ c3‖Ptf‖D(Lr). (8.36)

Note that c3 is independent of t ≥ 0 as well as of f . The following Lemma will be quite

important for later to show joint continuity of P·g(·) for g ∈ ∪ν∈[ 2p
p−2

,∞]L
ν(Rd, µ).
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Lemma 8.3.4. Assume (A1), (A2). For any f ∈
⋃
r∈[s,∞) D(Lr) the map

(x, t) 7→ Ptf(x)

is continuous on Rd × [0,∞).

Proof Let f ∈ D(Lr) for some r ≥ s and ((xn, tn))n≥1 be a sequence in Rd × [0,∞)

that converges to (x0, t0) ∈ Rd × [0,∞). Note that Pt0f ∈ C(Rd). Then there exists an

open ball B such that xn ∈ B for all n ≥ 0 and using (8.36)

|Ptnf(xn)− Pt0f(x0)| ≤ |Ptnf(xn)− Pt0f(xn)|+ |Pt0f(xn)− Pt0f(x0)|

≤ ‖Ptnf − Pt0f ‖C(B) + |Pt0f(xn)− Pt0f(x0)|

≤ c3‖Ptnf − Pt0f ‖Lr(Rd,m) + c3‖PtnLrf − Pt0Lrf ‖Lr(Rd,m)

+ |Pt0f(xn)− Pt0f(x0)| −→ 0 as n→∞.

Remark 8.3.5. If (E , C∞0 (Rd)) satisfies the weak sector condition, then (Tt)t>0 is an

analytic semigroup on Lr(Rd, µ), r ∈ [2,∞) by Stein interpolation. If f ∈ D(Lr) with

r ∈ [2,∞), then

Ttf ∈ D(Lr), and ‖LrTtf‖Lr(Rd,µ) ≤
c

t
‖f‖Lr(Rd,µ),

where c > 0 is a constant whcih is indepencent of f and t > 0. Thus for any r ∈
[s ∨ 2,∞), t > 0, f ∈ Lr(Rd, µ) and any open ball B

‖Ptf‖C0,β(B) ≤ c3

(
‖Ptf ‖Lr(Rd,µ) + ‖LrPtf ‖Lr(Rd,µ)

)
≤ c3

(
1 +

c

t

)
‖f‖Lr(Rd,µ).

However, it is in general difficult to show a weak sector condition and moreover it does

not need to hold. Thus we have to develop another way to show the joint continuity of

P·f(·) where f is in some suitable class.
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Theorem 8.3.6. Assume (A1), (A2), (A3) and let f ∈
⋃
ν∈[ 2p

p−2
,∞] L

ν(Rd, µ), t > 0.

Then Ttf has a continuous µ-version Ptf on Rd and furthermore P·f(·) is continuous on

Rd×(0,∞). For any bounded open sets U , V in Rd with U ⊂ V and 0 < τ3 < τ1 < τ2 <

τ4, i.e. [τ1, τ2] ⊂ (τ3, τ4), we have the following estimate for all f ∈ ∪ν∈[ 2p
p−2

,∞]L
ν(Rd, µ)

‖P·f(·)‖C(U×[τ1,τ2]) ≤ C1‖P·f(·)‖
L

2p
p−2 ,2(V×(τ3,τ4))

, (8.37)

where C1 is a constant that depend on U × [τ1, τ2], V × (τ3, τ4), but is independent of f .

Proof First assume f ∈ D(L)b ∩ D(Ls) ∩ D(L2). By means of Lemma 8.3.4, define

u ∈ Cb(Rd × [0,∞)) by u(x, t) := Ptf(x). Note that for any bounded open set O ⊂ Rd

and T > 0, it holds u ∈ H1,2(O × (0, T )) by Theorem 9.3.4 below. Let ϕ1 ∈ C∞0 (Rd),

ϕ2 ∈ C∞0 ((0, T )). Observe that Ttf ∈ D(L)b, hence

¨
Rd×(0,T )

〈1

2
ρA∇u,∇(ϕ1ϕ2)

〉
−
〈
ρψB,∇ (Ttf)

〉
ϕ1ϕ2 dxdt

=

ˆ T

0

ϕ2

(ˆ
Rd

〈1

2
ρA∇ (Ttf) ,∇ϕ1

〉
−
〈
ρψB,∇ (Ttf)

〉
ϕ1 dx

)
dt

=

ˆ T

0

ϕ2

(
E0(Ttf, ϕ1)−

ˆ
Rd

〈
B,∇Ttf

〉
ϕ1 dµ

)
dt

=

ˆ T

0

−ϕ2

(ˆ
Rd
ϕ1LT tf dµ

)
dt

=

ˆ T

0

−ϕ2

(
d

dt

ˆ
Rd
ϕ1Ttf ρψdx

)
dt

=

ˆ T

0

(
d

dt
ϕ2

)(ˆ
Rd
ϕ1Ttf ρψdx

)
dt

=

¨
Rd×(0,T )

u ∂t
(
ϕ1ϕ2

)
ρψdxdt. (8.38)
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By Theorem 8.4.5, (8.38) extends to

¨
Rd×(0,T )

〈1

2
ρA∇u,∇ϕ

〉
−
〈
ρψB,∇ (Ttf)

〉
ϕ dxdt

=

¨
Rd×(0,T )

u ∂tϕ · ρψdxdt for all ϕ ∈ C∞0 (Rd × (0, T )). (8.39)

Let τ ∗2 := τ2+τ4
2

and take r > 0 so that

r <

√
τ1 − τ3

2
and Rx̄(2r) ⊂ V, ∀x̄ ∈ U.

Then for all (x̄, t̄) ∈ U × [τ1, τ
∗
2 ], we have Rx̄(2r) × (t̄ − (2r)2, t̄) ⊂ V × (τ3, τ4). Using

the compactness of U × [τ1, τ2], there exist (xi, ti) ∈ U × [τ1, τ
∗
2 ], i = 1, . . . , N , such that

U × [τ1, τ2] ⊂
N⋃
i=1

Rxi(r)× (ti − r2, ti).

Using Theorem 7.1.2,

‖u‖C(U×[τ1,τ2]) = sup
U×[τ1,τ2]

|u|

≤ max
i=1,...,N

sup
Rxi (r)×(ti−r2,ti)

|u|

≤ max
i=1,...,N

ci‖u‖
L

2p
p−2 ,2

(
Rxi (2r)×(ti−(2r)2,ti)

)
≤ ( max

i=1,...,N
ci)︸ ︷︷ ︸

=:C1

‖u‖
L

2p
p−2 ,2

(
V×(τ3,τ4)

),
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where ci > 0 (1 ≤ i ≤ N) are constants which are independent of u. Thus for ν ≥ 2p
p−2

‖P·f‖C(U×[τ1,τ2]) ≤ C1‖P·f‖
L

2p
p−2 ,2

(
V×(τ3,τ4)

) (8.40)

= C1

(ˆ τ4

τ3

(ˆ
V

|Ttf |
2p
p−2dx

) p−2
p

dt

)1/2

≤ C1

(
1

infV ρψ

) p−2
2p

(ˆ τ4

τ3

(ˆ
V

|Ttf |
2p
p−2dµ

) p−2
p

dt

)1/2

≤ C1

(
1

infV ρψ

) p−2
2p
(ˆ τ4

τ3

‖Ttf‖2

L
2p
p−2 (V,µ)

dt

)1/2

≤ C1

(
1

infV ρψ

) p−2
2p

µ(V )
1
2
− 1
p
− 1
ν︸ ︷︷ ︸

=:C2

(ˆ τ4

τ3

‖Ttf‖2
Lν(V,µ)dt

)1/2

≤ C1C2(τ4 − τ3)1/2‖f‖Lν(Rd,µ). (8.41)

Now assume f ∈ L1(Rd, µ) ∩ L∞(Rd, µ). Then nGnf ∈ D(L)b ∩ D(Ls) ∩ D(L2) for

all n ∈ N and limn→∞ nGnf = f in Lν(Rd, µ). Thus (8.41) extends to all f ∈
L1(Rd, µ) ∩ L∞(Rd, µ). If ν ∈ [ 2p

p−2
,∞), the above again extends to all f ∈ Lν(Rd, µ)

using the denseness of L1(Rd, µ)∩L∞(Rd, µ) in Lν(Rd, µ). Finally assume f ∈ L∞(Rd, µ)

and let fn := 1Bn · f for n ≥ 1. Then limn→∞ fn = f µ-a.e. on Rd and

Ttf = lim
n→∞

Ttfn = lim
n→∞

Ptfn, µ-a.e. on Rd. (8.42)

Thus using the sub-Markovian property and applying Lebesgue’s Theorem in (8.40),

(P·fn(·))n≥1 is a Cauchy sequence in C(U × [τ1, τ2]). Hence we can again define

P·f := lim
n→∞

P·fn(·) in C(U × [τ1, τ2]).

For each t > 0, Ptfn converges uniformly to Ptf in U , hence in view of (8.42), Ttf has

continuous µ version Ptf and P·f ∈ C(U × [τ1, τ2]). Therefore (8.41) extends to all f ∈
L∞(Rd, µ). Since U and [τ1, τ2] were arbitrary, it holds for any f ∈ ∪ν∈[ 2p

p−2
,∞]L

ν(Rd,m),

P·f(·) is continuous on Rd × (0,∞) and for each t > 0, Ptf = Ttf µ-a.e. on Rd.

138



CHAPTER 8. ANALYTIC THEORY FOR DEGENERATE SECOND ORDER
PARTIAL DIFFERENTIAL OPERATORS

Remark 8.3.7. (i) By Theorem 8.3.3, we get a resolvent kernel and a resolvent

kernel density for any x ∈ Rd. Indeed, for any α > 0, x ∈ Rd, (8.32) implies that

Rα(x,A) := lim
l→∞

Rα(1Bl∩A)(x), A ∈ B(Rd).

defines a sub-probability measure αRα(x, dy) on (Rd,B(Rd)) that is absolutely

continuous with respect to µ. Using the Radon-Nikodym derivative, the resolvent

kernel density is defined by

rα(x, ·) :=
Rα(x, dy)

µ(dy)
, x ∈ Rd.

(ii) By Theorem 8.3.6, we also get a heat kernel and a heat kernel density for any

x ∈ Rd. Indeed, for any t > 0, x ∈ Rd, (8.37) implies that

Pt(x,A) := lim
l→∞

Pt(1Bl∩A)(x), A ∈ B(Rd)

defines a sub-probability measure Pt(x, dy) on (Rd,B(Rd)) that is absolutely con-

tinuous with respect to µ. Using the Radon-Nikodym derivative, the heat kernel

density is defined by

pt(x, ·) :=
Pt(x, dy)

µ(dy)
, x ∈ Rd.

Proposition 8.3.8. Assume (A1), (A2), (A3) and let t, α > 0. Then it holds:

(i) Gαg has a locally Hölder continuous µ-version

Rαg =

ˆ
Rd
g(y)Rα(·, dy) =

ˆ
Rd
g(y)rα(·, y)µ(dy), ∀g ∈

⋃
r∈[s,∞]

Lr(Rd, µ). (8.43)

In particular, (8.43) extends by linearity to all g ∈ Ls(Rd, µ) + L∞(Rd, µ), i.e.

(Rα)α>0 is L[s,∞](Rd, µ)-strong Feller.
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(ii) Ttf has a continuous µ-version

Ptf =

ˆ
Rd
f(y)Pt(·, dy) =

ˆ
Rd
f(y)pt(·, y)µ(dy), ∀f ∈

⋃
ν∈[ 2p

p−2
,∞]

Lν(Rd, µ). (8.44)

In particular, (8.44) extends by linearity to all f ∈ L
2p
p−2 (Rd, µ) + L∞(Rd, µ), i.e.

(Pt)t>0 is L[ 2p
p−2

,∞](Rd, µ)-strong Feller.

Finally, for any α > 0, x ∈ Rd, g ∈ Ls(Rd, µ) + L∞(Rd, µ)

Rαg(x) =

ˆ ∞
0

e−αtPtg(x) dt.

8.4 Some auxiliary results

In this Section, we use all notations and assumptions from Section 8.2

Proposition 8.4.1. (T 0
t )t>0 restricted to L1(Rd, µ) ∩ L∞(Rd, µ) can be extended to

a sub-Markovian C0-semigroup of contractions (Tt
0
)t>0 with generator (L

0
, D(L

0
)) on

L1(Rd, µ). If f ∈ D(L0) and f, L0f ∈ L1(Rd, µ), then f ∈ D(L
0
) and L

0
f = L0f . Set

A := {u ∈ D(L0) ∩ L1(Rd, µ) | L0u ∈ L1(Rd, µ)}. Then (L
0
, D(L

0
)) is the closure of

(L0,A) on L1(Rd, µ).

Similarly, for a bounded open subset V of Rd, (T 0,V
t )t>0 restricted to L1(V, µ) ∩

L∞(V, µ) can be extended to a sub-Markovian C0-semigroup of contractions (T
0,V

t )t>0

on L1(V, µ). Also if f ∈ D(L0,V ) and f, L0,V f ∈ L1(V, µ), then f ∈ D(L
0,V

) and

L
0,V
f = L0,V f . Finally (L

0,V
, D(L

0,V
)) is the closure of (L0,V , D(L0,V )) on L1(V, µ).

Proof Since the proof for the case of (T 0,V
t )t>0 is exactly same with the case of (T 0

t )t>0,

we will only prove the case of (T 0
t )t>0. Since (E0, D(E0)) is a regular Dirichlet from,

there exists a Hunt process

M0 = (Ω0,F0, (F0
t )t≥0, (X

0
t )t≥0, (P0

x)x∈Rd∪∆)

with life time ζ0 = inf{t > 0 | X0
t = ∆} such that for any g ∈ L2(Rd, µ)

x 7→ E0
x

[
g(X0

t )
]

is a quasi-continuous µ-version of T 0
t g.
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Let f ∈ L1(Rd, µ) ∩ L∞(Rd, µ). Using Jensen inequality and sub-Markovian property

of (T 0
t )t>0

ˆ
Rd
|T 0
t f |dµ =

ˆ
Rd

∣∣E0
·
[
f(X0

t )
]∣∣ dµ

≤
ˆ
Rd

E0
·
[∣∣f(X0

t )
∣∣] dµ

= lim
n→∞

ˆ
Rd
T 0
t |f | · 1Bndµ

= lim
n→∞

ˆ
Rd
|f | · T 0

t 1Bndµ

≤
ˆ
Rd
|f |dµ.

Since L1(Rd, µ) ∩ L∞(Rd, µ) is dense in L1(Rd, µ), (T 0
t )t>0 restricted to L1(Rd, µ) ∩

L∞(Rd, µ) uniquely extend to the sub-Markovian contraction semigroup (T
0

t )t>0 on

L1(Rd, µ). Define

D := L∞(Rd, µ) ∩ {g | g ≥ 0 and there exists A ∈ B(Rd)

with µ(A) <∞ and g = 0 on Rd \ A}.

Since D is dense in L1(Rd, µ)+, D−D is dense in L1(Rd, µ). Let f ∈ D−D. Then there

exists A ∈ B(Rd) with µ(A) <∞ such that supp(f) ⊂ A and f ∈ L1(Rd, µ)∩L∞(Rd, µ).

By strong continuity of (T 0
t )t>0 on L2(Rd, µ)

lim
t→0+

ˆ
Rd

1A|T 0
t f |dµ =

ˆ
Rd

1A|f |dµ = ‖f‖L1(Rd,µ),

hence using the contraction property on L1(Rd, µ),

0 ≤
ˆ
Rd

1Rd\A |T 0
t f |dµ =

ˆ
Rd
|T 0
t f |dµ−

ˆ
Rd

1A|T 0
t f |dµ

≤ ‖f‖L1(Rd,µ) −
ˆ
Rd

1A|T 0
t f |dµ −→ 0 as t→ 0 + .
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Therefore

lim
t→0+

ˆ
Rd
|T 0
t f − f |dµ = lim

t→0+

(ˆ
Rd

1A|T 0
t f − f |dµ+

ˆ
Rd

1Rd\A|T 0
t f |dµ

)
≤ µ(A)1/2 lim

t→0+
‖Ttf − f‖L2(Rd,µ) = 0.

By the denseness of D − D in L1(Rd, µ), we get the strong continuity of (T
0

t )t>0 on

L1(Rd, µ). Now let f ∈ D(L0) and f, L0f ∈ L1(Rd, µ). Then f ∈ L1(Rd, µ)∩L2(Rd, µ),

L0f ∈ L1(Rd, µ) ∩ L2(Rd, µ), hence we get T
0

tf = T 0
t f , T

0

tL
0f = T 0

t L
0f for every

t > 0. Using the ‘Fundamental Theorem of Calculus on Banach Space’ and strong

continuity of (T
0

t )t>0 on L1(Rd, µ)

T
0

tf − f
t

=
T 0
t f − f
t

=
1

t

ˆ t

0

T 0
s L

0f ds

=
1

t

ˆ t

0

T
0

sL
0f ds −→ L0f in L1(Rd, µ) as t→ 0 + .

Consequently, f ∈ D(L
0
) and L

0
f = L0f .

Let (G
0

α)α>0 be the resolvent generated by (L
0
, D(L

0
)). Set C :=

{
G

0

1g | g ∈ C∞0 (Rd)
}

.

Then C ⊂ A and one can directly check that C ⊂ D(L
0
) is dense with respect to graph

norm ‖ · ‖
D(L

0
)
, hence it completes our proof.

Lemma 8.4.2. Let V be a bounded open subset of Rd and f ∈ Ĥ1,2
0 (V, µ)b. Then there

exists a sequence (fn)n≥1 ⊂ C∞0 (V ) and a constant M > 0 such that ‖fn‖L∞(V ) ≤ M

for all n ≥ 1 and

lim
n→∞

fn = f in Ĥ1,2
0 (V, µ), lim

n→∞
fn = f µ -a.e. on V.

Proof Take (gn)n≥1 ⊂ C∞0 (V ) such that

lim
n→∞

gn = f in Ĥ1,2
0 (V, µ) and lim

n→∞
gn = f µ -a.e. on V. (8.45)
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Define ϕ ∈ C∞0 (R) such that ϕ(t) = t if |t| ≤ ‖f‖L∞(Rd) + 1 and ϕ(t) = 0 if

|t| ≥ ‖f‖L∞(Rd) + 2. Let M := ‖ϕ‖L∞(R) and f̃n := ϕ(gn). Then f̃n ∈ C∞0 (V ) and

‖f̃n‖L∞(V ) ≤M for all n ≥ 1. By Lebesgue’s Theorem and (8.45),

lim
n→∞

f̃n = lim
n→∞

ϕ(gn) = ϕ(f) = f in L2(V, µ).

Using the chain rule and (8.45)

sup
n≥1
‖∇f̃n‖L2(V,Rd) = sup

n≥1
‖∇ϕ(gn)‖L2(V,Rd)

≤ ‖ϕ′‖L∞(R) sup
n≥1
‖∇gn‖L2(V,Rd).

< ∞.

Thus by the Banach-Alaoglu Theorem and the Banach-Saks Thoerem, there exists a

subsequence of (f̃n)n≥1, say again (f̃n)n≥1, such that for the Cesaro mean

fN :=
1

N

N∑
n=1

f̃n −→ f in Ĥ1,2
0 (V, µ) as N →∞.

Note that fN ∈ C∞0 (V ), ‖fN‖L∞(V ) ≤ M for all N ∈ N. Since the Cesaro mean of a

convergent sequence in R is also converges, (fn)n≥1 is the desired sequence.

Lemma 8.4.3. Let f ∈ Ĥ1,2
0 (Rd, µ)0,b and V be a bounded open subset of Rd with

supp(f) ⊂ V . Then f ∈ Ĥ1,2
0 (V, µ)b. Moreover there exists (fn)n≥1 ⊂ C∞0 (Rd) and a

constant M > 0 such that supp(fn) ⊂ V , ‖fn‖L∞(V ) ≤M for all n ≥ 1 and

lim
n→∞

fn = f in Ĥ1,2
0 (Rd, µ), lim

n→∞
fn = f µ -a.e. on Rd.

Proof LetW be an open subset of Rd satisfying supp(f) ⊂ W ⊂ W ⊂ V . Take a cut-off

function χ ∈ C∞0 (Rd) satisfying supp(χ) ⊂ V and χ ≡ 1 on W . Since f ∈ Ĥ1,2
0 (Rd, µ),

there exists g̃n ∈ C∞0 (Rd) such that

lim
n→∞

g̃n = f in Ĥ1,2
0 (Rd, µ).
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Thus χg̃n ∈ C∞0 (Rd) with supp(χg̃n) ⊂ V and

‖χg̃n − f‖L2(Rd,µ) = ‖χg̃n − χf‖L2(Rd,µ)

≤ ‖χ‖L∞(Rd)‖g̃n − f‖L2(Rd,µ) −→ 0 as n→∞.

Note that χg̃n ∈ C∞0 (Rd) ⊂ Ĥ1,2
0 (V, µ) and

sup
n≥1
‖∇(χg̃n)‖L2(V,Rd) = sup

n≥1

(
‖g̃n∇χ‖L2(V,Rd) + ‖χ∇g̃n‖L2(V,Rd)

)
≤ sup

n≥1

(‖∇χ‖L∞(V,Rd)

inf(ρψ)
‖gn‖L2(Rd,µ) + ‖χ‖L∞(Rd)‖∇g̃n‖L2(Rd,Rd)

)
< ∞.

Since bounded sequences in Hilbert spaces have a weakly convergent subsequence, f ∈
Ĥ1,2

0 (V, µ). Taking (fn)n≥1 ⊂ C∞0 (V ) as in Lemma 8.4.2 and extending it trivially to

C∞0 (Rd), our assertion holds.

Lemma 8.4.4. Let V1, V2 be bounded open subsets of Rd satisfying V 1 ⊂ V2. Assume

f ∈ Ĥ1,2
0 (V2, µ), g ∈ Ĥ1,2

0 (V1, µ) with g = 0 on V2 \ V1. If 0 ≤ f ≤ g, then f ∈
Ĥ1,2

0 (V1, µ).

Proof Take (gn)n≥1 ⊂ C∞0 (V2) satisfying supp(gn) ⊂ V1 for all n ∈ N and

lim
n→∞

gn = g in Ĥ1,2
0 (V2, µ).

Observe that for all n ∈ N

supp(f ∧ gn) ⊂ V1 and f ∧ gn =
f + gn

2
− |f − gn|

2
∈ Ĥ1,2

0 (V2, µ).

By Lemma 8.4.3, f ∧ gn ∈ Ĥ1,2
0 (V1, µ) for all n ∈ N. Moreover

lim
n→∞

f ∧ gn = lim
n→∞

(
f + gn

2
− |f − gn|

2

)
=
f + g

2
− |f − g|

2
= f ∧ g = f in L2(V1, µ).
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Since
(
〈·, ·〉Ĥ1,2

0 (V2,µ), Ĥ
1,2
0 (V2, µ)

)
is a Dirichlet form,

sup
n≥1
‖f ∧ gn‖Ĥ1,2

0 (V1,µ)

= sup
n≥1
‖f ∧ gn‖Ĥ1,2

0 (V2,µ)

= sup
n≥1

∥∥∥∥f + gn
2
− |f − gn|

2

∥∥∥∥
Ĥ1,2

0 (V2,µ)

≤ 1

2
sup
n≥1

(
‖f‖Ĥ1,2

0 (V2,µ) + ‖gn‖Ĥ1,2
0 (V2,µ) +

∥∥|f |∥∥
Ĥ1,2

0 (V2,µ)
+
∥∥|gn|∥∥Ĥ1,2

0 (V2,µ)

)
≤ sup

n≥1

(
‖f‖Ĥ1,2

0 (V2,µ) + ‖gn‖Ĥ1,2
0 (V2,µ)

)
<∞.

Thus by the Banach-Alaoglu Theorem, f ∈ Ĥ1,2
0 (V1, µ).

For a bounded open set U in Rd and T > 0, C2(U × [0, T ]) denotes the space of all

twice continuously differentiable functions on U × [0, T ] with the norm defined by

‖u‖C2(U×[0,T ]) := ‖u‖C(U×[0,T ]) +
d+1∑
i=1

‖∂iu‖C2(U×[0,T ]) +
d+1∑
i,j=1

‖∂i∂ju‖C2(U×[0,T ]).

Theorem 8.4.5. Let U be a bounded open subset of Rd and T > 0. Set

S :=
{
h ∈ C∞0 (U × (0, T )) | there exists N ∈ N such that h =

N∑
i=1

figi,

where fi ∈ C∞0 (U), gi ∈ C∞0 ((0, T )) for all i=1,. . . , N
}
.

Then C2
0(U × (0, T )) ⊂ S|C2(U×[0,T ]).

Proof Step 1: Let V be an bounced open set in Rd and T1, T2 ∈ R with T1 < T2.
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Define

R :=
{
h ∈ C∞0 (V × (T1, T2)) | there exists N ∈ N such that h =

N∑
i=1

figi,

where fi ∈ C∞0 (V ), gi ∈ C∞0 ((T1, T2)) for all i = 1, . . . , N .

We claim that

C2
0(V × (T1, T2)) ⊂ R|C(V×[T1,T2]). (8.46)

Note that V ×(T1, T2) is a locally compact space andR|C(V×[T1,T2]) is a closed subalgebra

of C∞(V × (T1, T2)). We can easily check that for each (x, t) ∈ V × (T1, T2), there exists

h̃ ∈ R such that h̃(x, t) 6= 0. For (x, t), (y, s) ∈ V × (T1, T2) and (x, t) 6= (y, s), there

exists ĥ ∈ R such that ĥ(x, t) = 1 and ĥ(y, s) = 0. Therefore by [15, Chapter V, 8.3

Corollary], we obtain R|C(V×[T1,T2]) = C∞(V × (T1, T2)), so that our claim (8.46) holds.

Step 2: C2
0(U × (0, T )) ⊂ S|C2(U×[0,T ]).

For n ∈ N, let ηn be a standard mollifier on Rd and θn be a standard mollifier on R.

Then ξn := ηnθn is a standard mollifier on Rd × R. Let h ∈ C2
0(U × (0, T )) be given.

Then there exists a bounded open subset V of Rd and T1, T2 ∈ R with 0 < T1 < T2

such that

supp(h) ⊂ V × (T1, T2) ⊂ V × [T1, T2] ⊂ U × (0, T ).

Take N ∈ N such that f ∗ ξN ∈ C∞0 (U × (0, T )) for all f ∈ C∞0 (V × (T1, T2)).

Note that by [14, Proposition 4.20], it holds

∂t(h ∗ ξε) = ∂th ∗ ξε, ∂2
t (h ∗ ξε) = ∂2

t h ∗ ξε, ∂t∂i(h ∗ ξε) = ∂t∂ih ∗ ξε,
∂i(h ∗ ξε) = ∂ih ∗ ξε, ∂i∂j(h ∗ ξε) = ∂i∂jh ∗ ξε for any 1 ≤ i, j ≤ d.

Hence by [14, Proposition 4.21], limn→∞ h ∗ ξε = h in C2(U × [0, T ]). Thus given ε > 0,

there exists nε ∈ N with nε ≥ N such that

‖h− h ∗ ξnε‖C2(U×[0,T ]) <
ε

2
.
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Let R be as in Step 1. By (8.46), there exists hε ∈ R ⊂ C∞0 (V × (T1, T2)) such that

‖h− hε‖C(U×[0,T ]) <
ε

2‖ξnε‖C2(U×[0,T ])

.

Thus using [14, Propsotion 4.20] and Young’s inequality,

‖h ∗ ξnε − hε ∗ ξnε‖C2(U×[0,T ]) ≤ ‖ξnε‖C2(U×[0,T ])‖h− hε‖C(U×[0,T ]) <
ε

2
.

Therefore

‖h− hε ∗ ξnε‖C2(U×[0,T ]) < ε.

Since hε ∗ ξnε ∈ S, we have h ∈ S|C2(U×[0,T ]), as desired.
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Chapter 9

Well-posedness and irreducibility

for degenerate Itô-SDEs

9.1 Weak existence of degenerate Itô-SDEs with

rough coefficients

The following assumption will in particular be necessary to obtain a Hunt process with

transition function (Pt)t≥0 (and consequently a weak solution to the corresponding SDE

for every starting point). It will be first used in Theorem 9.1.3 below.

(A4) G ∈ Lsloc(Rd,Rd, µ), where s is as in (A2)

The condition (A4) is not necessary to get a Hunt processes (and consequently a weak

solution to the corresponding SDE for merely quasi-every starting point) as in the

following proposition.

Proposition 9.1.1. There exists a Hunt process

M̃ = (Ω̃, F̃ , (F̃)t≥0, (X̃t)t≥0, (P̃x)x∈Rd∪{∆})

with life time ζ̃ := inf{t ≥ 0 | X̃t = ∆} and cemetery ∆ such that E is (strictly properly)

associated with M̃ and for strictly E-q.e. x ∈ Rd,

P̃x
({

ω ∈ Ω̃ | X̃·(ω) ∈ C
(
[0,∞),Rd

∆

)
, X̃·(ω) = ∆ ∀t ≥ ζ(ω)

})
= 1.
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Proof First one shows the quasi-regularity of the generalized Dirichlet form (E , D(L2))

associated with (L2, D(L2)), and the existence of an µ-tight special standard process

associated with (E , D(L2)). This can be done exactly as in [69, Theorem 3.5]. One only

has to take care that the space Y as defined in the proof of [69, Theorem 3.5] is replaced

because of a seemingly uncorrected version of the papaer by the following one

Y := {u ∈ D(L))b | ∃f, g ∈ L1(Rd, µ)b, f, g ≥ 0, such that u ≤ G1f and − u ≤ G1g}

in order to guarantee the convergence at the end of the proof. Then the assertion will

follow exactly as in [78, Theorem 6], using for the proof instead G there the space Y
defined above and defining Ek ≡ Rd, k ≥ 1.

Remark 9.1.2. (i) Assume (A1), (A2), (A3) and G ∈ L
sq
q−1

loc (Rd). Then for any

bounded open subset V of Rd, it holds

ˆ
V

‖G‖sdµ ≤ ‖G‖s
L

sq
q−1 (V )

‖ρψ‖Lq(V ),

hence (A4) is satisfied.

(ii) Two simple examples where (A1), (A2), (A3), (A4) are satisfied are given

as follows: for the first example let A, ψ satisfy the assumptions of (A1), ψ ∈
Lploc(Rd), s = p, and G ∈ L∞loc(Rd,Rd) and for the second let A, ψ satisfy the

assumptions of (A1), ψ ∈ L2p
loc(Rd), s = 2p

3
and G ∈ L2p

loc(Rd,Rd).

Analogously to [49, Theorem 3.12], we obtain:

Theorem 9.1.3. Under the assumptions (A1), (A2), (A3), (A4), there exists a Hunt

process

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈Rd∪{∆})

with state space Rd and life time

ζ = inf{t ≥ 0 : Xt = ∆} = inf{t ≥ 0 : Xt /∈ Rd},
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having the transition function (Pt)t≥0 as transition semigroup, such that M has contin-

uous sample paths in the one point compactification Rd
∆ of Rd with the cemetery ∆ as

point at infinity, i.e. for any x ∈ Rd,

Px
({

ω ∈ Ω | X·(ω) ∈ C
(
[0,∞),Rd

∆

)
, X·(ω) = ∆ ∀t ≥ ζ(ω)

})
= 1.

Remark 9.1.4. Note that the analogous reuslts to Lemma 3.2.3, Lemma 3.2.4, Propo-

sition 3.2.5, Proposition 3.2.6, Theorem 3.2.8 of Part I hold in the situation of Part

III. One of the main differences is that q > d
2

of Part I is replaced by s > d
2

of (A2).

Especially the Krylov type estimate for the Hunt process of Theorem 9.1.3 holds as

stated in (9.1) right below. Let g ∈ Lr(Rd, µ) for some r ∈ [s,∞] be given. Then for

any ball B, there exists a constant CB,r, depending in particular on B and r, such that

for all t ≥ 0,

sup
x∈B

Ex
[ˆ t

0

|g|(Xs) ds

]
< etCB,r‖g‖Lr(Rd,µ). (9.1)

Note that CB,r does not depend on the VMO condition of the diffusion matrix since

we use the elliptic Hölder estimate of Theorem 7.2.2 which is different from the elliptic

H1,p-estimate of Part I, II. One can get the analogous conservativeness and moment

inequalities to Theorem 4.1.2, Theorem 4.1.4 (i) in the situation of Part III. Since we

have not derived a parabolic Harnack inequality related to (7.1), irreducibility and strict

irreducibility can not be directly obtained as in the proof of Lemma 4.2.2, Corollary

4.2.4. However, choosing a special ψ in Section 9.2, strict irreducibility can be derived

and one can show the analogous recurrence and transience results to Proposition 4.2.5,

Theorem 4.2.7, Lemma 4.2.8, Theorem 4.2.9 in the situation of Part III.

The following theorem can be proved exactly as in Theorem 3.2.8 of Part I.

Theorem 9.1.5. Consider the Hunt process M from Theorem 9.1.3 with coordinates

Xt = (X1
t , ..., X

d
t ). Let (σ̂ij)1≤i≤d,1≤j≤m, m ∈ N arbitrary but fixed, be any matrix

consisting of locally bounded functions for all 1 ≤ i ≤ d, 1 ≤ j ≤ m, such that

Â = σ̂ σ̂T , i.e.

âij(x) =
m∑
k=1

σ̂ik(x)σ̂jk(x), ∀x ∈ Rd, 1 ≤ i, j ≤ d.
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Then on a standard extension of (Ω,F , (Ft)t≥0,Px), x ∈ Rd, that we denote for no-

tational convenience again by (Ω,F , (Ft)t≥0,Px), x ∈ Rd, there exists a standard m-

dimensional Brownian motion W = (W 1, . . . ,Wm) starting from zero such that Px-a.s.

for any x = (x1, ..., xd) ∈ Rd, i = 1, . . . , d

X i
t = xi +

m∑
j=1

ˆ t

0

σ̂ij(Xs) dW
j
s +

ˆ t

0

gi(Xs) ds, 0 ≤ t < ζ, (9.2)

in short

Xt = x+

ˆ t

0

σ̂(Xs) dWs +

ˆ t

0

G(Xs) ds, 0 ≤ t < ζ.

9.2 Strict irreducibility for special weight functions

Here we consider a special weight function ψ(x) := ‖x‖−α with α > 0, αq < d. Then ψ

is smooth on Rd \Bε for any ε > 0. In that case, we can also derive strict irreducibility,

and irreducibility except 0.

Lemma 9.2.1. Assume (A1), (A2), (A3) and ψ(x) = ‖x‖−α for some α > 0 sat-

isfying αq < d. Let A ∈ B(Rd) be such that Pt01A(x0) = 0 for some t0 > 0 and

x0 ∈ Rd \ {0}. Then µ(A) = 0.

Proof We use the proof by contradiction. Suppose µ(A) > 0. Since µ({0}) = 0, we

have µ(A \ {0}) = µ(A) > 0. For each n ∈ N, let En := {x ∈ Rd | 1
2n
< ‖x‖ < 2n}.

Then Rd \ {0} =
⋃∞
n=1En, so that

A \ {0} =
∞⋃
n=1

(A ∩ En).

By the countable subadditivity of µ, there exists n0 ∈ N such that 0 < µ(A∩En0) <∞
and x0 ∈ En0 . Using the compactness of En0 in Rd, there exist N1 ∈ N and a family of

open balls {Ui}N1
i=1 in Rd such that

En0 ⊂
N1⋃
i=1

Ui ⊂ En0+1,
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hence

A ∩ En0 =

N1⋃
i=1

(A ∩ En0 ∩ Ui).

Therefore, there exists i0 ∈ {1, . . . , N1} such that

0 < µ(A ∩ En0 ∩ Ui0) <∞. (9.3)

Let y0 ∈ En0+1 be the center of Ui0 . Since En0+1 is path-connected and x0, y0 ∈ En0+1,

there exists a continuous function γ : [0, 1]→ En0+1 such that γ(0) = x0 and γ(1) = y0.

Set

δ :=
1

2
· inf{‖a− b‖ | a ∈ γ([0, 1]), b ∈ ∂En0+1}.

Thus there exist N2 ∈ N and distinct points pi ∈ γ((0, 1)), i = 1, 2, . . . , N2 such that

Bδ(x0) ∪

(
N2⋃
i=1

Bδ(pi)

)
∪Bδ(y0) ⊂ En0+1,

Bδ(x0) ∩Bδ(p1) 6= ∅, Bδ(pN2) ∩Bδ(y0) 6= ∅,
Bδ(pi) ∩Bδ(pi+1) 6= ∅ for all i = 0, 1, . . . , N2 − 1.

Now take fn := nGn1A∩En0∩Ui0 for each n ∈ N. Then limn→∞ fn = 1A∩En0∩Ui0 in

L
2p
p−2 (Rd, µ), hence by Theorem 8.3.6, limn→∞ Ptfn(x) = Pt1A∩En0∩Ui0 (x) for any (x, t) ∈

Rd × (0,∞). For each n ∈ N, let un := ρ̂P·fn. Then by Remark 8.3.2 and as for (3.23)

of Part I, we obtain for any T > 0.

ˆ T

0

ˆ
En0+1

(
1

2
〈Â∇un,∇ϕ〉+ un〈F̂,∇ϕ〉 − un∂tϕ

)
dxdt = 0,

for all ϕ ∈ C∞0 (En0+1 × (0, T )),

where F̂ := 1
2
∇Â + G − 2β ρ̂,Â ∈ Lp(En0+1,Rd). Now take arbitrary but fixed (x, t) ∈

Bδ(x0)× (0, t0). Then by [2, Theorem 5]

0 ≤ un(x, t) ≤ un(x0, t0) exp

(
C
(‖x0 − x‖2

t0 − t
+

t0 − t
min(1, t)

+ 1
))

,
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where C is a constant which is independent of n. Letting n→∞

0 ≤ ρ̂(x)Pt1A∩En0∩Ui0 (x)

≤ ρ̂(x0)Pt01A∩En0∩Ui0 (x0) · exp

(
C
(‖x0 − x‖2

t0 − t
+

t0 − t
min(1, t)

+ 1
))

≤ ρ̂(x0)Pt01A(x0) · exp

(
C
(‖x0 − x‖2

t0 − t
+

t0 − t
min(1, t)

+ 1
))

= 0.

Therefore using Theorem 8.3.6, Pt1A∩En0∩Ui0 (x) = 0 for any (x, t) ∈ Bδ(x0) × (0, t0].

Iterating this procedure N2 + 1 times, we obtain

Pt1A∩En0∩Ui0 (x) = 0 for any (x, t) ∈ Bδ(y0)× (0, t0].

Without loss of generality, we may assume Bδ(y0) ⊂ Ui0 . Then similarly, applying [2,

Theorem 5] to un on Ui0×(0, t0) and using the above similar procedure, Pt1A∩En0∩Ui0 (x) =

0 for any (x, t) ∈ Ui0 × (0, t0). Therefore

0 =

ˆ
Rd

1A∩En0∩Bi0Pt1A∩En0∩Ui0dµ −→t→0+
µ(A ∩ En0 ∩ Ui0),

which contradicts (9.3), hence the assertion holds.

Corollary 9.2.2. Assume (A1), (A2), (A3) and let ψ(x) := ‖x‖−α with α > 0,

αq < d. Then

(i) (Tt)t>0 is strictly irreducible.

(ii) (Pt)t>0 is irreducible except in 0, i.e. given A ∈ B(Rd) with µ(A) > 0, Pt1A(x) > 0

for all x ∈ Rd \ {0}, t > 0.

(iii) If additionally to (A1), (A2), (A3), we assume (A4) then M from Theorem

9.1.3 is irreducible except in 0, i.e. given A ∈ B(Rd) with µ(A) > 0, Px(Xt ∈
A) > 0 for all x ∈ Rd \ {0}, t > 0.
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Proof (i) Let A ∈ B(Rd) be a weakly invariant set with µ(Rd \ A) 6= 0. Then by

monotone approximation with the L2-functions 1Bn(0) ↗ 1Rd as n→∞, we get for any

t > 0, Pt1A(x) = 0, for µ-a.e. x ∈ Rd \ A. Fix t > 0. Since µ
(

(Rd \ A) \ {0}
)
> 0,

there exists x0 ∈ (Rd \A) \ {0} such that Pt1A(x0) = 0. By Lemma 9.2.1, µ(A) = 0 as

desired.

(ii) By contraposition of Lemma 9.2.1, if µ(A) > 0, then Pt1A(x) > 0, for all x ∈
Rd \ {0}, t > 0.

(iii) Clear.

Example 9.2.3. Given p > d, let A = (aij)1≤i,j≤d be a symmetric matrix of functions

on Rd which is locally uniformly strictly elliptic and aij ∈ H1,p
loc (Rd)∩C0,1−d/p

loc (Rd) for all

1 ≤ i, j ≤ d. Given m ∈ N, let σ = (σij)1≤i≤d,1≤j≤m be a matrix of functions satisfying

σij ∈ C(Rd) for all i, j, such that A = σσT . Let φ ∈ L∞loc(Rd) be such that for any open

ball B, there exist positive constants cB, CB such that

cB ≤ φ ≤ CB a.e. on B.

Let ψ(x) := 1
‖x‖αφ for some α > 0 and consider following conditions.

(1) αp < d, G ∈ L∞(Bε(0)) ∩ Lp(Rd \Bε(0)) for some ε > 0,

(2) 2αp < d, G ∈ L2p(Bε(0)) ∩ Lp(Rd \Bε(0)) for some ε > 0,

(3) α · (p
2
∨ 2) < d, G ≡ 0 on Bε(0) and G ∈ Lsloc(Rd \Bε(0)) for some ε > 0, where

s > d so that (p
2
∨ 2)−1 + 1

s
< 2

d
.

Either of the conditions (1), (2), or (3) imply (A1), (A2), (A3), (A4). Indeed, take

q := p, s := p in the case of (1), q := 2p, s := 2p
3

in the case of (2), and q := p
2
∨ 2,

s > d defined by (3) in the case of (3). Assuming (1), (2) or (3), the Hunt process M
as in Theorem 9.1.5 solves weakly Px-a.s. for any x ∈ Rd,

Xt = x+

ˆ t

0

‖Xs‖α/2 ·
1√
φ(Xs)

· σ(Xs) dWs +

ˆ t

0

G(Xs) ds, 0 ≤ t < ζ. (9.4)
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Moreover, if we assume φ ≡ 1, then by Corollary 9.2.2, the associated L2(Rd, µ)-

semigroup (Tt)t>0 is strict irreducible and M is irreducible except in 0.

Remark 9.2.4. Let ψ(x) := ‖x‖−α with 0 < α < d. Consider Cap that is the capaacity

related to (E0, D(E0)) as defined in [25, Section 2.1]. Then by [25, Example 3.3.2],

Cap({0}) > 0 ⇐⇒ d− 2 < α < d. (9.5)

Now define a generalized Dirichlet form E as in (8.31) and let CapE be a strict capacity

of E as defined in [78, Definition 1]. Then by [62, by Lemma 2.1] and (9.5), we obtain

if 0 < α ≤ d− 2 with d ≥ 3, then

CapE({0}) = 0.

In that case, through the argument in [50, Theorem 3.8, Theorem 3.10] and [62, Lemma

2.2, Theorem 2.3], one may construct a Hunt process

M∗ = (Ω∗,F∗, (F∗t )t≥0, (X
∗
t )t≥0, (P∗x)x∈(Rd\{0})∪{∆})

with state space Rd \ {0} and life time

ζ∗ = inf{t ≥ 0 : X∗t = ∆} = inf{t ≥ 0 : X∗t /∈ Rd \ {0}},

having the transition function (P
Rd\{0}
t )t≥0 as strong Feller transition semigroup, such

that

T
Rd\{0}
t f = P

Rd\{0}
t f, µ-a.e. on Rd \ {0}, t > 0, f ∈ L2(Rd, µ)b

and M∗ has continuous sample paths in the one point compactification (Rd \ {0})∆ of

Rd \ {0} with the cemetery ∆ as point at infinity. However if CapE({0}) > 0, then M∗

as above would not be costructed by the arguments in [62].

Let A = (aij)1≤i,j≤d be a symmetric matrix of function satisfying (8.2). Consider

d = 2 and α = 1
4
. Then by (9.5), Cap({0}) > 0. Now let p := 3, q := 2p = 6, s := 2p

3
=

2. Assume aij ∈ H1,p
loc (R2) for all 1 ≤ i, j ≤ 2 and G ∈ L2p

loc(Bε,R2) ∩ Lp(R2 \ Bε,R2)

for some ε > 0. In that case, (A1), (A2), (A3), (A4) holds, hence we can construct
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a Hunt process M as in Theorem 9.1.3 which is a weak solution to Itô-SDE (9.4) and

satisfies irreducibility.

Consider d = 3 and α = 2. In that case, we also get Cap({0}) > 0 by (9.5). Let p = 4,

q = 3, s = 4. Assume aij ∈ H1,p
loc (R3) for all 1 ≤ i, j ≤ 3 and G ∈ Lploc(R3,R3) and

that there exists ε > 0 such that G ≡ 0 on Bε(0). Then (A1), (A2), (A3), (A4)

holds, hence we could construct a Hunt process M as in Theorem 9.1.3 which is a weak

solution to Itô-SDE (9.4) and satisfies irreducibility.

9.3 Uniqueness in law for degenerate Itô-SDEs with

discontinuous dispersion coefficient

Consider

(A4′): (A1) holds with p := 2d + 2, (A2) holds with q > 2d + 2, s := d, and

G ∈ L∞loc(Rd,Rd).

Note that if we assume (A4′), then (A3) and (A4) hold.

Theorem 9.3.1 (Local Krylov type estimate). Assume (A4′). Let

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈Rd)

be a canonical stochastic process, i.e.

Ω = C([0,∞),Rd), F = B(Ω), Ft := σ(Xs : s ≤ t),

Xt(ω) = ω(t), ω ∈ Ω, Px(X0 = x) = 1, x ∈ Rd,

such that

Xt = x+

ˆ t

0

σ̂(Xs)dWs +

ˆ t

0

G(Xs)ds, 0 ≤ t <∞, Px-a.s. ∀x ∈ Rd, (9.6)
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where σ̂ is as in Theorem 9.1.5 and every term in (9.6) is well-defined. In particular,

(t, ω) 7→ σ̂(Xt(ω)) and (t, ω) 7→ G(Xt(ω)) are progressively measurable.

Let x ∈ Rd, T > 0, R > 0 and assume f ∈ L2d+2,d+1(BR × (0, T )). Then there exists a

constant C > 0 which is independent of f such that

Ex
[ˆ T∧DR

0

f(Xs, s)ds

]
≤ C‖f‖L2d+2,d+1(BR×(0,T )),

where DR := DRd\BR := inf{t ≥ 0 | Xt ∈ Rd \ BR}. Moreover Px is a solution to the

time-homogeneous martingale problem in the sense of [37, Chapter 5, 4.15 Definition].

Proof Let g ∈ Ld+1(BR × (0, T )). (Note: all functions defined on BR × (0, T ) are

trivially extended on Rd × (0,∞) \ BR × (0, T ).) Using [38, 2. Theorem (2), p. 52],

there exists a constant C1 > 0 which is independent of g, such that

Ex
[ˆ T∧DR

0

2−
d
d+1 det(A)

1
d+1 · ψ−

d
d+1 g(Xs, s)ds

]
≤ eT‖G‖L∞(BR) · Ex

[ˆ T∧DR

0

e−
´ s
0 ‖G(Xu)‖du · det

(
1

2
Â

) 1
d+1

g(Xs, s)ds

]
≤ eT‖G‖L∞(BR) · C1‖g‖Ld+1(BR×(0,∞))

= eT‖G‖L∞(BR) · C1‖g‖Ld+1(BR×(0,T )).

Let f ∈ L2d+2,d+1
loc (BR × (0, T )). Replacing g with 2

d
d+1 · det(A)−

1
d+1ψ

d
d+1f , we have

Ex
[ˆ T∧DR

0

f(Xs, s)ds

]
≤ eT‖G‖L∞(BR) · C1‖2

d
d+1 · det(A)−

1
d+1ψ

d
d+1f‖Ld+1(BR×(0,T ))

≤ 2
d
d+1 eT‖G‖L∞(BR) · C1‖det(A)−

1
d+1‖L∞(BR)‖ψ‖

2d
2d+2

L2d(BR)︸ ︷︷ ︸
=:C

‖f‖L2d+2,d+1(BR×(0,T )).
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The last property follows from Itô’s formula applied with f ∈ C2
0(Rd), i.e.

Ex
[
f(Xt)− f(Xs)−

ˆ t

s

(1

2
trace(Â∇2f) + 〈G,∇f〉

)
(Xu)du

∣∣∣Fs]
= Ex

[ˆ t

s

∇f(Xu)σ̂(Xu)dWu

∣∣∣Fs] = 0, 0 ≤ s < t <∞,

since all coefficients are locally bounded.

Theorem 9.3.2 (Local Itô’s formula for weakly differentiable functions).

Let R0 > 0, T > 0. Assume u ∈ W 2,1
2d+2(BR0 × (0, T )) ∩ C(BR0 × [0, T ]) satisfying

‖∇u‖ ∈ L4d+4(BR0 × (0, T )). Let R > 0 with R < R0. If (Xt)t≥0 satisfies (9.6), then

Px-a.s. for any x ∈ Rd,

u(XT∧DR , T∧DR)−u(x, 0) =

ˆ T∧DR

0

∇u(Xs, s)σ̂(Xs)dWs+

ˆ T∧DR

0

(∂tu+Lu)(Xs, s)ds.

where Lu := 1
2
trace(Â∇2u) + 〈G,∇u〉.

Proof Take T0 > 0 satisfying T0 > T . Extend u to BR0 × [−T0, T0] by

u(x, t) = u(x, 0) for − T0 ≤ t < 0, u(x, t) = u(x, T ) for T < t ≤ T0, x ∈ BR0 .

Then it holds

u ∈ W 2,1
2d+2(BR0 × (0, T )) ∩ C(BR0 × [−T, T ]) and ‖∇u‖ ∈ L4d+4(BR0 × (−T0, T0)).

For sufficiently large n ∈ N, let ζn be a standard mollifier on Rd+1 and un := u ∗ ζn.

Then it holds un ∈ C∞(BR× [0, T ]), such that limn→∞ ‖un− u‖W 2,1
2d+2(BR×(0,T )) = 0 and

limn→∞ ‖∇un −∇u‖L4d+4(BR×(0,T )) = 0 . By Itô’s-formula, for x ∈ Rd, it holds for any

n ≥ 1

un(XT∧DR , T ∧DR)− un(x, 0)

=

ˆ T∧DR

0

∇un(Xs, s) σ̂(Xs)dWs +

ˆ T∧DR

0

(∂tun + Lun)(Xs, s)ds, Px-a.s. (9.7)
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By Sobolev embedding, there exists a constant C > 0, independent of un and u, such

that

sup
BR×[0,T ]

|un − u| ≤ C‖un − u‖W 1,2
2d+2(BR×(0,T )).

Thus limn→∞ un(x, 0) = u(x, 0) and

un(XT∧DR , T ∧DR) converges Px-a.s. to u(XT∧DR , T ∧DR) as n→∞.

By Theorem 9.3.1,

Ex
[∣∣∣∣ˆ T∧DR

0

(∂tun + Lun)(Xs, s)ds−
ˆ T∧DR

0

(∂tu+ Lu)(Xs, s)ds

∣∣∣∣]
≤ Ex

[ˆ T∧DR

0

|∂tu− ∂tun|(Xs, s)ds

]
+ Ex

[ˆ T∧DR

0

|Lu− Lun|ds
]

≤ C‖∂tun − ∂tu‖L2d+2,d+1(BR×(0,T )) + C‖Lu− Lun‖L2d+2,d+1(BR×(0,T ))

−→ 0 as n→∞,

where C > 0 is a constant which is independent of u and un.

Using Jensen’s inequality, Itô sometry, and Theorem 9.3.1, we obtain

Ex
[ˆ T∧DR

0

(∇un(Xs, s)−∇u(Xs, s)) σ̂(Xs)dWs

]

≤ Ex

[∣∣∣∣ˆ T∧DR

0

(∇un(Xs, s)−∇u(Xs, s)) σ̂(Xs)dWs

∣∣∣∣2
]1/2

= Ex
[ˆ T∧DR

0

∥∥ (∇un(Xs, s)−∇u(Xs, s)) σ̂(Xs)
∥∥2
ds

]1/2

≤ C‖(∇un −∇u)σ̂‖L4d+4,2d+2(BR×(0,T ))

≤ CC ′‖σ̂‖L∞(BR)‖∇un −∇u‖L4d+4,2d+2(BR×(0,T )) −→ 0 as n→∞.

Letting n→∞ in (9.7), our assertion holds.
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Theorem 9.3.3. Assume (A4′) and let q0 > 2d + 2 be such that 1
q0

+ 1
q

= 1
2d+2

. If

u ∈ D(Lq0), then u ∈ H2,2d+2
loc (Rd). Moreover given an open ball B in Rd, there exists a

constnat C > 0, independent of u, such that

‖u‖H2,2d+2(B) ≤ C‖u‖D(Lq0 ).

Proof By the assumption (A4′) and Theorem 8.3.1, ρ ∈ H1,2d+2
loc (Rd) ∩ C0,1− d

2d+2

loc (Rd)

and ρψB ∈ L2d+2
loc (Rd). Let f ∈ C∞0 (Rd) and α > 0. Then by (8.34)

ˆ
Rd

〈1

2
ρA∇Gαf,∇ϕ

〉
dx−

ˆ
Rd
〈ρψB,∇Gαf〉ϕdx+

ˆ
Rd

(αρψGαf)ϕdx

=

ˆ
Rd

(ρψf)ϕdx, for all ϕ ∈ C∞0 (Rd). (9.8)

Let q̃ :=
(

1
2d+2

+ 1
d

)−1
. Then αρψ ∈ L2d+2

loc (Rd) ⊂ Lq̃loc(Rd), ρψf ∈ L2d+2
loc (Rd) ⊂

Lq̃loc(Rd), hence by [12, Theorem 1.8.3], Gαf ∈ H1,2d+2
loc (Rd). Moreover, using [12, Theo-

rem 1.7.4] and the resolvent contraction property, for any open balls V , V ′ in Rd with

V ⊂ V ′, there exists a constant C̃ > 0, independent of f , such that

‖Gαf‖H1,2d+2(V )

≤ C̃(‖Gαf‖L1(V ′) + ‖ρψf‖Lq̃(V ′))
≤ C̃(‖Gαf‖L1(V ′) + ‖ρψ‖L2d+2(V ′)‖f‖Ld(V ′))

≤ C̃ ·
(

1

infV ′ ρψ

) 1
q0

(α−1|V ′|1−
1
q0 + ‖ρψ‖L2d+2(V ′)|V ′|

1
d
− 1
q0 )‖f‖Lq0 (Rd,µ). (9.9)

Set C̃1 :=
(

1
inf ρψ

) 1
q0 (α−1|V ′|1−

1
q0 + ‖ρψ‖L2d+2(V ′)|V ′|

1
d
− 1
q0 ). Using Morrey’s inequality

and (9.9), there exists a constant C̃2 > 0 which is independent of f such that

‖Gαf‖L∞(V ) ≤ C̃2C̃C̃1‖f‖Lq0 (Rd,µ). (9.10)

Now set

h1 := 〈ρψB,∇Gαf〉 − αρψGαf + ρψf ∈ Ld+1
loc (Rd).
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Then (9.8) implies

ˆ
Rd

〈1

2
ρA∇Gαf,∇ϕ

〉
dx =

ˆ
Rd
h1ϕdx, for all ϕ ∈ C∞0 (Rd). (9.11)

Let U1, U2 be open balls in Rd satisfying B ⊂ U1 ⊂ U1 ⊂ U2.

Take ζ1 ∈ C∞0 (U2) such that ζ1 ≡ 1 on U1. Then using integration by parts, and (9.11)

ˆ
U2

〈1
2
ρA∇(ζ1Gαf),∇ϕ〉dx =

ˆ
U2

〈1
2
ρA∇Gαf, ζ1∇ϕ〉dx+

ˆ
U2

1

2
〈A∇ζ1,∇ϕ〉ρGαfdx

=

ˆ
U2

〈1
2
ρA∇Gαf,∇(ζ1ϕ)〉dx−

ˆ
U2

〈1
2
ρA∇Gαf,∇ζ1〉︸ ︷︷ ︸

=:h2

ϕdx

+

ˆ
U2

−1

2

(
〈Gαf∇ρ+ ρ∇Gαf, A∇ζ1〉+ ρGαf〈∇A,∇ζ1〉+ ρGαftrace(A∇2ζ1)

)
︸ ︷︷ ︸

=:h3

ϕdx

=

ˆ
U2

(h1ζ1 − h2 + h3)ϕdx, for all ϕ ∈ C∞0 (U2). (9.12)

Note that h2, h3 ∈ L2d+2
loc (Rd). Let h4 := 〈1

2
∇(ρA),∇(ζ1Gαf)〉 ∈ Ld+1

loc (Rd). Using (9.12),

ˆ
U2

〈1
2
ρA∇(ζ1Gαf),∇ϕ〉dx+

ˆ
U2

〈1
2
∇(ρA),∇(ζ1Gαf)〉ϕdx

=

ˆ
U2

(h1ζ1 − h2 + h3 + h4)ϕdx, for all ϕ ∈ C∞0 (U2). (9.13)

We have h := h1ζ1 − h2 + h3 + h4 ∈ Ld+1
loc (Rd) and

‖h‖Ld+1(U2) ≤ C2(‖Gαf‖H1,2d+2(U2) + ‖ρψf‖Ld+1(U2)), (9.14)

where C2 > 0 is a constant which is independent of f . By [27, Theorem 9.15], there

exists w ∈ H2,d+1(U2) ∩H1,d+1
0 (U2) such that

− 1

2
trace(ρA∇2w) = h a.e. on U2. (9.15)
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Furthermore, using [27, Lemma 9.17], (9.14), (9.9), there exists a constant C1 > 0 which

is independent of f such that

‖w‖H2,d+1(U2) ≤ C1‖h‖Ld+1(U2)

≤ C1C2

(
‖Gαf‖H1,2d+2(U2) + ‖ρψf‖Ld+1(U2)

)
≤ C1C2C3‖f‖Lq0 (Rd,µ),

where C3 := C̃1 + ‖ρψ‖L2d+2(U2)|U2|
1

2d+2
− 1
q0

(
1

infV ′ ρψ

) 1
q0 . Note that (9.15) implies

ˆ
U2

〈1
2
ρA∇w,∇ϕ〉dx+

ˆ
U2

〈1
2
∇(ρA),∇w〉ϕdx

=

ˆ
U2

hϕdx, for all ϕ ∈ C∞0 (U2). (9.16)

Using the maximum principle of [77, Theorem 1] and comparing (9.16) with (9.13), we

obtain ζGαf = w on U2, hence Gαf = w on U1, so that Gαf ∈ H2,d+1(U1). Therefore,

by Morrey’s inequality, we obtain ∂iGαf ∈ L∞(U1), 1 ≤ i ≤ d, and

‖∂iGαf‖L∞(U1) ≤ C4‖Gαf‖H2,d+1(U1)

≤ C4‖w‖H2,d+1(U2)

≤ C1C2C3C4‖f‖Lq0 (Rd,µ), (9.17)

where C4 > 0 is a constant which is independent of f . Thus we obtain h ∈ L2d+2(U1).

Now take ζ2 ∈ C∞0 (U1) such that ζ2 ≡ 1 on B. Note that a.e. on U1 it holds

−1

2
trace

(
ρA∇2(ζ2Gαf)

)
= −1

2
ζ2 · trace(ρA∇2Gαf)− 1

2
Gαf · trace(ρA∇2ζ2)− 〈ρA∇ζ2,∇Gαf〉.

= −1

2
ζ2h−

1

2
Gαf · trace(ρA∇2ζ2)− 〈ρA∇ζ2,∇Gαf〉 =: h̃.

Since ‖∇Gαf‖ ∈ L∞(U1), h̃ ∈ L2d+2(U1), by [27, Theorem 9.15], we get ζ2Gαf ∈
H2,2d+2(U1), hence Gαf ∈ H2,2d+2(B). Using [27, Lemma 9.17], (9.10), (9.17), there
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exist positive constants C5, C6 which are independent of f such that

‖Gαf‖H2,2d+2(B) ≤ ‖ζ2Gα‖H2,2d+2(U1)

≤ C5‖h̃‖L2d+2(U1)

≤ C5C6(‖f‖Lq0 (Rd,µ) + ‖ρψf‖L2d+2(U1))

≤ C5C6(‖f‖Lq0 (Rd,µ) + ‖ρψ‖Lq(U1)(inf
U
ρψ)−1/q0‖f‖Lq0 (Rd,µ))

≤ C‖f‖Lq0 (Rd,µ), (9.18)

where C := C5C6(1 ∨ ‖ρψ‖Lq(U1)(infU ρψ)−1/q0). Using the denseness of C∞0 (Rd) in

Lq0(Rd, µ), (9.18) extends to f ∈ Lq0(Rd, µ). Now let u ∈ D(Lq0), Then (1 − Lq0)u ∈
Lq0(Rd, µ), hence by (9.18), it holds u = G1(1− Lq0)u ∈ H2,2d+2

loc (Rd) and

‖u‖H2,2d+2(B) = ‖G1(1− Lq0)u‖H2,2d+2(B)

≤ C‖(1− Lq0)u‖Lq0 (Rd,µ)

≤ C‖u‖D(Lq0 ).

Theorem 9.3.4. Assume (A1), (A2). Let f ∈ D(L)b ∩D(Ls) ∩D(L2) and define

uf := P·f ∈ C(Rd × [0,∞))

as in Lemm 8.3.4. Then for any open set U in Rd and T > 0,

∂tuf , ∂iuf ∈ L2,∞(U × (0, T )) for all 1 ≤ i ≤ d,

and for each t ∈ (0, T ), it holds

∂tuf (·, t) = TtL2f ∈ L2(U), and ∂iuf (·, t) = ∂iPtf ∈ L2(U).

Furthermore, if we additionally assume f ∈ D(Lq0) and (A4′), then ∂i∂juf ∈ L2d+2,∞(U×
(0, T )) for all 1 ≤ i, j ≤ d, and for each t ∈ (0, T ), it holds

∂i∂juf (·, t) = ∂i∂jPtf ∈ L2d+2(U).
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Proof Assume (A1), (A2). Let f ∈ D(L)b ∩D(Ls) ∩D(L2) and t > 0, t0 ≥ 0. Then

by Theorem 8.2.7(c),

Pt0f = T t0f ∈ D(L)b ⊂ D(E0),

where T 0 := id. Observe that by Theorem 8.2.7(c), for any open ball B in Rd with

U ⊂ B,

‖∇Ptf −∇Pt0f‖2
L2(B)

≤ (λB inf
B
ρ)−1

ˆ
B

〈A∇(Ptf − Pt0f),∇(Ptf − Pt0f)〉ρdx

≤ 2(λB inf
B
ρ)−1E0(Ptf − Pt0f, Ptf − Pt0f)

≤ 2(λB inf
B
ρ)−1

ˆ
Rd
−L(T tf − T t0f) · (T tf − T t0f)dµ

≤ 4(λB inf
B
ρ)−1‖f‖L∞(Rd,µ)‖T tLf − T t0Lf‖L1(Rd,µ). (9.19)

Likewise,

‖∇Ptf‖2
L2(B) ≤ 2(λB inf

B
ρ)−1‖f‖L∞(Rd,µ)‖T tLf‖L1(Rd,µ).

For each i = 1, . . . , d, define a map

∂iP·f : [0, T ]→ L2(U), t 7→ ∂iPtf.

Then by (9.19) and the L1(Rd, µ)-strong continuity of (T t)t>0, the map ∂iP·f is contin-

uous with respect to the ‖ · ‖L2(B)-norm, hence by [48, Theorem, p91](or [12, Exercise

1.8.15]), there exists a Borel measurable function uif on U × (0, T ) such that for each

t ∈ (0, T ) it holds

uif (·, t) = ∂iPtf ∈ L2(U).

Thus using (9.19) and the L1(Rd, µ)-contraction property of (T t)t>0, it holds uif ∈
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L2,∞(U × (0, T )) and

‖uif‖L2,∞(U×(0,T )) = sup
t∈(0,T )

‖∂iPtf‖L2(U)

≤ 2(λB inf
B
ρ)−1/2‖f‖1/2

L∞(Rd,µ)
‖Lf‖1/2

L1(Rd,µ)
.

Now let ϕ1 ∈ C∞0 (U) and ϕ2 ∈ C∞0 ((0, T )). Then

¨
U×(0,T )

uf · ∂i(ϕ1ϕ2)dxdt =

ˆ T

0

(ˆ
U

Ptf · ∂iϕ1dx

)
ϕ2dt

=

ˆ T

0

−
(ˆ

U

∂iPtf · ϕ1dx

)
ϕ2dt

= −
¨
U

uif · ϕ1ϕ2dxdt. (9.20)

Using the approximation as in Theorem 8.4.5, ∂iuf = uif ∈ L2,∞(U × (0, T )).

Now define a map

T·L2f : [0, T ]→ L2(U), t 7→ TtL2f,

where T0 := id. Since

‖TtL2f − Tt0L2f‖L2(U) ≤ (inf
U
ρψ)−1/2‖TtL2f − Tt0L2f‖L2(Rd,µ),

using the L2(Rd, µ)-strong continuity of (Tt)t>0 and [48, Theorem, p91](or [12, Exercise

1.8.15]), there exists a Borel measurable function u0
f on U × (0, T ) such that for each

t ∈ (0, T ) it holds

u0
f (·, t) = TtL2f ∈ L2(U).

Using the L2(Rd, µ)-contraction property of (Tt)t>0, it holds u0
f ∈ L2,∞(U × (0, T )) and

‖u0
f‖L2,∞(U×(0,T )) = sup

t∈(0,T )

‖TtL2f‖L2(U)

≤ (inf
U
ρψ)−1/2‖L2f‖L2(Rd,µ).
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Observe that

¨
U×(0,T )

uf · ∂t(ϕ1ϕ2)dxdt =

ˆ T

0

(ˆ
U

Ttf · ϕ1dx

)
∂tϕ2dt

=

ˆ T

0

−
(ˆ

U

TtL2f · ϕ1dx

)
ϕ2dt

= −
¨
U

u0
f · ϕ1ϕ2dxdt.

Using the approximation of Theorem 8.4.5, we obtain ∂tuf = u0
f ∈ L2,∞(U × (0, T )).

Now assume (A4′). Then by Theorem 9.3.3, Pt0f ∈ D(Lq0) ⊂ H2,2d+2
loc (Rd) and for each

1 ≤ i, j ≤ d, it holds

‖∂i∂jPtf − ∂i∂jPt0f‖L2d+2(U)

≤ ‖Ptf − Pt0f‖H2,2d+2(U)

≤ ‖Ttf − Tt0f‖Lq0 (Rd,µ) + ‖TtLq0f − Tt0Lq0f‖Lq0 (Rd,µ) (9.21)

Define a map

∂i∂jP·f : [0, T ]→ L2(U), t 7→ ∂i∂jPtf.

By the Lq0(Rd, µ)-strong continuity of (Tt)t>0 and (9.21), the map ∂i∂jP·f is continuous

with respect to the ‖ · ‖L2d+2(U)-norm. Hence by [48, Theorem, p91](or [12, Exercise

1.8.15]), there exists a Borel measurable function uijf on U × (0, T ) such that for each

t ∈ (0, T ), it holds

uijf (·, t) = ∂i∂jPtf.

Using Theorem 9.3.3 and the Lq0(Rd, µ)-contraction property of (Tt)t>0, uijf ∈ L2d+2,∞(U×
(0, T )) and

‖uijf ‖L2d+2,∞(U×(0,T )) ≤ sup
t∈(0,T )

‖∂i∂jPtf‖L2d+2(U)

≤ sup
t∈(0,T )

‖Ptf‖H2,2d+2(U)

≤ sup
t∈(0,T )

C
(
‖Ttf‖Lq0 (Rd,µ) + ‖TtLq0f‖Lq0 (Rd,µ)

)
≤ C‖f‖D(Lq0 ),
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where C > 0 is a constant which is independent of f . Using the same line of arguments

as in (9.20) and the approximation as in Theorem 8.4.5,

∂i∂juf = uijf ∈ L
2d+2,∞(U × (0, T )).

Theorem 9.3.5. Assume (A4′) and f ∈ C∞0 (Rd). Then there exists

uf ∈ Cb
(
Rd × [0,∞)

)
∩
(⋂
r>0

W 2,1
2d+2,∞(Br × (0,∞))

)
satisfying uf (x, 0) = f(x) for all x ∈ Rd such that

∂tuf ∈ L∞(Rd × (0,∞)), ∂iuf ∈
⋂
r>0

L∞(Br × (0,∞)) for all 1 ≤ i ≤ d,

and

∂tuf =
1

2
trace(Â∇2uf ) + 〈G,∇uf〉 a.e. on Rd × (0,∞).

Proof Let f ∈ C∞0 (Rd). Then f ∈ D(Ls). Define uf := P·f(·). Then by Lemma

8.3.4, uf ∈ Cb(Rd × [0,∞)) and uf (x, 0) = f(x) for all x ∈ Rd. In particular, since

G ∈ L∞loc(Rd,Rd), it holds f ∈ D(Lq0), so that Ptf ∈ D(Lq0) for any t ≥ 0. By

Theorem 9.3.4, for each t > 0, it holds ∂tuf (·, t) = TtLsf = TtLf µ-a.e. on Rd. Note

that for each t > 0, using the sub-Markovian property,

‖∂tuf (·, t)‖L∞(Rd) = ‖TtLf‖L∞(Rd)

≤ ‖Lf‖L∞(Rd,µ),

hence ∂tuf ∈ L∞(Rd × (0,∞)). By Theorem 9.3.4, for 1 ≤ i, j ≤ d, t > 0, ∂iuf (·, t) =

∂iPtf , ∂i∂juf (·, t) = ∂i∂jPtf µ-a.e. on Rd. Using Theorem 9.3.3 and the Lq0(Rd, µ)-
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contraction property of (Tt)t>0, for any R > 0 and for each 1 ≤ i, j ≤ d, t > 0, it holds

‖∂i∂juf (·, t)‖L2d+2(BR) ≤ ‖Ptf‖H2,2d+2(BR)

≤ C
(
‖Ttf‖Lq0 (Rd,µ) + ‖TtLq0f‖Lq0 (Rd,µ)

)
≤ C‖f‖D(Lq0 ),

where C > 0 is as in Theorem 9.3.3 and independent of f . By Morrey’s inequality,

there exists a constant CR,d > 0 such that for each t > 0, 1 ≤ i ≤ d,

‖∂iuf (·, t)‖L∞(BR) ≤ ‖∂iPtf‖L∞(BR)

≤ CR,d‖Ptf‖H2,2d+2(BR)

≤ CR,dC‖f‖D(Lq0 ).

Thus, uf ∈ W 2,1
2d+2,∞(BR × (0,∞)) and ∂tuf , ∂iuf ∈ L∞(BR × (0,∞)) for all 1 ≤ i ≤ d.

By (8.39), it holds

¨
Rd×(0,∞)

〈1

2
ρA∇uf ,∇ϕ

〉
−
〈
ρψB,∇uf

〉
ϕ dxdt

=

¨
Rd×(0,∞)

−∂tuf · ϕρψdxdt for all ϕ ∈ C∞0 (Rd × (0,∞)).

Using integration by parts, we obtain

−
¨

Rd×(0,∞)

( 1

2
trace(Â∇2uf ) +

〈
βρ,ψ,A + B,∇uf

〉)
ϕdµdt

=

¨
Rd×(0,∞)

−∂tuf · ϕdµdt for all ϕ ∈ C∞0 (Rd × (0,∞)).

Therefore,

∂tuf =
1

2
trace(Â∇2uf ) + 〈G,∇uf〉 a.e. on Rd × (0,∞).
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Theorem 9.3.6. Assume (A4′). Then uniqueness in law for (9.6) holds.

Proof Assume both M = (Ω, (Ft)t≥0, (Xt)t≥0, (Px)x∈Rd)
and M̃ = (Ω̃, (F̃t)t≥0, (X̃t)t≥0, (P̃x)x∈Rd) satisfy (9.6). Let f ∈ C∞0 (Rd). For T > 0,

define g(x, t) := uf (x, T − t), (x, t) ∈ Rd × [0, T ], where uf is defined as in Theorem

9.3.5. Then by Theorem 9.3.5,

g ∈ Cb
(
Rd × [0, T ]

)
∩
(⋂
r>0

W 1,2
2d+2,∞(Br × (0, T ))

)
,

∂tg ∈ L∞(Rd × (0, T )), ∂ig ∈
⋂
r>0

L∞(Br × (0, T )), 1 ≤ i ≤ d,

and it holds

∂g

∂t
+ Lg = 0 a.e. in Rd × (0, T ), g(x, T ) = f(x) for all x ∈ Rd.

Applying Theorem 9.3.1 to M, for x ∈ Rd, R > 0, it holds

Ex
[ˆ T∧DR

0

∣∣∣∂g
∂t

+ Lg
∣∣∣(Xs, s)ds

]
= 0,

hence ˆ T∧DR

0

(
∂g

∂t
+ Lg

)
(Xs, s)ds = 0, Px-a.s.,

hence by Theorem 9.3.2,

g(XT∧DR , T ∧DR)− g(x, 0) =

ˆ T∧DR

0

∇g(Xs, s)σ̂(Xs)dWs, Px-a.s.

Therefore

Ex [g(XT∧DR , T ∧DR)] = g(x, 0).

Letting R→∞ and using Lebesgue’s Theorem, we obtain

Ex[f(XT )] = Ex[g(XT , T )] = g(x, 0).
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Analogously for M̃, we obtain Ẽx[f(X̃T )] = g(x, 0). Thus

Ex[f(XT )] = Ẽx[f(X̃T )].

Since σ̂ and G are locally bounded on Rd, we can apply the Markov-like property

obtained in [37, Chapter 5, 4.19 Lemma]. Thus using the same way of proof as in [37,

Chapter 5, 4.27 Proposition ], the assertion follows.

Combining Theorem 9.3.6, Remark 9.1.4 and Theorem 9.1.5, we directly obtain the

following result.

Theorem 9.3.7. Under the assumption (A4′), suppose there exists a constant M > 0

and some N0 ∈ N such that

−〈Â(x)x, x〉
‖x‖2 + 1

+
1

2
traceÂ(x) +

〈
G(x), x

〉
≤M

(
‖x‖2 + 1

) (
ln(‖x‖2 + 1) + 1

)
for a.e. x ∈ Rd \ BN0. Then M from Theorem 9.1.3 is non-explosive and a unique

solution to (9.6) in a weak sense.

Remark 9.3.8. Consider the situation in Example 9.2.3 except the conditions (1), (2),

(3). Let p := 2d+2 and assume G ∈ L∞loc(Rd,Rd). Let α ≥ 0 be such that α(2d+2) < d.

Take q ∈ (2d + 2, d
α

). Then A, G, ψ satisfy (A4′). Therefore, the Hunt process M of

Theorem 9.1.5 solves weakly Px-a.s. for any x ∈ Rd,

Xt = x+

ˆ t

0

‖Xs‖α/2 ·
1√
φ(Xs)

· σ(Xs) dWs +

ˆ t

0

G(Xs) ds, 0 ≤ t < ζ, (9.22)

Assume that there exists a constant M > 0 and some N0 ∈ N, such that

‖x‖α

φ(x)

(
−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x)

)
+
〈
G(x), x

〉
≤M

(
‖x‖2 + 1

) (
ln(‖x‖2 + 1) + 1

)
for a.e. x ∈ Rd \ BN0. Then by Remark 9.1.4, M is non-explosive, i.e. Px(ζ =∞) = 1

for all x ∈ Rd. In that case, by Theorem 9.3.6, M is the unique solution to (9.22) in a

weak sense.
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Existence and regularity of

transition functions with general

pre-invariant measures and

corresponding Itô-SDEs
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Chapter 10

Regularity results for weighted

parabolic PDEs

In this Chapter, we derive some regularity results including the parabolic Harnack

inequality of solutions to linear parabolic equations in divergence form involving a

weight function. We adapt some methods from [2] to derive a fundamental inequality,

but some technical details are at times different to those of [2] since our parabolic

PDEs involve weight functions in the time derivative term which are bounded below

and above by some positive constants. To derive our regularity results, consider the

following condition.

(I′) U is a bounded open subset of Rd and T > 0. u ∈ H1,2(U×(0, T ))∩L∞(U×(0, T )).

A = (aij)1≤i,j≤d is a matrix of functions on U that is strictly elliptic and bounded,

i.e. there exists constants λ > 0, M > 0 such that for any ξ = (ξ1 . . . , ξd) ∈ Rd,

x ∈ U ,
d∑

i,j=1

aij(x)ξiξj ≥ λ‖ξ‖2, max
1≤i,j≤d

|aij(x)| ≤M.

B ∈ Lp(U,Rd) for some p > d. ψ is a positive function on U satisfying locally

bounded below and above, i.e. there exists constants c0, c1 > 0 such that

c0 ≤ ψ ≤ c1 on U .
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Assume (I′) and consider the following divergence form of linear parabilic equation

with a weight function in time derivative term.

¨
U×(0,T )

(u∂tϕ)ψdxdt =

¨
U×(0,T )

〈
A∇u,∇ϕ

〉
+ 〈B,∇u〉ϕdxdt,

for all ϕ ∈ C∞0 (U × (0, T )). (10.1)

Let η ∈ C∞0 (U×(0, T ]). Noting that assumption (I′) is surely stronger than assumption

(I) in Part III, through the same procedure as in Section 7.1, we first get for β ≥ 1

and a.e. τ ∈ (0, T )

1

β + 1

ˆ
U

η2(u+)β+1 |t=τ ψdx+
λβ

2

ˆ τ

0

ˆ
U

η2(u+)β−1‖∇u+‖2dxdt

≤
ˆ τ

0

ˆ
U

(‖B‖2

λ
η2 +

4M2

λ
‖∇η‖2

)
(u+)β+1dxdt+

2

β + 1

ˆ τ

0

ˆ
U

η|∂tη|(u+)β+1 ψdx.

(10.2)

Furthermore, if χ(0,τ) is replaced by χ(τ1,τ2) for a.e. τ1.τ2 ∈ (0, T ), then for β ≥ 1,

1

β + 1

ˆ
U

η2(u+)β+1 |t=τ2t=τ1 ψdx+
λβ

2

ˆ τ2

τ1

ˆ
U

η2(u+)β−1‖∇u+‖2dxdt

≤
ˆ τ2

τ1

ˆ
U

(‖B‖2

λ
η2 +

4M2

λ
‖∇η‖2

)
(u+)β+1dxdt+

2

β + 1

ˆ τ2

τ1

ˆ
U

η|∂tη|(u+)β+1 ψdx.

(10.3)

Finally we need another type of the fundamental inequality to derive a parabolic

Harnack inequality. Given ε > 0, let ū := u + ε and G(u) := ūβ, where β ∈ R is fixed.

Define

H(u) :=

{
1

β+1
ūβ+1 if β 6= 1

log ū if β = −1

so that H ′(u) = G(u). Given [τ1, τ2] ⊂ (0, T ) define ϕ̃ := η2G(u)χ(τ1,τ1). Then

∇ϕ̃ =

{
η2G′(u)∇u+ 2η∇η G(u) τ1 < t < τ2

0 t ∈ (0, T ) \ (τ1, τ2)
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Using the same procedure as in Section 7.1, we obtain

ˆ
U

η2H(u) |t=τ2t=τ1 ψdxdt+

ˆ τ2

τ1

ˆ
U

〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃dxdt

=

ˆ τ2

τ1

ˆ
U

2η ∂tη H(u)ψdxdt, for a.e. τ1, τ2 ∈ (0, T ). (10.4)

Observe that

signβ
(〈
A∇u,∇ϕ̃

〉
+ 〈B,∇u〉ϕ̃

)
=

〈
A∇u, η2|G′(u)|∇u〉+ signβ

(〈
A∇u, 2η∇η G(u)

〉
+ 〈B,∇u〉η2G(u)

)
≥ λη2|G′(u)|‖∇ū‖2 − 2η|G(u)|dM‖∇η‖‖∇ū‖ − η2|G(u)|‖B‖‖∇ū‖.

and

|β|(ū)−β−1G(u)2 = |G′(u)|.

Thus using Cauchy inequality we obtain

2ηG(u)dM‖∇η‖‖∇ū‖

≤ 2 · 1

4

(√
λ
√
|β|(ū)−

β+1
2 G(u) η ‖∇u‖

)2

2
+ 2 · 4

(
dM
√
λ−1
√
|β|−1 (ū)

β+1
2 ‖∇η‖

)2

2

=
λ

4
η2|G′(u)|‖∇u‖2 +

4d2M2

λ|β|
‖∇η‖2 (ū)β+1,

and

η2G(u)‖B‖‖∇u+‖

≤ 1

2
·

(√
λ
√
|β| (ū)−

β+1
2 G(u)η‖∇ū‖

)2

2
+ 2 ·

(√
λ−1
√
|β|−1 (u+)

β+1
2 ‖B‖η

)2

2

≤ λ

4
η2|G′(u)|‖∇ū‖2 +

1

λ|β|
‖B‖2(ū)β+1η2.
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Therefore for a.e. τ1, τ2 ∈ (0, T ),

signβ

(ˆ
U

η2H(u) |t=τ2t=τ1 ψdxdt+
λβ

2

ˆ τ2

τ1

ˆ
U

η2ūβ−1‖∇ū‖2dxdt

)
≤
ˆ τ2

τ1

ˆ
U

(‖B‖2

λ|β|
η2 +

4d2M2

λ|β|
‖∇η‖2

)
(ū)β+1dxdt+

ˆ τ2

τ1

ˆ
U

2η ∂tη H(u)ψdxdt

(10.5)

The following Theorem 10.1.1 which presents an estimate of the L∞-norm in terms of

the L2-norm improves Theorem 7.1.2 in which an estimate of the L∞-norm in terms of

the L
2p
p−2 -norm is given. To prove the following Theorem 10.1.1, we use the fundamental

inequalities (10.2) and (10.4). Given r > 0 and a fixed (x̄, t̄) ∈ U × (0, T ), let Q(r) :=

Rx̄(r)× (t̄− r2, t̄) and Rx̄(r) := R(r).

10.1 L∞-estimate in terms of the L2-norm

Theorem 10.1.1. Assume (I′) and Q(3r) ⊂ U × (0, T ). If (10.1) holds, then

‖u‖L∞(Q(r)) ≤ C‖u‖L2(Q(3r)),

where C is a constant depending only on r, λ, M and ‖B‖Lp(R(3r)).

Proof Let η ∈ C∞0 (Rx̄(r) × (t̄ − 9r2, t̄]). Then (10.2), (10.3) hold with U × (0, T )

replaced by Q(3r). Using appropriate scaling arguments (cf. [2, proof of Theorem 2]),

we may assume r = 1
3
. By Theorem 7.1.2,

‖u+‖L∞(Q(1/3)) ≤
√
C3‖u‖

L
2p
p−2 ,2(Q(2/3))

. (10.6)

where C3 > 0 is a constant from Theorem 7.1.2. Now choose a smooth function η so

that η ≡ 1 in Q(2/3), η ≡ 0 outside Q(1) and 0 ≤ η ≤ 1, |∂tη|, ‖∇η‖ ≤ 8d. We

will estimate ‖u‖
L

2p
p−2 ,2(Q(2/3))

in terms of ‖u‖L2(Q(1)). By (10.3) with β = 1, for a.e.
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τ1, τ2 ∈ (t̄− 1, t̄), we get

ˆ
R(1)

η2(u+)2 |t=τ2t=τ1 ψdx+ λ

ˆ τ2

τ1

ˆ
R(1)

η2‖∇u+‖2dxdt

≤ 2

ˆ τ2

τ1

ˆ
R(1)

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2 + c1η|∂tη|

)
(u+)2dxdt =: I (10.7)

Note that

2

¨
R(1)×(τ1,τ2)

‖B‖2

λ
η2(u+)2dxdt ≤ 2

λ
‖B‖2

Lp(R(1))︸ ︷︷ ︸
=:C4

‖ηu+‖2

L
2p
p−2 ,2(R(1)×(τ1,τ2))

and

2

¨
R(1)×(τ1,τ2)

(4d2M2

λ
‖∇η‖2 + c1η|∂tη|

)
(u+)2dxdt

≤ 128d2

(
4d2M2

λ
∨ c1

)
︸ ︷︷ ︸

=:C5

‖u+‖2
L2(R(1)×(τ1,τ2)).

By [2, Lemma 3] we have

I ≤ C4‖ηu+‖2

L
2p
p−2 ,2(R(1)×(τ1,τ2))

+ C5‖u+‖2
L2(R(1)×(τ1,τ2))

≤ KC4(τ1 − τ2)θ
(
‖ηu+‖2

L2,∞(R(1)×(τ1,τ2)) + ‖∇(ηu+)‖2
L2(R(1)×(τ1,τ2))

)
+C5‖u+‖2

L2(R(1)×(τ1,τ2))

≤
(
c−1

0 ∨ 2
)
KC4(τ1 − τ2)θ

(
sup

t∈(τ1,τ2)

ˆ
R(1)

η2(u+)2ψdx

+‖(η∇u+)‖2
L2(R(1)×(τ1,τ2)) + 64d2‖u+‖2

L2(R(1)×(τ1,τ2))

)
+ C5‖u+‖2

L2(R(1)×(τ1,τ2)),

where K > 0 is a constant as in [2, Lemma 3] and θ := 1 − d
p

if d ≥ 3, θ := 1
2
− 1

p
if

d = 2.
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Now set ε :=
(

λ∧1
2K(c−1

0 ∨2)

)θ
. Consider τ2 = t as in t ∈ (τ1, τ1 + ε) and define

Z(t) :=

ˆ
R(1)

η2(u+)2ψdx

Then by (10.7),

Z(t) +
λ

2

ˆ t

τ1

ˆ
R(1)

η2‖∇u+‖2dxdt

≤ λ ∧ 1

2

(
sup

t∈(τ1,τ1+ε)

Z(t) + 64d2‖u+‖2
L2(R(1)×(τ1,τ1+ε))

)
+C5‖u+‖2

L2(R(1)×(τ1,τ1+ε)) + Z(τ1). (10.8)

Taking the supremum over t ∈ (τ1, τ1 + ε) on the left hand side of (10.8), we get

sup
t∈(τ1,τ1+ε)

Z(t) + λ

ˆ t+ε

τ1

ˆ
R(1)

η2‖∇u+‖2dxdt

≤
(
64d2 + 2C5

)
‖u+‖L2(Q(1))︸ ︷︷ ︸

=:Θ

+2Z(τ1).

Similarly, we obtain

sup
t∈(τ1+ε,τ1+2ε)

Z(t) + λ

ˆ t+2ε

τ1+ε

ˆ
R(1)

η2‖∇u+‖2dxdt ≤ Θ + 2 sup
t∈(τ1,τ1+ε)

Z(t).

Hence by iterating these procedures for 1 + [1
ε
] times with starting time τ1 ∈ (t̄− 2

3
, t̄),

we get

sup
t∈(t̄−1,t̄)

Z(t) ≤ 21+ 1
ε ·Θ

and

ˆ t̄

t̄−1

ˆ
R(1)

η2‖∇u+‖2dxdt ≤ Θ

λ
(1 + 22+ 1

ε )

(
1 +

1

ε

)
. (10.9)
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Hence,

‖ηu+‖2
L2,∞(Q(1)) ≤ c−1

0 sup
t∈(t̄−1,t̄)

Z(t)

≤ c−1
0 21+ 1

ε

(
64d2 + 2C5

)︸ ︷︷ ︸
=:C6

‖u+‖L2(Q(1)) (10.10)

and

‖η∇u+‖2
L2(Q(1)) ≤

1

λ
(1 + 22+ 1

ε )

(
1 +

1

ε

)(
64d2 + 2C5

)
︸ ︷︷ ︸

=:C7

‖u+‖L2(Q(1)).

Therefore by (10.9), (10.10) and the similar way as in the proof of [2, Lemma 3],

‖u+‖2

L
2p
p−2 ,2(Q(2/3))

≤ ‖ηu+‖2

L
2p
p−2 ,2(Q(2/3))

≤ K
(
‖ηu+‖2

L2,∞(Q(1)) + ‖∇(ηu+)‖2
L2(Q(1))

)
≤ 2K

(
‖ηu+‖2

L2,∞(Q(1)) +
(

sup
Q(1)

‖∇η‖2
)
‖u+‖2

L2(Q(1)) + ‖η∇u+‖2
L2(Q(1))

)
≤ 2K(C6 ∨ 64d2 ∨ C7)︸ ︷︷ ︸

=:C8

‖u+‖2
L2(Q(1)). (10.11)

Combining (10.11) and (10.6), we obtain

‖u+‖L∞(Q(1/3)) ≤
√
C3C8‖u+‖L2(Q(1)).

Exactly in the same way, but with u replaced by −u, (7.9) holds with C = 2
√
C3C8.
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10.2 Parabolic Harnack inequality

In this section, we prove a parabolic Harnack inequality, which is one of the most

important results to derive the L1-strong Feller property and irreducibility and strict

irreducibility of the semigroup. Before proving the parabolic Harnack inequality, we

prove the following technical lemma which generalizes [53, Lemma 7]. The generaliza-

tion results from considering weight functions ψ, which then lead to a modification of

the original proof.

Lemma 10.2.1. Let U be a bounded open subset in Rd. Let p ∈ C0(U) be positive on

U and satisfy that there exists a constant L > 0 such that

sup{‖x− y‖ | x, y ∈ supp(p)} ≤ L.

Moreover assume {x ∈ U | p(x) ≥ c} is convex for any constant c ≥ 0. Let ψ be a Borel

measurable function on U such that c0 ≤ ψ ≤ c1 for some positive constants c0, c1.

Then for any v ∈ H1,2
loc (U), it holds

ˆ
U

(v(x)− V )2 p(x) dx ≤ Λ

ˆ
U

|∇v(x)|2p(x) dx,

where

V =

´
U
v(x)p(x)ψ(x)dx´
U
p(x)ψ(x)dx

, Λ =

(
c1

c0

)2
ωdL

d+2 maxU p

2
´
U
p(x)dx

.

Proof Since supp(p) ⊂ U , we may assume that U has Lipschitz boundary and u ∈
H1,2(U) by appropriately shrinking U so that supp(p) ⊂ U . Observe that a constant V

satisfies that

2

ˆ
U

p(x)ψ(x)dx

ˆ
U

(v(x)− V )2 p(x)ψ(x)dx

=

ˆ
U

ˆ
U

(v(x)− v(y))2 p(x)p(y)ψ(x)ψ(y) dx dy (10.12)
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if and only if

2

(ˆ
U

p(x)ψ(x)dx

)2

· V 2 − 4

(ˆ
U

p(x)ψ(x)dx

)(ˆ
U

v(x)p(x)ψ(x)dx

)
· V

+2

(ˆ
U

p(x)ψ(x)dx

)(ˆ
U

v2(x)p(x)ψ(x)dx

)
=

(ˆ
U

v2(x)p(x)ψ(x)dx

)(ˆ
U

p(y)ψ(y)dy

)
+

(ˆ
U

v2(y)p(y)ψ(y)dy

)(ˆ
U

p(x)ψ(x)dx

)
−2

(ˆ
U

v(x)p(x)ψ(x)dx

)(ˆ
U

v(y)p(y)ψ(y)dy

)
if and only if (ˆ

U

p(x)ψ(x)dx · V −
ˆ
U

v(x)p(x)ψ(x)dx

)2

= 0.

Therefore if we set V :=

´
U
v(x)p(x)ψ(x)dx´
U
p(x)ψ(x)dx

, then (10.12) holds. Now by [21, Theorem

4.7], extend v ∈ H1,2(U) on Rd, say again v ∈ H1,1(Rd)0 and extend p on Rd by zero

extension. Let ηn be a standard mollifier on Rd and vn := v ∗ ηn.

Let x, y ∈ U be given and we may assume p(x) ≤ p(y). Let lx,y be the oriented

straight line segement from x to y. Then by the ‘Fundamental Theorem of Calculus’ and

Hölder inequality,

(vn(x)− vn(y))2 p(x)p(y)

=

(ˆ
lx,y

∇vnds

)2

· p(x)p(y)

=

(ˆ
lx,y

(
√
p∇vn)

1
√
p
ds

)2

· p(x)p(y)

≤

(ˆ
lx,y

‖∇vn‖2p ds

)(ˆ
lx,y

1

p
ds

)
p(x)p(y).

Since {x ∈ U | p(x) ≥ c} is convex for any constant c ≥ 0, we have min
lx,y

p = p(x), so
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that

ˆ
lx,y

p(x)

p
ds ≤

ˆ
lx,y

1ds ≤ L.

Therefore we have

(vn(x)− vn(y))2 p(x)p(y) ≤

(ˆ
lx,y

‖∇vn‖2p ds

)
· L ·max

U
p. (10.13)

Using the Fubini Theorem,

ˆ
U

ˆ
U

(vn(x)− vn(y))2 p(x)p(y)dx dy

=

ˆ
U

ˆ
U−x

(vn(x)− vn(x+ z))2 p(x)p(x+ z)dz dx

≤
ˆ
U

ˆ
BL(0)

(vn(x)− vn(x+ z))2 p(x)p(x+ z)dz dx

=

ˆ
BL(0)

ˆ
U

(vn(x)− vn(x+ z))2 p(x)p(x+ z)dx dz. (10.14)

Let z ∈ BL(0) and x ∈ U . If x+ z ∈ U , then by (10.13),

(vn(x)− vn(x+ z))2 p(x)p(x+ z)

≤ L ·max
U

p ·

(ˆ
lx,x+z

‖∇vn‖2p ds

)

≤ L2 ·max
U

p ·
ˆ 1

0

‖∇vn(x+ tz)‖2 p(x+ tz) dt. (10.15)

If x+z ∈ Rd \U , then (vn(x)− vn(x+ z))2 p(x)p(x+z) = 0, hence (10.15) holds. Thus
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for any z ∈ BL(0), using Fubini Theorem,

ˆ
U

(vn(x)− vn(x+ z))2 p(x)p(x+ z)dx

≤ L2 ·max
U

p

ˆ 1

0

ˆ
U

‖∇vn(x+ tz)‖2 p(x+ tz)dx dt

= L2 ·max
U

p

ˆ 1

0

ˆ
U+tz

‖∇vn(y)‖2 p(y)dy dt

≤ L2 ·max
U

p

ˆ
U

‖∇vn(x)‖2 p(x)dx. (10.16)

Combining (10.14) and (10.16), we obtain

ˆ
U

ˆ
U

(vn(x)− vn(y))2 p(x)p(y)dx dy

≤ ωdL
d+2 max

U
p

ˆ
U

‖∇vn(x)‖2 p(x)dx, (10.17)

where ωd :=
´
B1

1dx. Since p ∈ L∞(U) and limn→∞ vn = v in H1,2(U), letting n → ∞
in (10.17), we obtain

ˆ
U

ˆ
U

(v(x)− v(y))2 p(x)p(y)dx dy

≤ ωdL
d+2 max

U
p

ˆ
U

‖∇v(x)‖2 p(x)dx.
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Finally by (10.12) and (10.17) we have

2c2
0

ˆ
U

p(x)dx

ˆ
U

(v(x)− V )2 p(x)dx

≤ 2

ˆ
U

p(x)ψ(x)dx

ˆ
U

(v(x)− V )2 p(x)ψ(x)dx

=

ˆ
U

ˆ
U

(v(x)− v(y))2 p(x)p(y)ψ(x)ψ(y) dx dy

≤ c2
1

ˆ
U

ˆ
U

(v(x)− v(y))2 p(x)p(y) dx dy

≤ c2
1 · ωdLd+2 max

U
p

ˆ
U

‖∇v(x)‖2 p(x)dx,

as desired.

Gven (x̄, t̄) ∈ U × (0, T ), set Q∗(r) := Rx̄(r)× (t̄− 8r2, t̄− 7r2).

Theorem 10.2.2. Assume (I)′ and Q(3r) ⊂ U × (0, T ). If (10.1) holds, then

sup
Q∗(r)

u ≤ C inf
Q(r)

u,

where C > 0 is a constant which is independent of u.

Proof As in the proof of Theorem 10.1.1, we may assume r = 1
3

and U×(0, T ) ≡ Q(3r).

Moreover considering a translation, we may assume t̄ = 1. Given ε > 0 define ū := u+ε.

For β ∈ R \ {−1}, let γ := β+1
2

and v := ūγ. Thus by (10.5), for a.e. τ1, τ2 ∈ (0, 1), we

have

signβ

(
1

β + 1

ˆ
R(1)

η2v2 |t=τ2t=τ1 ψdxdt+
λβ

2γ2

ˆ τ2

τ1

ˆ
R(1)

η2‖∇v‖2dxdt

)
≤
ˆ τ2

τ1

ˆ
R(1)

(‖B‖2

λ|β|
η2 +

4d2M2

λ|β|
‖∇η‖2 +

2c1

|β + 1|
η|∂tη|

)
v2 =: I (10.18)

Step 1: Consider the case of β > −1. Given s ∈ [1/3, 1/2], set

S(s) := R(s)×
(1

6
(1− s), 1

6
(1 + s)

)
.
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Let l, l′ ∈ R such that 1
3
< l′ < l ≤ 1

2
. Take η ∈ C∞0 (S(l)) so that 0 ≤ η ≤ 1 on S(l),

η ≡ 1 on S(l′) and ‖∇η‖ ≤ 2d
l−l′ , |∂tη| ≤

6
l−l′ on S(l). Then

I ≤ C1

(
|β|−1 ∨ |β + 1|−1

)
(l − l′)−2‖v‖

L
2p
p−2 ,2(S(l))

,

where C1 := 4d2
(
λ−1‖B‖2

Lp(R(1)) + 4d2M2λ−1 + 2c1

)
.

For the case of β > 0 we set τ1 := 1
12

and τ2 := τ . Then we obtain

λ‖η∇v‖2
L2(Q(1)) ≤ 2C1β

−2(l − l′)−2γ2‖v‖
L

2p
p−2 ,2(S(l))

,

c0‖ηv‖2
L2,∞(Q(1)) ≤ 4C1β

−1(l − l′)−2γ2‖v‖
L

2p
p−2 ,2(S(l))

.

For the case of −1 < β < 0 we set τ1 = τ and τ2 = 1
4
. Then we have

λ‖η∇v‖2
L2(Q(1)) ≤

1

2
C1|β|−2(l − l′)−2‖v‖

L
2p
p−2 ,2(S(l))

,

c0‖ηv‖2
L2,∞(Q(1)) ≤ C1|β|−1(l − l′)−2‖v‖

L
2p
p−2 ,2(S(l))

.

Therefore for any β > −1 with β 6= 0 we have

‖η∇v‖2
L2(Q(1)) ≤ 2λ−1C1|β|−2(l − l′)−2(1 + γ2)‖v‖

L
2p
p−2 ,2(S(l))

,

‖ηv‖2
L2,∞(Q(1)) ≤ 4c−1

0 C1|β|−1(l − l′)−2(1 + γ2)‖v‖
L

2p
p−2 ,2(S(l))

.

Now set

θ := 1− d

p
, and σ := 1 +

2θ

d
if d ≥ 3, σ := 1 +

θ

2
if d = 2,

pσ :=

(
σp

p− 2

)′
=

σp

σp− p+ 2
, qσ := σ′ =

σ

σ − 1
.

Then it holds

d

2pσ
+

1

qσ
= 1 if d ≥ 3,

d

2pσ
+

1

qσ
< 1 if d = 2.
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By [2, Lemma 3],

‖vσ‖2/σ

L
2p
p−2 ,2(S(l′))

≤ ‖(ηv)σ‖2/σ

L
2p
p−2 ,2(Q(1))

= ‖ηv‖2

L
2σp
p−2 ,2σ(Q(1))

= ‖ηv‖2
L2(pσ)′,2(qσ)′ (Q(1))

≤ K
(
‖ηv‖2

L∞,2(Q(1)) + ‖∇(ηv)‖2
L2(Q(1))

)
≤ K

(
‖ηv‖2

L∞,2(Q(1)) + 2‖η∇v‖2
L2(Q(1)) + 8d2(l − l′)−2‖v‖2

L2(S(l))

)
≤ C2(1 + |β|−2)(l − l′)−2(1 + γ2)‖v‖2

L
2p
p−2 ,2(S(l))

, (10.19)

where K > 0 is a constant from [2, Lemma 3] and C2 := K(2λ−1C1 + 4c−1
0 C1 + 8d2).

For the iteration method, choose a small number γ0 > 0 and set γ = γm = σmγ0,

m ∈ N ∪ {0}. In order for iteration to work well, we have to get γm 6= 1
2

for all

m ∈ N ∪ {0}. To do this, we let γ0 have the form

γ0 :=
σ−N

1 + σ
for some N ∈ N (10.20)

Then γN < 1
2
< γN+1 since σ > 1. Note that given m ∈ N ∪ {0}, β = βm = 2γm − 1 =

2σm−N

1+σ
− 1. If m ≤ N , then 2σm−N ≤ 2 < 1 + σ, so that |βm| = 1 − 2σm−N

1+σ
≥ σ−1

σ+1
. If

m > N , then 2σm−N ≥ 2σ > 1+σ, so that |βm| = 2γm−1 = 2σm−N

1+σ
−1 ≥ 2σ

1+σ
−1 = σ−1

σ+1
.

Therefore,

|β|−1 = |βm|−1 ≤ σ + 1

σ − 1
.

Additionally we get

1 + γ2 = (1 + γ2
0)(γ/γ0)2 ≤ 2(γ/γ0)2.

Therefore from (10.19) we obtain

‖vσ‖2/σ

L
2p
p−2 ,2(S(l′))

≤ C3(l − l′)−2(γ/γ0)2‖v‖2

L
2p
p−2 ,2(S(l))

,
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where C3 = 2C2

(
1 +

(
σ+1
σ−1

)2
)

.

For m = 0, 1, . . . , set l = lm := 3−1(1 + 2−m−1), l′ = l′m := 3−1(1 + 2−m−2),

ϕm := ‖ūr0σm‖2/σm

L
2p
p−2 ,2(S(lm))

. Taking r = r0σ
m and 1/3 < l′ = l′m < l = lm ≤ 1/2 for

m = 0, 1, 2, . . . we obtain

ϕm+1 ≤ (144C3)
1
σm (2σ)

2m
σmϕm. (10.21)

Iterating (10.21) we have

ϕm+1 ≤ (144C3)
∑m
i=0

1

σi (2σ)
∑m
i=0

2i

σiϕ0

≤ (144C3)
σ
σ−1 (2σ)

σ
(σ−1)2︸ ︷︷ ︸

=:C4

‖u‖2

L
2p
p−2 ,2(S( 1

2
))
.

Letting m→∞ we have

sup
Q∗(1/3)

ūr0 ≤
√
C4‖ūr0‖

L
2p
p−2 ,2(S(1/2))

.

Step 2: Consider the case of β < −1. Let l and l′ be real numbers satisfying
1
3
< l′ < l ≤ 1

2
as in Step 1. Take a cut-off function η ∈ C∞0 (R(l)× (1− l2, l]) satisfying

η ≡ 1 in Q(l′) and 0 ≤ η ≤ 1, ‖∇η‖ ≤ 2d(l − l)′, |∂tη| ≤ 2(l − l′)−1 in Q(l). Choose

τ1 = 1
2

and τ2 = τ as in (10.18). Then by the same methods as in Step 1, we have

λ‖η∇v‖2
L2(Q(1)) ≤

1

2
C1(l − l′)−2‖v‖

L
2p
p−2 ,2(Q(l))

,

c0‖ηv‖2
L2,∞(Q(1)) ≤ C1(l − l′)−2‖v‖

L
2p
p−2 ,2(Q(l))

,

where C1 is as in Step 1, hence using the same methods as in Step 1 and [2, Lemma 1],

‖vσ‖2/σ

L
2p
p−2 ,2(Q(l′))

≤ C5(l − l′)−2‖v‖2

L
2p
p−2 ,2(Q(l))

,

where C5 := K(2−1λ−1C1 + c−1
0 C1 + 8d2).

For the iteration, we let l = lm := 3−1(1 + 2−m−1), l′ = l′m := 3−1(1 + 2−m−2),

ϕm := ‖ū−r0σm‖2/σm

L
2p
p−2 ,2(Q(lm))

. Considering r = −r0σ
m and 1/3 < l′ = l′m < l = lm ≤ 1/2
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for m = 0, 1, 2, . . . , we get ϕm+1 ≤ (144C5)
1
σmϕm, so that

ϕm+1 ≤ (144C5)
∑m
i=0

1

σiϕ0 ≤ (144C5)
σ
σ−1 (2σ)

σ
(σ−1)2︸ ︷︷ ︸

=:C6

‖ū−r0‖2

L
2p
p−2 ,2(Q( 1

2
))
.

Letting m→∞ we have

sup
Q( 1

3
)

ū−r0 ≤
√
C6‖ū−r0‖

L
2p
p−2 ,2(Q( 1

2
))
,

hence

‖ū−r0‖−1

L
2p
p−2 ,2(Q( 1

2
))
≤
√
C6 inf

Q( 1
3

)
ūr0 .

Therefore if we show existence of a constant C̃ > 0 satisfying

‖ūr0‖
L

2p
p−2 ,2(S( 1

2
))
‖ū−r0‖

L
2p
p−2 ,2(Q( 1

2
))
≤ C̃, (10.22)

then the proof of Theorem 10.2.2 will be done.

Step 3: In order to show (10.22), consider the case of β = −1 as in (10.18). Set

v := − log ū. Then by (10.22), we obtain for a.e. τ1, τ2 ∈ (0, 1)

ˆ
R(1)

η2v |t=τ2t=τ1 ψdxdt+
λ

2

ˆ τ2

τ1

ˆ
R(1)

η2‖∇v‖2dxdt

≤
ˆ τ2

τ1

ˆ
R(1)

(‖B‖2

λ
η2 +

4d2M2

λ
‖∇η‖2

)
dxdt+

ˆ τ2

τ1

ˆ
R(1)

2η ∂tη |v|ψdxdt

Choose a cut-off function η as in the form

η(x, t) = ζ(x) · α(t),

where ζ ∈ C∞0 (R(1)) satisfying ζ ≡ 1 in R(1
2
) and α ∈ C∞(R) satisfying α ≡ 1 in
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[τ1,∞), α ≡ 0 in (−∞, τ1
2

). Moreover we can choose such functions ζ satisfying

0 ≤ ζ ≤ 1, ‖∇ζ‖ ≤ 6d, and {ζ ≥ c} is convex for any c ∈ R.

Then note that
ˆ τ2

τ1

ˆ
R(1)

2η ∂tη |v|ψdxdt = 0.

Define

V (t) :=

´
R(1)

ζ2(x)v(x, t)ψ(x)dx´
R(1)

ζ2(x)ψ(x)dx
, 0 < t < 1.

Applying Lemma 10.2.1 with U ≡ R(1), p = ζ2, L ≡ d1/d and taking integration over

(0, 1)

ˆ 1

0

ˆ
R(1)

ζ2(v − V )2dxdt ≤
(
c1

c0

)2 |ωd|d1+2/d

2
´
R(1)

ζ2dx

ˆ 1

0

ˆ
R(1)

ζ2‖∇v‖2dxdt. (10.23)

Noting that
´
R(1)

ζ2dx ≥ |R(1
2
)| = 2−d and α(τ1) = α(τ2) = 1, we obtain from (10.23),

V (τ2)− V (τ1) +
c2

0λ

c2
1ωdd

1+d/2

ˆ 1

0

ˆ
R( 1

2
)

(v − V )2dxdt

≤
(ˆ

R(1)

ζ2dx

)−1(ˆ
R(1)

η2v |t=τ2t=τ1 ψdxdt+
λ

2

ˆ τ2

τ1

ˆ
R(1)

η2‖∇v‖2dxdt

)
≤ 2d

ˆ τ2

τ1

ˆ
R(1)

(
‖B‖2

λ
+

144d4M2

λ

)
dxdt. (10.24)

Since ∂tv(x, ·) ∈ L2((0, 1)) for a.e. x ∈ R(1), by ‘Fundamental Theorem of Calculus’,

for a.e. t ∈ (0, 1),

v(x, t) =

ˆ t

0

∂tv(x, s)ds, for a.e. x ∈ R(1).
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Applying Fubini’s Theorem

ˆ
R(1)

ζ2(x)v(x, t)ψ(x)dx =

ˆ t

0

(ˆ
R(1)

t2(x, t)∂tv(x, s)ψ(x)dx

)
ds,

hence V (t) has a absolutely continuous dt-version on (0, 1), say again V (t). Therefore

V (t) is a.e. differentiable on (0, 1), hence from (10.24) we get

dV

dt
+ A0

ˆ
R( 1

2
)

(v − V )2dx ≤ 2d
ˆ
R(1)

(
‖B‖2

λ
+

144d4M2

λ

)
dx

≤ 2d

λ

(
‖B‖2

Lp(R(1)) + 144d4M2
)

=: C7

for a.e. in (0, 1), where A0 :=
c2

0λ

c2
1ωdd

1+d/2
. Let Q+ = R(1

2
)× (0, 1

2
), and Q− = R(1

2
)×

(1
2
, 1). Define the function Ψ : R→ [0,∞) by

Ψ(w) =

{ √
w when w > 0

0 when w ≤ 0

By applying [2, Lemma 7] in the interval [1
2
, 1) with α = 2, γ = 1

2
, we obtain

¨
Q+

Ψ
(
v(x, t)− V (1/2)

)
dx dt ≤ 1

A0

+
2 +

√
C7/2

2d+1
,

Likewise, by [2, Corollary of Lemma 7] in the interval [0, 1
2
) with α = 2, γ = 1

2
,

¨
Q−

Ψ
(
V (1/2)− v(y, s)

)
dy ds ≤ 1

A0

+
2 +

√
C7/2

2d+1
.
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Therefore,

¨
Q−

¨
Q+

Ψ

(
log

ū(y, s)

ū(x, t)

)
dx dt dy ds

=

¨
Q−

¨
Q+

Ψ
(
v(x, t)− v(y, s)

)
dx dt dy ds

≤
¨
Q−

¨
Q+

Ψ
(
v(x, t)− V (1/2)

)
+ Ψ

(
V (1/2)− v(y, s)

)
dx dt dy ds

≤ 2−d−1

(¨
Q+

Ψ
(
v(x, t)− V (1/2)

)
dx dt+

¨
Q−

Ψ
(
V (1/2)− v(y, s)

)
dy ds

)
≤ 2−d

(
1

A0

+
2 +

√
C7/2

2d+1

)
=: C8. (10.25)

Let Q−(l), Q+(l) be pairs of rectangles in R(1/2) × (0, 1) obtained from the fixed

pair Q+, Q−, respectively by the transformations

x 7→ lx+ c2, t 7→ l2t+ c1, l ∈ (0, 1], c1, c2 > 0.

Now for (x′, t′) ∈ R(1)× (0, 1) define

u′(x′, t′) := ū(lx′ + c1, l
2t′ + c2), A′(x) := A(lx+ c1),

B′(x′) := l ·B(lx′ + c1), ψ′(x′) := ψ(lx+ c1).

Then it holds
¨
R(1)×(0,1)

(u′∂tϕ)ψ′dx′dt′ =

¨
R(1)×(0,1)

〈
A′∇u′,∇ϕ′

〉
+ 〈B′,∇u′〉ϕdx′dt′,

for all ϕ′ ∈ C∞0 (R(1)× (0, 1)).

Now let u′ := u′ + ε. Then by (10.25),

¨
Q−

¨
Q+

Ψ

(
log

u′(y′, s′)

u′(x′, t′)

)
dx′ dt′ dy′ ds′ ≤ C8.
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Therefore

1

l2n+4

¨
Q−(l)

¨
Q+(l)

Ψ

(
− 1

C2
8

log ū(x, t)−
(
− 1

C2
8

log ū(y, s)
))

dx dt dy ds

=
1

l2n+4C8

¨
Q−(l)

¨
Q+(l)

Ψ

(
log

ū(y, s)

ū(x, t)

)
dx dt dy ds

=
1

l2n+4C8

¨
Q−(l)

¨
Q+(l)

Ψ

(
log

u′(y−c1
l
, s−c2

l2
)

u′(x−c1
l
, t−c2

l2
)

)
dx dt dy ds

=
1

C8

¨
Q−

¨
Q+

Ψ

(
log

u′(y′, s′)

u′(x′, t′)

)
dx′ dt′ dy′ ds′ ≤ 1. (10.26)

Thus applying [53, Main Lemma, p. 106] to (10.26), there exist constants c2, c3 > 0

which only depends on d such that

¨
D−

ūc2/C
2
8dy ds ·

¨
D+

(1/ū)c2/C
2
8dx dt ≤ c3, (10.27)

where D− := R(1
2
)× (0, 1

4
) and D+ := R(1

2
)× (3

4
, 1). Note that S

(
1
2

)
⊂ D−, Q

(
1
2

)
⊂

D+. Choose a small δ > 0 so that p
p−2
≤ 1/δ and take r0 as in (10.20) satisfying

r0 ∈
[
c2δ

2σC2
8

,
c2δ

2C2
8

]
.

Hence

‖ūr0‖
L

2p
p−2 ,2(S( 1

2
))
≤ ‖ūr0‖

L
2
δ (S( 1

2
))

= ‖ū‖r0
L

2r0
δ (S( 1

2
))
≤
(¨

D−
ūc2/C

2
8dy ds

) r0C
2
8

c2

,

‖ūr0‖
L

2p
p−2 ,2(Q( 1

2
))
≤
(¨

D+

(1/ū)c2/C
2
8dx dt

) r0C
2
8

c2

.

By (10.27), it holds

‖ūr0‖
L

2p
p−2 ,2(S( 1

2
))
‖ūr0‖

L
2p
p−2 ,2(Q( 1

2
))
≤ c

r0C
2
8

c2
3 .
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Therefore

sup
Q∗(1/3)

ū ≤

(√
C4

√
C6 · c

r0C
2
8

c2
3

)1/r0

inf
Q(1/3)

ū

≤
(

1 +
√
C4

√
C6

) 2σC2
8

δc2 · c
C2

8
c2

3 inf
Q(1/3)

ū,

as desired.

In the same manner as in [2, Thoerem 4, Theorem 5], we obtain the following

parabolic Hölder regularity, estimate and pointwise parabolic Harnack inequality as

consequences of Theorem 10.2.2

Theorem 10.2.3. Assume (I)′ and Q(3r) ⊂ U × (0, T ). If (10.1) holds, then there

exists a constant γ ∈ (0, 1) such that u ∈ Cγ; γ
2 (Q(r)). Furthermore for (x, t), (y, s) ∈

Q(r) , we have

|u(x, t)− u(y, s)| ≤ Cr−γ
(
‖x− y‖+

√
|t− s|

)γ
sup
Q(3r)

u,

where C > 0 is the constant which is independent of u.

Theorem 10.2.4. Assume (I)′ and u is non-negative. Suppose U ′ is convex with U ′ ⊂
U and let δ := inf

x∈U ′,y∈U
‖x− y‖, T > 0. If (10.1) holds, then for any x, y ∈ U ′ and all

s, t with 0 < s < t < T , we have

u(y, s) ≤ u(x, t) · expC

(
‖x− y‖2

t− s
+
t− s
R

+ 1

)
,

where R := min{1, s, δ2} and C > 0 is a constant which is independent of u.
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Chapter 11

Analytic and probabilistic results

11.1 Strong Feller property and irreducibility with

general pre-invariant measures

Here we state a basic condition for our main results.

(C1) ψ is a positive Borel measruable function on Rd. Given open ball B in Rd, there

exist positive constants cB, CB such that

cB ≤ ψ ≤ CB on B. (11.1)

ρ ∈ H1,2
loc (Rd) ∩ L∞loc(Rd) is a positive function and 1

ρ
∈ L∞loc(Rd). A = (aij)1≤i,j≤d

is a matrix of functions satisfying aij ∈ H1,2
loc (Rd) for all 1 ≤ i, j ≤ d. Given

open ball B in Rd, there exist positive constants λB, MB such that for any ξ =

(ξ1, . . . , ξd) ∈ Rd, x ∈ B, it holds

d∑
i,j=1

aij(x)ξiξj ≥ λB‖ξ‖2, max
1≤i,j≤d

|aij(x)| ≤MB. (11.2)

Set Ã = (ãij)1≤i,j≤d := A+AT

2
and Ǎ = (ǎij)1≤i,j≤d := A−AT

2
. ψB ∈ L2

loc(Rd,Rd)
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satisfies
ˆ
Rd
〈B,∇ϕ〉ρψdx = 0, for any ϕ ∈ C∞0 (Rd). (11.3)

From now on, we assume (C1) and let µ := ρψdx. For f, g ∈ C∞0 (Rd), define

(E0, C∞0 (Rd)) by

E0(f, g) :=
1

2

ˆ
Rd

〈 1

ψ
Ã∇f,∇g

〉
dµ.

Then by [51, Subsection II.2b)], (E0, C∞0 (Rd)) is closable in L2(Rd, µ), hence denote its

closure on L2(Rd, µ) by (E0, D(E0)) and its associated generator by (L0, D(L0)). Define

Lf := L0f + 〈B + βρ,Ǎ
T ,ψ,∇f〉, f ∈ D(L0)0,b.

Note that ˆ
Rd
〈B + βρ,Ǎ

T ,ψ,∇ϕ〉dµ = 0, for any ϕ ∈ C∞0 (Rd).

Moreover C∞0 (Rd) ⊂ D(L0)0,b and

Lf =
1

2ψ
trace(Ã∇2f) + 〈B + βρ,A

T ,ψ,∇f〉, f ∈ C∞0 (Rd).

Thus by Theorem 8.2.7, there exists an L1(Rd, µ)-closed extension (L,D(L)) of (L,D(L0)0,b)

in L1(Rd, µ) which generates a sub-Markovian C0-semigroup of contractions (Tt)t>0

on L1(Rd, µ). Restricting (Tt)t>0 to L1(Rd, µ)b, by Riesz-Thorin interpolation, (Tt)t>0

can be extended to a sub-Markovian C0-semigroup of contractions on each Lr(Rd, µ),

r ∈ [1,∞). As in Part II, denote by (Lr, D(Lr)), (Gα)α>0 the corresponding generator

and resolvent in Lr(Rd, µ), respectively. Denote by (L̂r, D(L̂r)) for the corresponding

co-generator on Lr(Rd, µ). Using sub-Markovian property, semigroup (Tt)t>0 and resol-

vent (Gα)α>0 can be extended on L∞(Rd, µ) which satisfies contraction property, but
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no longer strongly continuous on L∞(Rd, µ). Define E by

E(f, g) :=

{
−
´
Rd L2f · g dµ for f ∈ D(L2), g ∈ L2(Rd, µ),

−
´
Rd f · L̂2g dµ for f ∈ L2(Rd, µ), g ∈ D(L̂2).

Then E is called a generalized Dirichlet form associated with (L2, D(L2)).

Remark 11.1.1. Let Rd
+ := {x = (x1, . . . , xd) ∈ Rd | xd ≥ 0}. Given α ∈ (0, 1), define

φ := 2(α1Rd+ + (1−α)1Rd\Rd+). Let ρ ∈ H1,2
loc (Rd)∩C(Rd) be positive and define ρ̃ := φρ,

m := ρ̃ dx. Let A = (aij)1≤i,j≤d be a matrix of functions satisfying (11.2) and assume

aij ∈ H1,2
loc (Rd) for all 1 ≤ i, j ≤ d. Let Ǎ = (ǎij)1≤i,j≤d := A−AT

2
and assume there

exists a positive constant Λ such that for any open ball B in Rd, it holds

max
1≤i,j≤d

|ǎij(x)| ≤ Λ · λB, for all x ∈ B.

Let

E0(f, g) :=

ˆ
Rd
〈A∇f,∇g〉dm, f, g ∈ C∞0 (Rd).

Then (E0, C∞0 (Rd)) satisfies the strong sector condition and we can hence define (E0, D(E0))

as the closure of (E0, C∞0 (Rd)) on L2(Rd,m). Denote by (L0, D(L0)) the associated gen-

erator on L2(Rd,m). Let B ∈ L2(Rd,m) be such that

ˆ
Rd
〈B,∇ϕ〉dm = 0, for any ϕ ∈ C∞0 (Rd).

Define

Lf := L0f + 〈B,∇f〉, f ∈ D(L0)0,b.
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Using integration by parts, for any f ∈ C∞0 (Rd \ ∂Rd
+), g ∈ C∞0 (Rd) we have

E0(f, g) =
1

2

ˆ
Rd
〈A∇f,∇g〉 dm

= α

ˆ
Rd+
〈A∇f,∇g〉ρ dx+ (1− α)

ˆ
Rd\Rd+

〈A∇f,∇g〉ρ dx

=

ˆ
Rd+

(
1

2
trace(A∇2f) + 〈βρ,AT ,∇f〉

)
g · 2αρ dx

+

ˆ
Rd\Rd+

(
1

2
trace(A∇2f) + 〈βρ,AT ,∇f〉

)
g · 2(1− α)ρ dx

=

ˆ
Rd

(
1

2
trace(A∇2f) + 〈βρ,AT ,∇f〉

)
g dm.

Hence f ∈ D(L0) and L0f = 1
2
trace(A∇2f) + 〈β ρ̃,AT ,∇f〉. Note that C∞0 (Rd \ ∂Rd

+)

is dense in L1(Rd,m) and C∞0 (Rd \ ∂Rd
+) ⊂ D(L0)0,b. Hence by [29, Lemma 13] there

exists an L1(Rd,m) closed extension (L,D(L)) of (L,D(L0)0,b) on L1(Rd, µ) which

generates a sub-Markovian C0-semigroup of contractions (Tt)t>0 on L1(Rd,m). Like

above, we obtain correspondingly the sub-Markovian semigroup of contractions (Tt)t>0

and the sub-Markovian resolvent of contractions (Gα)α>0 on Lr(Rd,m), r ∈ [1,∞). And

we also obtain the corresponding generator (Lr, D(Lr)), co-generator (L̂r, D(L̂r)) on

Lr(Rd,m), r ∈ [1,∞) and a generalized Dirichlet form E associated with (L2, D(L2)).

E is associated with a Hunt process with skew-reflection on ∂Rd
+.

From now on, we fix p > d and let q := pd
p+d

.

Theorem 11.1.2. Assume (C1) and B ∈ Lploc(Rd,Rd). Let f ∈ ∪r∈[q,∞]L
r(Rd, µ).

Then Gαf has a locally Hölder continuous µ-version Rαf on Rd. Furthermore for any

open balls B, B′ with B ⊂ B′, we have the following estimate

‖Rαf‖C0,γ(B) ≤ c2

(
‖f‖Lq(B′,µ) + ‖Gαf‖L1(B′,µ)

)
,

where c2 > 0, γ ∈ (0, 1) are constants which are independent of f .
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Proof Let f ∈ C∞0 (Rd) and α > 0. Then by Theorem 8.2.7 (c),

Gαf ∈ D(L)b ⊂ D(E0) ⊂ H1,2
loc (Rd)

and

E0(Gαf, ϕ)−
ˆ
Rd
〈B + βρ,ψ,Ǎ

T

,∇Gαf〉ϕdµ

= −
ˆ
Rd

(
LGαf

)
ϕdµ

=

ˆ
Rd

(f − αGαf)ϕdµ, for all ϕ ∈ C∞0 (Rd).

Thus
ˆ
Rd

〈1

2
ρA∇Gαf,∇ϕ

〉
dx−

ˆ
Rd
〈ρψB,∇Gαf〉ϕdx+

ˆ
Rd

(αρψGαf)ϕdx

=

ˆ
Rd

(ρψf)ϕdx, for all ϕ ∈ C∞0 (Rd).

Note that ρψB ∈ Lploc(Rd,Rd), αρψ ∈ L∞loc(Rd). Let B, B′ be open balls in Rd satisfying

B ⊂ B′. By Theorem 7.2.2, there exists a locally Hölder continuou µ-version Rαf of

Gαf on Rd and there exist positive constants γ ∈ (0, 1), c1, c2, independent of f , such

that

‖Rαf‖Cγ(B) ≤ c1

(
‖Gαf‖L1(B′) + ‖ρψf‖Lq(B′)

)
≤ c2

(
‖Gαf‖L1(B′,µ) + ‖f‖Lq(B′,µ)

)
.

The remained part is analogous to Theorem 5.3.1. For f ∈
⋃
r∈[q,∞) L

r(Rd, µ), we use

the denseness of C∞0 (Rd) and contraction properties. And for f ∈ L∞(Rd, µ), we use

pointwise approximation by L1(Rd, µ)b and Lebesgue’s Theorem which is analogous to

Theorem 5.3.1.

Analogously to Lemma 8.3.4, we obtain

Lemma 11.1.3. Assume (C1) and B ∈ Lploc(Rd,Rd). For any t > 0, f ∈
⋃
r∈[q,∞) D(Lr),
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Ttf has a locally Hölder continuous version Ptf on Rd. Moreover the map

(x, t) 7→ Ptf(x)

is continuous on Rd × [0,∞).

Theorem 11.1.4. Assume (C1) and B ∈ Lploc(Rd,Rd). Let f ∈ ∪s∈[1,∞]L
s(Rd, µ) and

t > 0. Then Ttf has a locally Hölder continuous µ-version Ptf on Rd and P·f(·) is

locally parabolic Hölder continuous on Rd× (0,∞). Furthermore, for any bounded open

sets U , V in Rd with U ⊂ V and 0 < τ3 < τ1 < τ2 < τ4, i.e. [τ1, τ2] ⊂ (τ3, τ4), we have

the following estimate for all f ∈ ∪s∈[1,∞]L
s(Rd, µ) with f ≥ 0,

‖P·f(·)‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ C6‖P·f(·)‖L1(V×(τ3,τ4),µ⊗dt), (11.4)

where C6, γ are positive constants that depend on U × [τ1, τ2], V × (τ3, τ4), but are in-

dependent of f .

Proof First assume f ∈ D(L)b ∩ D(L2) ∩ D(Lq) with f ≥ 0. Using Lemma 11.1.3,

define u ∈ C(Rd× [0,∞)) by u(x, t) := Ptf(x). Then for any bounded open set O ⊂ Rd

and T > 0, we have u ∈ H1,2(O × (0, T )) by the same way as in Theorem 9.3.4. Using

the same argument as (8.38), it holds

¨
Rd×(0,T )

〈1

2
ρA∇u,∇ϕ

〉
−
〈
ρψB,∇u

〉
ϕ dxdt

=

¨
Rd×(0,T )

u ∂tϕ · ρψdxdt for all ϕ ∈ C∞0 (Rd × (0, T )). (11.5)

Then by Theorem 10.2.3, Theorem 10.1.1 and Theorem 10.2.2 and using the same

method as in the proof of Theorem 3.1.8, we obtain u ∈ Cγ; γ
2 (U × [τ1, τ2]) and there

exists a constant γ ∈ (0, 1) and C > 0 which is independent of u such that

‖u‖
Cγ;

γ
2 (U×[τ1,τ2])

≤ C‖u‖L1(V×(τ3,τ4),µ⊗dt).
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Given s ∈ [1,∞), using Ls(Rd, µ)-contraction property of (Pt)t>0 we have

‖P·f‖Cγ;
γ
2 (U×[τ1,τ2])

≤ C‖P·f‖L1(V×(τ3,τ4),µ⊗dt).

≤ C(τ4 − τ3)‖ρψ‖
s−1
s

L1(V )‖f‖Ls(Rd,µ), s ∈ [1,∞],

For f ∈ L1(Rd, µ)∩L∞(Rd, µ) with f ≥ 0 let fn := nGnf . Then fn ∈ D(L)b ∩D(L2)∩
D(Lq) with fn ≥ 0 and fn → f in Ls(Rd, µ) for any s ∈ [1,∞). Thus (11.4) extend

to f ∈ L1(Rd, µ) ∩ L∞(Rd, µ) with f ≥ 0. If f ∈ Ls(Rd, µ), f ≥ 0 and s ∈ [1,∞),

let fn := 1Bn · (f ∧ n). Then fn ∈ L1(Rd, µ) ∩ L∞(Rd, µ) with fn ≥ 0 and fn → f in

Ls(Rd, µ). Thus (11.4) extend to f ∈ Ls(Rd, µ) with f ≥ 0. For f ∈ L∞(Rd, µ), the

result follows exactly as in Theorem 3.1.8.

The following Lemma is a key intermediate step to show irreducible and strict

irreducible of (Pt)t>0

Lemma 11.1.5. Assume (C1) and B ∈ Lploc(Rd,Rd).

(i) Let A ∈ B(Rd) be such that Pt01A(x0) = 0 for some t0 > 0 and x0 ∈ Rd. Then

µ(A) = 0.

(ii) Let A ∈ B(Rd) be such that Pt01A(x0) = 1 for some t0 > 0 and x0 ∈ Rd. Then

Pt1A(x) = 1 for all (x, t) ∈ Rd × (0,∞).

Proof The proof of (ii) is almost analogous with (i) noting the proof of Lemm 4.2.2

(ii), hence we will only prove (i). Suppose µ(A) > 0. Choose an open ball Br(x0) ⊂ Rd

such that

0 < µ (A ∩Br(x0)) <∞.

Let u := P·1A∩Br(x0). Then 0 = u(x0, t0) ≤ Pt01A(x0) = 0. Set fn := nGn1A∩Br(x0).

Then fn ∈ D(L)b ∩D(L2) ∩D(Lq) with fn ≥ 0 such that fn → 1A∩Br(x0) in L1(Rd, µ).

Let un := P·fn. Fix T > t0 and U ⊃ Br(x0). Note that by (11.5), un ∈ H1,2(U × (0, T ))
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satisfies
¨
U×(0,T )

〈1

2
ρA∇un,∇ϕ

〉
−
〈
ρψB,∇un

〉
ϕ dxdt

=

¨
U×(0,T )

un ∂tϕ · ρψdxdt for all ϕ ∈ C∞0 (U × (0, T )).

Now take arbitrary but fixed (x, t) ∈ Br(x0)× (0, t0). By Theorem 10.2.4,

0 ≤ un(x, t) ≤ un(x0, t0) exp

(
C
(‖x0 − x‖2

t0 − t
+

t0 − t
min(1, t)

+ 1
))

.

Applying (11.4) with U ⊃ Br(x0), [τ1, τ2] ⊃ [t, t0], it holds

0 ≤ u(x, t) ≤ u(x0, t0) exp

(
C
(‖x0 − x‖2

t0 − t
+

t0 − t
min(1, t)

+ 1
))

= 0.

Thus, Pt1A∩Br(x0)(x) = 0 for all x ∈ Br(x0) and 0 < t < t0, so that

0 =

ˆ
Rd

1A∩Br(x0)Pt1A∩Br(x0)dµ −→
t→0+

µ(Br(x0) ∩ A) > 0,

which is contradiction. Therefore, we must have µ(A) = 0.

Directly using Lemma 11.1.5 and proof of Theorem 4.2.4, we obtain the following result.

Corollary 11.1.6. Assume (C1) and B ∈ Lploc(Rd,Rd).

(i) (Tt)t>0 is strictly irreducible.

(ii) Let A ∈ B(Rd) with m(A) > 0. Then Px(Xt ∈ A) > 0 for all x ∈ Rd, t > 0, i.e.

(Pt)t>0 is irreducible.

From Theorem 11.1.2, for any α > 0, x ∈ Rd, we define

Rα(x,A) := lim
l→∞

Rα(1Bl∩A)(x), A ∈ B(Rd).
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Then αRα(·, A) is a sub-probability measure on (Rd,B(Rd)) that is absolutely con-

tinuous with respect to µ. Using the Radon-Nikodym derivative, the resolvent kernel

density is defined by

rα(x, ·) :=
Rα(x, dy)

µ(dy)
, x ∈ Rd.

Similarly, from Theorem 11.1.4, for any t > 0, x ∈ Rd we define

Pt(x,A) := lim
l→∞

Pt(1Bl∩A)(x), A ∈ B(Rd).

Then Pt(·, A) is a sub-probability measure on (Rd,B(Rd)) that is absolutely continuous

with respect to µ. Using the Radon-Nikodym derivative, the resolvent kernel density is

defined by

pt(x, ·) :=
Pt(x, dy)

µ(dy)
, x ∈ Rd.

Therefore using the exacly same method as in Proposition 8.3.8, we derive the following

result.

Proposition 11.1.7. Assume (C1) and B ∈ Lploc(Rd,Rd). Let α > 0, t > 0. Then it

holds:

(i) Gαg has a locally Hölder continuous µ-version and

Rαg =

ˆ
Rd
g(y)Rα(·, dy) =

ˆ
Rd
g(y)rα(·, y)µ(dy), ∀g ∈

⋃
r∈[q,∞]

Lr(Rd, µ). (11.6)

In particular, (11.6) extends by linearity to all g ∈ Lq(Rd, µ) + L∞(Rd, µ), i.e.

(Rα)α>0 is L[q,∞](Rd, µ)-strong Feller.

(ii) Ttf has a continuous µ-version ∀f ∈
⋃
s∈[1,∞] L

s(Rd, µ) and

Ptf =

ˆ
Rd
f(y)Pt(·, dy) =

ˆ
Rd
f(y)pt(·, y)µ(dy), (11.7)
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In particular, (11.7) extends by linearity to all f ∈ L1(Rd, µ) + L∞(Rd, µ), i.e.

(Pt)t>0 is L[1,∞](Rd, µ)-strong Feller.

Finally, for any α > 0, x ∈ Rd, g ∈ Lq(Rd, µ) + L∞(Rd, µ), we have

Rαg(x) =

ˆ ∞
0

e−αtPtg(x) dt.

Remark 11.1.8. Assume the situation of Remark 11.1.1. Then we obtain

ˆ
Rd

〈1

2
ρφA∇Gαf,∇ϕ

〉
dx−

ˆ
Rd
〈ρφB,∇Gαf〉ϕdx+

ˆ
Rd

(αρφGαf)ϕdx

=

ˆ
Rd

(ρφf)ϕdx, for all ϕ ∈ C∞0 (Rd)

and given T > 0, it holds

¨
Rd×(0,T )

〈1

2
ρφA∇u,∇ϕ

〉
−
〈
ρφB,∇u

〉
ϕ dxdt

=

¨
Rd×(0,T )

u ∂tϕ · ρφdxdt for all ϕ ∈ C∞0 (Rd × (0, T )).

Thus using analogous methods to the above, we obtain the analogue of Theorem 11.1.2,

Lemma 11.1.3, Theorem 11.1.4, Lemma 11.1.5, Corollary 11.1.6.

11.2 Application to weak existence of Itô-SDEs

In order to construct a Hunt process associated with (Pt)t>0 which is identified to a

weak solution to the corresponding Itô-SDE, we present a final condition.

(C2): Fix p > d and q := pd
p+d

. B ∈ Lploc(Rd,Rd), ∇AT ∈ Lqloc(Rd) and ρ ∈ H1,q
loc (Rd).

If we assume (C1) and (C2), then one can directly check that (H2)′ of Part I holds.

Thus, using Proposition 9.1.1 and the analogous method to Theorem 3.2.1, we arrive

at the following theorem.
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Theorem 11.2.1. Assume (C1), (C2). Then there exists a Hunt process

M = (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈Rd∪{∆})

with state space Rd and life time

ζ = inf{t ≥ 0 : Xt = ∆} = inf{t ≥ 0 : Xt /∈ Rd},

having the transition function (Pt)t≥0 as transition semigroup, such that M has contin-

uous sample paths in the one point compactification Rd
∆ of Rd with the cemetery ∆ as

point at infinity, i.e. for all x ∈ Rd

Px
({

ω ∈ Ω | X·(ω) ∈ C
(
[0,∞),Rd

∆

)
, X·(ω) = ∆ ∀t ≥ ζ(ω)

})
= 1.

Remark 11.2.2. Consider the situation of Remark 11.1.1 and assume (C2). Then

one can check that (H2)′ of Part I also holds since

C∞0 (Rd \ ∂Rd
+) ⊂ D(L0)0,b ⊂ D(L1) ∩ C0(Rd)

and L1f ∈ Lq(Rd)0 for all f ∈ C∞0 (Rd \ ∂Rd
+). Hence using the analogous way to The-

orem 3.2.1, there exists a Hunt process M which has skew reflection on the hyperplane

∂Rd
+. Moreover the transition function (Pt)t>0 of M satisfies general strong Feller prop-

erties, irreduciblity and strict irreducibility.

Using Theorem 11.1.2 and the analogous method to Theorem 3.2.3 (ii), we obtain

the following Krylov type estimate.

Proposition 11.2.3. Assume (C1), (C2). Let g ∈ Lr(Rd, µ) for some r ∈ [q,∞].

Then for any open ball B there exists a constant CB,r which depends on B and r and

does not depends on the VMO condition of A, such that for all t ≥ 0

sup
x∈B

Ex
[ˆ t

0

|g|(Xs) ds

]
< etCB,r‖g‖Lr(Rd,µ). (11.8)

Using the analogous method to proof of Theorem 3.2.8, we obtain the following result.
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Theorem 11.2.4. Assume (C1), (C2). Consider the Hunt process M from Theorem

11.2.1. Let σ = (σij)1≤i≤d,1≤j≤m, m ∈ N arbitrary but fixed, be any matrix of functions

σij ∈ L∞loc(Rd) for all 1 ≤ i ≤ d, 1 ≤ j ≤ m, such that Ã = σσT , i.e.

ãij(x) =
m∑
k=1

σik(x)σjk(x), ∀x ∈ Rd, 1 ≤ i, j ≤ d,

Then on a standard extension of M = (Ω,F , (Ft)t≥0,Px) with life time ζ, x ∈ Rd, that

we denote for notational convenience again by M = (Ω,F , (Ft)t≥0,Px) with life time ζ,

x ∈ Rd, there exists a standard m-dimensional Brownian motion W = (W 1, . . . ,Wm)

starting from zero such that Px-a.s. for any x ∈ Rd, it holds

Xt = x+

ˆ t

0

1√
ψ(Xs)

σ(Xs)dWs +

ˆ t

0

(
1

2ψ
∇AT +

AT∇ρ
2ρψ

+ B

)
(Xs)ds, 0 ≤ t < ζ.

The corresponding resolvent (Gα)α>0 and semigroup (Tt)t>0 satisfy general strong Feller

properties as in Theorem 11.1.2 and Theorem 11.1.4, respectively. Furthermore, M
satisfies irreducibility and strict irreducibility as in Corollary 11.1.6. Various properties

of Part I, II, such as conservativeness in Theorem 4.1.2, moment inequality in Theorem

4.1.4 (i), Theorem 6.1.4, recurrence and transience in Proposition 4.2.5, Theorem 4.2.7,

Lemma 4.2.8, Theorem 4.2.9, ergodic properties in Theorem 4.2.11 hold in the situation

of Part IV.

11.3 Explicit conditions for global well-posedness

and ergodic properties

The finial section is devoted to present some conditions to derive our previous results in

the case where diffusion and drift coefficients are explicitly given. By a direct application

of Theorem 8.3.1, we show existence of a pre-invariant measure for a large class of second

order partial differential operators.

Theorem 11.3.1. Let A = (aij)1≤i,j≤d be a matrix of functions satisfying (11.2) and

aij ∈ H1,2
loc (Rd) for all 1 ≤ i, j ≤ d. Let ψ be a positive function satisfying (11.1). Let
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G ∈ L2
loc(Rd,Rd) be such that

1

2
∇AT − ψG ∈ Lploc(R

d,Rd).

Then there exists ρ ∈ H1,p
loc (Rd) ∩ C0,1−d/p

loc (Rd) satisfying ρ(x) > 0 for all x ∈ Rd such

that ˆ
Rd
〈G− βρ,AT ,ψ,∇ϕ〉ρψdx = 0, for all ϕ ∈ C∞0 (Rd),

i.e.

ˆ
Rd

(
1

2ψ
div (A∇ϕ) + 〈G− 1

2ψ
∇AT ,∇ϕ〉

)
ρψdx, for all ϕ ∈ C∞0 (Rd).

Moreover G− βρ,AT ,ψ ∈ Lploc(Rd,Rd).

Now let B := G−βρ,AT ,ψ and consider all situations of Section 11.1. Then all results

of Section 11.1 automatically hold under the assumption of Theorem 11.3.1. Using The-

orem 11.2.4, we obtain the following result which presents global well-posedness and

ergodic properties in the case where diffusion and drift coefficients that are possibly

discontinuous are explicitly given.

Theorem 11.3.2. Under the assumption of Theorem 11.3.1, suppose ∇AT ∈ Lqloc(Rd,Rd).

Let Ã := A+AT

2
and (σij)1≤i≤d,1≤j≤m, m ∈ N arbitrary but fixed, be a matrix consisting

of functions σij ∈ L∞loc(Rd) for all 1 ≤ i ≤ d, 1 ≤ j ≤ m, such that Ã = σσT , i.e.

ãij(x) =
m∑
k=1

σik(x)σjk(x), ∀x ∈ Rd, 1 ≤ i, j ≤ d.

Then there exists a standard extension of a Hunt process M = (Ω,F , (Ft)t≥0,Px)
with life time ζ, x ∈ Rd, that we denote for notational convenience again by M =

(Ω,F , (Ft)t≥0,Px) with life time ζ, x ∈ Rd, and there exists a standard m-dimensional

Brownian motion W = (W 1, . . . ,Wm) starting from zero such that for any x ∈ Rd, it
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weakly solves Px-a.s

Xt = x+

ˆ t

0

1√
ψ(Xs)

σ(Xs)dWs +

ˆ t

0

G(Xs)ds, 0 ≤ t < ζ. (11.9)

If there exists a constant M > 0 and some N0 ∈ N, such that

1

ψ(x)

(
−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x)

)
+
〈
G(x), x

〉
≤M

(
‖x‖2 + 1

) (
ln(‖x‖2 + 1) + 1

)
for a.e. x ∈ Rd \ BN0, then M is non-explosive, i.e. Px(ζ = ∞) = 1 for all x ∈
Rd. Moreover M is irreducible and strict irreducible, hence satisfies the result as in

Proposition 4.2.5 in the situation of Part IV. If there exists a constant M > 0 and

some N0 ∈ N, such that

1

ψ(x)

(
−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x)

)
+
〈
G(x), x

〉
≤ 0

for a.e. x ∈ Rd \ BN0, then M is recurrent in the probabilistic sense as in (4.16). If

there exists a constant C > 0 and some N0 ∈ N, such that

1

ψ(x)

(
−〈A(x)x, x〉
‖x‖2 + 1

+
1

2
traceA(x)

)
+
〈
G(x), x

〉
≤ −C(‖x‖2 + 1)

for a.e. x ∈ Rd \ BN0, then ρψdx is a probability invariant measure of M and ergodic

properties as in Theorem 4.2.11 holds in the situation of Part IV. Finally if G ∈
L∞loc(Rd,Rd) and M is non-explosive, then M is a unique solution to (11.9) in a weak

sense.
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[30] I. Gyöngy, T. Martinez, On stochastic differential equations with locally un-

bounded drift, Czechoslovak Math. J. (4) 51 (126) (2001) 763–783.

209



BIBLIOGRAPHY

[31] Q. Han, F. Lin, Elliptic partial differential equations, Courant Lecture Notes in

Mathematics, American Mathematical Society, Providence, RI, 1997.

[32] R.Z. Has’minskii, Ergodic properties of recurrent diffusion processes and sta-

bilization of the solution of the Cauchy problem for parabolic equations, Teor.

Verojatnost. i Primenen. 5, 1960, 196–214.

[33] M. Hino, Existence of invariant measures for diffusion processes on a Wiener

space, Osaka J. Math. 35 (1998), no. 3, 717–734.

[34] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes,

Second edition. North-Holland Mathematical Library, 24. North-Holland Pub-

lishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.
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second ordre à coefficients discontinus, (French) Ann. Inst. Fourier (Grenoble)

15 1965 fasc. 1, 189–258.

[68] W. Stannat, The Theory of Generalized Dirichlet Forms and Its Applications

in Analysis and Stochastics, Dissertation, Bielefeld 1996. Published as Memoirs

of the AMS. Volume 142. No. 678. 1999.

[69] W. Stannat, (Nonsymmetric) Dirichlet operators on L1: Existence, uniqueness

and associated Markov processes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28.

1999. No. 1. 99-140.

[70] W. Stannat, Time-dependent diffusion operators on L1, J. Evol. Equ. 4 (2004),

no. 4, 463–495.

[71] Daniel W. Stroock, S. R. Srinivasa Varadhan, Multidimensional diffusion pro-

cesses, Reprint of the 1979 edition. Classics in Mathematics. Springer-Verlag,

Berlin, 2006.

[72] D.W. Stroock, Diffusion semigroups corresponding to uniformly elliptic diver-
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국문초록

이 논문에서 우리는 거친 계수를 갖는 이토 확률미분방정식의 약한 해들의 대역적인 존

재 및 유일성, 장시간의 행동에 대한 해석학적 접근을 연구한다. 타원형 및 포물형 정칙

성 이론과 일반화된 디리클레 형식 이론을 사용함으로써, 우리는 넓은 유형의 타원형 2

계 편미분 작용소의 예비 불변측도의 존재성을 보이고, 그 작용소는 사실은 어느 헌트

과정의 극소 생성자가 됨을 보인다. 그 후, 이 헌트 과정은 Rd 위의 모든 점들을 시작

점으로 갖는 이토 확률미분방정식의 폭발 시간 안에서 약한 해로 동일시된다. 그 헌트

프로세스는 Rd의 한점 컴팩트화된 공간에서 연속인 샘플 경로를 갖고 알려진 존재 및

유일성정리에의해그것은폭발시간안에서경로마다유일한강한해가된다.해석학적,

확률론적 방법을 사용하여 우리는 고전적인 강한 펠러 성질을 포함하는 일반화된 강한

펠러 성질들, 크릴로프 유형의 가늠, 모먼트 부등식, 다양한 비폭발 판정법을 유도한다.

포물형 하르낙 부등식을 이용하여 우리는 프로세스의 기약성과 강한 기약성을 보이고

재귀성과 에르고딕 행동들에 대한 명확한 조건들을 이끌어 낸다. 더 나아가서 우리는 퇴

화된 정도의 점들이 르벡 측도 0을 만족하는 퇴화된 거친 확산 계수에 관한 이토 확률미

분방정식의약한해의존재성과유일성을조사한다.마지막으로우리는예비불변측도의

밀도함수가 명확히 주어졌을 때를 고려한다. 단순히 그 예비측도의 존재성과 어떤 정칙

성만 알았던 이전의 경우와는 달리, 우리는 퇴화되지 않은 비대칭, 불연속 확산 행렬인

경우에 얼마나 우리의 방법들이 확장되고 적용될 수 있는지 조사한다. 이를 위해 우리는

시간 텀에 무게를 갖는 발산 형식 선형 포물형 편미분방정식의 정칙이론에 대한 변분적

접근을 발전시킨다.

주요어휘: 일반화된 디리클레 형식, 불변 측도, 헌트 과정, 이토 확률미분방정식, 타원형

및 포물형 정칙성, 강한 펠러 성질, 비폭발성, 보존성, 기약성, 강한 기약성, 재귀성, 일시

적임, 에르고딕성, 약한 유일성, 크릴로프 타입 추정

학번: 2013-20245
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