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Abstract

In this thesis, we study an analytic approach to global well-posedness and long-time
behavior for weak solutions to It6-SDEs with rough coefficients. Using elliptic and
parabolic regularity theory and generalized Dirichlet form theory, we show existence
of a pre-invariant measure for a large class of elliptic second order partial differential
operators and show that these are in fact infinitesimal generators of a Hunt process.
Subsequently, this Hunt process is identified for every starting point as a weak solution
to an It6-SDE in R? up to its explosion time. The Hunt process has continuous sample
paths on the one-point compactification of R? and by a known local well-posedness
result, it is a pathwise unique and strong solution up to its explosion time to the SDE
that it weakly solves. Using analytic and probabilistic methods, we derive general strong
Feller properties, including the classical strong Feller property, Krylov type estimates,
moment inequalities and various non-explosion criteria. Using a parabolic Harnack
inequality, we show irreducibility and strict irreducibility of the process and derive
explicit conditions for recurrence and ergodic behavior. Moreover, we investigate well-
posedness of weak solutions to [to-SDEs with degenerate and rough diffusion coefficients
whose points of degeneracy form a set of Lebesegue measure zero. In the final part we
consider the case where the pre-invariant density is explicitly given. In contrast to the
previous case, where we only knew its existence with a certain regularity, we investigate
how far our previous methods can be extended and applied in case of a non-degenerate,
possibly non-symmetric and discontinuous diffusion matrix. For this, we develop some
variational approach to regularity theory for linear parabolic PDEs involving divergence

form operators with weight in the term where time derivative appear.

Key words: generalized Dirichlet form, invariant measure, Hunt process, 1t6-SDE,
elliptic and parabolic regularity, strong Feller property, non-explosion, conservativeness,
irreducibility, strict irreducibility, recurrence, transience, ergodicity, weak uniqueness,
Krylov type estimate

Student Number: 2013-20245
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Chapter 1

Introduction

The main subject of our studies is an analytic approach to invariant measures,
global well-posedness and long-time behavior of weak solutions to time-homogeneous
It6-Stochastic Differential Equations (It6-SDEs) with rough coefficients. Different from
previous approaches using Krylov type estimates, Girsanov transformation to show
weak existence of [t6-SDEs, our main tools are elliptic and parabolic regularity theory
and the theory of generalized Dirichlet forms.

This thesis consists of four parts which are closely related to one another. Part I is
based on the contents of [49] where the main analytic and probabilistic methods for
studying pre-invariant measures and non-degenerate time-homogeneous [t6-SDEs with
rough coefficients are developed. For various results of Part II, III, IV, we adapt many
methods and techniques from Part I. Throughout, we assume that the dimension d is
greater or equal to two, i.e. d > 2. Consider the following time-homogeneous 1t6-SDE
with measurable coefficients

t t
X = o +/ o(Xs)dW —I—/ G(X,)ds, 0<t<(, z9€RY, (1.1)
0 0

where W = (W1, ..., W) is a standard /-dimensional Brownian motion starting from

Z€ro, A= (az’j)lgi,jgd = O'O'T, g = (Uij>1§i§d,1§j§l and G = (gl’ '-'7gd) and

C:=inf{t >0 : X, e,éRd}:nanOloinf{tzo : X, ¢ B,}

1



CHAPTER 1. INTRODUCTION

is the explosion time (or life time) of X, i.e. the time when X has left any Euclidean

ball B,, of radius n about the origin.

First, we present some previous results for global and strong well-posedness of (1.1).
By a classical result, if o, G consist of locally Lipschitz continuous functions and satisfy
a linear growth condition, then (1.1) with ( = oo has a pathwise unique solution that
is strong, i.e. adapted to the filtration generated by W ([34, IV. Theorems 2.4 and
3.1]). Note that the just mentioned reference and most of those below also treat the
time inhomogeneous case but we only discuss results in the time homogeneous case,
i.e. results related to (1.1). We call a solution that is pathwise unique and strong up to
¢ (¢ being possibly finite, cf. [34, IV. Definition 2.1]) strongly unique up to (.

Strong uniqueness results for (1.1) with ( = oo for only measurable coefficients
were given starting from [86], [80], [81]. In these works o is non-degenerate and o, G
are bounded. Regarding bounded coefficients one can also mention the later work [4].
To our knowledge the first strong uniqueness results for locally unbounded measurable
coefficients start with [30, Theorem 2.1], while weak existence results appeared to exist
earlier (cf. introduction of [30]). In [30, Theorem 2.1] o may be chosen locally Lipschitz,
with oo globally uniformly strictly elliptic and g; € LZQO(SIH)(Rd) with the following
growth condition to ensure non-explosion ([30, Assumption 2.1]): there exists a constant
M > 0 and a non-negative function F' € L1 (R?) such that almost everywhere

J 1/2
el - (zgz) <MiF
=1

However, the above condition does not allow for linear growth of drift coefficient.

In [83], the following result was obtained: if o consists of continuous functions and
is globally uniformly non-degenerate, i.e. A(z) > C - Id in the quadratic form sense for
some constant C' > 0 and every z € R? and g;, 00y, € LIQO(ZHU(Rd) for any 1, j, k, then
(1.1) has a strongly unique solution up to its explosion time. In [83, Theorem 1.1(i)
and (ii)] two non-explosion conditions are given. Both require the global boundedness
of o and then only depend on G. The first one is similar to the one of [30] given above.

The second one is as follows: there exist a constant M > 0, and vector fields H, F;,
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with [|F;|| € LPi(R%), p; > 2(d + 1), such that almost everywhere

k
G= S F +H with [H(@)| <M (1+ Lyl los |z]).

i=1

This non-explosion condition allows for linear growth and can cover singularities of G,
a phenomenon that can not occur for SDEs with continuous coefficients, since these
are of course locally bounded.

Prior to [83], the following was obtained in [43]: if ¢ is the identity matrix, so
that the local martingale part in (1.1) is just a d-dimensional Brownian motion W =
(Wt .., W% and G € LF (R R?) for some p > d, with

t
/ IG(X,)|"ds < o0 P, -almost surely on {t < ¢}, (12)
0

where r = 2 and P,, is the distribution on the paths starting form x, then (1.1) has
a strongly unique solution up to its explosion time. Besides a global L,-integrability
condition which does not allow for linear growth a rather special and not really explicit
non-explosion condition is presented in [43, Assumption 2.1]. Its formulation is quite
long but roughly one can say it is given by assuming that G is the weak gradient of a
function which is a kind of Lyapunov function for (1.1).

The strong uniqueness result of [43] was generalized among others in [84, Theorem
1.3] to the case of non-trivial d x d-dispersion matrix o with corresponding locally
uniformly strictly elliptic diffusion matrix oo’ and o;; € H llo’f (R?) where p > d is the
same as for G, relaxing condition (1.2) to the natural one, i.e. r = 1 (although we show
here that this does at least in the time-homogeneous case not play a role, since it is
always satisfied with r = 2, c¢f. Remark 3.1.7(i)) but no non-explosion condition related
to the local conditions of [84, Theorem 1.3] is given. Only a global L,-integrability
condition in space is given in [84, Theorem 1.2], which again does not allow for linear
growth. Note that [84, Theorem 1.3] also holds under the conditions of Remark 3.1.3(ii)
and that we can handle this case but disregard it for the reasons mentioned in Remark
3.1.3. The strong uniqueness results of [43] were also recovered in [23] using a different
method of proof which allowed to obtain additional insight on the solution. For instance,
the a-Holder continuity of the solution for arbitrary o € (0, 1) and the differentiability

3
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in L2(Q x [0,T],R?) (here € is the path space) with respect to the initial condition.
For the latter result see [24].

Finally, we mention a result from [22]. There, strong uniqueness up to life time is
obtained for continuous coefficients o, G satisfying a log-Lipschitz condition (see [22,
Theorem BJ). The growth condition ([22, Theorem Al) is for a typical choice of growth
function as follows

Z% ) < Cllzl* log(llz]) + 1), IG(@)Il < C(l|l=[llog(|l=]]) + 1), ¥z € R\ By,

for some Ny € N, but G can of course not have any singularities inside By,, because
of its continuity. This allows for linear growth but not for more in the sense that there
cannot be any compensation since the growth conditions are formulated separately for

dispersion and drift coefficient.

In Part I, Chapter 3 we develop the analysis to define rigorously the infinitesimal
generator L that a solution to (1.1) should have under our assumptions. We first use a
result of [69], i.e. that a strongly continuous semigroup of contractions and a generalized
Dirichlet form on some L2-space associated to an extension of L as in (3.3) below, can
be constructed. For this construction, one needs some weak divergence free property of
the anti-symmetric part of the drift. Theorem 3.1.2 (from [12, Theorem 2.4.1]) implies
that one can obtain this property with respect to a measure m = pdx, where p is some
strictly positive continuous function, under our basic assumptions on A = (a;;)1<i j<d
and G as in Theorem 3.1.2. Typically, the density p is not explicit and not a probability
density but has the regularity p € H.?(R%) N C’looi 4/p (R4). Subsequently, we use the
elliptic regularity result Proposition 3.1.4 (from [8, Theorem 5.1]) and our parabolic
regularity result Theorem 3.1.8 which we derive from results in [2] to obtain the regular-
ity as stated in Proposition 3.1.10 and (H2)'. Following the basic idea from [1], we may
then use the Dirichlet form method to obtain the existence of a Hunt process M with
transition function (P;)s~o associated to the mentioned extension of L, with continuous
sample paths on the one point compactification RE of R? with A (see Theorem 3.2.1).
To obtain its existence we crucially make use of the existence of such a Hunt process
having continuous sample paths on R4 for merely almost every starting point which
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we obtain from [79, 78]. Once M is constructed, we can use standard methods from [34]
(see Theorem 3.2.8 and Remark 3.2.9) to arrive at the identification of a weak solution
to (1.1) up to (.
In Chapter 4, we first develop non-explosion criteria for M. We proved that the
solution is non-explosive, if there exists a constant M > 0 and some Ny € N, such that
(A(z)x,z) 1

BT + StraceA(r) + (G(x),x) < M ([lzl" +1) (In([l=]* + 1) + 1) (1.3)

for a.e. z € R?\ By,. The conditions (1.3) allow for linear growth, for locally unbounded
drifts and an interplay between diffusion and drift coefficients such that (even outside
By,) superlinear growth of G is possible if (G(x),z) is non-positive and superlinear
growth of G and A is possible if diffusion and drift coefficients compensate each other.
Hence (1.3) allows coefficients of (1.1) to be more general than those of existing liter-
ature ([30], [22], [43], [83], [23], [84], [85]) in regard to non-explosion criteria for time-
homogeneous Ito-SDEs.

Once we have constructed a weak solution up to its explosion time and we restrict
our assumptions further to any set of assumptions as in the papers [84, 43, 22| or
vice versa, we must by the pathwise uniqueness results of the mentioned papers have
that the solutions coincide. Hence our non-explosion criteria (1.3), can be seen as new
non-explosion criteria for all the mentioned papers. This idea was first employed in
[62]. As application of this idea, we obtain strong uniqueness of (1.1) up to oo just
under the additional non-explosion condition (1.3) (see Theorem 4.3.1). But we obtain
far more than only new non-explosion results. Namely, the pathwise unique solution
(Xt)t>0 in Theorem 4.3.1 is not only strong but satisfies all previously derived proper-
ties. Our general strong Feller property results improved the previous results obtained
in [1, Propositions 3.2 and 3.8] and [8, Theorem 2.8] and show the non-optimality of the
results in [85]. There M should be non-explosive to obtain merely the classical strong
Feller property (cf. also Remark 3.1.9(iii)). Also, the irreducibility here is just obtained
under the mentioned basic assumptions on A and G, whereas the assumptions to obtain
irreducibility in [85] appear to be quite strong (see Remark 4.2.15). Additionally, our
method provides implicitly a candidate for an invariant measure as well as for a station-

ary distribution and we derive several explicit sufficient conditions for recurrence and
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ergodicity, including existence and uniqueness of invariant measures (see Section 4.2).
Moreover, we derive moment inequalities for the solution (see Theorem 4.1.4) which
complements [23, Proposition 14] and [52, Lemma 3.2 of Section 2.3, Theorem 4.1 of
Section 2.4]. All these are advantages over the methods that were previously employed
in [30], [43], [84], [85], [23], and we are able to generalize and even improve many of the
classical results in the time-homogeneous case for locally bounded coefficients (see [6]
and the standard reference [58]) to the case of locally unbounded coefficients (see for
instance Remark 4.2.3 and Theorem 4.2.9).

In Section 4.2 we discuss recurrence and other ergodic properties involving and not
involving the density p. As previously mentioned, p is usually not explicit but can be
assumed to be explicit (if needed) as explained in Remark 4.2.1, (see also Remark 5.3.7
and Part TV). Using a pointwise parabolic Harnack inequality from [2, Theorem 5],
we then show that the underlying generalized Dirichlet form is strictly irreducible in
Corollary 4.2.4(i). Consequently, we can apply explicit volume growth conditions from
[29] to obtain not only recurrence (cf. Theorem 4.2.7) but also existence of an invariant
measure. In the general case, when p is not explicitly known, we can also derive explicit
recurrence criteria. Theorem 4.2.9, that is applicable just under our basic assumptions
on A = (aj;)1<ij<a and G, generalizes [58, Chapter 6, Theorem 1.2] which assumes
the drift to be locally bounded. Moreover the proof of Theorem 4.2.9 is different from
the one of [58, Chapter 6, Theorem 1.2] and uses basic results of [29], as well as strict
irreducibility from Corollary 4.2.4(i) and Proposition 4.2.5. In Proposition 4.2.13, we
derive again just under our basic assumptions on A and G an explicit criterion for
ergodicity of M, including the existence of a unique invariant measure. Section 4.3 is
devoted to the mentioned application to pathwise uniqueness results and Theorem 4.3.1
is our main result in Part I.

Our work not only presents a new approach to existence of weak solutions to time-
homogeneous [t6-SDEs with rough coefficients through a Hunt process, but also com-
plements and improves substantially existing literature in regard to general strong Feller
properties, non-explosion, irreducibility, recurrence and ergodicity, including existence
as well as uniqueness of invariant measures. This is done by profiting a lot from many
authors’ previous achievements. The most important are found in [1], [2], [12], [13],
[29], [34], [62], [69], [78], [79], [84]. In particular, the transition function of the Hunt
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process that we construct as a weak solution to (1) has so a nice regularity that then
all presumably optimal classical conditions for the properties of a solution to (1) above,
carry over to our situation of non-smooth coefficients by using classical probabilistic
techniques. In conclusion, our main result, Theorem 4.3.1, seems to be the most general
result in non-degenerate time-homogeneous [to-SDEs.

An important subject of our research is the existence of invariant measures. A lo-
cally finite Borel measure m on R is called an invariant measure for a sub-Markovian
Co-semigroup of contractions (T;)so on L'(R? m) if

/thdm:/ fdm, f e LY R m). (1.4)
R4 Rd

(There also exists a consistent Definition 6.2.2 related to right processes). Invariant
measures have been studied since long ago, both through analytic and probabilistic
approaches (see [46], [32], [6], [59], [33], [11], [12], [44]). Often, only invariant measures
that are probability measures, or finite measures are regarded (see for instance, [59],
[33], [11], [12], [44]). Especially in [12], one of the main references that study invariant
measures through an analytic approach, those invariant measures are always considered
as probability measures. However in our case, we study pre-invariant measures whose
existence results from (3.2), (5.8), (8.30), (11.3) and these do not need to be finite or
probability measures. Our pre-invariant measures are invariant measures if and only if
the dual semigroup to (T;)so in (1.4) is conservative, and moreover serve as reference
measures to get an L'(R? m)-closed extension of the second order partial differential
operator which is formally associated as infinitesimal generator (on the test functions
Ce°(RY)) to the solution to (1.1). The latter is used crucially used for the construction
of a generalized Dirichlet form. The existence of a pre-invariant measure is proven by a
purely analytic method which is the existence and regularity theory of elliptic partial
differential equations. Throughout all parts in this thesis, our pre-invariant measures
play a key role to obtain our various results.

Part II consists of the contents in [50] and we investigate a quite general class of

divergence form operators with respect to a possibly non-symmetric diffusion matrix
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A = (aij)1<ij<a and perturbation H = (hq, ..., hy), which can be written as
1
Lf = 5div(AVf) +(H,Vf), feCrRY. (1.5)

Precise conditions on the coefficients are given in assumptions (a) and (b) in Section
5.2, see in particular Remark 5.2.1, where it is also shown that such operators cover a
fairly general class of non-divergence form operators.

Our first observation is that just under assumption (a), there exists a pre-invariant
density p, which further determines a pre-invariant measure m = pdx, and has a
nice regularity (see Theorem 5.2.2). This leads by a construction method of [69] to a
sub-Markovian Cyp-semigroup of contractions (T})¢>o on L*(R, m), whose generator is
an extension of (L, C§°(R?)), i.e. we have found a suitable functional analytic frame
for the description of (L, C§°(R?)). This functional analytic frame is also described
by a generalized Dirichlet form. Subsequently in Section 5.3, we investigate the reg-
ularity properties of the semigroup (7});>¢ and its corresponding resolvent (G )aso0,
which can in fact be considered in every L"(R% m), r € [1,00]. The regularity prop-
erties comprise strong Feller properties, i.e. the existence of continuous versions P, f,
f e LY(RYm) + L®°(R% m) and Rng, g € LY(R%, m) + L®(R? m), q defined as in Sec-
tion 5.2, of T, f and G,.g, as well as the irreducibility of (P,);~o and strict irreducibility
of the associated L*(R¢, m)-semigroup (7});~o (Lemma 4.2.2).

For more general coefficients A, G than those in [13, Theorem 1 (i)], we prove by
different method the existence of a pre-invariant measure of L in Theorem 5.2.2; es-
pecially making use of Lemma 5.1.3, Lemma 5.1.4. Although the proofs of Theorem
5.3.1, Theorem 5.3.3, Theorem 5.3.5 seem to be similar to those of (3.9), Theorem
3.1.8, Theorem 4.2.2, the details are slightly different. In contrast to previous results
([10], [1], [8], [62]), where regularity theory of equations whose solutions are measures
is used, we use elliptic and parabolic regularity theory for divergence form operators,
which allows the diffusion and drift coefficients to be more general.

In Chapter 6, we investigate the stochastic counterpart of (P;);~o. Adding just as-
sumption (b) to assumption (a) suffices to obtain that ()¢ is the transition function
of a Hunt process Ml and to carry over most of the probabilistic results from Part I to
the more general situation considered here (see Remark 6.1.2 and Theorem 6.1.3 which
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states that M solves weakly the stochastic differential equation with coefficients given
by L), i.e. for all zy € RY,

t t 1
X =29 +/ o(Xs)dW +/ (EVAT + H) (Xs)ds, Py-as. 0<t<( (1.6)
0 0

where 0 = (0;)1<i j<4 1S any matrix of functions satisfying A = oo, Our conditions for
weak existence of Ito-SDEs allow the drift vector field to be in L, (R, R?), ¢ € (£,d). It
seems to be the most general condition for drift vector fields in the literature up to now.
However our condition to obtain weak existence requires the components of the diffusion
coefficient A to be in H-*(RY) and VAT € L (R% R%), which is slightly less general
than previous results that allow for bounded and continuous diffusion coefficients as
in [71, Theorem 7.2.1] or just bounded and measurable diffusion coefficients as in [38,
Chapter 2, Theorem 6.1]. Under our assumptions (a), (b), it is not clear at present
whether pathwise uniqueness for (6.1) holds or not. We present some new non-explosion
condition, which leads to a moment inequality. It also allows for L(R%, m)-singularities
outside an arbitrarily large compact set and linear growth at the same time. This is
illustrated in the Example 6.1.5. In Section 6.2, we discuss the relation of L'(R% m)-
uniqueness from [69], the strong Feller property derived here and uniqueness in law.
More precisely, we obtain a result on uniqueness in law among all right processes that
have m as sub-invariant measure (see Propositions 6.2.3 and 6.2.4).

In order to obtain the strong Markov property of a weak solution to (1.6) through
the method developed by Strook and Varadhan as in [37, Theorem 4.20], the knowledge
of uniqueness in law is crucially needed (see [82, Proposition 2]). But since our weak
solution to (1.6) is a Hunt process, it automatically satisfies the strong Markov property
independently of uniqueness in law. Moreover, different from the previous methods that
require the result for uniqueness in law to obtain a local weak solution to It6-SDEs
whose coefficients are locally bounded (see [71, Chapter 10.1]), we directly obtain a local
weak solution without using uniqueness in law even in the case of locally unbounded
drift vector fields.

Finally, we would like to discuss a special aspect of our work, which we think is
remarkable and to relate our work to some other references. The Hunt process M which
is constructed in Part II satisfies the following Krylov type estimate: let g € L"(R%, m)
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for some r € [g,00]. Then for any Euclidean ball B there exists a constant cp,.,
depending in particular on B, ¢, and r, but not on g € L"(R? m), such that for all
t>0 .

supE, [/ 9(Xs) ds] < B 19l r e m)- (1.7)

z€B 0
Using Theorem 5.3.1 below, (1.7) can be shown exactly as in Lemma 3.2.3 (ii). Such
type of estimate is an important tool for the analysis of diffusions (see for instance [38]
and in particular [38, p.54, 4. Theorem] for the original estimate involving conditional
expectation, or also [30] and [84]). A priori (1.7) only holds for the Hunt process M
constructed here. However, if pathwise uniqueness holds (for instance if the coefficients
here are locally Lipschitz or under the conditions in [84]), or more generally uniqueness
in law holds for the SDE solved by M with certain given coefficients, then (1.7) holds
generally for any diffusion with the given coefficients. If further g € L"(R?) has compact
support, then ||g|| ;- gd,m) in (1.7) can be replaced by ||g|| - re), when cp ., is replaced by
a constant cp, , that also depends on the values of p on the support of g. If /T, A, p, B
are explicitly given, as described in Remark 5.3.7(i), i.e. the case where the generalized
Dirichlet form is explicitly given as in [69], then (1.7) holds with explicit p and (1.7)
can be seen as a Krylov type estimate for a large class of time-homogeneous generalized
Dirichlet forms. As a particular example, consider the non-symmetric divergence form
case, i.e. the case where H = 0 in (1.5). Then the explicitly given p = 1 defines a pre-
invariant density. Hence m in (1.7) can be replaced by Lebesgue measure in this case.
The latter together with some further results of this article complements analytically as
well as probabilistically aspects of the works [72], [63], and [75] where also divergence
form operators are treated, but where more emphasis is put on the mere measurability
of the diffusion matrix and not on the generality of the drift.

In Part 111, we present a well-posedness (weak existence and uniqueness in law) result
for degenerate 1to-SDEs whose diffusion coefficients and drift vector fields are possibly
discontinuous. In the case where the diffusion coefficient is non-degenerate, bounded
and uniformly continuous, and the drift vector field is bounded, Strook and Varadhan
showed weak existence and uniqueness in law (see [71, Theorem 7.2.1]). However in
the case where the diffusion coefficient is degenerate, somewhat restrictive conditions

10



CHAPTER 1. INTRODUCTION

on the diffusion and drift coefficients, namely local Lipschitz continuity and global
boundedness are required in [71, Theorem 6.3.4]. On the other hand, the condition for
mere weak existence of degenerate It6-SDEs can be relaxed to bounded and continuous
diffusion coefficients and bounded drift vector fields ([37, Theorem 4.22]). To obtain our
weak existence, we use the theory of generalized Dirichlet form based on a functional
analytic frame and elliptic and parabolic regularity results for PDEs. To do this, we
study an analytic theory for second order partial differential operators with possibly
degenerate and discontinuous diffusion coefficients, which are given by

Lf— %trace(ﬁw N+ (G,  feCERY, (1.8)

where A:= 1A and A, ¢, G satisfy (A1) in Section 8.3.

In Chapter 7, we investigate some regularity results for linear parabolic PDEs in-
volving divergence form operators with weight function in the time derivative term as
in (7.1). The weight function is bounded below by a positive constant. Developing the
arguments in [2], we derive an L>-estimate of solutions of weighted parabolic PDEs
in terms of the Lp%—norm, where p > d is arbitrary but fixed. Besides, we present
the standard elliptic Holder regularity and Holder estimate of solutions in terms of the
L%-norm which were proved in [67].

In Sections 8.1, 8.2 of Chapter 8, using the main ideas and techniques from [69], we
improve the L'-existence result for elliptic second order partial differential operators
with degenerate diffusion coefficients defined as (1.8). Our pre-invariant density is pt

o

and pwﬁ = pA is non-degenerate since p € L (RY) is a positive function satisfying

% € L. (RY), so that our arguments are connected with the methods of [69] and regu-
larity results of Chapter 7 involving a non-degenerate matrix of functions. In Section
8.3, we first show in Theorem 8.3.1 the existence of a pre-invariant measure pydx for
L in (1.8) and p has nice regularity. Although we did not derive parabolic Holder regu-
larity, by combining regularity results of Chapter 7 and our main arguments developed
in Part I and II, we derive general strong Feller properties of our semigroup as well as
resolvent (Theorem 8.3.3, Lemma 8.3.4, Theorem 8.3.6).

In Chapter 9, using one of the main arguments from Part I, Theorem 3.2.1, we con-

struct a Hunt process associated with a general strong Feller semigroup (F;)¢~. Then

11
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we identify our constructed Hunt process with a weak solution to the corresponding
degenerate [t6-SDE whose diffusion coefficients are possibly discontinuous. To obtain
the existence of a Hunt process as a weak solution to degenerate 1t6-SDEs starting
at every point in R, we should make use of the existence of such a Hunt process for
merely almost every starting point, which is showed in Proposition 9.1.1.

Note that Krylov type estimate in Remark 9.1.4 are derived by an elliptic Holder
regularity and an estimate of the resolvent (Theorem 7.2.2), which is distinct from
Theorem 5.3.1 that is induced by elliptic H'P-regularity results. The integral orders in
the right-hand side of the Krylov type estimate are usually bigger than those of (1.7),
but the constant Cp,; of (9.1) does not depend on the VMO condition of the diffu-
sion coefficient. We mention that some of the conservativeness criteria which are anal-
ogous to those of Part I, for instance, Theorem 4.1.2, Theorem 4.1.4 (i) as well as [69,
Proposition 1.10](a) also can be applied to our constructed Hunt process. Furthermore
if we consider a special weight function like ¢ := W for some o > 0 which has only
one singular point in RY, we can show that strict irreducibility holds (Lemma 9.2.1,
Corollary 9.2.2). Therefore recurrence and transience results as in Proposition 4.2.5,

Theorem 4.2.7, Lemma 4.2.8, Theorem 4.2.9 can be applied to our constructed Hunt
1
[lzfl

results for weak existence and strict irreducibility.

process if ¢ = We present a concrete example in Example 9.2.3 that satisfies our

In Section 9.3, assuming (A4’), we show uniqueness in law for our degenerate Ito-
SDEs whose dispersion matrix and drift vector field are possibly discontinuous. Our
results are new in the sense that examples for uniqueness in law in the case of fully
discontinuous dispersion matrix seem to be unknown. The local Krylov type estimate
for the solution of our degenerate Ito-SDE plays an important role to derive a time
dependent It0’s formula for weak differentiable functions with certain regularity. More-
over, we apply elliptic H>?%+2_ regularity results for non-divergence form operators to
our resolvent and use the properties of the semigroup which directly solves the Cauchy
problem. Since our semigroup is closely related to our resolvent which has nice regular-
ity, parabolic regularity results involving degenerate matrix of functions are not needed
in our case. Our result for uniqueness in law allows for fully discontinuous dispersion
matrix and it partially improves [41, Theorem 3.11] as well as [74, Theorem 3.1] in the

case of time-homogeneous [to-SDEs.

12
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In Part IV, we generalize the results of Part I, II, considering the case where pre-
invariant measures with general conditions are given. Using [29, Lemma 13| which im-
proves [69, Theorem 1.5], more general pre-invariant measures than those in [69] can
be investigated. We expect that results in Part IV can be used to show not only gen-
eral strong Feller properties of transition functions of Hunt processes which have skew
reflections or normal reflections, but also to show weak existence for SDEs with reflec-
tion terms (see Remark 11.1.1, 11.1.8, 11.2.2). For the sectorial case, one can use the
analyticity of the semigroup and the conservativeness of the resolvent to obtain the
classical strong Feller property of the semigroup as in [1], [8], [9], [7], [62]. But since we
use generalized Dirichlet form techniques and the elliptic and parabolic regularity the-
ory for divergence form operator, it is possible to derive not only general strong Feller
properties including the classical strong Feller property but also strict irreducibility
and irreducibility of the semigroup without sector condition assumption.

To do this, in Chapter 10, we generalize some parabolic regularity results of [2] in
the case where the weight function ¢ in the time derivative term is bounded below
and above by some positive constants. Different from Part III, since the weight in Part
IV is bounded below and above by some positive constants, we can derive a parabolic
Harnack inequality as well as the L>- estimate in terms of the L?-norm. Thus we can
show that the solutions of linear parabolic PDEs involving divergence form operators
with a weight function v in the time derivative term satisfy a Holder regularity result
and a pointwise parabolic Harnack inequality, which allow us to show general strong
Feller properties, irreducibility and strict irreducibility of our semigroup. The proof
of the Harnack inequality is based on the fundamental inequality (10.5) and Lemma
10.2.1 which involve the weight function . Then using the technique of the proof of |2,
Theorem 3] and [53, Main Lemma|, we derive the parabolic Harncak inequality (The-
orem 10.2.2), which also partially improves the result [73, Property II] where symmet-
ric Dirichlet forms on abstract spaces are treated and their pre-invariant measures are
more general than ours. Since we only treat about weighted parabolic PDEs of linear
type and assume boundedness of solutions of our PDEs, some procedures to derive
regularity results of solutions are simpler than those in [2] that considers quasi-linear
parabolic PDEs and does not assume the boundedness of the solution. However since
our parabolic PDEs are always formulated with weight functions in the time derivative

13
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term, we rigorously check the details.

In Chapter 11, using methods as in Part I, II, III and regularity results of Chapter
10, we present a weak existence result in the case where a general pre-invariant mea-
sure and diffusion coefficients are given, and we obtain analytic and probabilistic re-
sults which are analogous to those of Part II, general strong Feller properties including
classical strong Felller property, strict irreducibility and irreducibility, non-explosion,
recurrence and transience, ergodic properties (see Theorem 11.2.4). We would like to
emphasize that the Krylov type estimates (11.8) of our constructed Hunt process also
hold. But since we use elliptic Holder regularity and estimates in Theorem 7.2.2 like
in the case of (9.1), the constant Cp,; > 0 does not depend on the VMO condition
of its diffusion matrix. We expect that in our later research, this Krylov type estimate
would play an important role to study some approximations of stochastic processes
with merely measurable diffusion coefficients which have no weak differentiability. In
Section 11.2, we consider the case where general diffusion coefficients and drifit vector
fields which are possibly discontinuous, are explicitly given. In Theorem 11.3.1, we find
a pre-invariant measure using Theorem 5.2.2, hence obtain exactly the same framework
as in Part IV where general pre-invariant measures are explicitly given. Through this
work, we obtain in Theorem 11.3.2 up to our best knowledge the present most gen-
eral results for global well-posedness and ergodic properties of non-degenerate time-

homogeneous [t6-SDEs whose dispersion coefficients are possibly discontinuous

The work also shown that the previously used techniques to handle the 1to-SDE
(1.1) for the last 20 years, mainly based on Krylov type estimates and Girsanov trans-
formation, seem not to be the appropriate and optimal ones. Through the research in
this thesis which is an analytic approach to time-homogeneous It6-SDEs with rough
coefficients using generalized Dirichlet form theory and elliptic and parabolic regularity
theory, we hope to provide a new tool for the study of [t6-SDEs and their applications.

14



Chapter 2

Notations

Throughout, we consider the Euclidean space RY, d > 2, equipped with the Eu-
clidean inner product (-,-), the Euclidean norm || - || and the Borel o-algebra B(R?).
We write | - | for the absolute value in R. For r € R, r > 0 and 2 € R% let
B,(z) == {y € R?||lz — y|| < r} and denote its closure by B,(z) (similarly for a
subset A C RY, let A denote its closure). If 2 = 0, we simply write B, and B,. We call
a subset B C RY, for which B = B,(x) for some r > 0 and x € R?, a ball. Let R,(r)
denote the open cube in R? with edge length r > 0 and center x € R% and denote its
closure by R,(r). The minimum of two values a and b is denoted by a A b := min(a, b)
and the maximum is denoted by a V b := max(a,b). For two sets A, B, we define
A+ B:={a+bla€ Aandbe B}.

The set of all B(R?)-measurable f : R — R which are bounded, or nonnegative
are denoted by By(R?), BT (R?) respectively. Let U C R, be an open set. The usual
Li-spaces Li(U, ), ¢ € [1,00] of Borel measurable or classes of Borel measurable
functions (depending on the context) are equipped with Lf-norm || - ||zew,) with
respect to the measure p on U and Li (R p) := {f | f 1y € LYR% ), VU C
R? U relatively compact open}, where 1, denotes the indicator function of a set A C
R?. Define L] (R4, R, 1) :={G = (g1,...,94) : R* > R? | g; € L] (R% ), 1 <i < d}.
Given any open set U in RY, define LY(U,R% ) :== {F = (f1,....fa) : U — R4 |
fi € LY (U, p),1 < i < d}, equipped with the norm, [|F||zew, = [IIF|lllzewpw, F €
L (R4 R ). The Lebesgue measure on R? is denoted by dx and we write LY(U),

loc

q
Lloc loc loc loc
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CHAPTER 2. NOTATIONS

respectively.

For an open set U in R? define |U| := [, 1dz. For an open interval I in R and
p,q € [1,00], denote by LP?(U x I) the set of Borel measurable function f on U x I
such that

1Al zeawsny == G e llzaey < oo,

In order to avoid notational complications, we assume that locally integrable functions
are whenever necessary pointwisely given (not for instance equivalence classes) and
hence measurable. Moreover, whenever a function f possesses a continuous version,
we will assume it is given by it. However, if in a situation, it should be necessary
or important to distinguish between classes and pointwisely given functions, we will
mention it. If A is a set of measurable functions f : R? — R, we define Ay := {f € A |
supp(f) : = supp(|f|dz) is compact in R4} and A, : = AN L®(RY). As usual, we also
denote the set of continuous functions on R¢, the set of continuous bounded functions
on R? the set of compactly supported continuous functions in R? by C(R?), Cy(R),
Co(R?), respectively. Two Borel measurable functions f and g are called p-versions of
each other, if f = g u-a.e.

Given Borel measurable function f on open subset U of R? let Vf := (0.f,...,0af),
where 0, f is the j-th weak partial derivative of f on U of R? and 0;;f := 0;(9,f),
i,j = 1,...,d. The Sobolev space H“(U), ¢ € [1,00] is defined to be the set of
all functions f € L9(U) for which 9;f € LU(U), j = 1,...,d, and H Y(U) := {f :
f-pe HY(U), Vo € C(U)}. Here CY(U), k € NU{oo}, denotes the set of all k-fold
continuously differentiable functions with compact support in U, and C(U) denote the
set of continuous functions vanishing at infinity, i.e. given £ > 0, there exists a compact
set K C U such that |f(z)| < € for all z € U \ K. For Borel measurable function g
on open subset Q of R? x R, given i € {1,...d}, denote by 0;g the i-th weak spatial
derivative on @ and by ;g the weak time derivative on Q. For p, ¢ € [1, oc], let W2 (Q)
be a set of locally integrable functions ¢g : @ — R such that 0,9, 0,9, 0;0,9 € LP(Q)
for all 1 <i,j < d. Let W>'(Q) := W} (Q).

Let V be a bounded open set in R? and f : V — R be a continuous function. Define

16
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| flle) = supy f. For B € (0,1) define

|f(z) = fy)]

holg(f,V) = sup{ I

:a:,yevw#y} € [0, 9],

and the Holder continuous functions of order 8 € (0,1) on V by
COP (V) :={f € C(V) : holg(f,V) < oo}
Then C%%(V) is a Banach space with norm

£ llco.s) = sup|f(2)] + hols(f, V).

zeV

The space of all locally Holder continuous functions of order 3 € (0,1) on R? is defined
by
CYP(RY) .= {f : f e CY(B) for any ball B}.

loc loc

Let @ be a bounded open set in R? x R and ¢ : @ — R be a function. For § € (0,1)
denote

phily(g, Q) = sup { AT ZIGIN o e, (00) £ (5) b € (0,00,

(I —yl+ V=)

and the parabolic Hélder continuous functions of order § € (0,1) on @ by

C¥3(Q) := {9 € C(Q) : phily(9. Q) < oo}
Then C"S?%(@) is a Banach space with norm

sup |g(z,t)| + phéls(g, Q).

I9ll o8 ) =
o2 @) (z,t)EQ

g is called locally parabolic Holder continuous, if for any bounded and open set @,
there exists 6 = 6(Q), such that g € C"s?g(@). Here 6 may be different for different Q).
In particular, if ¢t € R is fixed, we then say that g(-,t) is locally Hélder continuous with

17
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possibly changing Holder exponents.
For a matrix A, let AT denote the transposed matrix of A. If A = (a;j)1<i j<a consists
of weakly differentiable functions a;;, we define

VA= ((VA),....(VA)), (VA), Z@aw, 1<i<d.

7j=1

If f is two times weakly differentiable, let V2f denote the Hessian matrix of second
order weak partial derivatives of f. In particular

trace(AV?f) = Z a;;0;0; f.

4,7=1

If p is weakly differentiable and a.e. positive then

B = (B, g = 5 (VA E),

is called the logarithmic derivative of p associated with A. Hence

d
9
B’DA Z(@aw+aw pp)) 1< <d.

7=1

For a Borel measurable function 1, define g#4¥ = iﬁp’A. For a bounded open subset
U of R? and a possibly non-symmetric matrix of functions A = (aij)1<ij<a on U, we
say that A is uniformly strictly elliptic and bounded on U, if there exists A > 0 and
M > 0 such that for any & = (&,...,&) € R, 2z € U,

d

Z @& 2 All®,  max Ja;(@)] < M.

In that case, A is called the elliptic constant and M is called the upper bound constant
of A.

18
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properties for time-homogeneous
It6-SDEs with locally integrable

drifts and Sobolev diffusion
coefficients
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Chapter 3

Weak solutions via analytic theory

3.1 Analytic theory of generalized Dirichlet forms

Let ¢ € Hl’z(Rd) be such that the measure m := pdx, p := ¢?, has full support on

loc

R?. Let Hy”(R% m) be the closure of C3°(R?) in L(R?, m) with respect to the norm
(Jas IV I+ £2) dm)? and Hy (R m) := {f : f- € Hy*(RY,m), Yo € C3o(RY)}.

loc

Let A = (a;j)1<ij<a With a;; € Hllgf(Rd,m) be a symmetric matrix of functions and

locally uniformly strictly elliptic, i.e. for every (open) ball B C R? there exist real
numbers Ag, Ag > 0, such that

A ll€]? < (A(@)€,€) < Apli€)? forall € €R? z € B. (3.1)

Let G = (g1, ...,94) € L2 (R4 R% m) be such that with

loc

d d
1
Lf =5 ) ayddif + ) adif, feCFRY,
i,j=1 =1
it holds
/ Lfdm =0, VfeCFRY. (3.2)
R4
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Then it is shown in [69, Theorem 1.5] that there exists a closed extension (L, D(L)) on
LY (R m) of (L, Cg°(R?)) that generates a sub-Markovian Cy-semigroup of contractions
(T})¢>0. Restricting (T});s0 to LY(RY, m),, it is well-known by Riesz-Thorin interpolation
that (73):>0 can be extended to a sub-Markovian Cy-semigroup of contractions on each
L™ (R4 m), r € [1,00). Denote by (L,, D(L,)) the corresponding closed generator with

graph norm

I lp.) = 1 ller@amy + Lo fllr @amy,

and by (G4 )a>0 the corresponding resolvent. For (7})s~ and (G4)a>0 we do not explic-
itly denote in the notation on which L"(R? m)-space they act. We assume that this
is clear from the context. Moreover, (T})i~o and (G4)a>0 can be uniquely defined on
L>(R%,m), but are no longer strongly continuous there.

Writing
- —ZaZJ88f+ZﬁpA8f+Z — B0, (3.3)
2,7=1
with
1< 0;
prt = §Z(ajaij+aij%)>a 1<i<d, p~*= (Bt .. 607"

we observe that (3.2) is equivalent to
/ (G —prAVfydm =0, VYfe€CrRY, (3.4)
Rd

hence

/ Lfdmn=0, VfeCrRY, (3.5)
R4

21

-':rx I 'kl:l- 1_-]i



CHAPTER 3. WEAK SOLUTIONS VIA ANALYTIC THEORY

where

- —ZauaaerZﬁ”Aaf Z — B0, (3.6)

2,0=1

Noting that g; := 2ﬁp —g; € L2 _(R% m), we see that L and L have the same structural

properties, i.e. they are given as the sum of a symmetric second order elliptic differential

loc

operator and a divergence free first order perturbation with same integrability condition
with respect to the measure m. Therefore all what will be derived below for L will hold
analogously for L. Denote the operators corresponding to L (again defined through [69,
Theorem 1.5]) by (L,, D(L,)) for the co-generator on L™(R% m), r € [1,00), (T})s0
for the co-semigroup, (Ga)aso for the co-resolvent. By [69, Section 3], we obtain a
corresponding bilinear form with domain D(Ly) x L*(R% m) U L?(R%, m) x D(zg) by

£(f.g) = | ~lraLaf gdm  for f € D(Lo). g € LR, m),
)= — Joa [ Logdm for f € L2 (R4, m), g € D(/[:Q).

£ is called the generalized Dirichlet form associated with (Ls, D(Ls)). Using integration
by parts, it is easy to see that

&9 = 5 [ (AVETgdm— [ (G-, gdm, g€ CRERY. ()

2

The following lemma, see [69, Remark 1.7(iii)], will be used later:
Lemma 3.1.1. Let u € D(Ly),. Then u* € D(Ly); and

Liu® = (AVu, Vu) + 2uLu.

We are going to restrict our previous assumptions to the ones of the following
theorem. The theorem itself is an immediate consequence of an important result [12,
Theorem 2.4.1] (see also [13, Theorem 1] for the original result), which itself is derived

by using elliptic regularity results from [76] in an essential way.

Theorem 3.1.2. Let p > d be arbitrary but fized. Let A := (a;j)1<ij<a be a symmetric
d x d matriz of functions a;; € HP(RY) satisfying (3.1). Let G = (g1,...,94) €

loc
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LP

loc

and such that

(RY,RY). Then there exists p € COl PR 0 HEP(RY) with p(z) > 0 for all 2 € R?

loc loc

(G — B4 Vp)pdr =0, Ve e CF(RY,

Rd
with
/szA 6 Lp

loc(Rd7 Rd) .
In particular, setting

B = (by,...,ba) = G — g,

we have obtained a representation of an arbitrary G € L} (R, RY) as the sum of the

logarithmic derivative B4 associated to A and p and a pdx-divergence free vector field
B e [} _(RYR?), namely

loc

G = 5" + B.

Remark 3.1.3. [t is possible and not difficult to generalize Theorem 3.1.2 (and basi-
cally everything that follows below) in two directions. We do not do this here because it
only leads to technical and notational complications, which are better to be investigated
and overcome elsewhere. But all necessary tools can be found in this work. The two
directions are:

(i) Theorem 3.1.2 also holds with R? replaced by any open set U C R, Hllo’f(U)
defined as in Chapter 2, and

LP

loc

(U) :={f: fly € LP(U), YV relatively compact open with V C U},

C’loo’i_d/p(U) = {f: f e COVYPV), YV relatively compact open with V C U},

by considering an exhaustion with bounded and open sets (Vy,)n>1 of U, i.e.

Vi CVoyC Vi foralln €N and U, V, =U.

(11) Asin [12, Theorem 2.4.1], the regularity conditions on a;;, g;, 1 <1i,j < d, can be
generalized to a;; € H"'n(B,) and g; € LP(B,) with p, > d. The only interesting
case is when lim,,_,.. p, = d, which leads to a slight but technical improvement of
the conditions of Theorem 3.1.2. Note that (By)n>1 here is a special exhaustion
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with bounded and open sets of R? but one can generalize this to an arbitrary
ezhaustion with bounded and open sets (Vy,)n>1 of R

From now on unless otherwise stated, we fix one density p as in Theorem 3.1.2 and
hence assume that

A = (aij)lgi,jgch G = (917 ce 79{1)7 Bp,A - (6{)’147 teey fj),A)? B= (b17 "'7bd)7

are as in Theorem 3.1.2 with
p > d.

This implies all assumptions prior to Theorem 3.1.2 and we fix from now on the cor-
responding generalized Dirichlet form £ associated with (Lq, D(L)) and all the corre-
sponding objects under the assumptions of Theorem 3.1.2. As before, we set

m = pdzx.

Note, that due to the properties of p in Theorem 3.1.2, we have that L} (RY) =
LY (R4 m) as well as L} (R4 R?Y) = L7 (RY R m).

loc loc loc

We will use the following result from [8, Theorem 5.1], adapted to our needs.

Proposition 3.1.4. Let d > 2 and p a locally finite (signed) Borel measure on R that
is absolutely continuous with respect to Lebesque measure on R, Let A = (aij)1<ij<d
and p > d be as in Theorem 8.1.2. Let h;,c, f € LT (R?) and assume that

loc

d

d
/]Rd < ) %8@@ + ) hidip + c@) dp = /Rd pfdr, Yy e CFRY),
=1

ij=1

where h;, ¢ are locally p-integrable. Then p has a density in Hllo’f(Rd) that is locally
Hélder continuous.

We further state a result originally due to Morrey (see the wrong statement in the
original monograph [55, Theorem 5.5.5’] and [12, Theorem 1.7.4] and Corollaries for its
correction).
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Proposition 3.1.5. Assume p > d > 2. Let B' C R? be a ball, h = (hy, ..., hq) : B —
R? and c,e : B' = R such that
dp

hie LP(B),1<i<d, and c¢,ec Li(B =2
(B'),1<:i< and c,e (B") for q e

Let A = (aij)1<ij<a be as in Theorem 3.1.2. Assume that u € H"*(B') is a solution of
d o
// > (@«0(2 - O+ hU>) +o(cute)dr =0, Vye g (B),
i=1 j=1

Then for every ball B with B C B', we obtain the estimate

ullirosy < colllellzagen + ).
where ¢y < 00 is some constant independent of e and u.

Now, we will apply the standard arguments from [1] whose details have been exposed
in a very clear way in [8]. We will briefly explain (until and including Remark 3.1.7)
the line of arguments how Propositions 3.1.4 and 3.1.5 lead to elliptic regularity results
for (Ga)aso and (T})¢=o by using well-known arguments (see for instance [1], [8], or
[62]). However, as we will see later, we will slightly improve some regularity results
compared to the just mentioned papers. First, we choose an arbitrary g € C§°(RY),
a > 0. Applying Proposition 3.1.4 with

w=—pGagdx, h; = /Bf’A—bz-, 1<i<d, c=—a, f=gpe L} (RY),

loc

we obtain pG,g € Hl’p(Rd). Then, we apply Proposition 3.1.5 with

loc

d
u=pGag, hizz(%—wﬁ—bi)), 1<i<d,

J=1

and
c=a, e=pg € LI(B),
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where

_dp

= o € [2.p/2) (3.8)

q:
By the properties of p, we obtain

1o Gagllmas) < co (|9l Lam) + 1Gaglli s m) »

where ¢q is possibly different form the constant in Proposition 3.1.5, but also doesn’t
depend on g. The last inequality is easily seen to extend to g € L"(R% m), r € [q, 00l
using the contraction properties of (G, )a>0. From that we then get that for any r €
[q,00], @ >0

10 Gagllmosy < co (l9llrsrm) + |Gagllisrm) » Vg € L'(RY, m), (3.9)

where ¢q is a constant that may be different for different o and r, but doesn’t depend
on g. Using the contraction properties of (G4 )a>0, (3.9) immediately implies

lp Gagllzaes) < collgllir@am, Vg€ LR m), (3.10)

where ¢y in (3.9) may be different from ¢, in (3.10) but has the same properties.
Writing Tj := id and

Tif = Gi(1 = L)Tof, f € D(Ly), 7 € [g,00), t =20,
we can see by (3.9) that for any r € [¢,00), t >0
10T o) < colTif oy, VF € D(L,), (3.11)

where cg is a constant that may be different for different r, but doesn’t depend on f.
By Morrey’s inequality applied to an arbitrary ball B, there exists a constant ¢ > 0
independent of f such that

fllcos@) < clflmam, — VfeHP(B),
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where fon the left hand side is the unique continuous dx-version of f € H"“?(B) and

B:=1-d/p. (3.12)

In our situation p € C%#(B) for any ball B C R? and since inf, 5 p(z) > 0, we obtain
that + € C%(B). Now for f,g € C*(B) it holds f - g € C*?(B) and

1F - 9llcos) < 1 fllcos @9l cos - (3.13)

For any ball B, t > 0,a > 0,9 € L"(R%,m),r € [q,00|, f € D(L,),r € [g,00)

1pGagllmrsys |0TLf | mrees)

are bounded and so by Morrey’s inequality applied to each ball B and (3.13) there exist
unique locally Holder continuous m-versions R,g, P.f of G.g,T;f, where we set

PO = Zd,
with
| Ragllcosm) < o lcos@lpRagllconm < 107 lcos@mellpGagllaas)

and
1P fllcosm < Mo~ lcos@e lpTef | v s

Applying (3.9), (3.10), (3.11) to the last two inequalities, we get for any t > 0, a > 0,
g€ L"(RY,m), r € [q,00], f € D(L,), r € [q,00), and any ball B’ with B C B’

”Rag”COvB(P) < G (||9||L*(B',m)+||Go¢9“L1(B’,m))’ (3.14)
HRaQch(E) < collgllLr@emy, (3.15)
1Pifllcosm < collTefllpw., (3.16)
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where ¢y is a constant that may be different for different r (and different in each
inequality (3.14), (3.15), and (3.16)), but doesn’t depend on f, nor on g. We summarize
consequences of the derived estimates in the following proposition.

Proposition 3.1.6. Let t > 0, o > 0 be arbitrary and q, be defined as in (3.8),
(3.12). Then under the conditions of Theorem 3.1.2, it holds:

(1) Gag has a locally Hélder continuous m-version

R.g € CY(RY), Vge |J L'®R%,m).

loc
7€[g,00]

(1) Tif has a locally Hélder continuous m-version

PfeCyRY), vfe (J D(L).

loc
r€(g,00)

(iii) For any f € U,c(y00) D(Lr) the map
(z,t) = Pf(x)

is continuous on R x [0, 00).

Proof (i) and (ii) are direct consequences of (3.14), (3.15), (3.16). In order to show
(iii), let f € D(L,) for some r > ¢ and ((z,t,)),>, be a sequence in R? x [0,00)
that converges to (zg,ty) € R% x [0,00). Then there exists a ball B such that z, € B
for all n > 0. By (3.16) applied with t = 0 to P, f — P, f € D(L,), noting that
L.(P,,f—Pyf) = P, L.f — P, L,f and using the continuity for each g € L"(R? m) of
t + Pig on [0,00), we obtain that P, f — P, f in C%?(B). Then it is clear from (ii)
that

| Pecf () = Poo f (o) | < [Py f (2n) = Pro f(wn)[ + [Py f (2n) = By f (0)]

converges to zero as n — o0.
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Remark 3.1.7. (i) In comparison to [1], [8], [62], we obtained in Proposition 3.1.6(i)

(i)

(iii)

that (Gy)aso is L™(RY, m)-strong Feller for any r € [q, 0], which is an improve-
ment to the mentioned papers since there it is only obtained for r € [p,o0]. This
plays a role, since it will imply (1.2) forr = 2 . Indeed, we will see later in Lemma
3.2.4(ii) that [)|f|*(Xs)ds is finite in the sense of (1.2), whenever f € L} (RY).
But 2q € (d, p), hence [P (RY) c L (RY).

loc loc

We can use Proposition 3.1.6(i) to get a resolvent kernel and a resolvent kernel
density for any © € R?. Indeed, for any o > 0, v € RY, Proposition 5.1.6(i)
implies that

R,(z,A) = llg(r)lo Ro(1p,na)(z), A€ B(RY) (3.17)

defines a finite measure Ry (x,dy) on (R%, B(RY)) (such that aR,(x,dy) is a sub-
probability measure) that is absolutely continuous with respect to m. The Radon-
Nikodym derivative

R (z,dy)

) (3.18)

ro(x,:) =

then defines the desired resolvent kernel density.

If the L*(R4, m)-semigroup (T})i>o is analytic (for instance, if the bilinear form
in (3.7) satisfies a sector condition) then by Stein interpolation (T})i~o is also
analytic on L™(RY,m) for any r € (2,00) (cf. [62, Remark 2.5]). Hence by [56,
Ch. 2, Theorem 5.2(d)], we have for any r € [2,00), f € L"(R4, m)

const.

Tif € D(L,), and ||LTiflpr@am) < :

11| Ry -

Therefore, (3.16) can be improved and extended as follows: for any r € [qV 2, 00),
t>0, fe L (RYm) and any ball B

const.
t

1P oo < o (1+ )Hfqu(Rd,m). (3.19)
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CHAPTER 3. WEAK SOLUTIONS VIA ANALYTIC THEORY

We can then use (3.19) to get a heat kernel and a heat kernel density for any
x € R Indeed, for any t >0, x € R, (3.19) implies that

Pz, A) := lim P,(1p,na)(z), A€ B(R?) (3.20)

- l—00

defines a sub-probability measure P;(x,dy) on (RY, B(R?)) that is absolutely con-
tinuous with respect to m. The Radon-Nikodym derivative

_ Py(z,dy)
ST

then defines the desired heat kernel density. However, in general (T})i~o is not

(3.21)

analytic and therefore we cannot impose analyticity. Moreover it is in general
difficult to check analyticity, in particular the sector condition of the corresponding

bilinear form (see for instance [62, Section 5]).

Unfortunately, by what is explained in Remark 3.1.7(iii) the semigroup estimate

(3.16) which leads to Proposition 3.1.6(ii) seems just not good enough to obtain a point-
wise heat kernel from which one could then try to build a transition function of a nice
Markov process. We will proceed by deriving more regularity in the following Theorem
3.1.8.
Theorem 3.1.8. Let A := (ai;)1<ij<a; G, p, 874, and B be as in Theorem 3.1.2. For
each s € [1,00], consider the L*(R?, m)-semigroup (Ty)io. Then for any f € L*(R%,m)
and t > 0, Tif has a continuous m-version P,f on RY. More precisely, P.f(-) is locally
parabolic Hélder continuous on R? x (0,00) and for any bounded open sets U, V in
R withU CV and 0 < 13 < 7y < Ty < T4, i.e. [11, 7] C (73,74), we have for some
v € (0,1) the following estimate for all f € Usep o L*(RY, m) with f >0,

“P'f(')Hc%%(Ux[n,rg}) S Col|Pf ()N (v x(rs,m1),medt) s (3.22)

where Cg, 7y are constants that depend on U x [11, 73],V x (73,74), but are independent
of f.

Proof First assume f € C5°(R?), f > 0 and set u(z,t) := p(z)P.f(z). Then f € D(L,)
and by Proposition 3.1.6(iii) P;f(x) is jointly continuous on R? x [0, 00). Therefore the
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same is true for u(z,t). Let L be as in (3.6) and 7" > 0 be arbitrary. Then exactly as
in [10, (4.7)] (note that there the underlying measure m = p is a probability measure
but it doesn’t matter), we get for any ¢ € C5°(R? x (0,T))

T ~
0=— / / (atga + L@) wdzdt. (3.23)
0 R4

Note that u € H"*(O x (0,T)) for any bounded and open set O C R?. We can hence
use integration by parts in the right hand term of (3.23) and see that

Tt
0= / / <§<AVU, V) +u(B, V) — u@tcp) dxdt,
0 Jrd

where f:= 1A+ G — 2604 € L, (R RY), (VA) == Y0 djay,1 < i < d.

Let 75 := 242 and take r > 0 so that

. 1 [ T4 — To 1 [ T1 B —
r < min <§ T,§ 5) and Rf(97“) CV, Vz e U.

Then for all (z,%) € U x [, 73], we have £ — 2(9r)? > 0 and

Rz(9r) x (£+6(9r)*, +7(9r)?)) CV x (73, 74).
Using [2, Theorem 4], for any (z,t), (y,s) € Rz(r) x (£t —r?,t) we have

[ue,t) = uly, )| < Cor (Ile = yll + VIE = 5])

-
sup u,
Rz(3r) x (f—(3r)2,0)

where C7 and v < 1 — % are constants independent of f, r and (7,t). Thus u €
C%: (R,(z) x [t —r?,1]) and

||| ) < (1+Cir ) sup U.

53 (R (@)x 12,1 R (3r) X (= (3r)2.9)

Using the compactness of U x [r1, 73], there exist (v;,¢;) € U x [11,75],i = 1,..., N,
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such that
N

U X [11,7) C URM(T) x (t; — 1% t) =: Q.

i=1

Take a smooth partition of unity (¢;);—1,. n subordinate to (R, (r) x (t; — r*,;))._,
For each 1 < i < N, ¢u € C2(Q), so that u = ZZ]\LI ¢su in U x [r1, 7] implies
u € C%2(U x [, 7]). Furthermore, we have

N
Ilon i < ZH@“HC%%(UWW] Z”(bz“"cu(cz)

N
z;n@um 0l 1)

||¢z|| (1+Cyir77) | - max sup u .

S

I:CQ
(3.24)
Then, by [2, Theorem 2], for each 1 <i < N
sup u < CBHUHLQ(RIZ,(QT)X(tif(9r)2,ti))
Rzi(37‘)><(tl‘f(37’)2,ti)
< 03(187“)% - (9r) sup u
Ra, (97)x (ti—(97)2,1;)
d
< C3(18r)z - (9r) - C. inf
- 3( T) ( r) 4 Rzi(9r)><(ti+161(197")2,ti+7(97")2)u
d _
< CsCy(187) 72 - (97) " H[ull 1 (R, (o) x (t-+6(9m)2,t0+7(97)2))
4,0\
< CuCul1sr) 40n) " ullory (3.25)

=C5s

where C3 and Cy are constants which are independent of f and ;. Combining (3.24),
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(3.25) we have for s € [1,00)

"Pf(.)‘ycv;%(vx[fl7T2}) = HpilHC“’(UX[TN?DHp<.)p'f(.)HCW%(ﬁX[Tl,nD

< 0" or @t C2C5 1P F Ol v 7y ) ey
—Cs
< Co(ra = 7)ol 13 o 1 f 1 2o (Rt - (3.26)
For f € L*(R%,m) define
Pf(-):= lim Pf,(-) in C¥3(U x [r, 7)), (3.27)

n—oo

where (f,)n>1 C C§°(R?) is any sequence converging to f in L*(R% m). Then P f(-)
is well-defined, i.e. independent of the choice of (f,)n>1, and (3.26) (including all
intermediate inequalities) extends to f € L*(R¢,m). In particular, (3.22) holds for
fe LR m), f>0,s€ll,o0).

Moreover, given f € L*(R% m) and f, € C°(R?) with f, — f in L¥(R?, m), for each
t > 0 we have T, f,, = T, f in L*(U, m) and also P, f,, — P,f in L*(U,m) by (3.27) holds
for s € [1,00). Thus

P f=Tif m-ae.onU for each t > 0. (3.28)

This holds for arbitrary bounded open U, hence also on R?. Thus P, f is an m-version
of T, f.
For f € L*(R% m), take f, := 1p, - f with n > 1. Then for each ¢ > 0,

T,f = lim T,f, = lim P,f,, m-a.e. on R% (3.29)
n—oo n—oo

For each fixed (z,t) € V X (713,71), (Pifn(x))n>1 is an increasing sequence of real
numbers that is bounded by one by the sub-Markovian property and continuity of
z + P fu(z). Thus (3.22) for s = 1 and Lebesgue’s dominated convergence theorem
imply that (P.f,(-))n>1 is a Cauchy sequence in C72 (U x [r1,75]). Hence we can again
define

Pf(-):= lim P.f,(-) in C%3(U x [y, 7))

n—o0
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and (3.22) also holds for s = co. Moreover for each ¢ > 0, P, f,, converges uniformly to
P,f in U, hence in view of (3.29), (3.28) also holds for s = co. Since U is an arbitrary
bounded open subset in R¢, we have hence shown that for any f € USG[LOO]LS(]RC[, m),
P f(-) is locally parabolic Holder continuous in R?x (0, o0) and for each t > 0, P.f = T}f
m-a.e. on RY.

O

Remark 3.1.9. (i) (3.22) easily implies for any s € [1,00], f € L*(R%,m),t > 0 (cf.
for instance (3.26) for s € [0,00) and use the sub-Markovian property for s = co) that

s—1

IPifllcon@y < Colma = m)llpllLi ) - 1f1lLs@etm)s (3.30)

where %1 =1 for s = c0. (3.30) is an improvement over (3.19) in regard to analyticity,
which is no more required for (3.30), and in regard to the integrability order which is
s € [1,00] for (3.30) but r € [qV2,00) for (3.19). Only the Hélder exponent v in (3.30)
depends on the domain and may vary, whereas in (3.19) it is always § as in (3.12),
independently of the domain.

Using Theorem 3.1.8, we can define Pi(x,A) as in (3.20) and we see that there exist
unique sub-probability measures Pi(x,dy) on (RY, B(R?)), absolutely continuous with
respect to m and with Radon-Nikodym derivatives py(x,-) defined by (3.21).

(i) Let A := (ai)1<ij<a, G, p, B7?, and B be as in Theorem 3.1.2, but suppose
p > d+ 2 and that m is a probability measure. In this case similar results to Theorem
3.1.8 and the following Proposition 3.1.10(ii) and some additional structure with respect
to duality is derived in [10, Theorem 4.1]. The technique of proof is different to ours but
also applies if m is not restricted to be a probability measure (cf. [10, Remark 4.2(ii)]).
However, we insist that K¢(x,dy) as occurring in [10, Remark 4.2(ii)] is in contrast to
what is mentioned in [10, Remark 4.2(ii)] always a sub-probability measure and hence
finite and moreover in case of merely locally finite measure only the L'(R?, m)-strong
Feller property follows, whereas we derive the LIN(RY, m)-strong Feller property (see
Theorem 3.1.8 and Proposition 3.1.10 for the definition), that includes the classical
strong Feller property.

(111) As opposed to [1, Proposition 3.8], we do not need the condition aRylge = 1 in
order to derive the classical strong Feller property of (P;)i>o. Also in [85], non-explosion
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(see (4.2) below) is used to obtain the classical strong Feller property.
Using Theorem 3.1.8, we obtain the following improvement of Proposition 3.1.6:

Proposition 3.1.10. Let t > 0, > 0 be arbitrary. Let q, 5 be defined as in (3.8),
(3.12), ro(x,y) as in Remark 3.1.7, and pi(z,y) as in Remark 3.1.9. Then under the
conditions of Theorem 3.1.2, it holds:

(1) Gag has a locally Hélder continuous m-version of order §=1—d/p

Rog= | JWRa(vdy) = | J@)ralp)mdy), Yge |J LR, m).  (331)

r€(g,00]

In particular, (3.31) extends by linearity to all g € LY(RY, m) + L=(R%, m), i.e.
(Ra)aso s LI#N (R m)-strong Feller.

(i) Ty f has a continuous m-version

Pf= | J@BCd) = | T@p(ymdy), Ve U re®im). (332

s€[1,00]

(Fif is locally Holder continuous of order B =1 —d/p, if [ € U,cpy00) D(Lr))
and locally Holder continuous with possibly changing Holder exponents, if f €
Useqton L3 (R, m) \ Usrejgoo) P(Lr). In particular, (3.32) extends by linearity to
all f € LY(R%,m) + L*¥(R4, m), i.e. (P)iso is LN (R, m)-strong Feller.

Finally, for any a > 0,2z € R, g € LI(RY m) + L>=(R?, m)

R.g(x) :/ e " Pig(x) dt.
0

Proof Fix a > 0,t > 0,2 € R Let A € B(R?). Using (3.17), (3.18), monotone
integration and (3.14), we can see that

/R ) La(y)ra(z,y) m(dy) = / La(y) Ra(z,dy) = lim Ro(1p0a)(7) = Rala(e). (3.33)
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Using (3.20), (3.21), monotone integration and (3.22) (cf. proof of Theorem 3.1.8) , we
can see that

[ 1wt pimid) = [ 1a@)Podn) = Jim Placa(n) = PAa@). (334)

(3.33), resp. (3.34) extends to g € L"(R%,m), r € [q,00], resp. g € L*(R% m), s €
[1,00] in the following way. Split g, f in positive and negative parts. We may hence
assume that g, f are positive. Then we use a monotone approximation of g, resp. f with
simple functions involving indicator functions like above, i.e. there exists an increasing
sequence of simple functions (g,)n>1 with 0 < g, g, resp. (fn)n>1 with 0 < f,, 7 f.
By this we can use monotone integration for the two left hand terms of (3.33), resp.
(3.34), and (3.14), resp. (3.22) for the left hand term. Thus (i) and (ii) follow.

The last statement follows similarly noting that for A € B(R?)

R,14 = / 670[th114 dt
0

m-a.e. hence everywhere since both sides define continuous functions and we can as
before use monotone integration as well as (3.14) and (3.22) to prove the remaining
assertion.

]

Remark 3.1.11. We obtain analogously to [1] that (P;)i~¢ defined on
L (R4, m) = L®(R?) D B,(RY)

determines a (temporally homogeneous) sub-markovian transition function (cf. [17,
1.2]). Thus (P;)¢=o satisfies condition (H1) of [66]. Moreover, P.f, t > 0, is by Propo-
sition 3.1.10(ii) independent of the m-version chosen for f € L®(R m).
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3.2 Construction of a weak solution

By the results of [78, Section 4.1], the generalized Dirichlet form £ associated with
(Lo, D(Ly)) is strictly quasi-regular. In particular, by [78, Theorem 6] there exists a
Hunt process

M = (Q7 ﬁ? (ﬁ)tz()? (Xt)tz()? (Iﬁ)w)xeRdu{A})

with life time ¢ := inf{t > 0| X; = A} and cemetery A such that & is (strictly properly)
associated with M.

For some fixed ¢ € L'(R%,m),, 0 < ¢ < 1, consider the strict capacity cap, g,, of €
as defined in [78, Definition 1]. Due to the properties of smooth measures with respect
to cap, g,, in [78, Section 3] one can consider the work [79] with cap, (as defined in
[79]) replaced by cap, a,,- In particular [79, Theorem 3.10 and Proposition 4.2] apply
\ivith respect to the strict capacity cap; &, and therefore the paths of M are continuous
P,-a.s. for strictly £-q.e. z € R? on the one-point-compactification R4 of R? with A as
point at infinity, i.e. for strictly £-q.e. x € RY,

@w({w €| X(w) € C([0,00), RL), K (w) = A i > C(w)}) 1
We may hence assume that
Q= {w=(W(t)zo € C([0,00),RY) | w(t) = A ¥t > ((w)}

and
Xi(w) =w(t), t>0.

Now, we can apply the Dirichlet form method of [66, Section 2.1.2]. There it was only
developed in a symmetric setting. But here we are in the non-sectorial setting. However
one can readily check that it works nearly in the same way using Lemma 3.1.1 instead
of [66, Lemma 2.5(1)] and modifying (H2)" of [66, Section 2.1.2] in the following way:

37



CHAPTER 3. WEAK SOLUTIONS VIA ANALYTIC THEORY

(H2) We can find {u, | n > 1} C D(Ly) N Cy(RY) satisfying:

(i) For all e € QN (0,1) and y € D, where D is any given countable dense set in
R?, there exists n € N such that u,(z) > 1, for all 2 € Ei (y) and w, = 0 on
R\ B:(y),

(i) Ri([(1 = Li)ua]™), Ri([(1 = L1)un) ™), Ri([(1 = L1)u2]™), Ry ([(1 — Ly)u2] ") are

continuous on R? for all n > 1,
and
(iii) R;Ch(RY) C C(RY),

(iv) For any f € Cyp(RY) and z € R? the map t — P, f(x) is right-continuous on
(0, 00).

It is well known that u € D(Ly) such that u, Lou € L"(R?% m) for some r € [1,00)
implies uw € D(L,). Hence C3(R?) C D(L;) N Cy(R%) and moreover obviously (1 —
Li)u, (1 — L)u? € LP(RY), for any u € CZ(R?). Consequently, by Theorem 3.1.8 and
Proposition 3.1.10, (H2)' is satisfied for some countable subset of C3(R?).

Therefore, we obtain:

Theorem 3.2.1. There exists a Hunt process
M = (Q, F, (Fo)iz0, (Xt)iz0, (Pa)seriviay)
with state space R and life time
¢ =inf{t >0| X, = A} =inf{t > 0| X, ¢ R},

having the transition function (P;)>o as transition semigroup, such that M has contin-
uous sample paths in the one point compactification R of R with the cemetery A as
point at infinity, i.e. for all x € R,

Px({w € Q| X (w) € C([0,00),RL), X.(w) = AVt > C(w)}) =1.
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Remark 3.2.2. Checking the details of [1, Section 4] one by one with possibly only few
modifications one may possibly also obtain Theorem 3.2.1.

Lemma 3.2.3. Let E, denote the expectation with respect to P,, x € RY.

(i) For any v € RY, o > 0,t > 0, we have

Rag(o) = [ rotegtimian =, | [~ e gas].

for any g € LY(RY, m) + L=(R%,m), and

Rfte) = [ ple) lomdy) = B [£(X0),

for any f € LY(RY,m) + L=(R%, m).

In particular, integrals of the form [~ e~ **h(X)ds, fg h(Xs)ds, t > 0 are for any
x € R, whenever they are well-defined, P,-a.s. independent of the measurable m-
version chosen for h.

(ii) Let g € L"(R%,m) for somer € [q,00]. Then for any ball B there exists a constant
¢, depending in particular on B and r, such that for allt > 0

t
supE, [/ |g|(Xs)d5] < e'eprlgllLr@am)- (3.35)
0

z€B
(i4i) Let u € D(L,), for some r € [q,00) and o > 0, t > 0. Then for any x € R?

Ra((a — Lr)u) (x) = u(x),
and

Pu(z) —u(x) = /0 Py(L,u)(x) ds.

Proof (i) By Remark 3.1.11 and Theorem 3.2.1, we have for any ¢t > 0, z € R
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h € L®(R% m)

P(z) = / e y)h(yIm(dy) = B (X)), (3.36)

and the expressions in (3.36) are all well-defined, i.e. do not change in value for any
m-version of h. Now the resolvent and semigroup representations follow by splitting
functions in g € U,¢(y ) L"(R% m) and f € Uselt.o0) L*(R%,m) into their positive and
negative parts, using monotone approximations of these with functions in L>(R% m)
and finally linearity, which is possible since all expressions are finite by Proposition
3.1.10. In particular, the limits will as the original expressions in (3.36) also not depend
on the chosen m-versions, which concludes the proof.
(ii) Using in particular (i) and (3.15), we get
t 00
sk, | [lalce)as| < esw e | [Tl as
z€B 0 r€B 0
= e'sup Ri|gl(z) < e'callgllirgam)-
zeB

Using (i), the proof of (iii) works exactly as in [1, Lemma 5.1]. However, we emphasize
that due to the increased regularity r» > ¢ from (i) (coming from Proposition 3.1.6) in

comparison to r > p in [1], we obtain more general statements in (ii) and (iii).
O]

For A € B(RY), define
oa:=inf{t >0 : X; € A}

and

Op = Opa\B,,,N = 1.

Lemma 3.2.4. (i) For any x € R, we have

]P’x( lim o, > g) ~ 1.

n—oo
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(ii) For any v € RY, t > 0, we have

([ 1ods <o) =10 Fe U r@im

rée(q,00]

and if f € L] (R% m)

loc

. ({ [ nxas < b <) =B <),

Proof (i) By Proposition 3.1.10 and Lemma 3.2.3(i), we have that

E. [[5° e g(X,)ds] is an m-version of G,g, for all @ > 0 and g € L®(R?, m). It hence
follows by [68, IV. Theorem 3.1] (or [78, Proposition 2(ii)]) that £ is quasi-regular.
Therefore by [68, IV. Definition 1.7] there exists an E-nest (Ej),>1 of compact subsets
of RY. Then [68, IV. Lemma 3.10] implies, Px(limkﬁoo Opa\g, > C) = 1 for &-q.e.
r € R? hence in particular for m-a.e. z € R? by [68, III. Remark 2.6]. Since (B,,)n>1
is an open cover of Ej for each k, and 04 < op whenever B C A, we then obtain
Px<limn_>oo Op > C) =1 for m-a.e. z € R% Now the result follows exactly as in [62,
Lemma 3.3].

(ii) The first statement immediately follows from Lemma 3.2.3(ii). For the second state-
ment it is enough to show that for any ¢ > 0 and x € R?

¢
P, (1{t<<}/ |f](Xs)ds < oo) =1, if felLl (RYm). (3.37)
0

It holds P,(n Ao, < ) =1 for any n > 1 and = € R?, since M has continuous sample
paths on the one-point-compactification R4 . Thus using (i), we get that the left hand
side of (3.37) equals

t
lim P, (l{t@mn}/ |fI(Xs)ds < oo) : (3.38)
n—oo 0

Now, fix € R Then there exists Ny € N with z € B, for any n > N,. Consequently,
for any n > Ny we have P,-a.s. that X, € B, for any s € [0,t], if t < o,. It follows
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with the help of Lemma 3.2.3(ii)

t t
E, [1{t<wn}/0 yfy(xs)ds} <E, [/0 |f]13n(X5)ds] <0, ¥n> N,

Thus each sequence member in (3.38) is equal to one and therefore (3.37) holds.

Proposition 3.2.5. Let u € D(L,), for some r € [q,00). Then
t
M = u(Xy) —u(z) — / Lou(Xs)ds, t>0.
0

is a continuous (Fy)i>o-martingale under P, for any x € R If r > 2q, then M is

square integrable.

Proof The first result is an immediate consequence of Lemma 3.2.3 (see for instance
[19, Chapter 7, (1.6) Theorem]). The second follows from Lemma 3.2.3(i) and (ii).
O

Proposition 3.2.6. Let u € C2(RY), t > 0. Then the quadratic variation process (M)
of the continuous martingale M* satisfies Py-a.s for any v € R, t >0

(MY, = /O (AVu, Vi) (X,)ds.

In particular, by Lemma 3.2.8(ii) (M"™); is P -integrable for any x € R?, t > 0 and so
M™ is square integrable.

Proof For g € C2(R%), we have g € D(L,) and L,g = L,g for any r € [1,p]. Thus for
u € CZ(R%), we get by Proposition 3.2.5 and Lemma 3.1.1

W(X,) —uP(z) = M + /Ot ((AVU, Vu)(Xs) + 2uL1u(Xs)) ds.

42



CHAPTER 3. WEAK SOLUTIONS VIA ANALYTIC THEORY
Applying It6’s formula to the continuous semimartingale (u(X}));>0, we obtain
t t
w (Xy) — u?(z) = / 2u(Xs)dMY +/ 2ul,u(X)ds + (M"),.
0 0

The last two equalities imply that ((M U — fot (AVu, Vu}(Xs)ds> is a continuous
>0

P,-martingale of bounded variation for any z € R?. This implies the assertion.
O

For the following result, see for instance [16, Theorem 1.1, Lemma 2.1], that we can
apply locally.

Lemma 3.2.7. Under the assumptions of Theorem 3.1.2 on the diffusion matriz A,
there exists a unique matriz of functions o = (04)1<ij<a with o;; € C(RY) for all i, j
such that

A(z) = o(z)o” (x), Vx € RY,

i.e.

d
al](x) = Zo_ik(x)o-jk(x)ﬂ Vo € Rd7 1 < Za] S d.
k=1

and
det(o(z)) >0, VaecR%

Theorem 3.2.8. Let A := (a;j)1<ij<d; G, be as in Theorem 3.1.2. Consider the Hunt
process Ml from Theorem 3.2.1 with coordinates X; = (X}, ..., X2) and suppose that M
1s non-explosive, 1i.e.

P,(( =00)=1 for any z € R

(1) Let (0ij)1<ij<a be asin Lemma 3.2.7. Then it holds P-a.s. for any x = (xq, ...,24) €

R i=1,....d

d t t
Xi—a+ Y [op()an+ [a(x)ds, 0<t<s  (339)
=10 0
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CHAPTER 3. WEAK SOLUTIONS VIA ANALYTIC THEORY

in short
¢ ¢
X, =ux —|—/ o(Xs)dWy +/ G(Xs)ds, 0<t< o0,
0 0
where W = (W1, ..., W9) is a standard d-dimensional Brownian motion starting
from zero.

(it) Let (0i;)1<i<a1<j<i; | € N arbitrary but fized, be any matriz consisting of contin-

Syl > >

uous functions o;; € C(R?) for all i,j, such that A = oo™ (where A satisfies the
assumptions of Theorem 3.1.2), i.e.

l
aij(x) = ou(x)om(z), VreRY 1<ij<d
k=1

Then on a standard extension of (Q, F, (Fi)>0, Pr), © € RY, that we denote for
notational convenience again by (Q, F, (Fi)is0,P,), © € RY, there erists a stan-

dard l-dimensional Brownian motion W = (W1, ... W) starting from zero such

that (3.39) holds with Z;.lzl replaced by Zé‘:l'

Proof (i) Consider the stopping times
Dy, := Dga\p, :=inf{t >0 : X; € R\ B,} n>1.

Since M is non-explosive, it follows from Lemma 3.2.4(i) that D,, /* oo P,-a.s. for any
r € RL Let v € C?(R?). Then we claim that

d d

t
Mtv = U(Xt) — v(x) - / <% Z aij&@jv + Zgﬁm) (Xs> dS, t Z 0,
0 i=1

ij=1

is a continuous square integrable local P,-martingale with respect to the stopping times
(Dp)ns1 for any z € R Indeed, let (v,),>1 C C2(R?) be such that v, = v pointwise
on B, n > 1. Then for any n > 1, we have P -a.s

MI;U/\Dn = Mtv/lanu t Z 07
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and (Mp )i0 is a square integrable P,-martingale for any r € R? by Proposition
3.2.6. Now let u; € C?(R?), i = 1,...,d, be the coordinate projections, i.e. u;(z) = ;.
Then by Proposition 3.2.6, polarization and localization with respect to (D,),>1, the
quadratic covariation processes satisfy

t
<Mui’MUj>t :/ aij(Xs)d37 1 SZ,] < d, t> 0.
0

Using Lemma 3.2.7 we obtain by [34, II. Theorem 7.1] that there exists a d-dimensional
Brownian motion (W;);s0 = (Wi, ..., W&o on (0, F, (Fi)0, Pz), © € RY, such that

d t
MY = Z/O 0ij(Xy) dW?, 1<i<d, t>0. (3.40)
j=1

Since for any = € R, P,-a.s.
) t
0

the assertion follows.
(ii) The proof of (ii) is similar to the proof of (i) but uses [34, II. Theorem 7.1°] instead
of [34, II. Theorem 7.1] (see [34, IV. Proposition 2.1])

[l

Remark 3.2.9. Theorem 3.2.8 holds in general only up to ¢, when one does not impose
non-explosion. Here, we only sketch in detail the proof in case of Theorem 3.2.8(i). (The
case of Theorem 3.2.8(ii) is nearly the same but one has to work on a standard extension
of the underlying probability space). One first uses that for vy € CZ(R?), 1 < k < d,
one has by Proposition 3.2.6

t
<ka’MUz>t:/ O (Xo)ds, 1<k, 1<d, t>0,
0
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where Ppy = ij‘:l aijajvk&»vl, so that
d d
Oy = Z VWi, with Wy, = Zaim@-vk, 1<k I,m<d.
m=1 i=1

Note that we then do no longer have

det((Wem)1<km=a) # 0 (3.42)

globally as opposed to Lemma 8.2.7. However, choosing vy(z) = vi(x) = x on B,,
1 <k<d, n>1, wecan obtain (5.42) locally on B, hence (3.40) locally on {t < D, }
for each n > 1. Consequently, we also get (3.41) locally on {t < D, } for each n > 1.
Then showing consistency of the local martingale and drift parts, we obtain (3.39) up
to ¢ by Lemma 3.2.4(i).
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Chapter 4

Conservativeness and ergodic
properties

In this chapter, we investigate long time behavior like non-explosion (conservativeness),
recurrence and ergodicity. We also investigate some moment inequalities that are well-
known for classical It6-SDEs with continuous coefficients. We saw in Theorem 3.2.8
and Remark 3.2.9 that we can obtain a weak solution up to the life time (. We first

provide explicit non-explosion criteria, i.e. explicit criteria that imply the assumption
P.({ =o00) =1 for any x € R?

of Theorem 3.2.8.

4.1 Non-explosion criteria and moment inequalities

4.1.1 Non-explosion criteria and moment inequalities without

involving the density p
In this subsection we consider non-explosion criteria that only depend on the coefficients
of the underlying SDE. We first derive a lemma that is a variant of the construction in

[12, page 197] and then a non-explosion criterion by following a probabilistic technique
which traces back at least to [71, 10.2].
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Lemma 4.1.1. Let f € C*(R?) be a positive, strictly increasing and unbounded radial
function, i.e. f > 0 pointwise, f(z) = ¢, on OB, with 0 < ¢, < ¢,y whenever 0 <r <71/,
and infpp, f — o0 as n — co. Suppose that there exist M > 0, Ny € N such that

Lf <Mf a.. onR?\ By,.

Let ¢ € C*(R), such that ¢, ¢’ > 0 pointwise, such that

[ d 15
t if t > Supg, ., f,

and let for arbitrary o > 0
Vi=¢of+Csata,

where
c
Coa = M(c¢, sup [+ ¢ sup (AVf, Vf>)
BN0+1 2M BN0+1
and
cp:= sup Pof+ sup [¢"of].
Bng+1\Bny, Bny+1\Bn

Then ¢ € C%(R?), ¢ > 0 pointwise, infap, 1 7 0o asn — oo, n > Ny, and
Ly < My a.e. on RY.

Proof Using the formula

L)) = $(F)LF + 38" (FHAV S V).

the assertion is easily verified.

Theorem 4.1.2. Suppose that (1.3) holds. Then

P,(( =00) =1 for any x € R
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Proof We first show the statement corresponding to (1.3). Let u,, € C3(R?), n > 1,
be positive functions such that

() lz||?> if x € By,
Up(x) =
0 ifzeR\ B,y

Then by Proposition 3.2.5
Y;n = un(Xt)a t >0,

is a positive continuous P,-semimartingale for any z € R%, n > 1.
Let f(z) = In(||z]|? +1) + 1, z € R? and let ¥, ¢ and Cy 4 be as in Lemma 4.1.1 with

a = 0. By Itd’s formula applied to Y™ with the function e™Mtp(y),
e(y) == o(In(l +y) +1) + Cy 4,

we obtain P -a.s. for any xz € B,
t t
e MUp(V) = (V) + / e Mo g (V)M + / ML~ M)(p o up)(X,) ds.
0 0

Note that (L — M)(¢ ouy,) = (L — M) <0 m-a.e. on B, for each n > 1. Therefore,
using the last part of Lemma 3.2.3(i), we can see that

G_Mt/\angp o un(Xt/\O'n)7 t Z 07

is a positive continuous P,-supermartingale for any z € B,, n > 1. Since M has
continuous sample paths on the one-point-compactification R4, we have that || X;r,, || =
n Pg-a.s. on {0, <t} for any x € B,. Now let € R? be arbitrary. Then x € By, for
some ko € N and since supermartingales have decreasing expectations, we get for any
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n>k:0

¢ (In([|z|* + 1) + 1) + Cy.a E. [ 0 1, (Xo)]
E, [eth/\UnSD O Unp (Xt/\an>]
eth]Ex [80 O Un (Xt/\a'n>]‘{0'n§t}]

e M (¢ (In(n® + 1) + 1) + Cpa) Pu(o, < ).

AVARAVARAY

Consequently
P.(¢ <t)= lim Py(o, <t)=0
n—oo

for any ¢ > 0, which implies the assertion.

[]

Remark 4.1.3. (i) Suppose that for the semigroup (Ty)i~o defined on L>®(RY,m) it
holds

Tilga = 1 m-a.e. for some (and hence all) t > 0. (4.1)

Then, since Tylga = Py1ga m-a.e. and P;1ga 1s continuous by the strong Feller property
(cf. Proposition 3.1.10(ii))

Pilga(z) =1 for any x € Rt > 0, or equivalently M is non-explosive. (4.2)

(i1) Using (i), the non-explosion criterion (1.3) can be recovered form the dual version

of [69, Proposition 1.10]. Indeed, (4.1) holds, if and only if m is invariant for the

LY(RY, m)-semigroup (ﬁ)t>0. Then Theorem 4.1.2 follows by applying the dual version

of [69, Proposition 1.10(b)] to the C*-function v as defined in the proof of Theorem

4.1.2 and then using (4.2).

As a further example consider the following condition: for some Ny € NU {0}
(ﬂ 1 3(=l - N0)2H3‘3H> (A@)z,z) 1

BE + itrace(A(x)) + (G(z), )
1

< 01 (Jloll = Mo+ ot ) ol O (el = ) + 1) +1) (43

el =No 2 2(]Je]| = No)® +1
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for a.e. x € R4\ By, (By:=0). Then (4.8) implies conservativeness, i.e. (4.1) holds,
by applying [69, Proposition 1.10(b)] to the C*-function

G(@) = (2l = No)* - Loy (@) +1) +1, z € R (4.4)

Indeed (4.3), implies L{/; < MzZ a.e. so that we can apply [69, Proposition 1.10(b)].
But (4.3) also implies non-explosion, i.e. (4.2), by following the proof of Theorem 4.1.2,
replacing the v there with LZ in (4.4) and u,, by positive functions uXo € CZ(R?), n > Ny,
such that
Wo(a) = { (2]l = No)* - Igapy, () if € B,
0 if v € R4\ Bpy1.

(iii) In general, Ml will be non-explosive whenever there exists 1 € C*(RY) and M > 0,
such that infap b — o0 as n — oo and Ly < M1 a.e. on RL This follows from
[69, Proposition 1.10] and (i), and can be shown as well by applying the technique of
supermartingales from Theorem 4.1.2, using a generalized version of Lemma 4.1.1 (see
[12, page 197]), and noting that (M}, )i>0, is a martingale for any v € C*(RY) (see
proof of Theorem 3.2.8(i)). Note the subtle difference that [69, Proposition 1.10] is
proved by analytic means (starting from the L'-generator or L'-semigroup) and only
leads to (4.1), whereas Theorem 4.1.2 is proven by probabilistic means (starting from
Proposition 3.2.5) and directly leads to (4.2) regardless of the classical strong Feller

property.

Theorem 4.1.4. (i) Assume for some Ny € N and some p > 0, there exists M > 0
such that

p—2\ (A(x)x, x) 1 )
( 2 > P o1 T ateeed@) + (G o) < M(llel + 1), (45)

for a.e. ¥ € R\ By,. Then M is non-explosive and for any open ball B there
exists a constant Cg > 0, such that

sup E, [|| X,|[P] < Cp - Mt Vvt >0.
z€B
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(11) Let o = (0i;)1<ij<a be asin Lemma 3.2.7 and and G as in Theorem 3.1.2. Assume
that for some Ng € N and C; > 0

iy A < d
Jax |oi;(2)] + max [g;(x)] < Cr((Jz] +1) Jor a.e. 2 € RT\ By, (4.6)

Then M is non-explosive and for any T > 0, and open ball B, there exist constants
Cr g, Cr such that

supE, [sup ||Xs||2] < Crp- O, W<T.
z€B s<t

Proof (i) Let f(x) = (||=|> + 1)2. Then (4.5) implies Lf(z) < Mp - f(x) for a..
z € R4\ By,. Let ¢,1, and Cy 4 be as in Lemma 4.1.1 with « := SUPBy 4 f.

Let ¢(y) := ¢((y +1)2) + Cy.4 + . Applying Ito’s formula to u,(X.), where u,, is as
—Mp-t

N

in the proof of Theorem 4.1.2, with the function e ©(y), we obtain exactly as in
the proof of Theorem 4.1.2 that M is non-explosive. For arbitrary n € N and z € B,, it

holds

(O@A +2 sup f)f(:L“) > (z) > Ew[e_(M.p)t/\Un@ 0 Up(Xitno,)]-

Bny+1

Using f < ¢ pointwise, g, ' oo, Fatou’s lemma and the previous inequality, we get

e MPURE,[f(X,)] < liminf Ex[e*(M'p)tM”@ 0 Up(Xino, )] < (C’¢,A + 2 sup f)f(x)

n—oo BN0+1

Thus,

E[IXI”] < (Coa+2 sup f)(l|z]> +1)5 MPt.

Bny+1

[\ J/

=Cy

Now set Cp 1= sup, .5 C,.
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(ii) (4.6) implies

trace(A(z)) = Z oij(x)? <2°C3(||=||* +1) for a.e. z € R?\ By,

,j=1

and

(G(z),z) < (Z gi(:p)2> ||| < 2dCi(||z)|> +1) for a.e. z € R\ By,.

Thus (1.3) holds, so that M is non-explosive by Theorem 4.1.2 and (3.39) holds. Con-
sequently, P -a.s. for any 1 <1 <d

sup | X[
OSSSt/\U]Rd\Bn
d
< (d+2) <xf+z sup

=1 0<s<tAop

/ 0i;(Xy) dW)
0

4t /0 o ]gi(Xu)IQdu> L@

Note that 2%, 03;(z)? = trace(A(z)) < d-Apy, < d-Agy ([2]|*+1) for a.e. 2 € By,.

1,j=1
2]

Thus by Doob’s maximal inequality,

d

SE

2,j=1

sup
0<s<tAon

/ 0ij(X,) dW3
0

d

w [ (o),

Li,j=1

IN

[ d

tAon
4E, Z / U%(Xu)du]
0

Li,j=1

IN

IN

tAon
4 (2d°CF + dApy, ) E, [/ (1 X% + 1) du]
0

-

-~

=Co

t
cg/Ex[ sup HXSM du + CyT. (4.8)
0 0<s<uAonp

IN
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Now let # € B, and t < T. Then using (3.35), (4.6), forany n € Nand 1 <i <d

e[/ T axP a

T tAoy
B [ [ ot PG do] + B2 [ [ bt P 0]
0 0

IA

IN

tAoy
2
cB.p€" [|9:1 85, || oty + 201 Ea UO (1Xul* + 1) du]

IN

) t
cppe’ sup |p| - Hgi“%p(BNO) + 26’1/0 E. [ sup HXSHQ} du+2C,T. (4.9)

BNO 0<s<uAop

Now let A, () := E, [supogugmm ||Xu||2]. Then by (4.7), (4.8), (4.9), we obtain

ho(t) < (d+2)||z|* + CoT + cBJ,eTTsiup lp|? - |]G|]%F(BN07Rd) + 2dC, T?

Bn,
. S
~~

:=Cr B

t
~—— /0

:=Cp

By Gronwall’s inequality, h,(t) < Crp - €T, Since none of the involved constants

depends on n, we can use Fatou’s lemma letting n — oo, and obtain
E, {sup HXSH2} < Crpe’rt, Vt<T.
s<t

Since x € B was arbitrary, the desired result follows.

O
4.1.2 Non-explosion criteria involving the density p
By [69, Proposition 1.10](a) we know that (4.1) holds, whenever
aij, g; — 7 € LR, m), 1<4,j<d. (4.10)
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Thus (4.10) provides a sufficient condition for non-explosion by (4.2) which obviously
depends on the knowledge of the density p. Furthermore, one can directly check by
(4.11) below that if (4.10) holds, then the L*(R¢, m)-semigroup (T} )0 is conservative,
hence m is an invariant measure for (7});>.

A systematic study of non-explosion conditions, more precisely results implying (4.1)
and involving the density p can be found in [28, Corollary 15].

4.2 Recurrence criteria and other ergodic proper-

ties involving and not involving the density p

The measure m = pdx, where the density p is as at the beginning of Section 3.1 or as in
Theorem 3.1.2, can be seen to define a stationary distribution. In fact, if the L'(R?, m)-
semigroup (ﬁ)bo is conservative, for instance if there exists a constant M > 0 and
some Ny € N, such that

(A(x)z,z) 1 2
_W + §trace(A(x)) +( (267" = G) (z),z)

< M(Jl«|” + 1) (n([lz]* + 1) + 1)

for a.e. z € R?\ By,, as one can see from the dual version of Theorem 4.1.2 or [69,
Proposition 1.10(c)], then m is an invariant measure (for (73);~0), i.e. for any f €
LY (R4, m)

/thdm:/ FfTilgadm = | fdm (4.11)
Rd R4 R4

so that for any A € B(R?) and t > 0

]P)m(Xt c A) = / ]P)$(Xt S A dCL’ / ﬂlA )
R4 R4

= lim Tilanp, (z) m(dx) = lim 1AmB (x) m(dz) = m(A).

n—00 Jpd n—00

However, usually m is not a probability measure, hence P, is also not such a measure.
But if it is, then P, is a stationary distribution (if (7;);~0 is conservative). Main parts
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of the monograph [12] focus on the density p or more generally on m, in case m is a
probability measure and aim in deriving properties of both (since both are in general
not explicit).

We will first consider possibly infinite m and we may assume that p is explicit as is
explained in the following remark.

Remark 4.2.1. All results up to now and further hold exactly in the same form, if we
assume that p € CEP(RYY  HEP(RY) for some p > d with p(z) > 0 for all z € RY

loc loc
is explicitly given from the beginning, that A := (a;j)1<ij<a s as in Theorem 3.1.2 and
that B = (by,...,by) € L} (R* R?) satisfies

loc

/<B,Vf>dm=0, Vf € C(RY).
R4

Indeed, we then just have to set G = 74 + B. Then all conclusions of Theorem
3.1.2 hold with the explicitly chosen density from above. Note that this also includes the
setting of Theorem 3.1.2 since by its conclusion a p like above exists and can hence be
“explicitly” chosen.

We want to derive explicit conditions for recurrence involving and not involving
the density p in two general cases where m is a general o-finite measure and where
m is a finite, yet without loss of generality a probability measure. First, we derive a
lemma which leads to irreducibility and strict irreducibility (see Corollary 4.2.4) and
as a byproduct leads to a weaker condition for non-explosion (see Remark 4.2.3).

Lemma 4.2.2. (i) Let A € B(R?) be such that Py 14(xg) = 0 for some to > 0 and
zo € RY. Then m(A) = 0.

(i) Let A € B(R?) be such that Py,14(x) = 1 for some ty > 0 and zy € RY. Then
Pla(x) =1 forall (z,t) € R x (0,00).

Proof (i) Suppose m(A) > 0. Choose an open ball B,(z) C R? such that

0<m (AN B.(xy)) < 0.
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Let u := pPlang, (zy)- Then 0 = u(zg,ty) < p(x0)Piyla(zg) = 0. Take f, € C°(R?)
with f,, > 0 such that f,, = 1ans, () in L'(R% m). Then by (3.26) and the explanation
right after it, for arbitrary bounded open set U in R? and [r1, 7] C (0,00), there is
some 7y € (0,1) such that

P.fo(-) = Plang,zo)(-) in CV¥2(U x [11, 1)),

hence
Up := pP. f, = u in C’W%(U X |11, 7)) (4.12)

Fix T >ty and U D B,(70). Then (see proof of Theorem 3.1.8) for all ¢ € C°(U x
(0,7))

T
0 U

where [ is defined as in the proof of Theorem 3.1.8. Now take arbitrary but fixed
(x,t) € By(x0) X (0,t9) By [2, Theorem 5]

Hl’o—xHQ to—t
0 < w2, t) < w20, c( : 1)
S Un(@,7) < tn(2o, o) exp( to—t +m1n(1,t) *

and (4.12) applied with U D B,(x), [, 7] D [t, o] then leads to

o — I | to—t
< ’t < ’t O< . ].) fr— 0-
0 <u(x,t) <u(xg,ty) exp ( to —t + min(1,¢) *

Thus, P1ang, (z)(x) = 0 for all € B,(xp) and 0 < t < 1o, so that

0= / Vi (oo Pr Lo, oy —s (B, (o) A A) > 0,
Rd t—0-+
which is contradiction. Therefore, we must have m(A) = 0.
(i) Let y € RY and 0 < s < t, be arbitrary but fixed and let r := 2[|zy — y| and
let B be any open ball. Take g, € C5°(R?) with 0 < g, < 1 such that g, — 14np in
L*(R4,m). Then by (3.26) and the explanation right after it, there is some v € (0, 1)
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such that

Pgu(-) — Planp(-) in CV2(B,(x0) x [s/2, 2to)). (4.13)
Fix T > 0 and U D B, (z,). Using the property

ﬂ:1VA+G—26P’A:B—ﬁA”’JerA:B—1 @,
2 2 2" p

and (3.2), we directly get for all p € C5°(U x (0,7T))

/OT/U (%(AV,O, V) + p(B, V) — pé’tso) drdt = /OT (/U<B’ W>pdm) "o
(4.14)

and (cf. the proof of Theorem 3.1.8) we also get

[ [ (34V 60 F6)+ 0P (5.96) ~ (024100 ) st =0, (8.15)

1 — P,gn(x)). Then u,, € H“*(U x (0,7T)) and wu, > 0. Sub-

Now let u,(z,t) := p(z) (
4.14) implies

tracting (4.15) from (

T
0 U

Thus, by [2, Theorem 5]

|zo — || lo—$
0 < wn(y, s) < un(zo, t C( : 1) .
Su (y 8) Su (350 0) exXp ( to s + mln(l, S) +

~~

L2

J/

By (4.13)
0 < p(y) (1 = Plans(y)) < Cop(wo) (1 — Pyylans(zo)) -

Note that for all (z,t) € R? x (0,00), Plang,1(z) / Pila(z) as n — oo. Thus,

0 < p(y) (1 = Pda(y)) < Cop(xo) (1 — Pyla(o)) = 0.
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Consequently, P,14(y) = 1 for any (y,s) € R? x (0,%y) which can be extended on
R? x (0,to] by continuity. And by sub-Markovian property, P, lga(y) = 1 for any
y € R%. Now let ¢ € (0,00) be given. Then there extist £ € NU {0} such that

kto <t < (k+ 1)t

and so Pt]-A = Pkto-‘r(t—k’to)lA = -Pt() O-+--0 Pt() oPt—kt()lA =1.
—_————

k—times

]

Remark 4.2.3. By Lemma 4.2.2(ii) we know that M is non-explosive, if P,({ = 00) =
1 for some x € R More precisely, if Py (Xy,, € RY) = 1 for some (xo,ty) € R? x
(0,00), then M is non-explosive. This (together with Proposition 3.1.10, Lemma 3.2.5)
generalizes and improves [6, Lemma 2.5] to possibly locally unbounded drift coefficient
using a completely different and genuine proof.

A € B(R?) is called weakly invariant relative to (T})sso, if
T,(f - 14)(x) =0, for m-a.e. z € R\ A,

for any t > 0, f € L3R4, m). (T})>0 is said to be strictly irreducible, if for any weakly
invariant set A relative to (T})¢s0, we have m(A) = 0 or m(R?\ A) = 0.

Corollary 4.2.4. (i) (1T})i>0 is strictly irreducible.

(ii) Let A € B(RY) with m(A) > 0. Then P,(X; € A) > 0 for allx € Rt > 0, i.e.

(Py)i=0 s irreducible.

Proof (i) Let A € B(R?Y) be a weakly invariant set with m(R?\ A) # 0. Then by
monotone approximation with the L2-functions 1, n > 1, we get for any ¢t > 0
Pil4(x) =0, for m-a.e. z € R\ A. Then there exists t; > 0 and x5 € R?\ A such that
P, 14(x0) = 0. By Lemma 4.2.2(i), we have m(A) = 0, as desired.
(ii) By contraposition of Lemma 4.2.2(i), P, (X; € A) = P14(x) > 0, forall z € R ¢ >
0.

[l
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4.2.1 Explicit recurrence criteria for possibly infinite m

We continue with some further definitions. Define the last exit time L4 from A € B(R?)
by
La:=sup{t >0:X,€ A}, (sup(:=0).

M is called recurrent (in the probabilistic sense), if for any ) # U C RY, U open, we
have

P,(Ly =) =1, Vo€ R% (4.16)

Let (¥4)i>0 be the shift operator of M. Using the shift invariance of A := {Ly = oo},
the Markov property and the strong Feller property of (P;);o, we get for all z € R,
t>0

]Pm<A) = Px(ﬁ;l(‘/\)) = Ex[Em[lA o 7915 ‘ -Ft]] = EI[EXt[lA]] = PtE[lA](x)
Thus
(4.16) <= P,(Ly =o0) =1 for m-a.c. z € R (4.17)

The following is now a consequence of the results obtained here, in [29] and [26]. More-
over it generalizes [6, Theorem 3.2] that only treats non-explosive weak solutions to
time-homogeneous [t60-SDEs whose drift coefficients are locally bounded.

Proposition 4.2.5. (1});~0 (or equivalently M) is either transient or recurrent in the
sense of [29].

(i) Suppose (Ty)i>o is transient in the sense of [29]. Then for any compact K C R4,
it holds P, (L < o0) =1 for all x € R%. In particular

Px(tlirglo X, =A inRLY) =1 for any x € R (4.18)

(11) Suppose (T})i=o is recurrent in the sense of [29]. Then M is non-explosive and
recurrent (in the probabilistic sense), i.e. (4.16) holds for any nonempty open
U CR%
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Proof The first assertion follows from Corollary 4.2.4(i) and [29, Remark 3(b)].

(i) Applying [29, Lemma 6] and the last part of Lemma 3.2.3(i) we get the existence of
g € LR, m) N L>®(R%, m) with g > 0 everywhere, such that Rg := E. [ [~ g(X,)dt] €
L>(R% m). Using that Rg is lower semicontinuous by the strong Feller property and
essentially bounded, we deduce Rg(x) < oo for any z € R Obviously, 0 < Rg(z) for
any x € R% Modifying the proof of [29, Proposition 10] (which originates from [26])
with the open sets U, := {Rg > %}, n > 1, and using the strong Feller property of
(P,)s>0, we obtain P,(Ly, < oo) = 1 for all z € R4 n > 1. Now the first assertion
follows easily since (U,),>1 is an open cover of any compact set K C R The second
assertion follows from the first since the paths of Ml are continuous on the one point
compactification R4 .

(ii) (4.1) is a consequence of [29, Corollary 20] and M is hence non-explosive by (4.2).
Moreover, the right hand side of (4.17) holds for any ) # U C RY, U open, by [29,
Proposition 11(d)]. Therefore M is recurrent in the probabilistic sense.

[]

Remark 4.2.6. In Proposition 4.2.5, we get actually equivalences in (i) and (ii).
Namely, (4.18) implies that [29, Condition (8) of Proposition 10] is satisfied. Thus
(4.18) implies transience of M (or equivalently (T})¢=o) in the sense of [29] by [29,
Proposition 10]. Likewise, if Ml is recurrent (in the probabilistic sense), then it cannot
satisfy (4.18). Therefore, by Proposition 4.2.5(i) and its first part, (1})i>0 must be re-
current in the sense of [29].

Define for » > 0,

= —<A(a:)x,x>m x), v(r
n(r) = [ B ), ()

where B is defined as in Theorem 3.1.2 and let

(B(x), z)| m(dx),

= |
B

v(r) == (r) +va(r), ap:= /1n %dr, n>1.

61



CHAPTER 4. CONSERVATIVENESS AND ERGODIC PROPERTIES

Theorem 4.2.7. (Corollary of [29, Theorem 21]) Suppose that

lim a, =00 and lim w
n—00 n—00 Qp,

=0.

Then M is recurrent (in the probabilistic sense) and non-explosive. Moreover m is an

invariant measure for (T})¢o.

Proof By [29, Theorem 21] applied with p(z) = ||z|| (the p of [29] is different from the
p defined here), the given assumption implies that (7});~0 is not transient in the sense
of [29]. Then apply Proposition 4.2.5 to show recurrence of M.

Since vy(r) := [ [(~=B(x), z)| m(dz), (T))1>0 is not transient in the sense of [29]. Thus
applying Proposition 4.2.5 again, (YA})DO is conservative. Using (4.11), m is an invariant

measure for (7});>o.

]

Lemma 4.2.8. For any x € R? and N € N, we have P (oy < o0) = 1.

Proof Suppose to the contrary that there exists N € Nand x € By such that P.(on =
00) > § > 0. Then M is not recurrent in the probabilistic sense. Applying Proposition
4.2.5, we obtain P,(Lx < 00) =1 for all x € R? and any compact K C R?. Therefore
P,(on = 00) > § > 0 cannot hold and the assertion follows. O

The following theorem extends [58, Chapter 6, Theorem 1.2] to locally unbounded drift
coefficient.

Theorem 4.2.9. Suppose that there exists a positive 1 € C*(R?) and some Ny € N
such that L) < 0 a.e. on R? \ By, and infsp, 1) — o0 asn — oo. Then M is recurrent

(in the probabilistic sense) and non-explosive. In particular, the assumptions above are
satisfied (take ¥(x) = In (||x]|* + 1) + 1), if there is some Ny € N, such that

(A(x)z,x) 1
_W + §traceA(x) +(G(z),z) <0

for a.e. x € R\ By,.
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Proof Clearly, M is non-explosive by Remark 4.1.3(iii). Let n > Ny and » € R%\ B,, be
arbitrary. Choose any N € N with x € By. We will first show that P,(op, < c0) = 1.
Using that Ly < 0 a.e. on R?\ By, we can see that

Ee [¥(Xinop, ron )] < ().

Since P,(on < 00) = 1 by Lemma 4.2.8, we can let t — co and obtain with elementary
calculations (cf. for instance the proof of Theorem 4.1.2)

(dlgff ¢) ' Px(UBn = OO) < EI[¢(XUN)1{UBn:W}] < E$[¢(XJBnAUN)] < ¢($)

Letting N — oo and using the further assumption on v, we get P,(0p, = 00) = 0 and
the claim is shown. From now on let n := Ny + 1. Then obviously P,(op, < c0) =1
for any # € B,, and by the claim P,(op, < oo) =1 for any R\ B,,. If x € 0B, then

by the claim again P;(0p,, < oo) =1 and since opy ,, < 0py, , we finally get

P.(op, < o0)=1 for any z € R

Let z € R% s > 0 be arbitrary. Then by the Markov property and since M is non-
explosive

P.(X; € B, for some t € [s,00)) =P,(0p, 0¥ < o0) = E,[Px, (05, < )] =1.

Hence P, (L < o0) = 0 and the assertion now follows from Proposition 4.2.5. []

BnNg+1

4.2.2 Uniqueness of invariant measures and ergodic properties

in case m is a probability measure

In this subsection, we suppose (except at the very end of it) that m is a finite measure.
Dividing by a normalizing constant, which will not change the generator L, we may
without loss of generality assume that m is a probability measure. Coming back to the
situation at the beginning of Section 4.2, we have the following:

Remark 4.2.10. If m is a probability measure, then m is (T})¢~o-invariant, if and
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only if it is (T,)=o-invariant (cf. [69, Proposition 1.10(b)]). In cither case Pn, is then
a stationary distribution.

It is clear that the (ﬁ)t>g—invariance of m is equivalent to the conservativeness of
(T})¢>0, i-€. to (4.1). Consequently, using Remark 4.2.10, we see that m is an invariant
(probability) measure for (7}):~o, if (4.1) holds. Therefore, (1.3) provides an explicit

criterion for m to be an invariant (probability) measure. Now, we have the following:
Theorem 4.2.11. Suppose that m is a probability measure and that (4.1) holds. Then:

(i) m is strongly mizing (cf. [59]) and for arbitrary x € R? and A € B(R?)

lim P, (X, € A) = m(A).

(1) m is the unique probability measure that is (T})~o-invariant.
(iii) m is equivalent to P, o X; ' for any (x,t) € R? x (0, 00).

(iv) Let A € B(RY) be such that m(A) > 0 and (t,)n>1 C (0,00) be any sequence with
lim,, o t, = 00. Then P,(X;, € A for infinitely many n € N) =1 Vx € R%.
In particular, M is recurrent.

Proof By Theorem 3.1.8, Lemma 3.2.3(i) and Corollary 4.2.4(i), (P;)¢so is strong Feller
and irreducible. Then [59, Proposition 4.1.1] implies that (P;);~¢ is regular. Therefore
the assertions (i)-(iii) follow by Doob’s Theorem, see [59, Theorem 4.2.1]. Then using
(i), assertion (iv) follows by [59, Theorem 3.4.5].

[l

Remark 4.2.12. Assume that as in Remark 4.2.1, p, A, B are explicitly given and
that m = pdx is a probability measure such that (4.1) holds. Then Theorem 4.2.11

applies. This result seems to be new even if B = 0.

For the rest of the section we do not assume that m is a finite measure and present a
condition that is independent of p and makes Theorem 4.2.11 applicable. The following
proposition is a variant of [58, Chapter 6, Theorem 1.3] which can be applied to locally
unbounded drift coefficients.
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Proposition 4.2.13. Suppose that there exists a positive ¥ € C*(R?), some Ny € N
and C > 0, such that L) < —C a.e. on R?\ By, and infsp, 1) — 0o as n — oo.
Then m is finite and M is non-explosive. In particular, (4.1) holds and by normalizing
m if necessary, we can see that the assumptions of Theorem 4.2.11 are satisfied. Thus
Theorem 4.2.11(i)-(iv) hold. In particular, the assumptions above are satisfied (take
Y(x) =In(||z||* + 1) + 1), if there exists a constant C > 0 and some Ny € N, such that

. <|/|l(u—) i? + straceA(s) + (G(2), 2) < ~C (> +1) (4.19)

for a.e. v € R\ By,.

Proof Using Li(z) < —C for a.e. x € R?\ By, the finiteness of m follows by [12,
Corollary 2.3.3] or [13, Theorem 2] for the original result. Since Ly (z) < My(zx) for
a.e. v € RY\ By, for any M > 0, M is non-explosive by Remark 4.1.3(iii). We may
hence assume that the conditions of Theorem 4.2.11 are satisfied.

[

In the next example, we shall give a sufficient condition for (4.19) to hold.

Example 4.2.14. Let I be the identity matrix consisting of ones on the diagonal and
zeros outside and set A(x) := V(z)l where ¥(x) € Hllo’f(Rd)ﬂCllozd/p(Rd) with ¥(x) >0
forallz € RY. Let ¢, € LY

for some ¢y € LY (R?). Suppose that for some Ny € NU {0},

loc

(@) + Ol +1) < bu(@) ol ae. v € B\ By, (4.20)

Then (4.20) implies (4.19).
Now we compare our results with results of [85].

Remark 4.2.15. As one can see from the proof of Theorem 4.2.11 in order to derive
the conclusions Theorem 4.2.11(i)-(iv) one needs for instance the classical strong Feller
property and the irreducibility. In our case, these are directly implied under the condi-
tions of Theorem 3.1.2 (cf. Theorem 3.1.8 and Corollary 4.2.4(i1)). But the conditions
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to obtain the strong Feller property and irreducibility in [85] are quite strong, and there

are many cases where (4.19) is satisfied but one cannot obtain the strong Feller prop-

erty nor irreducibility from the results of [85]. The following provides a comparison of
(4.19) and the rather strong conditions of [85]:

(i)

9

b)

If G is not bounded on an open ball, in order to get the strong Feller property
and the irreducibility, [85, Theorem 1.7] needs very strong conditions [85,
(H1’), (H2’)] such as global uniform ellipticity and boundedness of A and
Lipschitz continuity of A, G and the growth condition |G(z)| < C(1+||z]))
outside an open ball. For example if we take A(x) = (14 ||z||)I and ¢1(x) =
|lz||?, then (4.20) holds, but (H1’) and (H2’) in [85] are both not satisfied.
Thus the conditions of [85] do not neither provide global well-posedness, nor
strong Feller properties, nor irreducibility and so on, whereas we get the full
conclusions of Proposition 4.2.13.

If G is locally bounded on R?, to get the strong Feller property and the irre-
ducibility, [85, Theorem 1.2] also requires quite strong conditions. For exam-
ple, a diffusion matriz with strong decay such as A(x) = exp(—exp(||z]|*))I
cannot be handled by results of [85], since [85, (1.4)] is not satisfied, but
we do not have such restrictions. Moreover, if A(z) = I and ¢1(x) =
exp(exp(||z|?))), then clearly (4.20) is satisfied, but [85, (1.7)] is not satis-
fied. Note that [85, (1.6), (1.8)] requires A to be (besides an H?-condition,
q > d+ 2) locally Lipschitz outside an open ball, if b = 0 in [85]), which is
also stronger than our condition a;; € Hllo’f(Rd) for 1 < 4,7 < d for some
p>d.

(1) We will give a simple example which has a global pathwise unique solution sat-

isfying all conclusions of Proposition 4.2.13, but the non-explosion conditions in
[85] do even not allow to obtain the existence of global solution. Choose W(x) =
¢1(z) = (1 + ||z||)*>. Then (4.20) is satisfied, so that by Example 4.2.14 we may
apply Proposition 4.2.13 and get a global pathwise unique solution satisfying (i)-
(iv) of Theorem 4.2.11. Now consider

1

T - (Moo, ,0)[|4/+D)’

$2(x) r e R
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Then ¢ € L7 (RY) and limxﬁ(& 0,.0) ¢o(x) = 00, so that G as defined in Fz-
2 b b
ample 4.2.14 satisfies

N
(G(z),z) — 00 as x — (70,0,--~ ,0).

Thus, the non-explosion condition [85, (1.5)] is not satisfied and obviously global
boundedness of A and linear growth of |G| do not hold, which means [85, [H1’] [H2’]]
are not satisfied. In particular, no non-explosion condition of [85] holds.

(111) By our method we have directly a candidate for invariant measure, namely m. In

[85] no candidate for invariant measure can be deduced.
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4.3 An application to pathwise uniqueness and strong

solutions

In this section, we present an application of our weak existence and non-explosion
results to pathwise uniqueness and existence of strong solutions up to oc.

Theorem 4.3.1. Let A = (a;j)1<ij<a, G, be as in Theorem 3.1.2 and let (0:5)1<i j<d
be as in Lemma 3.2.7. Suppose that (1.3) holds for A and G. Then the stochastic

differential equation
t t
X = x0 +/ o(Xs)dWy +/ G(X,)ds, t>0,
0 0

where W = (W1, ... , W) is a standard d-dimensional Brownian motion starting from
zero, has a pathwise unique and strong solution. In particular, and without any further
assumption, (X;) is a Hunt process (by Theorem 3.2.1), satisfies more than classical
strong Feller properties (see Theorem 3.1.8, Proposition 3.1.10 and Lemma 3.2.3), has
integrability properties as in Lemma 3.2.4, is irreducible (by Corollary 4.2.4), satisfies
the long time behavior as in Proposition 4.2.5 and Remark 4.2.6, and has further ad-
ditional properties like in Lemma 4.2.2, Remark 4.2.3, Lemma 4.2.8. Moreover, there
are diverse explicit further conditions to guarantee moment inequalities, recurrence and
ergodicity, including existence and uniqueness of invariant measures for (X;), see The-
orems 4.1.4, 4.2.7, 4.2.9 and Proposition 4.2.13.

Proof The existence of a weak solution up to ( = oo under the present assumptions
follows from Theorems 3.2.8(i) and 4.1.2. The weak solution is then pathwise unique
and strong by [84, Theorem 1.3] and [82, Corollary 1].

O
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Existence and regularity of
pre-invariant measures, transition
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Chapter 5

Analytic results

5.1 Elliptic H!'?-regularity and estimates

The VMO(R?) space is defined as the space of all locally integrable functions f on R?
for which there exists a positive continuous function v on [0, 00) with 7(0) = 0, such
that

sup 7"2d/ e |f(x) = f(y)|dzdy < v(R), VR >0. (5.1)

z€R r<R
If f is uniformly continuous on R, we can define

w)i= ([ 1ae) " sw i) - f)l 90 =0,

|z—y|<2r,z,ycRe

Then 7 is continuous on [0, 00) and (5.1) holds, hence f € VMO(R?). For a bounded
open subset U of R? and a function g on U, we call ¢ € VMO(U) if g extends to a
function on R%, again called g, such that g € VMO(RY).

For measurable functions a;;, b;, 8;, c on R 1 < i,j < d, let A := (ai)1<i<a,
b:=(by,...,bq), B :=(P1,...,0q). Consider the divergence form operator £, defined in
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distribution sense
d d d
—Lu = — (Z 0;(a;;0;u) + Z &-(biu)) + Z Bi0iu + cu.
Q=1 i=1 i=1

The following theorem is a simple generalization of (1.2.3) in [12, Theorem 1.2.1], where

only symmetric matrices of functions are considered.

Theorem 5.1.1. Consider a possibly non-symmetric matric of functions A = (a;;)1<i j<d
and suppose that a;; € VMO(R?), 1 < i,j < d, and that there exists e, K > 0 such
that

d
Z aij(2)&&; > el|€l|za for all € € R, a.e. x € RY,
ij=1

d d d
D Nl + D billzome + Y 1Bill ey + llell ey < K.
=1 =1

ij=1

Then, for every p € (1,00), there are numbers \g and M depending only p,d, K, e
and a common ~y that ensures the V MO(R?) condition (5.1) simultaneously for all a;;,
1 <4,j <d, such that for all X > Ao, v € H&’p(]Rd), we have

[Vl 1 @ay < M[Lv — M| g-1.0(may.-

Proof Take constants Ao, N as in [42, Theorem 2.8|, which depend only on p,d, K, ¢.
Let A > A\ be given. By [14, Proposition 9.20], there exists f € LP(RY) and g =
(g1,...,94) € LP(R4 RY) such that

Lv—\v=f+divg in H P(R?),

where

[Lv = M| -1 (ra) = max(|[ f|| o ay, |91/l Loay, - - -+ | 9all Lo (ray)-

Thus

d
1 Lo + Y ll9illpoeey < (d+ DLV = X0l r-1a).
i=1
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By [42, Theorem 2.8],

d
[vllzp@ey < N (HfHLP(Rd) +Z HgiHLP(Rd))
=1
S N(d + 1) HEU — )\/U”H—l,p(Rd).
——

=M

We shall make a general remark concerning the monograph [12].

Remark 5.1.2. In what follows, we shall use in particular the statements 1.7.4, 1.7.6,
1.8.3, 2.1.4, 2.1.6, 2.1.8 of [12] which are formulated for a symmetric matriz of func-
tions A = (a;j)1<ij<a on a bounded smooth domain 2, such that each function a;; is
VMO(Q) and A is uniformly strictly elliptic and bounded on 2. However, a closer look
at the corresponding proofs shows that the symmetry is not a neccessary assumption.
More precisely, (1.7.10) in the proof of [12, Theorem 1.7.4] follows from (1.2.3) of
[12, Theorem 1.2.1]. But we have shown that symmetry of (aij)1<ij<a 1S not essential
in Theorem 5.1.1. Consequently, [12, Corollary 1.7.6], whose proof is based on [12,
Theorem 1.7.4], also holds for a non-symmetric matriz of functions (a;;)1<ij<a which
is uniformly strictly elliptic and bounded on 2. The proof of [12, Proposition 2.1.4]
15 based on the Laz-Milgram Theorem which only uses a coercivity assumption that is
well-known to extend to a non-symmetric matriz of functions. [12, Theorem 2.1.8] is
taken from [77], where not only non-symmetric matrices of functions are permitted but
also even more general conditions on the functions a;;,1 < 4,5 < d. [12, Corollary
2.1.6] is a consequence of [12, Corollary 1.7.6 , Proposition 2.1.4 and Theorem 2.1.8].
Finally, the proof of [12, Theorem 1.8.3] follows from [12, Corollary 1.7.6 and Propo-
sition 2.1.4]. Therefore all the above mentioned statements from [12] extend to a non-
symmetric matriz of functions A = (a;j)1<ij<d, Such that each function a;; is VMO()
and A is uniformly strictly elliptic and bounded on Q. However, we will assume more
than VMO(S), more precisely H>*(R®) N C(R?), in what follows since we need an in-
tegration by parts formula.

The following Lemma 5.1.3 will be used in the proof of Lemma 5.1.4 for a compact-
ness argument.
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Lemma 5.1.3. Let A := (aij)1<ij<d, An = (afi)1<ij<a be uniformly strictly elliptic
and bounded on an open ball B, satisfying aj; — a;; in L*(B) asn — o0, 1 <i,j <d.
Moreover, let A,, n € N, and A have the same elliptic constant N\, = X and upper
bound constant M,, = M. Let for some p > d, b € LP(B,R%), b, € LP(B,R?) such that
b, — b in LP(B,R%) as n — oo. Given F € L*(B,RY), suppose that u,p € Hy*(B)
satisfies

/(AnVun,F + bty p, V) do = / (F,Vy)dz, for every ¢ € C5°(B).
B B

Then
tn,rllr23y < ClF | 28R4,

where C' > 0 s a constant which is independent of n and F'.

Proof Assume that the assertion does not hold, i.e. given k£ € N there exists F, €
L*(B,R%) and ny € N such that

Hunkﬁk ||L2(B) > kHFkHL?(B,Rd)-
Fy

[, 7 llL2(B)

Define Fj := . By [12, Proposition 2.1.4, Theorem 2.1.8] and Remark

unk’vﬁk

—%-F _ Thus we have
||Unk,ﬁkHL2(B)

5.1.2, and using the maximum principle, we get w,, r, =

| =

g, llL2ey =1 and || Fyl|p2pra) <
By [12, Corollary 1.7.6] and and Remark 5.1.2,
||u”k7Fk||Hé’2(B) < Ci(llung,mllz2) + 1 Frllz2(Brey) < 2Ch,

where Cy is independent of k. By the weak compactness of balls in Hy*(B) and the
Rellich-Kondrachov Theorem, there exists a subsequence (Unkijkj ); C (Un,,F, )k and
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u € HS’Q(B) such that
Uny . Fy, — u weakly in HSQ(B)7 Uny, F, s u in LQ(B).

In particular, ||u||r2(s) = 1 and using the assumption, we can see that u satisfies
/ (AVu + bu, Vp)de =0, for every ¢ € C;°(B).
B

By [12, Theorem 2.1.8] and Remark 5.1.2, we have u = 0 a.e. on B, which is a contra-
diction. Therefore the assertion must hold.
O]

The following is well known in the case where b = 0 (see for instance [31, Lemma 4.6]).

Lemma 5.1.4. Let A = (a;j)1<ij<a be uniformly strictly elliptic and bounded on U,
which is supposed to a Lipschitz boundary. Let for some p > d, b € LP(U,RY) and
assume that u € H"2(U) satisfies

/(AVu +bu, Vo)de <0,  for every p € C°(U), ¢ > 0.
U

Then we have

/(AVU+ +but, Vp)dr <0,  for every o € C3°(U), ¢ > 0.
U

Proof Let B be an open ball such that U C B. By [21, Theorem 4.7], u € H*?(U) can
be extended to a function u € Hy?(B). And by [21, Theorem 4.4, ut € Hy*(B) with

_— Vu a.e.on {u>0},
u =
0 a.e. on {u <0}.

Given € > 0 define

fe(z) =

(242 —¢ if22>0,
0 if z < 0.
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Then f. € C'(R) N H**(R) satisfies

z ) 2
if 2 >0, <

fi(z) = V22 +¢&? and  fI(z) = (22 +¢€2)3/2
0 if z <0, 0 if z < 0.

if z >0,

Note that f.(2) — 27, fl(2) — Lo,0)(2) as € = 0 for every z € R. Extend a;; €
HY2(U)NC(U) to H:*(RY)NCy(RY) with elliptic constant A and upper bound constant

loc

M and extend b € LP(U,R%) to LP(R? R?) by setting b zero outside U. Define F :=
AVu + bu € L*(RY,RY). For € > 0 let nz € C5°(Bz) be a standard mollifer and let
ag; = g 1)1, A = (a5 )1<ij<d, bn = b* e F,:=Fx 1L on R¢. Then aj; € C>(B),
bn, F,, € C°(B,R%) satisfy

ali — az, in L*(B), b, — b in LP(B,RY), F,— F in L*(B,R%). (5.2)

Moreover, each A,,, n € N, is uniformly strictly elliptic and bounded on B with same
elliptic constant A and upper bound constant M as A. Let V be a fixed open set with
V C U. Choose § > 0 with Bs(z) C U for all z € V and take N € N with + < 6. Then
by the assumption, for any n > N and ¢ € Cg°(V') with ¢ >0

/(Fn,Vgo)dx :/<AVu+bu,V(g0*ni)>dx <0. (5.3)
U U

By [12, Proposition 2.1.4, Theorem 2.1.8] and Remark 5.1.2, there exists u,, € Hy*(B)
such that

/(AnVun + by, Vo)do = /(Fn, Vp)dx, forall ¢ € C3°(B). (5.4)
B B
By [12, Corollary 1.7.6], Remark 5.1.2 and Lemma 5.1.3,

HunHHé'Q(B) < Cl||Fn||L2(B,Rd) < Cl||F||L2(B,Rd)-

where (] is independent of n. By weak compactness of balls in HS ?(B), [12, Theorem
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2.1.8] and Remark 5.1.2, there exists subsequence (up, )x C (4n)n, such that
, ~u and u) —u" weakly in H)*(B). (5.5)

Indeed, (5.5) first holds with u replaced by some @ € Hy*(B). Then letting n — oo
in (5.4) and using the maximum principle, we get u = w. For simplicity, write (u,,) for
(tn, ). By [27, Theorem 8.13], we have u,, € C=(B). Now define

Loty = Z al,0:05u, + (b + VAL, Vu,) + (divbd,) - u

i,0=1

Then for any n > N and ¢ € C§°(V) with ¢ > 0, we obtain using (5.3), (5.4)

—/ Lo, pdr < 0.
U

Hence L u,(z) >0 for all z € V, n > N. Define f* := f. x 1, k € N. Then (f5Y >0
(fFY" > 0 since f. > 0, f > 0. Moreover, (f*)(u,) — f(u,) uniformly on U as
k — oo. Then, for any n > N and ¢ € C3°(V') with ¢ > 0, we obtain

/ (AT L) b fo(). Vohdr = Tim [ (AT L5 ) 4 bof (). Vep)i
U

*)OOU

k—o00

— i (- /U (Y ()t + (7 (1) AVt ) - i
- klggo . div bn(fak(un) - un(fak)/(un» ~pdx

< —/U div by, (fo(un) — wn fL(un)) pdz.

Since the latter term converges to zero as ¢ — 0, for any n > N, we obtain

/(AVu + byut, Vydr <0, Yoe Co(V), ¢ >0.
U
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Consequently, using (5.2), (5.5), we get
/(AVU+ +but, Vp)dr <0, VYoe C(V), ¢ > 0.
U

Since V is an arbitrary open set with V' C U, the assertion follows.

5.2 Existence of a pre-invariant measure and con-

struction of a generalized Dirichlet form
Throughout, the real number ¢ shall be given by

_pd
q'_p+d'

We consider the following second order partial differential operator
1 J d
Lf = 5 addif+) g0 fe€CFRY. (5.6)
ij=1 i=1
where @;; and g; are throughout as in the following assumption.

(a) A= (ai)1<ij<q is a matrix of functions satisfying a;; € H:*(R?) N C(R?) for all

loc

1 <i,j <d Let A= (aij)i<ij<d = # and A := A_QAT. For every open ball

B C RY, there exist positive real numbers Az, Ap with
Asll€ll? < (A(x)€,€) < Ag||€])? for all € e RY z € B. (5.7)

H=(hy,...,hg) € LV

loc

(R4, RY) and let

1
G:(gla"'7gd): §VAT+H7
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Assumption (a) implies that

(RY, RY).

loc

F::%VAT—G:—HGLP

For later purpose we shall also consider the following assumption
®) G =(g1,...,9a) € LL (R4 RY).

Remark 5.2.1. Under assumption (a), L as in (5.6) can be rewritten as non-symmetric
divergence form operator with coefficients in H.:>(RYNC(RY) and LF,
i.e. L can be written as in (1.5). Assumption (b) then just means that 3(VAT); €
L (RY), 1 <i<d, for some s > £.

But we can also consider non-divergence form operators. If for instance %(VAT)Z- €

LP (RY), 1 <i<d, for some p > d, then set

loc

(R%)-perturbation,

H:IN{—%VAT

for arbitrarily chosen H = (hy, ..., hq) € LP (R RY). Then assumptions (a) and (b)

both hold and (5.6) (as well as (1.5)) can be rewritten as
1 d_
Lf = 5 > a0y f+ > hidif,  f e CERY.
ij=1 i=1

This covers as a special case the assumptions of [13, Theorem 1] (see also [12, Theorem

2.4.1)).

Theorem 5.2.2 (Existence of a pre-invariant measure). Suppose assumption (a) holds.
Then there exists p € HP(RY) N CL-YP(RY) with p(z) > 0 for all z € RY such that

loc loc

/ Lopdr =0, for all p € C°(RY). (5.8)
R4
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Proof Using integration by parts, (5.8) is equivalent to
1
/ <§ATvp +pF,Vo)dr =0 for all p € C5°(R%). (5.9)
Rd

By [12, Proposition 2.1.4, Corollary 2.1.6, Theorem 2.1.8] and Remark 5.1.2, for every
n € N, there exists a unique v, € Hy”(B,) N C'~%?(B,) such that

1
— ATV, + v, F,Vo)dr = —F,Vp)dr for all p € C5°(B,).
9 0

n n

Let u, := v, + 1. Then u,(z) =1 for all x € 9B, and

1
/ (§ATVun +u, F,Vy)dr =0, forall ¢ € C;°(B,).

n

Since u; < vy, we see u; € Hy?(B,) N C'~%?(B,). Thus by Lemma 5.1.4, we get

1
/ <§ATvu,; +u, F,Vp)dr <0, forall p € Cy°(B,), p > 0.

n

By [12, Theorem 2.1.8] and Remark 5.1.2, u,, <0, so that u,, > 0. Suppose there exists
zo € B, with u,(x¢) = 0. Then, applying [76, Corollary 5.2 (Harnack inequality)] to
u, on B, we get u,(z) = 0 for all z € B,,, which contradicts u, € C'~%?(B,,), since
u, = 1 on 0B,. Hence u,(z) > 0 for all z € B,. Now let p,(z) = u,(0) tu,(x),
z € B,,n € N. Then p,(0) =1 and

1
/ <§ATV,0n + pnF, Vp)de =0 for all ¢ € C;°(B,).

n

Fix r > 0. Then, by [76, Corollary 5.2]

sup pn(x) < Cy inf py(x) for all n > 2r,
z€Bay z€Byy
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where (' is independent of p,,, n > 2r. Thus

sup pn(x) < C; for all n > 2r.
€ Bo,

By [12, Theorem 1.7.4] and Remark 5.1.2
HanHl,p(Br) § CQ”anL:l(BQT) S 0102‘327«’, for all n > 27”,

where Cj is independent of (p,),>2-. By weak compactness of balls in H&’p (B,) and
the Arzela-Ascoli Theorem, there exists (pn,)n>1 C (Pn)ns2r and ppy € HYP(B,) N
C'~/?(B,) such that

Pny — P(r) Weakly in H""(B,), Pny — Py uniformly on B,.

Considering (pni)n>1 O (Png+1)n>1, & € N, we get puy = prs1) on By, hence we can
well-define p as
p = pm on By, k€ N.

Then p € H-P(RY) N CL-YP(RY) with p(z) >0, z € R, p(0) = 1 and for any n € N

loc

1
/ (EATVp +pF,Ve)der =0 for all p € C5°(B,,).

n

By applying the Harnack inequality to p on B, with n > r

1 =p(0) < sup p(z) < Cs inf p(z),
$€BT IGBT

hence p(z) > 0 for all z € B,. Therefore p(z) > 0 for all z € R? and (5.8) holds.
[l

From now on unless otherwise stated, we fix p as in Theorem 5.2.2. Set
m := pdx.

Using integration by parts the following can be easily shown.
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Lemma 5.2.3. If Q = (¢ij)1<ij<da s a d X d matriz of functions with —qj; = q;j €
HEIARY N L (RY), 1 < i,j < d. Then 79 € L} (RY,R%m) and BP9 is weakly

loc loc

divergence free with respect to m, 1i.e.

/ (BPR N fydm =0,  for all f € C°(RY).

Define
B:=G - g

Note that B = (G — 1vAT) — %pvf’ e P (R? R?). Moreover, using (5.8) and Lemma

loc

5.2.3, we can see that BP’AT +B € L2 (R R% m) is weakly divergence free with respect

loc

to m, i.e.

/ (74 + B, Vfddm =0 for all f € C°(RY).
Rd

For f,g € Cg°(R?), define
&(5.9)i= | (AVF,Vg)dm
R4

Then (£°, C$°(RY)) is closable in L2(R%, m). We denote its closure by (£°, D(E?)) and its
associated generator by (L% D(L?)). Since Cg°(R?) C D(L°)q;, we have that D(L%),
is a dense subset of L'(R¢,m), and furthermore

LOf = %trace(ZVQ £)+ (B4 VF) € L2(RY,m)  for all f € C°(RY).

Define

Lf=Lf +(3*" +B,Vf), fe DLy
Then (L, D(L%)y,) is an extension of (L, C5°(R?)) as defined in 5.6. By [69, Theorem
1.5], there exists a L*(R?, m) closed extension (L, D(L)) of (L, D(L%)y,) in L*(R%, m)
which generates sub-Markovian Cj semigroup of contractions (7})iso on L'(RY m).

Restricting (7});s0 to LY(R?, m),, it is well-known that (7)o can be extended to a
sub-Markovian Cy-semigroup of contractions on each L"(R¢,m), r € [1, 00). Denote by
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(L, D(L,)) the corresponding closed generator with graph norm

1o = 1 llor@am) + 1L fllr @t my

and by (Ga)aso the corresponding resolvent. For (73;);~0 and (G4 )aso we do not explic-
itly denote in the notation on which L"(R? m)-space they act. We assume that this
is clear from the context. Moreover, (T});~0 and (G4 )a>0 can be uniquely defined on
L>*(R? m), but are no longer strongly continuous there.

For f € C§°(RY)

Lf = L°f— (""" +B,Vf) = %trace(ﬁvzf) +(G,V/),

with )
é = </g\17 e 7§d) - QBP’A - G= Bp,A —Bc Ll200<Rd,Rd, m)

We see that L and L have the same structural properties, i.e. they are given as the
sum of a symmetric second order elliptic differential operator and a divergence free first
order perturbation with same integrability condition with respect to the measure m.
Therefore all what will be derived below for L will hold analogously for L. Denote the
operators corresponding to L (again defined through [69, Theorem 1.5]) by (ET, D(Er))
for the co-generator on L"(R% m), r € [1,00), (ﬁ)»o for the co-semigroup, (éa)a>0
for the co-resolvent. By [69, Section 3], we obtain a corresponding bilinear form with
domain D(Ls) x L2(R% m) U L2(R%, m) x D(L,) by

£(f.g) =1 Lol gdm - for f € D(L), g € LR, m),

TN = fua - Lagdm for f € LX(R%m), g € D(Ly).
€ is called the generalized Dirichlet form associated with (Ls, D(Ls)). Using integration
by parts, it is easy to see that for f, g € Cg°(R?)

&g = 5 [ (AVETg i~ [ (7 BV g dm

2 R4

1

! /R AV Vg) dm /R B,V f)gdm,
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and

d d
Lyf = % Z a;;0;0; f + Zgz&f = %trace(gvzf) + (5”’AT, Vi + (B, Vf),
i—1

1,j=1

d d
sz = % Z a;;0;0; f + Z@-@f = %traee(gvzf) + (8P4 Vf) — (B, Vf).
i—1

ij=1

5.3 Regularity results for resolvent and semigroup

Theorem 5.3.1. Assume (a). Then

pGog € HP(RY), Vg € Urelgoq L™ (RY,m),

loc

and for any open balls B, B' with B C B,

10 Gagllmres) < o (119l s m) + 1Gagllir s m) »
where ¢y is independent of g.

Proof Let g € C°(R?) and « > 0. Then for all ¢ € C§°(RY),
/ (o — Zg)ap (Gag) dm = / @a(a - Eg)(p cgdm = / wg dm. (5.10)
R4 Rd R

Note that G,g € D(L), C D(&°) by [69, Theorem 1.5]. Since p is locally bounded
below and A satisfies (5.7), we have D(£°) C H2*(R?) and it follows pGag € H22(R?).
Define

~ 1 ~ A
Fi= 2 VA-G-= —% +B e L} (RYRY). (5.11)
P

Given any open ball B” and ¢ € C§°(B"), we have using integration by parts in the
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left hand side of (5.10)

/BN [%AV(/?Gag) + (pGag)F, V) + Oé(pGag)w} dr — /B”(Pg)@dx.

By [12, Theorem 1.8.3] and Remark 5.1.2, for any open ball B’ with B’ C B”, we have
pGog € HY(B'). Thus by [12, Theorem 1.7.4] and Remark 5.1.2, we obtain for any
open ball B with B C B', r € [q,00)

10Gagllmemy < a1 (p9llLes an) + 110G agllri (5 .ax))
g—1
< Cl(S}B{PP © V1) (|9l Lasrm) + 1GagllLrs.m) (5.12)

TV
=:co

By denseness of C§°(R?) in L™(R?,m), (5.12) extends to g € L"(R% m), r € [¢,00). For
g € L*(R% m), let g,, := glp, € LR m),n > 1. Then ||g — gnllzerm) + |Galg —
o)l L1 m) — 0 as n — oo. Hence (5.12) also extends to g € L>(R?, m).

[

Remark 5.3.2. Proposition 3.1.6 of Part I holds in our more general situation with
exactly the same proof.

Theorem 5.3.3. Assume (a). For each s € [1,00|, consider the L*(R%, m)-semigroup
(TY)¢s0. Then for any f € L*(RY m) and t > 0, T.f has a locally Hélder continuous
m-version Pif on RY. More precisely, P f(-) is locally parabolic Hélder continuous on
R? x (0,00) and for any bounded open sets U, V in R with U CV and 0 < 73 < 1 <
Ty < Ty, i.e. [T1,Ta] C (73,74), we have for some vy € (0,1) the following estimate for all
[ € Usepnog L* (R, m) with f >0,

||Pf(')||cw;%(ﬁ><[ﬁﬂ_2}) < Cﬁupf(')||L1(V><(7'37T4),m®dt)7

where Cg, 7y are constants that depend on U x [11, 73],V x (73,74), but are independent

of f.

Proof The proof is similar to the corresponding proof in Theorem 3.1.8, but there
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are some subtle differences. First assume f € D(L), N D(Ly) N D(L,) with f > 0. Set
u(z,t) := p(x)P.f(z). Then P,f € D(L,) and p € C(R?) implies u € C(R? x [0, 00))
by Proposition 5.3.2(iii). Let T > 0 be arbitrary. Then for any ¢ € C$°(R? x (0,7))

T ~
0=— / / ((%(p + Lg@) udxdt. (5.13)
0o Jrd

Since u € HY?*(O x (0,T)) for any bounded and open set O C R¢, using integration by
parts in the right hand term of (5.13), we get

T
1 ~
0= / / (i(AVu, V) + u(F, V) — u@tcp) dxdt, (5.14)
0o Jrd
where F is as in (5.11). Then as in Theorem 3.1.8.

IPF Ot gm0 @i 10OPFO ot graimm)

IN

10~ e @ mma)) C2C 1P (| (v (s ) msat)

=Cg

s—1
< CG(T4 - T3)||p||Lf(v)||f

LoRim);, S € [1,00], (5.15)

where (5, (5 is as in Theorem 3.1.8 in Part I.
For f € L'(R% m) N L®R% m) with f > 0 let f, := nG,f. Then f, € D(L), N
D(Ly;) N D(L,) with f, > 0 and f, — f in L*(R% m) for any s € [1,00). Thus
(5.15) including all intermediate inequalities extend to f € L'(RY m) N L*°(R9, m)
with f > 0. If f € L¥(RY,m), f >0 and s € [1,00), let f, :=1p, - (f An). Then f, €
LYR4,m) N L=®(RY m) with f,, > 0 and f, — f in L*(R%,m). Thus (5.15) including
all intermediate inequalities extend to f € L¥(R%, m) with f > 0. For f € L>®(R%, m),
the result follows exactly as in Theorem 3.1.8.

[

Remark 5.3.4. Besides the possible non-symmetry of A (that also occurs in f‘), the
difference between the proof of Theorem 3.1.8 and Theorem 5.3.3 is the approrima-
tion method. The proof of Theorem 3.1.8 uses the denseness of C°(RY) in L*(R?, m).
The proof of Theorem 5.3.3 uses the denseness of Uys0Ga (Ll(Rd,m) N L“(Rd,m)) in
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LY (R, m). Using the latter, we can get the corresponding result to Lemma 4.2.2 in the
following Lemma 5.3.5.

Lemma 5.3.5. (i) Let A € B(RY) be such that P,,14(x) = 0 for some to > 0 and
zo € R%. Then m(A) = 0.

(ii) Let A € B(R?) be such that Piy14(z¢) = 1 for some ty > 0 and vy € RY. Then
Pla(z) =1 for all (x,t) € R x (0,00).

Proof (i) Suppose m(A) > 0. Choose an open ball B,(z) C R? such that
0 <m (AN B,.(x)) < 0.

Let w := pP.14nB, (z0)- Then 0 = u(xo,to) < p(x0)Piyla(zo) = 0. Set f,, := nGrlang, (7o)
Then f, € D(L), N D(Ly) N D(L,) with f, > 0 such that f, — 1ang, ) in LR, m).

Let u, = pPf,. Fix T > ty and U D B,(xo). Since u, € HY2(U x (0,T)) satis-

fies (5.13) (see proof of Theorem 5.3.3), (5.14) holds with u replaced by w, for all

p € C(U x (0,7)). The rest of the proof is then exactly as in Lemma 4.2.2 (i).

(i) Let y € R? and 0 < s < ty be arbitrary but fixed and let r := 2||zy — y|| and let

B be any open ball. Take g, := nG,1pna. Then g, € D(L), N D(Ly) N D(L,) with

0 < g, < 1 satisfying g,, — 1anp in L}Y(R? m). The rest of the proof is now exactly as

in Lemma 4.2.2 (ii).

[]

Remark 5.3.6. Using the Lemma 5.53.5, Corollary 4.2.4 holds in our more general
situation with exactly the same proof.

Remark 5.3.7. (i) (¢f. Remark 4.2.1 in Part I) Consider A, p, B which are explicitly

given by following assumptions. Let A = (aij)1<ij<a be a matriz of functions as in

assumption (a) and A = (Gij)1<ij<d = A*QAT. Suppose that for some p > d, we are

given p € HEP(RY) N COV-4P(RY), p(z) > 0 for all = € RY, such that for some B €

loc
LP (R*R?) it holds

/ (B,Vfpdz =0 for all f € C(RY). (5.16)
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Let
Lf=Lf + (87" +B,Vf), e DL

Then (5.8) holds for L replaced with L. Moreover, everything that was developed for
(L, D(L°)op) right after Theorem 5.2.2 until and including Corollary 5.3.6 (and even
beyond until the end of this article if additionally BPA" + B € L (RYRY), i.e. as-
sumption (b) holds, cf. Remark 6.1.2) holds analoguously for (L, D(L°)ss). Now sup-
pose again that assumption (a) holds. Then by Theorem 5.2.2, there exists p as right
above such that B .= B = VAT + H - BrAT ¢ [P (RY,RY) and such that B satisfies

(5.16). Thus all that has been done up to now is in fact a special realization of the just
explained explicit case.

(ii) (cf. Remark 3.1.3) It is possible to realize the results of this article with R? re-
placed by an arbitrary open set U C RY. Moreover as it is well-known the LY -condition
can be relaxed by an L -condition on an exhaustion (V;,)nen of RY (or U ), where p, > d
for alln € N and lim,,_,. p, = d.
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Chapter 6

Probabilistic results

6.1 The underlying SDE

Additionally to assumption (a) we assume throughout this section that assumption (b)
holds. Then C3(R?) C D(Ly) N D(L,) and assumption (H2)" of Part I holds. Here,
assumption (b) was needed to get the continuity property of the resolvent in (H2)'(ii)
of Part I. Thus, through the exactly same method as in Theorem 3.2.1, we arrive at

the following theorem:

Theorem 6.1.1. There exists a Hunt process

M = (Q, F, (F)iz0, (Xt)e>0, (Pa)serivgay)

with state space R and life time
(=inf{t>0: X, =A}=inf{t >0 : X; ¢ R},

having the transition function (P;)¢>o as transition semigroup, such that M has contin-
uous sample paths in the one point compactification R of R with the cemetery A as
point at infinity.

Remark 6.1.2. Actually, under assumptions (a) and (b) most of the results from Part I

generalize to the more general coefficients considered here, i.e. the analogues of Lemmas
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3.14, 3.15, 3.18, Propositions 3.16, 3.17 Theorem 3.19, Remark 3.20 and the analogues
of the results in Chapter 4 of Part I hold. These results include, various non-explosion
criteria, moment inequalities, a general Krylov type estimate, recurrence criteria and
criteria for ergodicity including uniqueness of the invariant measure pdzx.

According to Remark 6.1.2, we obtain.

Theorem 6.1.3. Consider the Hunt process M from Theorem 6.1.1 with coordinates
X, = (X}, ., XP). Let (045)1<i<an<j<i, | € N arbitrary but fized, be any matriz con-

It it

sisting of continuous functions o;; € C(R?) for all 1 < i < d, 1 < j <, such that

A=o00", ie.

aij(x Zam 2)on(z), Yz eRY 1<i,j<d.

Then on a standard extension of (0, F,(F)i>0,Pz), € R%, that we denote for no-
tational convenience again by (0, F, (Fi)i0,Pz), © € RY, there erists a standard I-
dimensional Brownian motion W = (W', ... . W') starting from zero such that P,-a.s.
for any v = (x1,...,2q) ERY, i=1,....d

t
=ux; + Ej/ 03 (Xs) AW] + / 9i(Xs)ds, 0<1t <, (6.1)
0

i short

Xt—1'0+/ dW+/G S, O§t<§.

The non-explosion result in the following theorem is new and allows for linear
growth together with L4(R¢, m)-singularities of the drift. It completes various other
non-explosion results form Part I and existing literature.

Theorem 6.1.4. Let 0 = (0;;)1<i j<d be as in Theorem 6.1.3, i.e. | = d (such o always
exists, cf. Lemma 3.2.7) and assume that for some hy € LP(RY,m), hy € LY(RY m)
and C > 0 it holds for a.e. v € R?

max |oy;(x)] < [hi(2)| + C(V]z +1),  max |gi(x)] < [ha(2)| + C(llz] +1).

1<i,j<d 1<i<
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Then M is non-explosive and for any T > 0, and any open ball B, there exist constants

Csr, Cs such that

upE, [sup ||Xs|r] < Cor- Ot W<T.

z€B s<t

Proof Let x € B and n € N such that x € B, (B, is the open ball about zero with
radius n in RY). Let 0 <t < T. Then with o, ;== inf{t >0 : X; e R\ B}, n > 1, we
obtain P,-a.s. for any 1 <1¢ < d

sup |XZ|<|£L‘Z|—|—Z sup

0<s<tAon 0<s<tAop

0

+ swp [ )] du
0<s<tAon JO

By the Burkholder-Davis-Gundy inequality [61, Chapter IV. (4.2) Corollary| and (1.7),
there exists a constant ¢, g4, depending on ¢ and the open ball B, such that

d s
ZEx [ sup / 0i (Xu) de }
j=1 0

0<s<tAop

d tAon 1/2
< > V3R, [ / afj(Xu)du]
=1 0
thon 1/2 tAGn 1/2
< dV96E, [/ |h%(Xu)’du} +dCV96T + CV96d - E, V ||Xu|\du]
0
< dV96€” | B | 20 +dC(\/96T+\/_)+C\/_d/ [ sup ||Xs||] du

0<s<uAon
= Cs T
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and
Ew sup /|gZ |du}
L0<s<tAop
tAon tAon
< Ew/ |h2(Xu)’du}+CEw[/ (1. + 1) du
/o 0
- T ¢
< E, / |h2(Xu)|du]+CT+(JEI [/ sup HXS||du]
L/ 0 0 0<s<uAon
t
< eTcx,B,thzHLq(Rd,m)+CT+C/ Ex{ sup HXs\@ du.
N -~ - 0 0<s<uAon
=:Cy,1
Hence

d
Ex{ sup ||XSH] SZE;E{ sup |X§|]
i—1

0<s<tAop, 0<s<tAon

t
< (\/8||m||+dC’3,T+dC4,T)+dC(1+\/%d)/Ex{ sup ||Xs||} du.  (6.2)
~ 7 ~J0

0<s<uAon

Vv Vv
=:Cs 1 =:Cs

Now let p,(t) := E, [Supg<scing, | Xsl|]- Then by (6.2), we obtain
t
pa(t) < Csr+ Cﬁ/ pn(u)du, 0<t<T.
0
By Gronwall’s inequality, p, (t) < Cs -t for any ¢ € [0, T]. By the Markov inequality,

Py(o, <T) = P, (Sup | X > n)

s<T

< Px( sup | X| > n)
s<TNop
1
S _Eac sSup |Xs|
n s<TAop
1
< —Csr- e“T 50 asn— oo.
n
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Therefore P,({ = co) = 1. Finally applying Fatou’s lemma to p,(¢), we obtain

E, {Sup ||X5H] < Csp-e®', Vt<T.

s<t

Example 6.1.5. Let n € C5°(Bia) be given. Define w : RY — R by

1 1
w(xla"'7$d) = 77($1>---a37d) /

) o ll/d 1,1](3/1)dyl-

Then w € HY(R?) N Cy(By4) but dyw ¢ LY (RY). Define v: R* — R by
(1, ... 2q) == w(xy, ..., ool (x1 —4y...,2q)
! 3

Then v € HY(RY) N C(RY) but d1v ¢ LY (RY). Now define P = (pij)i<ij<d as

P1d ‘= U, Pda1 = —U, Py = 0 if <i7j) ¢ {(Ld)? (d, 1)}

Let Q = (qij)<ij<a be a matriz of functions such that q;; = —qi; € H.2(RY) N C(RY)

loc
for all 1 <i,5 < d and assume there exists a constant C > 0 satisfying

IVQ| < C(|z|| +1), for a.e. on R%

Let A:=id, A:=P+Q and H= 0. Then A and A satisfy assumption (a) with
G := 3VA” and G satisfies assumption (b). Define p =1 on R%. Then p satisfies (5.8)
and B = 0. Obviously o = id and G satisfy the conditions of Theorem 6.1.4. Thus
M from Theorem 6.1.1 is non-explosive. Note that the non-explosion criterion of this
example can not be derived from [69, Proposition 1.10], nor from (1.3) or for instance
[30, Assumption 2.1] (one of the pioneering works on local and global well posedness
of SDEs with unbounded merely measurable drifts), since G has a part with infinitely
many singular points outside an arbitrarily large compact set and may have a part with
linear growth.
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6.2 Uniqueness in law under low regularity

Let M = (Q, F, (X))o, (@I)IeRdU{A}) be a right process (see for instance [78]). For a
o-finite or finite Borel measure v on R? we define

P, () := /R P, () v(dz).

Consider (L, Cg°(R?Y)) as defined in (5.6). According to [69, Definition 2.5], we define:

Definition 6.2.1. A right process M = (Q, F, ()?t)tzo, (ﬁ’z)xeRdU{A}) with state space
R? and natural filtration (F;)i>o s said to solve the martingale for (L, Cg°(RY)), if for
all u € C§(RY):

(i) fo Lu s)ds, t >0, is P,,-a.e. independent of the measurable m-version chosen
for Lu.

(i1) (Xt) — u( XO fo Lu( 5) ds, t > 0, is a continuous (]?t)tzo-martmgale under
Py for any v € By (RY) such that [y, vdm = 1.

Definition 6.2.2. A o-finite Borel measure v on R? is called sub-invariant measure
for a right process Ml = (0, F, (X¢)i>0, (Pa)seriauay) with state space R?, if

[ Bt < [ st (63)

for any f € LY(RY, v) N By(RY), f >0, t > 0. v is called invariant measure for M, if
“<” can be replaced by “=" in (6.3)

Part (i) of the following proposition is proven in [69, Proposition 2.6]. And part (ii)
is a simple consequence of part (i) and the strong Feller property of (p);>o, M as in
Theorem 3.2.1.

Proposition 6.2.3. (i) Let M = (Q, F, ()’Zt)m, (P, )xeRdU{A}) solve the martingale
for (L, Cg°(R?)) such that m is a sub-invariant measure for Ml and let (L, C°(RY))
be L'-unique. Then pMf(z) := [f(Xt)] is an m-version of T.f for all f €
LR, m) N By(RY), t >0 and m is an invariant measure for M.
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(i1) If additionally (plf’ﬂ)tzo is strong Feller, then P, = P, for any x € R%.

Proposition 6.2.4. Suppose that (a) and (b) hold, and that for any compact set K in
R?, there exist L > 0, ax € (0,1) with

|Ezj(x)—51](y)| SLK’l‘—yPK, \V/[E,yGK, 1 SZ,] Sd

Suppose further that m is an invariant measure for M. Let M be a right process
with strong Feller transition function (pt )e>0 that solves the martmgale problem for
(L, C3°(RY)) and such that m is a sub-invariant measure for M. Then P, = P, for any
r € R4,

Proof By [69, Corollary 2.2] (L, C5°(R?)) is L'-unique, iff m is an invariant measure
for M. Then appy Proposition 6.2.3.
O

Remark 6.2.5. Note that m is an invariant measure for M as in Theorem 6.1.1, if
and only if the co-semigroup (ﬁ)t>0 of (T})i>0 is conservative. One advantage of our
approach is that we can use all previously derived conservativeness results for generalized
Dirichlet forms (see for instance [69, Proposition 1.10], [28], Part I, but also Example
6.2.6).

Example 6.2.6. (i) Assume (a), (b) holds and that the a;; are locally Holder con-
tinuous on RY as in Proposition 6.2.4. If there exists a constant C > 0 and some
Ny € N, such that

A 1
_%ﬂ + ~traceA(z) + (G(z),z) < —C (||l=|* + 1)
I +1 2

for a.e. x € R4\ By, then M as in Theorem 6.1.1 solves the martingale problem
for (L, C°(R%)) and m is an invariant measure for Ml by the analogue of Propo-
sition 4.2.13 (see Remark 6.1.2). In this situation Proposition 6.2.4 applies.

94



CHAPTER 6. PROBABILISTIC RESULTS

(ii) Let AV,A and G be as in Example 6.1.5. By Theorem 6.1.4, not only M but also its
co-process M is non-explosive. Hence dx is an invariant measure for M. Now if
a;; are locally Holder continuous on RY as in Proposition 6.2.4, then Proposition
6.2.4 also applies.

(111) Suppose that in the situation of Remark 5.3.7(i) the conditions of Theorem 4.2.7
hold with B = B and that the a;; are locally Hélder continuous on RY as in
Proposition 6.2.4. Then pdx is an invariant measure for M and Proposition 6.2.4
again applies.
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Well-posedness for 1to-SDEs with
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coefficients
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Chapter 7

Regularity of solutions

7.1 Regularity results for linear parabolic equation

with singular weight in the time derivative term

The following Lemma which will lead to our main result, is a slight modification of [2,

Lemma 6] and involves a weight function .

Lemma 7.1.1. Let U be a bounded open subset of R and T > 0. Let w € L*(U x(0,T))
be such that supp(w) C U x (0,T] and assume Oyw € L*(U x (0,T)), ¢ € L*>(U). Then
for a.e. 7 € (0,T), it holds

/ /@w-@bdxdt:/th@Z)d:p.
o Ju U

Proof Let v, € C*(U), n > 1, satisfy lim,, o %, = % in L*(U). Then wy € LY*(U x
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(0,7)) and for any ¢ € C3°(U x (0,T)), we have

// Op - wpdedt = lim // Opp + Wiy, dadt
Ux(0,T) =00 JJUx(0,T)
= lim // Oy (pthy) - w dxdt
n=0 JJUx(0,T)
= — lim // oy, - Opw dxdt
n=0 JJUx(0,T)

_ // o (Orw - )dudt.
Ux(0,T)

Thus 0y(wy)) = Gyw-1p € L'*(U x (0,T)). Now let f(t) := [, w(z,t)ip(x)dx. Then f(t)
is defined for a.e. t € (0,7) and is in L*((0,T)). Let g € C5°((0,7))) be given. Take
70 € (0,T) satisfying supp(g) C (0,7). Let V be a bounded open subset of R? such
that V C U and supp(w) N (U x (0,7)) C V x (0,7). Let x € Cg°(U) with x =1 on

V. Then
T
/ Og- fdt = // 0rg - w pdxdt
0 UX(O,TU)

= // 9 (gx) - (wip)dzdt
VX(O,T())
= —// gx Oyw - Ypdxdt
Ux(0,T)

- —/OTg-(/U@tw-¢dx>dt.

Thus 0,f = [, dyw-¢dx € L*((0,T)). Then by [21, Theorem 4.20], f has an absolutely
continuous dz-version on (0,7") and by the Fundamental Theorem of Calculus, for a.e

7,7 € (0,T) it holds

/T:/Uatw.wxdt: /Tjatfdt: / fldt = f(r) — f(r) = /U(th wl ),

Choosing 71 near 0, our assertion holds.
]
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Consider the following condition.

(I) U x (0,7) is a bounded open set in R? x R, T' > 0. A = (ay;)1<ij<d 1S @ matrix
of functions on U that is uniformly strictly elliptic and bounded, i.e. there exists
constants A > 0, M > 0, such that for all £ = (&;,...,&,), € U, it holds

1<i,j<d

d
S (@) > e, max ay(x)| < M,
1,7=1

and let B € LP(U,RY) with p > d, ¢ € LY(U), g € 2V &, p). There exists ¢o > 0
such that ¢y <1 on U, and finally

u€ HY(U x (0,T)) N L>(U x (0,T)).

Assuming (I), we consider a divergence form linear parabolic equation with a singular

weight in the time derivative term as follows.
// (uOpp)dxdt = // (AVu, Vo) + (B, Vu)p dzdt,
Ux(0,T) Ux(0,T)
for all ¢ € C3°(U x (0,T)). (7.1)
Using integration by parts in the left hand term, (7.1) is equivalent to
— // (Opu) pdzdt = // <AVU, Vg0> + (B, Vu)pdxdt,
Ux(0,T) Ux(0,T)
for all ¢ € C3°(U x (0,7)). (7.2)
Define A := {v € L=(U x (0,T)) | Vv € L*(U x (0,T)) and supp(v) C U x (0,T)}.

Using the standard mollification on R% x R to approximate functions in A,
(7.2) extends to

- // (Oyu) ppdxdt = // (AVu, Vo) + (B, Vu)pdudt,
Ux(0,T) Ux(0,T)
for all p € A. (7.3)
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Fix 8 > 1. For t € R, define functions G(t) := (t*)?, H(t) := B+1<t+)ﬂ+1’ where
¢+ :=max(0,¢). Then by [21, Theorem 4.4], G'(t) = B(¢t7)"'1j9.00)(t) and H'(t) = G(2).
Let n € C5°(U % (0,T]) with n > 0. Given 7 € (0,T), define ¢ := n*G(u)1(p. Then
by [21, Theorem 4.4] (or [2, Lemma 4]),

e "G (w)Vu+2nVnGu), 0<t<rT,
SD =
0, T<t<T.

Thus ¢ € A and by (7.3), we have

— // (Opu) pYbdxdt = // (AVu, V@) + (B, Vu)pdadt. (7.4)
Ux(0,T) Ux(0,T)
Observe that by [21, Theorem 4.4] (or [2, Lemma 4]),
Or(n*H (u)) = 2n0m H(u) + n*G(u)dsu.

Thus by Lemma 7.1.1

//UX(&T) o (Oyu) Ydxdt
= //UX(O,T) n*G(u)Opu - hdadt
= /0 ' /U Or(n* H (u))ydxdt — 2 /0 ' /U nom H (u)ypdxdt

= / "’ H(u) |i=r dx — /T/ 2nom H (u)pdzdt, for a.e. 7 € (0,T). (7.5)
U 0o Ju

By (7.4) and (7.5), we get

/nzH(u) |t=r ¢dxdt+/ / (AVu, V) + (B, Vu)pdzdt
U o Ju

= / / 2n Oy H (u) Ydxdt, for a.e. 7 € (0,7). (7.6)
o Ju
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On {@ > 0}, it holds u > 0, so that Vu = Vu™'. Thus on {¢ > 0}, we have

(AVu, V@) + (B, Vu)o
= (AVu", ’G'(w)Vut) + (AVu®, 2nVn G(u)) + (B, Vuh)n*G(u)
> ' G (WA [[Vut|* = 20G (w)d M|Vl V|| — n*G(w) B[ V]
Note that on {¢ > 0}
(W) Gw)? < G'(u),

hence using Young’s inequality, we obtain

G (u) M| V||| V|
1 2 N 2
(VA G n IVut]) (an VAT () 5 |V
+2-4
2 2
4d% M2
IVl (),

N

<2.
A

= PG ()|l +

and
1 2 ) 2
(VX (@t~ Gluy|vu]) (VAT ()2 [B]n)
+2-
2 2
) 1
PG (W) [V 2+ S B2t

n'Gu)|Bll|VuT|] <

B > b0 |

<
Therefore on {@ > 0}, it holds

A
SIPG (W) [Vt

B2, ddAr
n

< (AVu, V@) + (B, Vi) 3 + ( 2 -

IVll?) @)+ ()

Note that {¢ =0} N (U X (O,T)> ={n=0}U{u <0} and Vu™ =0 on {u < 0}.
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Thus (7.7) holds on U x (0, 7). Combining (7.7) and (7.6), we obtain for a.e. 7 € (0,7

1
m/{]n2<u+)ﬂ+l ’t T ¢dl’+—/ / '8 1HVU+H dxdt

T IB||2 , 4d*M? ) ) 9 .
= + Vnll?) (ut)* dadt + —— O (ut)’ 1 pdwdt.
—/O/U<A" v ) () 5o, ), o)y

(7.8)

Now let (Z, %) be an arbitrary but fixed point in U x (0,T). Let Rz(r) be the open
cube in R? of edge length r > 0 centered at Z. Define Q(r) := Rxz(r) x (t — r%,1).

Theorem 7.1.2. Assume (I) and Q(3r) C U x (0,T). Then it holds

lull Lo (@) < OHUHL%’Q(Q(%))’ (7.9)

where C > 0 is a constant depending only on v, \, M and |B||1r(r,3r)) -

Proof Let n € C5°(Rz(r) x (t — 9r%,#]). Then (7.8) holds with U x (0,7 replaced
by Q(3r). Using appropriate scaling arguments(cf. [2, proof of Theorem 2]), we may
assume r = 3. Set v := (uT)? with v := % Then [|[Vv|? = 72 (ut)?||VuT|?. By
(7.8), it holds for a.e. 7 € (t — 1,1)

@ v? =y d + —/ / n* ||Vl Pdzdt
27 t—1 J Rz(1)

B2 40l2M2
// H H 3 |]V77||2>v2dxdt+// n|8n|v* Yda.
Q(1)

Let [ and I’ be positive numbers satisfying % <lI'<l< % Assume that n = 1 in Q(I'),
n =0 outside Q(1), 0 <n <1, and |9;n|, |Vn|| <2d(l —1')"'. Then

| BJ|? 4d2M2
// (1B, [0l1?)e2dads

<*a-n // (IBI? + 4d>M?) v*duds

4d2 n—2 2 2 M3 2
< =07 UBzr (ro 1) +4d°M >HUHL1’2TPQ’2(Q(Z))’
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and

t
J A O e (e O P PP
t—1 R(l) La=T7(Q

-2 2
2d(1 = U)W llzaweap vl 2,

IN

Thus we obtain
MnVollZe gy < 2C1(1 - l)_QWQIIUIIi%Q

and

||,7U||2LQ’OO(Q(1)) < 2c5101(l — l’)_272||v||2 2z, #2200

where C = (||B||Lp ) T 4d? M?) 4 24| || La(r, (1)

NowsetG—l——anda—l—l—g'fd:Q, 0—1+ b if d > 3.
/
Set py 1= (ﬂ): op qo.za’:ﬁ. Then

p—2 op—p+2’
d 1 d 1
— 4+ — <1 ifd=2, — 4+ —=11ifd> 3.
20 Qo 20 Qo
By [2, Lemma 3],
ol12/o 2/0
715, | < )| /%
LP=22(Q(I")) (Q(1))

= ’U o
I HL%*”’(QUD

||nv||iz(pg>/,2(qu(g(1))

< K (ol ey + IV 002y )
< K(”an%W»?(Q(l)) + 2H77VUH%2(Q(1)) +8d*(1 - l,>72Hv”%2(Q(l))>
< Co(l=1)29%|0)2 5 , (7.10)

L7-2*(Q()

where Cy = K (4C1\ 71 4 2C ¢yt + 8d?).
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Now for m € NU {0}, set | = 1,, :== 37 (1 +2™™), I'! =1 :=3H1+2 ™1,
om = |l(wH)" |75 . Taking v = o™ and 1/3 < l' =1}, <l =1, < 2/3 for

2
=P 2

Lr=2"(Q(lm))
m € NU {0}, we obtain using (7.10)

Pms1 < (36C2) 7™ (20) 7 0. (7.11)
Iterating (7.11), we get
m L m 2
Om+1 < (3602)Zi:° o (20)%=0 7" g
< (36C5)71(20) 7 [ull® 2
Lo

N

22(Q(2/3))

-

=:C3y

Letting m — oo, we get

s o <V :
[u™[[L(@ays) < 3”“”&%*2(@@/3»

Exactly in the same way, but with u replaced by —u, we obtain (7.9) with C' = 2/C5.
]
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7.2 Elliptic Holder regularity and estimates
Lemma 7.2.1. Let U be a bounded open ball in R%. Let f € LI(U) with & < ¢ < d.
Then there exists F = (f1,..., fs) € HY(U,RY) such that divF = f in U and

d
Z | fill vy < CllfllLawy,
=1

where C' > 0 only depends on q, U. In particular, applying the Sobolev inequality, we
get

d
il .  <C 7
2Nl gz, < O s
where C'" > 0 only depends on q, U.

Proof By [27, Theorem 9.15 and Lemma 9.17], there exists u € H>4(U) N HY%(U)
such that Au = f in U and

|ull g2awy < Cull fllaw)

where C| > 0 is a constant only depending on ¢, U. Let F := Vu. Then F € H“4(U,R?)
with divF = f in U and it holds

d d d
S iy = 3 10slnawn = 3 (10:llTz, + Z 10500l )
i=1 i=1 i=1
- Z oulsen + 303 10,3l

=1 j=1

<(d+ad)'7 (Z Jsull?, +ZZ 10,001 )

i=1 j=1

Q=

S( +d2) 1 ||U||H2q )
<Cy(d+d)7T ||f||Lq
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Theorem 7.2.2. Let U be a bounded open ball in R?. Let A = (ij)1<i j<q bE a matriz

of bounded functions on U that is uniformly strictly elliptic. Assume B € LP(U,R%),
ce LYU), f € LYU) for somep>d, q,q> 2. If ue HY2(U) satisfies

/ (AVu, V) + ((B,Vu) + cu) ¢ de = / fedx, foralleeCPU), (7.12)
U U

then for any open ball Uy in R with U, C U, we have u € C®V(U;) and

lullcon @y < C (lellrw) + 1 flleew))
where v € (0,1) and C > 0 are constants which are independent of u and f.

Proof Without loss of generality, we may assume %l < q < d. Let Uy be an open ball

in RY satisfying U, C Uy C Uy C U. By Lemma 7.2.1, we can find F = (fy,---, f4) €
~ dq

HY(Uy, RY) C L7 (Uy, RY) such that

d
divF = f in Uy, > Il ar < il fllzaws),
i=1 Lama(Uz)
where C > 0 is a constant only depending on ¢ and U;. Then (7.12) implies

/ (AVu, V) + ((B,Vu) + cu) p do = / (—F,V)dz for all ¢ € C3°(Us).
Uz

Us

Given x € Uy, r > 0 with r < dist(x, Us), set w,(r) := supp, .y u — infp, ) u. By [67,
Théoreme 7.2] and Lemma 7.2.1,

d
T vy
we(r) < K <||U||L2(U2) + ,Z1 ||szqu§(U2)> r
< K1+ C) (llullzws) + 1| zawsy) 77

where v € (0,1) and K,C’ > 0 are constants which are independent of x, r, u, F, f.
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Thus we have

2
[ ) = Py < (O (il + W)
r(z

L 1 L 7Td/2 .
where uz, = 5 [, w(uw) dy and (K')? == K? - F(%H)(l + C")2. Finally by [31,
Theorem 3.1], [12, Theorem 1.7.4], we obtain

lullgony < e(K (lullzzwy + 1 llzawn) + lullzen )
< (eK"V e) (|lullmr2ws) + 1 f1 i)
(K" &) (Cillull oy + CallF s + 1l i

(€1 +1) (e &) (Il + 1w ).

IA

IN

where ¢ > 0, C; > 0 are constants which are independent of u and f.
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Chapter 8

Analytic theory for degenerate
second order partial differential
operators

8.1 Framework

Let p € HY2(RY) N LS (RY), ¢ € L} (RY) be a.e positive functions satisfying 5

i € L. (RY) and set p := pp, pu = pdz. If U is any open subset of RY, then the
bilinear form [, (Vu, Vo)dz, wu,v € Cg°(U) is closable in L*(U, uu) by [51, Subsec-
tion 11.2a)]. Define Hi?(U, ) as the closure of C*(U) in L2(U, ) with respect to
the norm (f,, [|Vul?dz + [, u2d,u)l/2. Thus u € HY*(U, ), if and only if there exists

(un)n>1 C C§°(U) such that

lim u, =u in L*(U, ), lim /HV n— Up)|[Pdz = 0, (8.1)

n—oo n,m—0o0

and moreover ]TIS ’2(U , i) is a Hilbert space with the inner product

(u, U>H1 2y = lim (Vun,an>d:L‘+/ wv dj,

where (up)n>1, (Un)n>1 C C°(U) are arbitrary sequences that satisfy (8.1).
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If w € HY*(V, 1) for some bounded open subset V of RY, then u € HY?(V) N L2(V, )
and there exists (u,)n>1 C C5°(V) such that

lim u, =u in Hy*(V) and in L*(V, p).

n—o0

Consider a symmetric matrix of functions A = (a;;)1<; j<a satisfying

a; = a; € HEARY), 1<4,5<d,

loc

and assume A is locally uniformly strictly elliptic, i.e. for every open ball B, there exist
constants A\g, Ag > 0 such that

Agll€]|? < (A(x)E,€) < Apll€]|?, forall € €RY, x € B. (8.2)

Define A := iA. By [51, Subsection I1.2b)], the symmetric bilinear form

E%f,g) = %/ (AVf,Vg)du, f.ge CCRY,
]Rd

is closable in L*(R? u) and its closure (€%, D(EY)) is a symmetric Dirichlet form in
L3R4, ) (see [51, (II. 2.18)]). Denote the corresponding generator of (€Y, D(E%)) by
(L, D(LY)). Let f € Cg°(R?). Using integration by parts, for any g € C5°(R?),

1
Efg) = §/Rd<pAVf,Vg>drc

- 1 / (ptraee(Asz) + (pVA 4+ AVp, Vf>) gdx
Rd

2
AVp f>)g dp.

1 ~
_ /R d (ﬁtrace(AVQf) <2¢VA+ 200

_5[) A R

Thus f € D(L®). This implies C$°(R?) C D(L) and
Lof - %traee(zzl\v2 )+ (84 Y f) € IR, p).
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Let (T?)¢=0 be the sub-Markovian Cy-semigroup of contractions on L*(R?, ;1) associated
with (L° D(L°)). By Proposition 8.4.1, TP|11(ga jynre(rd, can be uniquely extended
to a sub-Markovian Co-semigroup of contractions (T0);s¢ on L'(R%, p).

Now let B € L} (R% R?, ;1) be weakly divergence free with respect to p, i.e.

/ (B, Vu)dp =0, for all u € C°(RY). (8.3)
R4

Moreover assume

pUB € L}, (RY,RY). (8.4)

Then using Lemma 8.4.3, (8.3) can be extended to all u € H*(RY, ()op and
/Rd(B, Vu)vdp = — /Rd<B, Vo)udp,  for all u,v € f[&’Q(Rd,u)o,b.
Define Lu := L% + (B, Vu), u € D(L%)gs. Then (L, D(L%)g,) is an extension of
%trace(ﬁVQu) + (B A+ B, Vu), ue CP(RY).
For any bounded open subset V of R?,
EV(f9)i= 5 [ AV Vo)du. fge GV

is also closable on L?(V, u) by [51, Subsection I1.2b)]. Denote by (%Y, D(E%Y)) the
closure of (£%Y,C°(V)) in L*(V, ). Using (8.2) and 0 < infy p < supy p < oo, it is
clear that D(E%Y) = H*(V, 1) since the norms || - Ip(eovy and || - [| 12,y are equiv-
alent. Denote by (L%Y, D(L%V)) the generator of (E%Y, D(E%Y)), by (G%)40 the as-
sociated sub-Markovian Cy-resolvent of contractions on L2(V, i), by (T7"" )0 the as-
sociated sub-Markovian Cy-semigroup of contractions on L%(V, i) and by (T, )so the
unique extension of (Tto’v\ LIV nLe (v )iso on LT (V, ), which is a sub-Markovian Cp-

semigroup of contractions on L'(V, u1). Let (ZO’V, D(EO’V)) be the generator correspond-
ing to (T?’V)t>0. By Proposition 8.4.1, (ZO’V, D(fo’v)) is the closure of (L%V, D(L%V))

on LY(R?, p).

110



CHAPTER 8. ANALYTIC THEORY FOR DEGENERATE SECOND ORDER
PARTIAL DIFFERENTIAL OPERATORS

8.2 [Ll-existence results

In this section, we use all notations and assumptions from Section 8.1. All ideas and
techniques used here are based on [69, Chapter 1]. But the structure of the given
symmetric Dirichlet form differs from that of [69] which will enable us to cover a
degenerate diffusion matrix. Because of that subtle difference, we check the details one
by one that the methods of [69, Chapter 1| can be adapted to our situation. The main
difference between [69, Chapter 1] and what is treated here is that we consider local
convergence in the space ]TIS 2(V, ), while [69, Chapter 1] considers the space Hy?(V, u)
where the pre-invariant density of [69, Chapter 1] does not need to be locally bounded.
Since H L2(V, u) is naturally included in the Sobolev space H?(V), the arguments to
derive our results are at times even easier than the ones of [69, Chapter 1]. For instance,
we can use the prodcut and chain rules in H L2(V, i) inherited from the Sobolev space
structure (see Remark 8.2.3). Moreover, assumption (8.4) will play an important role
to apply the methods of [69, Chapter 1].

Lemma 8.2.1. Let V be a bounded open subset of R?. Then
‘ -0,V -~
(i) D(L""), C Hy*(V, p).
.. . 0.V . 1.2 —0,V
(1) im0y T, u=u in Hy*(V,p) for allu e D(L" ).
0, —0,V ~
(iii) E%(u,v) =— [, L Ywodp for allu € D(L"" )y, v e Hy*(V, ).
(iv) Let p € C*(R?), p(0) =0, and u € D(ZO’V)b. Then ¢(u) € D(ZO’V)b and
— — 1 —~
LO’Vga(u) = @'(U)LO’VU + §¢'l(u)<AVu, Vu).
Proof Let u € D(fo’v)b. Since (Tto’v)t>0 is an analytic semigroup on L*(V, i), we get

T u=T"ue D(L®Y) forallt >0,

hence by Proposition 8.4.1,
0,V 70,V —=0,V—0,V

0,V T ) ) )
LTV = VYT, " u=L"T, wu=T, L u.
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Therefore
o0V <Tto,vu OV TV — T;),Vu)
_ _/ oV (Tto,vu _ Tfyu) _ (Tto,vu _ TSO’Vu> dy
v
. / (TS’VZ“’Vu - T‘j’vfo’vu> : (Tto’vu - T;Wu> dy
1%

V=0V =0 V=0,V )

S‘Tt " u -T2

'2 o5}
2=

—0 as t,s > 0+.

Thus (77" u)so is an PAIS’Q(V, p)-Cauchy sequence as t — 0+, which implies u €
Hy(V, ) and limy_oy TV'u = u in Hy?(V, p). Thus (i), (i) are proved.

Let v € }AIS’Q(V, )p. Then

0V _ 0,V [0,V o 0,V 0,V
EVV (u,v) t1_1>r0r5r5 (T, u,v) tl—lg}i- ; (L T, u) vdu
= lim — (TS’VIO’Vu) vdu = —/ "V vdpu,

hence (iii) is proved.

(iv): Note u € D(ZO’V)I, c HYA(V, )y Set u, = nG%Vu, M := l|w|| Lo (vy. Then
|tn|[zoo(vy < M. By strong continuity, lim, e %, = v in fIéQ(V, p) and there exists
a subsequence of (uy)n>1, say (un)n>1 again, such that lim, o u, = v p-a.e. on V.
Thus by Lebesgue’s Theorem, lim,, o, ¢(u,,) = @(u) in L*(V, ). Observe that

SUP”VSO(un)HH(V,Rd) = SUPHW/(Un)VUnHL?(V,Rd)

n>1 n>1

< N lzoe -ar,nmy sup [lunll ey, < oo
n>1

Thus by Banach-Alaoglu Theorem, ¢(u) € PAIS’Q(V, ). Similarly, we get ¢ (u) € PAIS’Q(V, 1).
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Let v € ﬁé’Q(M ). Then by [51, I. Corollary 4.15], v¢'(u) € ]?Ié’Q(V, )y and

1

EV(plu0) = 3 [ (AVelu), Vo)

1

= 5/‘/(A\Vu, Vo) (u)du

1

T / 1 n 7
= 5/‘/<AVU,V(U§0 (u)))dp — 5[/(AVU, Vu)" (u)vdu

- _/V(gp/(u)fo’vu—i—%go"(u)(ﬁVu, Vu))v dj.

Since go’(u)fo’vu + %gp”(u)(A\Vu, Vu) € LYV, pn), (iv) holds by [5, I. Lemma 4.2.2.1].
0

Recall that a densely defined operator (L, D(L)) on a Banach space X is called dissi-
pative if for any u € D(L), there exists [, € X’ such that

lallx = llullx, lu(w) = llullx and l,(Lu) < 0. (8.5)

Proposition 8.2.2. Let V be a bounded open subset of RY.
(i) The operator (LY, D(L%V),) on LY(V, ) defined by

LYu = L"Vu+ (B,Vu), u€ D(L"),

is dissipative, closable on L'(V,p). The closure (ZV,D(ZV)) generates a sub-
Markovian Cy-semigroup of contractions (T;/)bo on LYV, ).

(ii) DLV, c HY(V, 1) and

Eo’v(u,v)—/ (B, Vu) vdp = / Zvu-vd,u, for allu e D(Zv)b, NS ﬁé’Q(V, )
v v
(8.6)

Proof (i) Step 1: For u € D(L%"),, we have [, LY ulg,s1ydp < 0.
Let ¢. € C*(R), € > 0, be such that ¢ > 0,0 < ¢. < 1 and p.(t) = 0if ¢t < 1,
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ol(t)=1if t > 1+¢. Then ¢.(u) € D(ZO’V) by Lemma 8.2.1(iv) and

1 .
[ 2Vugwdn < [ 1Vugitw)dis | Set@(AVa, Vudu
1% Vv

v 2
—0,V
= / L™ pc(u)dp
1%
—0,V
T’ —
t=0+ Jy, t
< 0, (8.7)

where the last inequality followed by the L'(V, u)-contraction property of (T?’V)t>0.
Since lim._,04 ©.(t) = 1(0,00)(t) for every t € R, we have

dim g(u) = L1y prae on Voand o (u)rew) < 1.

Thus by Lebesgue’s Theorem

LoV lpsydp = li L%Vu o (u)du < 0.
/V wlpsydp = lim | L2 w gc(u)dp <

Similarly, since ¢.(u) € Hy*(V, 1), using (8.3) we get

/ (B, Vu)ly=ydp = lim | (B, Vu)y.(u)dp = lim [ (B, V. (u))dp = 0.
v

e—0+ Vv e—0+ Vv

Therefore fv Lvul{u>1}du < 0 and Step 1 is proved. Observe that by Step 1, for any
n>1

/V (LVnu) lpusndp <0 = /VLVu 1{u>%}d,u <0.

Letting n — oo it follows from Lebesgue’s Theorem that fv LVulg,oydp < 0.
Replacing v with —u, we have

— / LYulgu<opdp = / LY (—u) 1_ysoydp < 0,
Vv \4
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hence

/ LVu (1{u>1} — 1{u<0})dﬂ <0.
v

Setting Ly = ||u||L1(V,u)(1{u>l} - 1{u<0}) S Loo(‘/’ :u) = (Ll(‘/: :u))/a (85) is satisfied.
Since (L%V, D(L%Y),) is densely defined on L'(V, u) becasue C5°(V) € D(L%Y),,
(L%V, D(L%Y),) is dissipative.

Step 2: We have (1 — LV)(D(L%Y),) € LY(V, u) densely.
Let h € L>®(V, ) = (L*(V, )’ be such that [,,(1— LY )uhdp = 0 for all w € D(L™Y),.
Then u — [,,(1 — L®Y)uhdpy is continuous with respect to the norm on Hy?(V, )

since

/(1 — L%V u)u hdu‘ =
v

/ (pyB, Vu)hdx
v

||h||L°°(V) ||P1/)B||L2(V,Rd) HV““B(V,Rd)
||h||L°°(V) ||p7vZ)B||L2(V,Rd) HUHﬁé’?(V,ﬂ)-

<
<

Thus, by the Riesz representation Theorem, there exists v € PAIS ’Z(V, i) such that
EMY (u,v) = /V(l — LYy - hdp  for all u € D(L%V),,
which implies that
/V(l — L"YYu - (h—v)du =0 for all u € D(L™),. (8.8)

Since (L%V, D(L%V)) generates a sub-Markovian resolvent in L?(V, ),
LYV, p) VL=V, ) € (1= L) (D(LMY)),

hence (1 — L%V)(D(L%V),) € L*(V,u) densely. Therefore (8.8) implies h — v = 0. In
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particular, h € 1{\]3’2(\/, p) and

£ (hoh) = lim & (aGe R, h)
= lim [ (1 - L") (aG%h) hdu
a—r00 \4
— lim <pr,V(aGah)>hdx
a—r00 V

= /V<pr,Vh>hdx - %/V<B,Vh2>du =0,

therefore h = 0. Then applying the Hahn-Banach Theorem [14, Proposition 1.9], Step 2
is proved. By the Lumer-Phillips Theorem [45, Theorem 3.1], the closure (fv, D(fv))
of (LY, D(L%Y),) generates a contraction Cyp-semigroup (Tf)bo on LYV, ).

Step 3: (T:/ )i=0 is sub-Markovian.

Let (G, )as0 be the associated resolvent. It is enough to show that (EZ)wO is sub-

Markovian since T u = lim exp (ta(a@Zu — u)) in L'(V, ) by the proof of Hille-
a—r00

Yoshida (cf. [51, I. Theorem 1.12]). Observe that by construction
D(L™), c D(fv) densely with respect to the graph norm || -

HD@V)'

Let u € D(ZV) and take u, € D(ZO’V)I, satisfying lim, ,oou, = w in D(ZV) and
lim,, oo 4, = u, pa.e.on V. Lete >0 and . be as in Step 1. Then by (8.7)

/ 7 u Liys13dp = lim " u ¢l (u)dp < 0.
v e—=0+ Vv
Let f € LY(V,p) and u := a@}x/f € D(ZV). If f <1, then

—v
a/ ulpsydp < /(au—L u)lgys1ydp = a/ flsndp < a/ Liws1ydpt.
v v v v

Therefore, o [, (u—1)1{s13dp < 0, which implies v < 1. If f > 0, then —nf < 1 for all

n € N, hence —nu < 1 for all n € N. Thus u > 0. Therefore (GZ),DO is sub-Markovian.
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(ii) Step1: Itholds D(Z""), ¢ D(L") and L' u=T1""u+(B,Vu), ue DI""),
Let u € D(fo’v)b. Since (T} )40 is an analytic semigroup, 7" u € D(L%V), C D(fv)
and L' TV u = LOVT®Vu + (B, VI*Vw) = T, T u + (B, VI ). By Lemma
8.2.1(ii), limy_y04 7"V u = u in H*(V, 11), which implies that

lim fthO’Vu ="+ (B,Vu) in L'(V,p),

t—0+

: : 0V : =0,V R o e

by (8.4). Since lim; 04 7} u = limy 04 T, w=wu in L'(V,u) and (L ,D(L )) is a
closed operator on L'(V, 1), we obtain

u € D(Zv), u=T""u+ (B, Vu).

Step 2: Let u € D(L" ), and take u, € D(L®V), as in Step 3 of the proof of Proposition
8.2.2(i). Let My, My > 0 be such that ||u|| gy < My < M. Then

lim (AV Uy, Vu,)dp = 0. (8.9)

00 J UM <|un|<Ma}

Indeed, let ¢ € C'(R) be such that ¢'(t) := (¢t — My)* A (My — M;) with »(0) = 0.
Then by Lemma 8.2.1(i) (iv), we have ¢(u,) € HY?*(V, p). Observe that ¢'(u) = 0,
p-a.e. on V oand

/ & (un) (AV Uy, Vi, dp = / <A\Vun, V' (u,))dp
{M1<un<M>s} \%
— £ (1, (1)) = — /V LV (1)l
[ 1V~ [ (Bl
% v

= —/ LY up @ (up)dp — — / 'u o' (u)dp =0, asn— oo,
14 v
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where the convergence of the last limit holds by Lebesgue’s Theorem, since

lim ¢ (u,) = ¢'(u) =0, p-a.e. on R?

n—oo

and
/ LYy, - @' (up)dp — / L'u- w’(U)du‘
1% 1%
—V —v
< ||(P/||L°0(V)/ ‘(Lvun — L u)’ d,u+/ |L u| - @ (un) — ' (u)|dp
174 1%
— 0 as n — oo.
Similarly,
/ (AVu,,, Vau,)dp = / (AV (—up), V(—up))dp = 0,
{—-Mz<up<—-M} {M1 <—un<Ms}

hence (8.9) is proved.

Step 3: Let u, u,, n > 1 be as in Step 2. Let ¢ € CZ(R) be such that p(t) = ¢ if
t| < ||ulleevy + 1 and @(t) = 0 if [t| > |lu| gy + 2. Using Step 2 and Lebesgue’s
Theorem

ngo(un) = 0 (un) LYty + @ (1) (AV Uy, V) — v in LYV, u) asn — oo.

Therefore

SO’V(SD(Un) — (Um), ©(un) — ©(Um))
== [ 2 (plun) = ) - () = ol

—v —v
< 2|loll peemay| L @(un) — L @(um)|| L1 vy — 0 as n,m — oo.

Thus lim,, s ¢(u,) = u in ﬁé’Q(V, p) by the completeness of ];13’2(‘/, ). Then using
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(8.4), for any v € }AI(%’Q(V, )b,

£V (u,v) — / (B, Vu) vdp = lim (% (p(un), v) — / (B, V() )dp)

n—o0

= — lim ngo(un) cvdp = —/ 7 u- vdp,
which completes the proof of (ii).
0

Remark 8.2.3. One can generalize the assumptions of Proposition 8.2.2 to more
general positive functions p as follows. Consider v as in Section 8.1 and assume
¢ € HZ2(RY) with ¢ > 0 a.e. onR? and let p := ¢*, p := pipdzr. Let A = (aij)1<ij<a be a
symmetric matriz of functions that is locally uniformly strictly elliptic on R? and a;; €
H22(RY, pdx) for all 1 < i,j < d. Assume B satisfies (8.3) and vB € L}, (R?, pdz).
Let (E°, D(EY)), (L°, D(LY)) be defined in the same manner as in Section 8.1. For an
open set U in R?, define ﬁéﬁ(U, w) as the closure of C§°(U) in L*(U, p) with respect
to the norm ([, [|[Vul?pdz + [, uzd,u)l/Q. Then replacing HY?(U, p) with ﬁ]&}’i(U, W,
one may obtain the same results as in Lemma 8.2.1 and Propsotion 8.2.2. Especially,
if v =1, it reduces to the framework of [69]. But considering a future goal in Theorem
8.3.1, we obtain p € H (R N C’llozd/p(]Rd) with p(x) > 0 for all x € R?, which in

particular means that p € L2 (RY) and % € L. (RY). In view of the latter, we maintain
our present assumptions in Section 8.1 because it makes the arguments in the proofs

simple.

Remark 8.2.4. Let V be a bounded open subset of R:. Define
LV := L% +(-B,Vu), u€ DL"Y),

Note that —B has the same structural properties as B since (8.3) and (8.4) hold. Thus
Proposition 8.2.2 holds equally with B replaced by —B. In particular, there exists a
closed extension (L', D(L"")) of (L*V, D(L*)y) on L*(V, ), which generates a sub-

Markovian Cy-resolvent of contractions (GZV) on LY(V, ) and

E% (u,v) —l—/

(B, Vu)vdp = —/ f*vuvd,u, u € D(f*v)b, (NS ﬁ&’z(v, 1).
v

|4
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* V.

Let (L*V,D(L*V)) be the part of (Z*V,D(Z )) on L2(V, ) and (LY, D(LY)) be the
=V

part of (L', D(T")) on L2(V, p). Then for any u € D(LY)y, v € D(L*),

—/Lvumdu = Eo’v(u,v)—/<B,Vu>vd,u
v v

= Eo’v(v,u)+/<B,Vv>ud,u

v
= —/L*Vv-ud,u (8.10)
v

Let (GY)aso and (GY)aso be the resolvent associated to (LY, D(LV)), (L*V, D(L*Y))

«

on L3(V, 1), respectively. Then for any f,g € L*(V,u) N L>(V, ),
[Gsgin = [ GYfta- L6 gan
v v
— o LV Ve oV d
. /V(a )Go f - Go gdp

= /f-G:;ngu. (8.11)
.

By denseness of L*(V, ) N L>®(V, ) in L*(V, ), (8.11) extends to all f,g € L*(V, u).
Thus for each o >0, G*" is the adjoint operator of GY on L*(V, ).

Now let V be a bounded open subset of R Denote by (@Z)a>0 the resolvent
associated with (ZV, D(Zv)) on L'(V, ). Then (5}:)090 can be extended on L'(R?, 1)
by

v, | G.f) o v L
G f = { . on RV, fe MR ), (8.12)

Let g € LY(R?, p1),. Then @Z(glv) € D(fv)b C HY*(V, ), hence @Zg e H*(V, p).

Note that if u € D(E®Y), then by definition it holds u € D(&°) and £%Y(u,u) =
E%(u,u). Therefore we obtain

—Vo  =Va —Vn —Vn
£(Gy"g, Go'g) = E"7(G (91v), o (91v,))- (8.13)
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Lemma 8.2.5. Let Vi, Vo be bounded open subsets of R? and V, C Vi Let u €
LY R p), u >0, and o > 0. Then @Zlu < Efu.

Proof Using the denseness in L'(RY, i), we may assume u € L'(R? u)y. Let w, 1=
@Zlu — @ZQu. Then clearly w, € Hy?(Va, 1r). Observe that w} < aglu on R? so that

wl € ﬁé’Q(%, p) by Lemma 8.4.4. By [21, Theorem 4.4 (iii)], we obtain

/ (B, Vw,)wldu :/ (B, VwHw!du = 0. (8.14)
V2 V2

Since £%"2 is a symmetric Dirichlet form, E%V2(w,, wl) = E%V2(wl, w;) < 0. Therefore

EM(wh wt) < gg’VQ(wa,er)—/<B,Vwa>wz§du
%}

«

< (0@ - |

|41

~(2 @) - | BV wpuldn)
Va

< / (o — Zvl)aglu wdp — / (o — f‘%@?u whdp
Vi

Vs

= /uw;rd,u—/ uwldp = 0.
V1 VZ

: =V —V;
Therefore w} = 0 in R?, hence G,'u < G, u on R%.

(B, V@lew;r d,u)

O

Remark 8.2.6. Since w,, w} € HY?(Vy) in Lemma 8.2.5, we could directly get (8.14)
using [21, Theorem 4.4 (iii)]. However, in the general situation as in Remark 8.2.3, if
p is not bounded below by a strictly positive constant, then w,, w} may not be contained
in HY2(Vy). In that case by Lemma 8.4.2, we can take a sequence (fn)n>1 C C5(Va)
such that sup, >y || fulleo(vs) < ||wallpes) and

n—oo n—oo

lim fF =w)

n—o0

p-a.e. in Va.
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By [21, Theorem 4.4 (iii)]
| ® sz = | B85 (8.15)
Va Va

and

| ®vuuian- [ <B,v,f:>f:du\
Va Vo

< || ®5w - ot +| [ @5 ).
. V2 > . V2 7

g g

=1 =:Jn

Since lim, o f7 = w}l weakly in D(E%V?), we have lim,, o, I,, = 0. Using the Cauchy-

Schwarz inequality, it holds

< / IBIIV S e — £ 1dp
Va

1/2 1/2
< ( varz\wg—f:rpdx) (/ \rwB\|2\w:—f:rpdx)
Va Vo
1/2
1/2
< V2|walli2 sglfl!fi!\ﬁgﬂ;’(vw) (/V [4B|*|wy — fildp&)
nz ' 2

—0 asn— o0

by Lebesgue’s Theorem. Applying the same method for the left hand side of (8.15), we
obtain

/(B,Vwa>w;rdu:/ (B, VwHwldpu.
Va

Va

By means of Proposition 8.2.2, we will derive the following Theorem 8.2.7.

Theorem 8.2.7. There exists a closed extension (L, D(L)) of Lu := L% + (B, Vu),
u € D(L%)oy on LY(RY, 1) satisfying the following properties:

(a) (L, D(L)) generates a sub-Markovian Cy-semigroup of contractions (T;)yo on
LYR?, ).
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(b) Let (Up)ns1 is a family of bounded open subsets of R satisfying U, C U,
and R = {5, Un. Then  lim, @g"f = (a—L)7'f in LR ),  for all
fe LY (R u) and a > 0.

(c) D(L), C D(E®) and for allu € D(L),, v € ﬁé’z(Rd,u)Qb it holds

E%u,u) < —/ Lu - udp,
R4

Eo(u,v)—/ (B, Vu)vdy = —/ Lu - vdj.
R R

Proof Let f € L'(RY, u) with f > 0. Let (V},),>1 be a family of bounded open subsets
of R? satisfying V,, C V,,; for all n € N. Using Lemma 8.2.5, we can define for any
a>0

Gof == lim @an p-a.e. on RY.

n—oo

Using the L'-contraction property, [q. Oz_@znfdu = [ &@Z"(flvn)d,u < [y, fdu <
Jga fdp. Thus by monotone integration, G, f € L* (R, ;1) with

/ oG fdp < / fdu,
]Rd Rd

and by Lebesgue’s Theorem, lim,, @Z"f = Gof in LYRY, ).
G,

For any f € LY(R? u), define Gof := Goft —
LY(R4, ), since

/ G fldu < / 0Gof" +aluf dp < / Frdu+ / fdp = / fldu
Rd ]Rd Rd Rd Rd

Thus

«f 7. Then aG, is a contraction on

lim G."f = Gof in L'(R% p), lim @Z”f =Gof peae. on RY
(o0} n—oo

Clearly, (G4)as0 is sub-Markovian, since (@Z”)wo is sub-Markovian on L'(V},, u) for
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any n > 1. By the L'(R?, j1)-contraction property, for any o, 8 > 0
y y K

. _Vn_ _Vn_vn . 1 el _Vn
nh—{{olo HGa G/Bf - Ga G,B f”Ll(]Rd,u) < nh—{{olo EHGﬁf - GB fHLl(Rd,,u) = 0. (816)

Using (8.16) and the resolvent equation for (G;/n)a>0, we obtain for any a, 5 > 0

(8- 0a)GaGaf = lim (8 —a)G,"Gsf = lim (8 — )G, "Gy f

n—o0

— lim G f -Gy f = Gaf —Gsf in L'(R%, p).

Let f € L'(R, p), and o > 0. By (8.6), G."(f1y,) € D(L"), ¢ HY*(Vy, u)p. Using
(8.13),

ENCT £, G ) = € (C) (flv,), Go' (flv))
=~ [ TG () G i | oGl (1) T ()

- / (fv.) - G2 (f1y, )dp

n

IN

/R - Cufn (8.17)

1
< Nl floret

Observe that lim,,_, @Z" f=Guf in L}(R? u) by Lebesgue’s Theorem. Thus by the

Banach-Alaoglu Theorem, G, f € D(E°) and there exists subsequence of (EZ” fln>1,
. =Vn
say again (G, f)n>1, such that

lim @z"f = Gof weakly in D(E°). (8.18)

Using the property of weak convergence and (8.17)

_V:rz

EYGuf, Gof) < liminf EA(G." f,G" f) < / FGafdu. (8.19)
n—00 R
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Let v € ]TIS’Q(Rd, t)op- Then by Lemma 8.4.3, v € D(E°). Using (8.18),
ENGLf,v) — / (B,VGof)vdu

R4

— lim (gg(éav" fio) — /R d<p¢B,v§Z" f>vdx>

: — —Vh
= lim (52’V" (Go (f1v,),v) — /V (B,VG, (flvn)>vdu)
= lim (a—fvn)azn(flvn)-vdu: lim/ fvd,u:/ fodu.  (8.20)
n—o0 Vn n—oo Vn Rd

Let u € D(L°)o, be given and take j € N satisfying suppu C V;. Then by Lemma 8.4.3,
u € HS’Z(V},M). Observe that supp (Lu) C V; and for any n > j, uly, € D(L%Y),,
LY (uly,) = Lu on V,,, hence EZ” (a — L)u = u on R%. Letting n — oo we have

u = Gola — L)u. (8.21)
Note that
laGau — ullrga,y = HozGau — Gola— L)uHLl(Rd,M)
= HGO‘Lu”Ll(Rd,u)
1
< —||Lul|prgay — 0 as a — oo. (8.22)
o

Since Cg°(RY) C D(L%)gy, (8.22) extends to all u € L'(R?, 1), which shows the strong
continuity of (Ga)aso on LY(R% p). Let (L, D(L)) be the generator of (G4)aso- Then
(8.21) implies Lu = Lu for all u € D(L°)g,. Thus (L, D(L)) is a closed extension of
(L, D(L%)s) on LY(R% p). By the Hille-Yosida Theorem, (L, D(L)) generates a Cj-
semigroup of contractions (7)o on LY(R?, p).
Since Tyu = lim,_,o0 €Xp (ta(a@au — u)) in LY(R?, i), (T});>0 is also sub-Markovian,
hence (a) is proved.

Next we will show (b). Let (U,),>1 be a family of bounded open subsets of R? such
that U, C Uyyy for all n € N and R? = (J ., U,. Let f € LYR% p) with f > 0.
By the compactness of V,, in R%, there existsino € N such that V,, C U,,, so that
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G"f < G f < limy e Go"f. Letting n — 00, we obtain Gaf < limy e Go" f.

Similarly we have lim,,_, . Eg" f < G.f, which shows (b).
Finally we will show (c). Let u € D(L), be given. Then by (8.18), aG,u € D(EY)
and by (8.19)

E%aGau, aGau) < au - oG audp — a/ aGau - aGaudpu

d Rd

a(u - a@au) - aGaudp

d

—aL Gou - aGau du

I
—

IS

—aGoLu - aGuudpu (8.23)

I
.

Rd
< L] ey || oo (ra -

Therefore sup,.,E%(aGau, aG,au) < oo. By Banach-Alaoglu theorem, there exists a
subsequence of (aG4u)a>0, say again (aGau)as0, such that u € D(E°) and limy_,00 aGot =
u weakly in D(E°). Moreover by the property of weak convergence, (8.23) and Lebesgue’s
Theorem,

E%u,u) < liminf £%(aGau, aGau) < liminf (—/ aGoLu - aaaud,u)
R4

a—0o0 a—0o0

= —/ Luudp.
Rd

Ifve I/-\Il’z(Rd,,u)O,b, then by (8.20)

€O(u,v)—/ (B, Vu)vdp = lim (50(a5au,v)—/ (pi/}B,Voz@au)vda:)
Rd

a— 00 R4
= lim (53((16@% v) — / (B, VaG u)vdy — a/ aGau - vdu)
a—0o0 R4 R4
= lim a(u — aaau> vdp = lim —aGoLu - vdy = — / Lu - vdy,
a—0o0 Rd a—0o0 Rd R‘i
as desired. -
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Remark 8.2.8. In the same way as in Theorem 8.2.7, one can construct an L*(RY, )
closed extension (L°, D(L")) of L'u+ (—B,Vu), u € D(L%)o, which generates a sub-
Markovian Cy-resolvent of contractions (G,)aso an L'(R%, p). Let (Up)nsy be as in
Theorem 8.2.7(b). Observe that by Remark 8.2.4

/Rd ag"u cvdp = /Rd u - GZU"U du, for all u,v € 'R ) N L=®(R?, 1),  (8.24)

") aso i the resolvent associated to (L ", D(L" U")) on LY(U,, 1), which is
trivially extended to R as in (8.12). Letting n — oo in (8.24),

—x U, —x Up,
where (G

/ Gouvdp = / uwGoudp,  for all u,v € LY(RY, 1) N L2 (RY, p).
Rd Rd

The following Theorem 8.2.9 which shows that D(L), is an algebra is one of the
ingredients to construct a Hunt process corresponding to the strict capacity (see, SD3
in [78]). It will be used later. The proof of Theorem 8.2.9 is based on [69, Remark 1.7

(iii)], but we include its proof checking in detail some approximation arguments.
Theorem 8.2.9. D(L), is an algebra and Lu? = 2uLu+(AVu, Vu) for anyu € D(L),.

Proof Let u € D(L),. Since D(L), is a linear space, it suffices to show u? € D(L),.
Let (L", D(L")), (G.,)as0 be as in Remark 8.2.8 and set g := 2uLu + (AVu, Vu). If we
can show

/ (L" G h) u’dp = / gGihdpu, forall h e LYRY, )y, (8.25)
Rd Rd
then
/ Gi(u* — g) hdp = / (u* — g)Gihdp = / 2(Gih =L G h)dp
Rd Rd (8 25)

— / w?hdp, for all h e L'(RY, u)y,
Rd

hence u? = G (u?—g) € D(L), and Lu? = (1-L)G,(g—u?) -G (g—u?) = g—u?+u? =
g, as desired.
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Step 1: To prove (8.25), first assume u = G, f for some f € L'(R%, u),. Fix v = G1h
for some h € L'(RY, p), with h > 0. Let (U,),>1 be as in Theorem 8.2.7(b) and
Uy = @lljnf, vy = Gy Y, By Proposition 8.2.2 and Theorem 8.2.7

/d(f* U"vn) U, dp
R

= —&%vy,, uuy,) — / (B, Vu,)uu,dpy, ( since v, € D(E°) and uu, € D(EY))
R4

1 ~ 1 ~
= ——/ (Aan,VuMndp,——/ <Aan,Vun)ud,u+/ (B, V(uuy,))v,dp
2 Rd 2 R4 Rd
1 -~ 1 ~ 1 N
= ——/ <AV(vnun),Vu>du—|——/ (AVuy,, Vu)v,dy — —/ (AVv,, Vu,)udp
2 R4 2 R4 2 Rd
+/ (B, Vu)v,uy, d,u—f—/ (B, Vu,)v,udp
R R¢

1 -~ 1 ~
= ——/ (AVU,V(vnun)>du+/ (B, Vuyv,u, dp + —/ (AVu,, Vu)v,du
2 Rd Rd 2 R4

—%/Rd<zzl\Vun,V(vnu))du+/

R4

1 N
(B, Vuy,)v,udp + 5/ (AVuy,, Vu)v,dp

R4

= / Lu - vnundu—l—/ EU"un . vnud,u—I—/ (A\Vun,VuMndu. (8.26)
R? R4

R4

Observe that

/ (AVu, Vu)vdp — / <2vun,vu>vndu‘
R4 Rd

<

/ (AV (1 — uy), Vu}vdu‘ +
Rd

J/ N

/Rd@ZVum Vu) (v —v,)du (8.27)

:;In :Iv]n

Since lim,, soo U, = u weakly in D(E°) and v is bounded on R%, lim,, ., I, = 0. Note
that v, = G, "h < G h =, sup,ey E0(Un, ty) < 00, |v,| < Jv| € L®(RY, 1) and

lim u, = u p-a.e. on R%
n—oo
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hence we obtain by the Cauchy-Schwarz inequality,

5, < ( /R (A, V) (0~ v,) du> v < /R (A, V) (0~ v,) du) "

< V2ol 2 g sup E (U, 1)/ ( /R

— 0 asn— oo,

R 1/2
(AVu, Vu) (v —vy,) du)

d

where the latter convergence to zero followed by Lebesgue’s Theorem for which we use
(AVu, Vu) (v —v,)| < 2||v]| oo (ra, ) (AVu,Vu) € L'(R?, j1), prac. on R

and
lim (AVu, Vu) (v —v,) =0, p-a.e. on R%

n— o0

Therefore it follows by (8.27) that

lim (EVun,Vu)vndu:/ (AVu, Vu)vdp. (8.28)

n—o0 R4 Rd

By (8.26), (8.28) and Lebesgue’s Theorem

/ v urdp
R4

= /Rd <5:h — h> Ul dp

= lim (@I - h) Uy, dpt
n—oo Rd

=  lim [ (L "v,)uu,dp
n—oo R4

= lim Lu - vyu,dp +/ (é?”f — f) - vpudp + / (AVu,,, Vu)v,dp
(8.26) n—oo Jpd R4 R4

= / Lu - vudp + / Lu - vudp + / </A1Vu, Vu)vdpu
Rd Rd Rd

= / gudyp. (8.29)
R4
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In the case of general h € LY(R? 11),, we also obtain (8.29) using h = h™ — h™ and
linearity.

Step 2: Let u € D(L), be arbitrary. Set
o = 2(aGau) L(aGuu) + (AVaGau, VaGau), o> 0.
By Theorem 8.2.7(c),

E%aGu — u,aGou — u)

IN

- / L(aGou — u) - (aGou — u)dpu
R4

2HUHL°°(]Rd“u) Hozaazu — ZU’HLl(Rd,p)

A\

— 0 as a— oo,
hence limy_y00 go = g in L'(R?, 11). Observe that by the resolvent equation
Gou= G,y ((1 —a)Gau + u)
and (1 — a)Gou +u € L'(R?, 11),. Replacing u in (8.29) with aG,u

/ L'v (aaau)2du:/ gavdpe.
Rd R4

Letting o — o0, we finally obtain by Lebesgue’s Theorem

/ L'v- wrdp :/ gud,
R4 R4

so that our assertion holds.
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8.3 Existence of a pre-invariant measure and gen-

eral strong Feller properties

Here we state some conditions which will be used as our assumptions.

(A1) p > dis fixed and A = (a;;)1<ij<a 1S @ symmetric matrix of functions which is
locally uniformly strictly elliptic on R? such that a; € H,.P(R%) N Cl?)’clfd/ P(RY)

for all 1 < 4,57 <d. ¢ € L (RY) is a positive function such that i € L2 (RY)

loc

and G is a Borel measurable vector field on R? satisfying ¥'G € L? (R% R%).

loc
(A2) ¥ € L}, (R?) with ¢ > . Fix s > § such that ; +; < 2.
(A3) ¢=>FE v

Theorem 8.3.1. Under the assumption (A1), there exists p € H.-"(R?) ﬁC’loo’cl_d/p(Rd)
satisfying p(x) > 0 for all z € RY such that

/ (G — P V) phdr =0, for all € C3°(RY). (8.30)
]Rd

Moreover pp B € LT (R? R?), where B := G — gr4v.

loc

Proof By Theorem 5.2.2, there exists p € HLP(RY) N CL-YP(RY) satistying p(z) > 0
for all z € R? such that

1 1
/ <§AVp + (§VA —¢YG)p,p)dx =0, forall g€ C3°(RY),
R4

hence
VA AVp d
G—-———V Wwdr =0, for all p € C3°(R?),
Rd< 2% " o0 ©)p p € C*(RY)
and moreover
A
B = pYG — §VA - % e I? (RY RY).

O

From now on we assume that (A1) holds and fix A, ¢, p, B as in Theorem 8.3.1
and set as in Section 8.1 p := pipdx, A = iA, p = py, G = %aij forall 1 <4,j <d.
Then A, ¥, p, B satisfy all assumptions of Section 8.1.
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Remark 8.3.2. If) € HY2(V)N L>(V) for some bounded open set V in RY, then by
the chain and product rules for weakly differentiable functions,

lof_ VA AV AVp AVY AVp
2 21 212 20 292 2p1
A _1oa AVp : A _ apAsp
Set P = 2VA+ 55 O V. Then it holds 5P* = 3 (a.e.) on V. If we assume
)

v € HYP(V), then it holds
F = %w&u G — 2874 € LP(V,RY).
By Theorem 8.2.7 there exists a closed extension (L, D(L)) of
Lf=L°f+(B,Vf), fe&D(Loy,

on L*(R? ;1) which generates the sub-Markovian Cyp-semigroup of contractions (7)o
on LY(R?, 11). Restricting (T)s>0 to LY(R%, )y, it is well-known by Riesz-Thorin inter-
polation that (Tt)t>0 can be extended to a sub-Markovian Cy-semigroup of contractions
(T})¢=0 on each L"(R? 1), r € [1,00). Denote by (L,, D(L,)) the corresponding closed
generator with graph norm

Il = 1l r@a ey + [ Lo fll e,

and by (Ga)a>0 the corresponding resolvent. Also (7})i~0 and (G4 )a>0 can be uniquely
defined on L>*(R%, 1), but are no longer strongly continuous there.

For f € C3°(R?), we have
1 ~
Lf=L"f+ (B,Vf) = §trace(AV2f) + (G, Vf).
Define

L = LOf—<B,Vf>:%trace(ﬁvmﬂc*,w),
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with
G" = (gfa e 792) = 25[)’14#} -G= 5[)714#) -Be L?oc(Rd7Rd7 ,u)

We see that L and L* have the same structural properties, i.e. they are given as the
sum of a symmetric second order elliptic differential operator L° and a divergence
free first order perturbation (B, V-) or (=B, V-), respectively, with same integrability
condition pyyB € LI (R? R?). Therefore all what will be derived below for L will hold
analogously for L*. Denote by (L*, D(L?)) the operators corresponding to L* for the
co-generator on L"(R? 1), r € [1,00), (T} )ss0 for the co-semigroup, (G%)aso for the
co-resolvent. As in [69, Section 3], we obtain a corresponding bilinear form with domain

D(Ly) x LA(R?, ;1) U L2(R?, ;1) x D(Ls) by

- fRd L2f : gd:u for f € D(L2)7 g€ L2(Rd7ﬂ))

) . (8.31)
— Jga f - Ligdp for f € L2(R%, ), g € D(L3).

E(f,9) = {

€ is called the generalized Dirichlet form associated with (La, D(Ls)).

Theorem 8.3.3. Assume (A1), (A2) and let f € U,es o L" (RY, pt). Then Gof has a
locally Hélder continuous p-version Ry f on R Furthermore for any open balls B, B’
satisfying B C B', we have the following estimate

IR flcon@) < c2 (1f s + 1Gafllsm) » (8.32)
where co > 0, v € (0,1) are constants which are independent of f.

Proof Let f € C°(R?) and a > 0. Then by Theorem 8.2.7, G f € D(L), C D(E°)
and

E(Gaf, o) - / (B, VG f)ody

Rd
= —/ (LGof) wdu
Rd
= / (f —aGaf)pdp, for all p € C(RY). (8.33)
R
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Thus (8.33) implies

[ (5pAVGut. Vs — [ (B VG + [ (apiGat) ps

R4 Rd R4

= / (pbf) pdx,  for all ¢ € C5°(RY). (8.34)
R4

Note that p is locally bounded below and above on R? and pyB € L (R% RY), apy €
L},.(R?). Let B, B’ be open balls in R satisfying B C B'. Since j; € L*(B'), Gof €
H'Y2(B’). Thus by Theorem 7.2.2, there exists a Holder continuous p-version R, f of

G.f on R? and constants v € (0,1), ¢; > 0, which are independent of f such that

|Rafllcnsm < e (IGafliw +loefll, g, )
< e (1Gafllerspw + 1 fllessw) (8.35)

1 ||P¢||Lq(B’)
infgrpip 7 (infg p)t/s
property, (8.35) extends to f € Uy efso)L" (R% p1). In order to extend (8.35) to f €
LOO(]Rdam)a let fn = 1Bn ’ f S Lq(Rdnu)Oa n Z 1. Then ||f - fn”LS(B’,,u) + ”Goc(f -
fu)llersm) — 0 as n — oo by Lebesgue’s Theorem. Hence (8.35) also extends to
f e LR, m).

where ¢y 1= ¢ ( > Using the Holder inequality and the contraction

]

Let f € D(L,) for some r € [s,00). Then f = G1(1—L,)f, hence by Theorem 8.3.3,
f has a locally Holder continuous p-version on RY and

[fllgoam < esllfllown,

where ¢3 > 0, v € (0,1) are constants, independent of f. In particular, T;f € D(L,)
and T, f has hence a continuous p-version, say P, f with

HPtfHCOﬁ(E) < || P fllpe)- (8.36)

Note that c3 is independent of ¢ > 0 as well as of f. The following Lemma will be quite

important for later to show joint continuity of Pg(-) for g € U, ]L”(]Rd, 1)

2p
p—2°
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Lemma 8.3.4. Assume (A1), (A2). For any f € D(L,) the map

r€[s,00)
(l’,t) = Ptf(x)
is continuous on RY x [0, 00).

Proof Let f € D(L,) for some 7 > s and ((#,1n)),>; be a sequence in R? x [0, oo)
that converges to (zg,t9) € R? x [0, 00). Note that P, f € C(R?). Then there exists an
open ball B such that z,, € B for all n > 0 and using (8.36)

IN

| P f(2n) = Pro f (o) < [Py f(@n) = Fio f(2n) | + | P f(20) = Fio f (o)
1Pe f = Pro f llo) + [FPio f(@n) = Fio f (o)
< sl B f = Pof llor@am + esll B Lef — B Lo f | e vt m)

+ | Py, f(xn) — Py f(z0)]| — 0 as n — oc.

IN

[]

Remark 8.3.5. If (£,C5°(R?)) satisfies the weak sector condition, then (T})io is an
analytic semigroup on L"(R%, ), r € [2,00) by Stein interpolation. If f € D(L,) with
r € [2,00), then

&
Tif € D(Ly), and HLthfHLr(Rd,u) < szHU(Rd,#),

where ¢ > 0 is a constant whcih is indepencent of f and t > 0. Thus for any r €
[sV2,00),t>0, fe L(RY u) and any open ball B

1P fllcosa < cs (1P Nr@apy + Lo Pof llrra )
C
< e (147) 1F e

Howewver, it is in general difficult to show a weak sector condition and moreover it does
not need to hold. Thus we have to develop another way to show the joint continuity of
P f(-) where f is in some suitable class.
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Theorem 8.3.6. Assume (A1), (A2), (A3) and let f € Uye[%m} LY(RE p), t > 0.

Then Tif has a continuous p-version Pif on R? and furthermore P.f(-) is continuous on

R%x (0,00). For any bounded open sets U, V inR* withU CV and0 < 13 <7 < Ty <

Ta, i.€. [T1, 2] C (73,74), we have the following estimate for all f € U, 2 M]L”(Rd,u)
p—2’

IPFOllo@sinmy < CIPION, 2y (8.37)

where Oy is a constant that depend on U X 11, 7],V X (73,74), but is independent of f.

Proof First assume f € D(L), N D(Ls) N D(Ls). By means of Lemma 8.3.4, define
u € Cp(R? x [0,00)) by u(x,t) := P, f(z). Note that for any bounded open set O C R?
and T > 0, it holds u € H"*(O x (O,T)) by Theorem 9.3.4 below. Let p; € C5°(R?),
o € C°((0,T)). Observe that T, f € D(L)y, hence

//Rd o) PAVu V(¢1¢2)> <pr V(T;f >g01<p2 daxdt
:/ 2 < / < SPAV (Tf),Vier) = (pUB, V (T.f) )1 dx) dt
oT Rd
:/0 e2(E(T 1 1) / (B.VT,f )1 du)dt
:/OT —902</Rd %Zthdu)dt
T
[ e (% [ et p¢dz) it
- /OT (%) ([ oimis pwic ) a

= // u 0y (p12) prodadt. (8.38)
R4 x (0,T)
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By Theorem 8.4.5, (8.38) extends to

1
[ (30AV056) ~ (B, Y (1) o i
Rix(0,T) \2
= // u Oy - phdxdt  for all p € C°(RY x (0,T)).  (8.39)
R x (0,T)

Let 75 := 2™ and take r > 0 so that

r< % and Rz(2r)CV, VzeU.

Then for all (z,f) € U x [r, 73], we have Rz(2r) x (t — (2r)%,%) C V x (73,74). Using

the compactness of U x [y, 7], there exist (x;,t;) € U x [r, 73], =1,..., N, such that
N
U x [7’1,7‘2] C URM(T) X (tz — 7"2,752‘).
i=1

Using Theorem 7.1.2,

HUHC’(UX[ﬁ,TQ}) = 7Sllp "U,|
UX[Tl,TQ]
< max sup |ul
=L N Ry ()X (ti—72,t7)
<
- I]MXN ClHuHL*2 Q(Rwi(QT)X(ti—(Qr)Q,ti))
< .
- (z=nll,a>,{N i) HUHLZJZTPZ’Q(VX(T&M))’
———
=:C1
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where ¢; > 0 (1 <i < N) are constants which are independent of w. Thus for v > 2p

p—2
IPflle@ximmy < C1|!PfHL%,2(VX(TM)) (8.40)
- p=2 1/2
- </ (/ mf|p2—”zdx) dt)
T3 174
ﬂ p—2 1/2
1 2p 74 2p P
< 01(. ) / (/ mfwdu) "
infy pt » \Jv
1 B2 - 1/2
< C T.f|I? 2 dt
= 1<infva) (/3 171, 2 >
< C L \® (V)2 v v / T 1120 dt v
- 1\ infy pt . L \Jrs R
—C
S CIC?(T4_7—3)1/2||f||LV(Rd,;L)' (841)

Now assume f € L'(R? ) N L®(RY, ). Then nG,f € D(L), N D(Ls) N D(Ly) for
all n € N and lim, ,oonG,f = f in LY(R% ). Thus (8.41) extends to all f €
LYRY, p) N LR p). If v € [1%, o), the above again extends to all f € L"(R? )
using the denseness of L'(R?, 1)NL>®(RY, i) in L* (R, i). Finally assume f € L>®(RY, )
and let f, :=1p - f for n > 1. Then lim, .o f, = f p-a.e. on R? and

T,f = lim Tif, = lim P,f,, p-a.e. on R% (8.42)
n—o0 n—0o0

Thus using the sub-Markovian property and applying Lebesgue’s Theorem in (8.40),
(P.fu())n>1 is a Cauchy sequence in C(U x [11, 7]). Hence we can again define

Pf:= lim Pf,(:) in C(U x [r, 7).

n—o0

For each t > 0, P, f, converges uniformly to P,f in U, hence in view of (8.42), T;f has
continuous  version P, f and P.f € C(U x [y, Ts]). Therefore (8.41) extends to all f €
L>®(R%, u). Since U and [11, 73] were arbitrary, it holds for any f € UVE[%W]L”(Rd, m),
P.f(+) is continuous on R? x (0,00) and for each t > 0, P,f = T} f p-a.e. on R%. u
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Remark 8.3.7. (i) By Theorem 8.3.3, we get a resolvent kernel and a resolvent
kernel density for any x € RY. Indeed, for any o > 0, v € R, (8.32) implies that

R, (z,A) = lllglo Ro(1p,na)(7), A€ B(RY).

defines a sub-probability measure aRy(x,dy) on (R4, B(R%)) that is absolutely
continuous with respect to . Using the Radon-Nikodym derivative, the resolvent
kernel density is defined by

x € R%

(ii) By Theorem 8.53.6, we also get a heat kernel and a heat kernel density for any
x € R Indeed, for any t >0, v € R, (8.97) implies that

Py(z,A) := lim P,(1g,na)(x), A€ B(R?)

l—00

defines a sub-probability measure P;(x,dy) on (RY, B(R?)) that is absolutely con-
tinuous with respect to . Using the Radon-Nikodym derivative, the heat kernel
density is defined by

N Pt(x7dy)
P = )

Proposition 8.3.8. Assume (A1), (A2), (A3) and let t,o > 0. Then it holds:

x € RY

(1) Gag has a locally Hélder continuous p-version

Ragz/Rdg(y)Ra(ndy)z/Rdg(y)m(wy)u(dy), vge |J L'(R%p). (843)

re(s,00]

In particular, (8.43) extends by linearity to all g € L¥(RY, ) + L®(RY, ), i.e.
(Ra)aso s LIE®N(R?, 1)-strong Feller.
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(i1) Ty f has a continuous p-version

Pf= | SRy = | f@p(yuldy), VS e U /R p). (8.44)

ve[-22; 0]

In particular, (8.44) extends by linearity to all f € L%(Rd,u) + L(R%, p), i.e.
2p
(P10 is L2 (RY, 1)-strong Feller.

Finally, for any a > 0,z € RY, g € L*(R?, 1) + L>®(RY, p)

Rag(x) = / e " Pg(x)dt.
0

8.4 Some auxiliary results

In this Section, we use all notations and assumptions from Section 8.2

Proposition 8.4.1. (T?);sq restricted to L'(R% u) N L®°(R?, 1) can be extended to
a sub-Markovian Cy-semigroup of contractions (TtO)DO with generator (EO, D(fo)) on
LYRY, p). If f € D(L°) and f,L°f € LY(R%, ), then f € D(L") and L f = L°f. Set
A= {u € D(L°) N L'(R?, p0) | L € LYRY, p)Y. Then (L°, D(L")) is the closure of
(L°, A) on L*(RY, p).

Similarly, for a bounded open subset V of RY, (Tto’v)t>0 restricted to L'(V,u) N
L>®(V, ) can be extended to a sub-Markovian Cy-semigroup of contractions (T?’V)DO
on LNV, p). Also if f € D(L*Y) and f, L%V f € L*(V,u), then f € D(L"") and
L%V f = L%V f. Finally (L™, D(Z"")) is the closure of (LY, D(L%V)) on L'(V, ).

Proof Since the proof for the case of (7, to,v)t>0 is exactly same with the case of (T?)~o,
we will only prove the case of (T);~¢. Since (€%, D(E°)) is a regular Dirichlet from,

there exists a Hunt process
M° = (Q°, F° (F)) 0, (X750, (P2) seraun)
with life time ¢° = inf{t > 0 | X? = A} such that for any g € L*(R%, p)
z— E) [g(X})] is a quasi-continuous p-version of T)g.
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Let f € LY(R? ) N L>®°(R%, 1) Using Jensen inequality and sub-Markovian property
of (TY)i=0

T fldp = |E? [f(X)]| du
]Rd Rd

E? XN d

< [ B D)) d

= lim [ TP|f[ 1p,dp
d

n—oo R

= lim [ |f]-T01p,dy
Rd

n—o0

< [ Iflau

Since LY(R? 1) N L®(R%, i) is dense in LY(RY, ), (T7)eo restricted to LY(RY 1) N
L>®(R? 1) uniquely extend to the sub-Markovian contraction semigroup (7 );s0 on

LY(R4, p1). Define

D= LR )N {g| g > 0 and there exists A € B(R?)
with ;(A) < oo and g = 0 on R*\ A}.

Since D is dense in LY(R?, )™, D—D is dense in L*(R?, 11). Let f € D—D. Then there
exists A € B(R?) with p(A) < oo such that supp(f) C Aand f € LY(R?, pu)NL®(RE, ).
By strong continuity of (T7);so on L*(R?, 1)

i [ a2 = [ a7l = e,

t—0+ R R

hence using the contraction property on Ll(Rd, 1),

0 < [tz fldu= [ (T2Adn - [ LTSl
R4 Rd R4

< HfHLl(Rd,m—/RdlA]ﬂOﬂduHO ast — 0+.
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Therefore

lim / T0f — fldp = lim ( / LATPS — fldp + / 1Rd\A|T£f|du)
R4 R4 R4

50+ =0+
1/2 71:
< u(AY2 lim (I T,f = fllzagge, = 0.

By the denseness of D — D in L*(R%, i), we get the strong continuity of (T? )i=0 On
LY(RY, p). Now let f € D(L°) and f, L°f € L*(R?, ). Then f € LY(R?, p) N L*(RY, ),
LOf € LYRY, p) N L*(RY, ), hence we get T?f =Tf, T?Lof = TPLf for every
t > 0. Using the ‘Fundamental Theorem of Calculus on Banach Space’ and strong
continuity of (T )0 on L'(RY, 1)

_0
th_f 71tof_f:l/tz_z—vOLOde
t t t)y °

1 [
= ;/TgLofds—>L0f in LY(RY, 1) ast—0+.
0

Consequently, f € D(EO) and T f = L°F.

Let (Gg)a>o be the resolvent generated by (fo, D(EO)). Set C := {E?g g e C(‘]’O(Rd)}.
Then C C A and one can directly check that C C D(ZO) is dense with respect to graph

norm || - , hence it completes our proof.

HD(ZO)
O

Lemma 8.4.2. Let V be a bounded open subset of R and f € }AIS’Q(V, i)y. Then there
exists a sequence (fn)n>1 C C(V) and a constant M > 0 such that || fu| vy < M
for alln > 1 and

lim f,=f in ﬁ3’2(1/, ), lim f,=f p-ae onV.
Proof Take (g,,)n>1 C C§°(V) such that

lim g, = f in f[é’Q(V, @) and lim g, = f p-a.e. onV. (8.45)
n—oo n—oo
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Define ¢ € C§°(R) such that ¢(t) = t if [t| < [|f[[pe@e + 1 and @(t) = 0 if
|t|~2 | fllpoeray + 2. Let M := [|¢||p~m) and f, := ¢(g,). Then f, € Cz°(V) and
| fallLee vy < M for all n > 1. By Lebesgue’s Theorem and (8.45),

lim f, = lim @(g.) = o(f) = f i L*(V, p).

Using the chain rule and (8.45)

sup van”m(v,Rd) = Ssup ||V80(9n)”L2(V,Rd)
n>1 n>1
< HsO’HLoo(]R)SngHVgnHm(v,Rd).

< 00.

Thus by the Banach-Alaoglu Theorem and the Banach-Saks Thoerem, there exists a
subsequence of (f,,)n>1, say again (f,)n>1, such that for the Cesaro mean

N
1 ~ .
fN::NE:fn—>f in H*(V,u) as N — oo.
n=1

Note that fx € C3°(V), || fnl|lpeqy < M for all N € N. Since the Cesaro mean of a
convergent sequence in R is also converges, (f,),>1 is the desired sequence.
O

Lemma 8.4.3. Let f € ﬁé’Q(Rd,u)ojb and V be a bounded open subset of RY with
supp(f) C V. Then f € Hy*(V, ). Moreover there exists (f)ns1 C CO(RY) and a
constant M > 0 such that supp(f,) CV, ||fallLev)y £ M for alln > 1 and

lim f,=f in I/:?SQ(Rd,u), lim f,=f u-ae onRY
n—oo

n—oo

Proof Let W be an open subset of R satisfying supp(f) € W C W C V. Take a cut-off
function y € C§°(R?) satisfying supp(x) C V and x =1 on W. Since f € H&’z(Rd,,u),
there exists g, € C5°(R?) such that

lim g, = f in ﬁé’z(Rd,,u).

n—oo
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Thus xg, € C(R?) with supp(xg,) C V and

IXn — fllz@ay = XG0 — XFllL2@e
x| oo ey [|Gn — fllL2may —> 0 as n — oo.

IN

Note that g, € C5°(R%) ¢ H*(V, p) and

Slill)Hv(Xgn)HLQ(V,Rd) = Slilf(\@nVXHL2(v,Rd)+ HXV%HLQ(V,W))

(HVXHLOO(V,Rd
n>1

< inf(p1)) )HgnHLQ(Rd,u) + HXHLOO(Rd)vanHLQ(Rde))

< 0Q.

Since bounded sequences in Hilbert spaces have a weakly convergent subsequence, f €
Hy?(V, ). Taking (fo)ns1 € CS°(V) as in Lemma 8.4.2 and extending it trivially to
Ce°(RY), our assertion holds.

n

Lemma 8.4.4. Let Vi, Vi be bounded open subsets of R? satisfying V1 C Va. Assume
f e HS’Q(VQ,;L), g € HS’Q(\G,u) with g = 0 on Vo \ V1. If 0 < f < g, then f €
Hy*(Vi, ).

Proof Take (g,,)n>1 C C5°(Va) satistying supp(g,) C Vi for all n € N and

lim g, =g in Hy*(Va, p).

n—oo

Observe that for all n € N

+ n — Un -~
supp(f A gn) C Vi and fAg, = / 29 _ 29 | € Hy*(Va, ).

By Lemma 8.4.3, f A g, € ﬁé’Q(Vl,,u) for all n € N. Moreover

f+o. If—gn|> _f+g |f—yl
2 2 2 2

limf/\gn:lim( =fAg=f in L*(Vi,p).
n—oo

n—0o0

144

&

| &1

1V



CHAPTER 8. ANALYTIC THEORY FOR DEGENERATE SECOND ORDER
PARTIAL DIFFERENTIAL OPERATORS

Since ((7 '>ﬁé’2(Vz,u)’ ?[&’%%,u)) is a Dirichlet form,

sup 1f A gnll g2
— ig11)||f/\gn||ﬁ;»2(v2,u>

f+gn_ |f_gn‘

= Ssu

nzg 2 2 ﬁé’Q(Vg,u)

1
S 5 nlilzl) <||f||f]é’2(V2,,u) + HgnHﬁé*z(Vz,,u) + H|f|Hﬁ372(VQ7“) + H|gn|Hﬁé’2(VQ7M))
<

sup (11773200 + 90532050 ) <

n>1

Thus by the Banach-Alaoglu Theorem, f € I/-.?SQ(VI, ).
O

For a bounded open set U in R? and T > 0, C*(U x [0,T]) denotes the space of all
twice continuously differentiable functions on U x [0, T] with the norm defined by

d+1 d+1
HUHC2(UX[0,T]) = Hu”C(Ux[O,T]) + Z HaiuHCQ(Ux[O,T]) + Z HaiajUHc2(Ux[o,T])-
i=1 ij=1

Theorem 8.4.5. Let U be a bounded open subset of R and T > 0. Set

N
S = {h € C5°(U x (0,7)) | there exists N € N such that h = Zfigi,
i=1

where f; € C3°(U), g; € C5°((0,T)) for all i=1,..., N }

Then C3(U x (0,T)) C §|C2(UX[0,T})'

Proof Step 1: Let V be an bounced open set in R? and 7,7, € R with T} < Tb.
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Define

N
R = {h € C°(V x (Th,Ty)) | there exists N € N such that h = Zfigi,
i=1

where f; € C°(V), g, € C°((11,T3)) for alli = 1,..., N.

We claim that
CH(V x (T1, Ta)) C Rle@xmm)- (8.46)

Note that V' x (T3, T3) is a locally compact space and ﬁ|C(V><[T1,T2}) is a closed subalgebra
of Coo(V x (T1,T3)). We can easily check that for each (z,t) € V x (11, T3), there exists
h € R such that h(z,t) # 0. For (z,t), (y,s) € V x (T1,T3) and (z,t) # (y, s), there
exists h € R such that h(z,t) = 1 and h(y, s) = 0. Therefore by [15, Chapter V, 8.3
Corollary], we obtain ﬁ‘C(VX[Tl,TQ}) = C(V x (1T1,T3)), so that our claim (8.46) holds.

Step 2: C5(U x (0,7)) C Slez@xpo1)-
For n € N, let 1, be a standard mollifier on R% and 6,, be a standard mollifier on R.
Then &, := 1,0, is a standard mollifier on R? x R. Let h € C2(U x (0,7T)) be given.
Then there exists a bounded open subset V of R? and 73,7, € R with 0 < T} < Th
such that

supp(h) CV x (T1,Ty) CV x [T1, Ty) C U x (0,T).
Take N € N such that fx &y € C5°(U x (0,7)) for all f € C3°(V x (11,T3)).
Note that by [14, Proposition 4.20], it holds

Oi(h* &) =0hx&, F(h*&)=Fhx &, ddi(h+&) = 0dh* &,
8Z(h * 5&) = @h * fa, 818](h * 65) = @ajh * 55 for any 1 S Z,] S d.

Hence by [14, Proposition 4.21], lim,, o, h* & = h in C?*(U x [0, 7). Thus given £ > 0,
there exists n. € N with n. > N such that

€

|h =&l c2@xppm < 5
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Let R be as in Step 1. By (8.46), there exists h. € R C C§°(V x (11,T3)) such that

9

1h = helle@xio,m < |
elle@x(o,1)) 2/[&n. 2@ o)

Thus using [14, Propsotion 4.20] and Young’s inequality,
€
|7 % oo — he % &LEHCZ(UX[O,T]) < ansucz(ﬁx[o,ﬂ)”h - hEHC(Ux[O,T]) < 9

Therefore
1 = he * & |l c2 @) < €

Since h. x &, € S, we have h € 3|C2(U><[0,T])> as desired.
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Chapter 9

Well-posedness and irreducibility
for degenerate I1to-SDEs

9.1 Weak existence of degenerate Ito-SDEs with

rough coefficients

The following assumption will in particular be necessary to obtain a Hunt process with
transition function (P;);>¢ (and consequently a weak solution to the corresponding SDE
for every starting point). It will be first used in Theorem 9.1.3 below.

(A4) G € L;, (R RY, ), where s is as in (A2)

loc

The condition (A4) is not necessary to get a Hunt processes (and consequently a weak
solution to the corresponding SDE for merely quasi-every starting point) as in the
following proposition.

Proposition 9.1.1. There exists a Hunt process

M = (Q, F, (F)izo0, (Xo)iz0, (Pa)seriviay)

with, life time ¢ := inf{t > 0| X, = A} and cemetery A such that € is (strictly properly)
associated with M and for strictly E-q.e. x € RY,

B, ({we| () eC(,00),RY), X(w) = AWt > ()} ) =1
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Proof First one shows the quasi-regularity of the generalized Dirichlet form (£, D(Ls))
associated with (Lo, D(Ls)), and the existence of an u-tight special standard process
associated with (€, D(L3)). This can be done exactly as in [69, Theorem 3.5]. One only
has to take care that the space ) as defined in the proof of [69, Theorem 3.5] is replaced
because of a seemingly uncorrected version of the papaer by the following one

Y:={uec D(L)),|3f gc Ll(Rd,,u)b, f,g >0, such that u < G1f and —u < G1g}

in order to guarantee the convergence at the end of the proof. Then the assertion will
follow exactly as in [78, Theorem 6], using for the proof instead G there the space
defined above and defining E, = R, k > 1.

m

59

Remark 9.1.2. (i) Assume (A1), (A2), (A3) and G € L}, (RY). Then for any
bounded open subset V of R?, it holds

s < s sq
[ 1G 1 < 1B i,

hence (A4) is satisfied.

(11) Two simple examples where (A1), (A2), (A3), (A4) are satisfied are given
as follows: for the first example let A, 1 satisfy the assumptions of (A1), ¥ €
L’ (RY), s = p, and G € L(RY,RY) and for the second let A, v satisfy the

loc loc

assumptions of (A1), ¢ € L2 (RY), s = 2 and G € L2 (R, RY).

loc loc

Analogously to [49, Theorem 3.12], we obtain:

Theorem 9.1.3. Under the assumptions (A1), (A2), (A3), (A4), there exists a Hunt
process

M = (Q, F, (F)iz0, (Xt)e>0, (Pa)serivgay)

with state space R and life time
(=inf{t>0: X,=A}=inf{t >0 : X; ¢ R},
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having the transition function (P;)>o as transition semigroup, such that M has contin-
uous sample paths in the one point compactification R of R with the cemetery A as
point at infinity, i.e. for any v € R,

Px({w € Q| X (w) € C([0,00),RL), X.(w) = A V¢t > C(M}) =1.

Remark 9.1.4. Note that the analogous reuslts to Lemma 3.2.3, Lemma 3.2.4, Propo-
sition 3.2.5, Proposition 3.2.6, Theorem 3.2.8 of Part I hold in the situation of Part
III. One of the main differences is that q > g of Part I is replaced by s > %l of (A2).
Especially the Krylov type estimate for the Hunt process of Theorem 9.1.3 holds as
stated in (9.1) right below. Let g € L™ (R, u) for some r € [s, 00| be given. Then for
any ball B, there exists a constant Cg,, depending in particular on B and r, such that
forallt >0, t

s, | [ 1106 ] < ol e 0.1)

z€B 0
Note that Cg, does not depend on the VMO condition of the diffusion matriz since
we use the elliptic Holder estimate of Theorem 7.2.2 which is different from the elliptic
HYP-estimate of Part I, II. One can get the analogous conservativeness and moment
inequalities to Theorem 4.1.2, Theorem 4.1.4 (i) in the situation of Part I1I. Since we
have not derived a parabolic Harnack inequality related to (7.1), irreducibility and strict
irreducibility can not be directly obtained as in the proof of Lemma 4.2.2, Corollary
4.2.4. However, choosing a special 1 in Section 9.2, strict irreducibility can be derived
and one can show the analogous recurrence and transience results to Proposition 4.2.5,
Theorem 4.2.7, Lemma 4.2.8, Theorem 4.2.9 in the situation of Part III.

The following theorem can be proved exactly as in Theorem 3.2.8 of Part I.

Theorem 9.1.5. Consider the Hunt process Ml from Theorem 9.1.3 with coordinates
X, = (X}, .., X1). Let (64)1<i<ai<j<m, m € N arbitrary but fized, be any matriz

consisting of locally bounded functions for all 1 < i < d, 1 < j < m, such that
A=050oT, ie.

() =Y Galr)ou(x), Ve eRY 1<i,j<d
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Then on a standard extension of (Q, F, (Fi)is0,Ps), * € R%, that we denote for no-
tational convenience again by (0, F, (Fi)is0,Ps), © € RY, there exists a standard m-
dimensional Brownian motion W = (W ... W™) starting from zero such that P,-a.s.
for any x = (x1,...,24) €ERY, i =1,...,d

m t t
X;‘:xi+2/ @j(XS)dWsj+/ 9i(Xs)ds, 0<t< (9-2)
j=170 0

m short . .
Xt—er/ G(Xs)dWs—i—/ G(Xy)ds, 0<t<C.
0 0

9.2 Strict irreducibility for special weight functions

Here we consider a special weight function ¢ (z) := ||z||~® with a > 0, ag < d. Then ¢
is smooth on R%\ B, for any £ > 0. In that case, we can also derive strict irreducibility,
and irreducibility except 0.

Lemma 9.2.1. Assume (A1), (A2), (A3) and (z) = ||z||=* for some a > 0 sat-
isfying aq < d. Let A € B(RY) be such that Py, 14(xg) = 0 for some ty > 0 and
xo € R4\ {0}. Then p(A) = 0.

Proof We use the proof by contradiction. Suppose p(A) > 0. Since p({0}) = 0, we
have p(A\ {0}) = u(A) > 0. For each n € N, let E, := {z € R | - < ||z < 2n}.
Then R?\ {0} = .2, E,, so that

o0

A\{0} = JANE,).

n=1

By the countable subadditivity of u, there exists ny € N such that 0 < u(ANE,,) < oo
and zy € E,,. Using the compactness of E,, in R?, there exist N; € N and a family of
open balls {U;}2", in R? such that

Ny
Eny C|JUi C Eogan,

i=1
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hence
Ny

ANE, = J(AnE, nUy).

=1

Therefore, there exists ip € {1,..., N1} such that
0<u(ANE,, NU;,) < occ. (9.3)

Let yo € E,,+1 be the center of U,,. Since E, +, is path-connected and xg, yo € Eypyt1,
there exists a continuous function v : [0, 1] — E,, 1 such that v(0) = x¢ and (1) = yo.
Set 1

0= 3 inf{|la — 0| | a € y([0,1]),b € OF 41}

Thus there exist Ny € N and distinct points p; € v((0,1)), 7 =1,2,..., Ny such that

Bs(xo) U <Lj B&(Z%‘)) U Bs(y0) C Engt1,

Bs(zo) N Bs(p1) # 0, Bs(pw,) N Bs(yo) # 0,
Bs(p;) N Bs(piy1) # 0 for alli=0,1,..., Ny — 1.

Now take f, = nGnlAﬁEnOﬂUiO for each n € N. Then lim, , f, = LanE,,nu;, 0
Lo (R?, 1), hence by Theorem 8.3.6, lim, o0 Pyfn(2) = Pl ang, nu,, () for any (z,t) €
R? x (0,00). For each n € N, let u,, := pP.f,. Then by Remark 8.3.2 and as for (3.23)
of Part I, we obtain for any 7" > 0.

T 1 N
/ / (—(AVun, V) + u,(F, V) — unﬁtgp) dxdt =0,
0 En0+1 2
for all p € C3°(Epy+1 % (0,77)),

where F := %Vﬁ—l— G — 2874 ¢ LP(Epy 11, R%). Now take arbitrary but fixed (z,t) €
Bs(xg) x (0,t9). Then by [2, Theorem 5]

||l’0—l’||2 to—t
0 < up(x,t) < up(wo, t C( : 1) ;
< tn(@,1) < tn(wo, to) exp( to—t +m1n(1,t) *
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where C' is a constant which is independent of n. Letting n — oo

0 < ﬁ(m)PtlAﬂEnOﬂUio (x)
N lzo —|*  to—t
< P 1 . : C( 1)
< plxo) Py ANEn(NUs, (wo) - exp ( to—1 * min(1,?) i
R xo — x||? to—1
< PRy e (M2t y ol )

to—t min(1,t)
= 0.

Therefore using Theorem 8.3.6, Plang, v, (¥) = 0 for any (z,t) € Bs(wo) x (0,%0].
Iterating this procedure N, + 1 times, we obtain

Pilang,gnu;, (2) =0 for any (z,t) € Bs(yo) x (0,1o].

Without loss of generality, we may assume Bs(yy) C U;,. Then similarly, applying [2,
Theorem 5] to u,, on Uj, x (0, %) and using the above similar procedure, Pi14ng, v, (T) =
0 for any (z,t) € Uy, x (0,ty). Therefore

0 = /Rd 1A|"‘|En0ﬂBi0 PtlAﬂEnoﬂUiod/J‘ t—Ki /J/(A N ETLQ N Ui0>7

which contradicts (9.3), hence the assertion holds.
[

Corollary 9.2.2. Assume (A1), (A2), (A3) and let Y(x) := ||z||~® with a > 0,
aq < d. Then

(1) (T})i=0 is strictly irreducible.

(i1) (Py)eso i irreducible except in 0, i.e. given A € B(R?) with u(A) > 0, P14(x) > 0
for all x € R%\ {0}, t > 0.

(111) If additionally to (A1), (A2), (A3), we assume (A4) then M from Theorem
9.1.8 is irreducible except in 0, i.e. given A € B(R?) with p(A) > 0, P (X; €
A) >0 for all x € R4\ {0}, t > 0.

153



CHAPTER 9. WELL-POSEDNESS AND IRREDUCIBILITY FOR DEGENERATE
ITO-SDES

Proof (i) Let A € B(R%) be a weakly invariant set with u(R?\ A) # 0. Then by
monotone approximation with the L2-functions 1 Bn(0) /" lra as n — 0o, we get for any
t >0, Pla(z) = 0, for poace. = € RE\ A Fix ¢ > 0. Since u((Rd \ A)\ {0}> >0,
there exists 7o € (R?\ A) \ {0} such that Pi14(z¢) = 0. By Lemma 9.2.1, u(A) =0 as
desired.
(ii) By contraposition of Lemma 9.2.1, if u(A) > 0, then P14(x) > 0, for all z €
R%\ {0}, > 0.
(iii) Clear.

[

Example 9.2.3. Given p > d, let A = (a;j)1<ij<d be a symmetric matriz of functions
on R* which is locally uniformly strictly elliptic and a;; € Hl’p(Rd)ﬂCO’l_d/p(Rd) for all

loc loc

St >) >

oi; € C(R?) for alli,j, such that A = oo™ Let ¢ € LS. (RY) be such that for any open

loc

ball B, there exist positive constants cg, Cpg such that
cg<p<Cp ae onB.

Let ¢(z) := Wqﬁ for some a > 0 and consider following conditions.

(1) ap <d, G € L>®(B.(0)) N LP(R?\ B.(0)) for some ¢ > 0,
(2) 2ap < d, G € L*(B.(0)) N LP(R?\ B.(0)) for some ¢ > 0,

(3) a-(tv2) <d, G=0onB.(0) and G € L}, (R*\ B.(0)) for some ¢ > 0, where
s>d so that (v 2)7t+1 <2

Fither of the conditions (1), (2), or (3) imply (A1), (A2), (A3), (A4). Indeed, take
q:=p, s:=pin the case of (1), q :== 2p, s := % in the case of (2), and q :== £V 2,
s > d defined by (3) in the case of (3). Assuming (1), (2) or (3), the Hunt process M
as in Theorem 9.1.5 solves weakly Py-a.s. for any x € R?,

1
Vo(Xs)

t t
X, = x+/ 1, ]|/ - -U(XS)dWS+/ G(X,)ds, 0<t<c(.  (94)
0 0
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Moreover, if we assume ¢ = 1, then by Corollary 9.2.2, the associated L*(R?, p)-

semigroup (T})iso 1s strict irreducible and M is irreducible except in 0.

Remark 9.2.4. Let (x) := ||z||~® with 0 < a < d. Consider Cap that is the capaacity
related to (E°, D(E°)) as defined in [25, Section 2.1]. Then by [25, Example 3.5.2],

Cap({0}) >0 <— d—-2<a<d. (9.5)

Now define a generalized Dirichlet form € as in (8.31) and let Capg be a strict capacity
of € as defined in [78, Definition 1]. Then by [62, by Lemma 2.1] and (9.5), we obtain
if 0 < a<d-—2 withd> 3, then

Capg({O}) =0.

In that case, through the argument in [50, Theorem 3.8, Theorem 3.10] and [62, Lemma
2.2, Theorem 2.3/, one may construct a Hunt process

M = (QF, F", (F )20, (X{)ez0, (P )verayfopuiay)
with state space R\ {0} and life time
C=inf{t>0: X;=A}=inf{t >0 : X; ¢ R\ {0}},

having the transition function (Pth\{O})tzo as strong Feller transition semigroup, such
that
d d
TNy — pEMOY r o ae. on RY \ {0}, t>0, feL*R%pu),

and M* has continuous sample paths in the one point compactification (R?\ {0})a of
R%\ {0} with the cemetery A as point at infinity. However if Capg({0}) > 0, then M*
as above would not be costructed by the arguments in [62].

Let A = (ai;)1<ij<a be a symmetric matriz of function satisfying (8.2). Consider

d=2and o = %. Then by (9.5), Cap({0}) > 0. Now letp:=3, q:=2p =6, s := % =

2. Assume a;; € H.P(R?) for all 1 < i,j < 2 and G € L;”(B.,R?) N L*(R?\ B.,R?)

loc loc

for some € > 0. In that case, (A1), (A2), (A3), (A4) holds, hence we can construct
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a Hunt process M as in Theorem 9.1.3 which is a weak solution to It6-SDE (9.4) and

satisfies irreducibility.

Consider d = 3 and a = 2. In that case, we also get Cap({0}) > 0 by (9.5). Let p = 4,
q=3,s=4. Assume a; € HP(R?) for all 1 < i,j <3 and G € L, (R* R?) and

loc loc

that there exists € > 0 such that G = 0 on B-(0). Then (A1), (A2), (A3), (A4)
holds, hence we could construct a Hunt process M as in Theorem 9.1.3 which is a weak
solution to It6-SDE (9.4) and satisfies irreducibility.

9.3 Uniqueness in law for degenerate Ito-SDEs with

discontinuous dispersion coefficient

Consider

(A4’): (A1) holds with p := 2d + 2, (A2) holds with ¢ > 2d + 2, s := d, and
G € L (R%, RY).

loc

Note that if we assume (A4’), then (A3) and (A4) hold.

Theorem 9.3.1 (Local Krylov type estimate). Assume (A4’). Let
M = (€, F, (Fo)ez0, (Xt)iz0, (Pr)sera)
be a canonical stochastic process, i.e.

Q=C([0,00),RY), F=B(Q), F:=0(X,:5<t),
X(w)=wt), weQ, P (Xy==z)=1, zcR%

such that

t t
X;==x +/ o(Xs)dWy +/ G(X,)ds, 0<t<oo, Pg-as VYreRY  (9.6)
0 0
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where o is as in Theorem 9.1.5 and every term in (9.6) is well-defined. In particular,
(t,w) — d(Xy(w)) and (t,w)— G(Xi(w)) are progressively measurable.

Letz € RY, T'> 0, R > 0 and assume f € L**2% (B x (0,T)). Then there exists a
constant C' > 0 which is independent of f such that

TADR
]Ex {/ f(Xs, S)d8:| S CHf”L2d+2’d+1(BR><(0,T))>
0
where D := Dga\p, = inf{t > 0| X, € RY\ Bg}. Moreover P, is a solution to the
time-homogeneous martingale problem in the sense of [37, Chapter 5, 4.15 Definition].

Proof Let g € L“Y(Bg x (0,T)). (Note: all functions defined on Bg x (0,7T) are
trivially extended on R¢ x (0,00) \ Bg x (0,7).) Using [38, 2. Theorem (2), p. 52|,
there exists a constant C'; > 0 which is independent of g, such that

TADr d 1 d
E, [/ 27 atidet(A)atT -wdﬂg(Xs,s)ds]
0

TADg R —~ ﬁ
/ e~ Jo IG(Xu)lldu | qut (%A) g(XS, s)dS]
0
eTlIGlLoo (BR)

< - Cillgll e (Brx0,00))
—  LlGlLeosR)

TGl Lo (BR) . E,

IN

- Cillgll vt (Brx0,1))-

Let f € L' (Bg x (0,T)). Replacing g with Q7T -det(A)fﬁg/J%f, we have

loc

E, { /0 T s)ds]

< TGl . |25 - det(A) T 1Y f|| fari (g 01
N S _2d_
< 9741 TGl oo (By) . C||det(A)~ @+ HL‘X’(BR)Hsz%Z?BR) ||f||L2d+2,d+1(BRX(07T)).

(. J

v~

=:C
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The last property follows from It6’s formula applied with f € CZ(R?), i.e.

B 1000 1)~ [ (Junecel A7) + (@ 91) (X )] 7]

t
=E, {/ V(X))o (X,)dW, .7:3] =0, 0<s<t< o0,

since all coefficients are locally bounded.

Theorem 9.3.2 (Local It6’s formula for weakly differentiable functions).

Let Ry > 0, T > 0. Assume u € W22é1+2(BRO x (0,T)) N C(Bg, x [0,T]) satisfying
|Vu|| € LY (Bg, x (0,T)). Let R > 0 with R < Ry. If (Xi)i>0 satisfies (9.6), then
P,-a.s. for any x € RY,

TADR TADR
W Xrapy, TANDg)—u(z,0) = / Vu(Xs, 3)8(X5)dW5+/ (Opu+Lu) (X5, s)ds.
0 0
where Lu := %trace(A\VQU) + (G, Vu).
Proof Take Ty > 0 satisfying Ty > T. Extend u to Bg, x [Ty, To] by
u(z,t) = u(z,0) for — Ty <t <0, wu(zt)=u(x,T) for T <t<Ty, v € Bp,.

Then it holds

w € Wyito(Bry % (0,T)) NC(Bg, x [-T,T]) and |Vul| € L***(Bg, x (=Tp,Tp)).

For sufficiently large n € N, let (, be a standard mollifier on R4*! and u,, = u * ,.

Then it holds u,, € C=(Bg x [0,T]), such that lim,, e |1, — “HW,jj J(Brx(or) = 0 and
+ )

limy, o0 ||V, — V|| paasarx o) = 0 . By Itd’s-formula, for « € R?, it holds for any
n>1
Un(XT/\DR, T A DR) — un(w, O)

TADg TADgr
= / Vun(XS,s)&\(Xs)dWS—i—/ (Opun + Luy,)(Xs, s)ds, Pgas.  (9.7)
0 0
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By Sobolev embedding, there exists a constant C' > 0, independent of u,, and wu, such
that

E,il[]gj] |un —ul < Cllun — U|’W21f+2(BRx(o,T))-

Thus lim,, 00 un(x,0) = u(z,0) and

Un(Xrpapy, TN Dg) converges P -a.s. to w(Xrap,, T A Dg) as n — oo.
By Theorem 9.3.1,

T/\DR T/\DR
<E, {/ |Oyu — Oy | (X, s)ds] +E, {/ | Lu — Lun|ds]
0 0

< CH@tun - 8tuHLQd+2vd+1(BR><(O,T)) + CHLU — Lun"L2d+2,d+1(BRX(O7T))

TADR TADR
/ (Ot + Lup) (X, 8)ds — / (O + Lu)(X,, 5)ds
0 0

— 0 asn — oo,

where C' > 0 is a constant which is independent of u and w,,.
Using Jensen’s inequality, Ito6 sometry, and Theorem 9.3.1, we obtain

e[ (V) - Vulx ) 00N

TADg 271/2
<E, / (Vu,(Xs,s) — Vu(Xs, s)) o(Xs)dW; ]
0

TADRr 9 1/2
=E, / H (Vu,(Xs,s) — Vu(Xs, s)) E(XS)H ds}
0

< CH(Vun - Vu)aHL“dJr‘lv?d”(BRx(O,T))

< CC/“a'\HLOO(BR)HVUn - VU||L4d+4v2d+2(BR><(O,T)) — 0 as n — oo.

Letting n — oo in (9.7), our assertion holds.
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Theorem 9.3.3. Assume (A4') and let qo > 2d + 2 be such that qio —|—§ = 515 1If

u € D(Lg,), then u € H2**(RY). Moreover given an open ball B in R?, there exists a

loc

constnat C' > 0, independent of u, such that
Hu‘|H2,2d+2(B) S CHUHD(LqO)'

4
Proof By the assumption (A4’) and Theorem 8.3.1, p € H.*"(R%) N o (R9)

loc loc

and pyB € L2“2(RY). Let f € C°(RY) and o > 0. Then by (8.34)

loc
1
/ <§pAVGaf,V90>dfc—/ <m/JB,VGaf><pd:c+/ (apyGof) pdx
Rd R4 R4

= / (p0f) pdz,  for all p € C(RY). (9.8)
Rd

Let § := (55 +1)7" Then apy € LX2(RY) ¢ L (RY), ppf € LX2(RY) ¢

- loc
LT (RY), hence by [12, Theorem 1.8.3], Gof € H.>*"(R?). Moreover, using [12, Theo-

loc
rem 1.7.4] and the resolvent contraction property, for any open balls V, V’ in R¢ with

V C V’, there exists a constant C > 0, independent of f, such that

||Gaf||H1,2d+2(V)
< CUlIGafllerwn + oo fllaeny)
< CGafllrwvn + llpgllzzae il fllLa)

1
1

~ 1 a0 _ _ 1 1_1
c-( ) (@ V1% + ol s | V1) flioman.  (9.9)

IA

ian/ p¢

~ L 1 11
Set C = (@) N (Y 7 g | p)]| L2a+2qy|V![490). Using Morrey’s inequality

and (9.9), there exists a constant Cy > 0 which is independent of f such that
1Ga fllzoe vy < CoCC| fl oo re - (9.10)
Now set

I = (B, VGaf) — aptGaf + pof € L (RY).
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Then (9.8) implies
1
/Rd (5PAVGaf, Vp)dr = /Rd hpdz,  for all p € C§°(RY). (9.11)

Let Uy, Us be open balls in R satisfying B € U; C Uy C Us.
Take ¢, € C5°(Us) such that ¢; = 1 on U;. Then using integration by parts, and (9.11)

1 1
(5pAVGaf, GVp)dr + / S (AVCL V) pGa fda
Us

/UQ%[’AV(CIGJ),V@CZZE :/

Us

— [ GPAVGLLV (Gl — [ (5pAVGf. VG o
Us _

Uz

=:hg

# [ =5((6af Vot pVGLLAVG) + pGaf (VATG) + G frace(AT*G) i

g

=:h3

_ / (hC1 — ha + ha)pdz,  for all ¢ € C(U). (9.12)
Uz

Note that ha, hy € Ly%2(RY). Let hy := (3V(pA), V((Gaf)) € LE(R?). Using (9.12),

loc loc

/ (EPAV(GGaf). Vi)da + / (5V(04), V(GCa )}
Uz

Uz

/ 1C1 h2 + hg + h4)§0dl’ for all (NS CSO(UQ) (913)

Uz

We have h := hi(; — ho + hs + hy € Lf;gl(Rd) and

1Pl e wa) < CalllGafllaraeezwy) + 09 fll s wa)s (9.14)

where Cy > 0 is a constant which is independent of f. By [27, Theorem 9.15], there
exists w € H>1(Uy) N HY**(U,) such that

1
— §trace(pAV2w) =h ae. onUs. (9.15)
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Furthermore, using [27, Lemma 9.17], (9.14), (9.9), there exists a constant C; > 0 which
is independent of f such that

< Ci||hl[zatr(oy)
< CICZ (HGafHHvad*'Q(Uz) + ||P"7Df||Ld+1(U2))
< C1C0s|| f |l oo (me, )

||w||H27d+1(U2)

1
where C3 := C + ||p¢||L2d+2(U2)|U2|ﬁ7% (mfvl, pw) . Note that (9.15) implies

1 1
/U<§pAVw,ch>dx—|—/ <§V(pA),Vw>cpdx

Uz

= / hedz,  for all p € C5°(Us). (9.16)
Uz

Using the maximum principle of [77, Theorem 1] and comparing (9.16) with (9.13), we
obtain (Gof = w on Us, hence G, f = w on Uy, so that G, f € H>4T1(U;). Therefore,
by Morrey’s inequality, we obtain 0;G,f € L>*(U;), 1 <i <d, and

10:Gafllewy < CullGafllmzarioy
S C4HwHH2’d+1(U2)
<

CLCC3C || f || Lo (ma ) (9.17)

where Cy > 0 is a constant which is independent of f. Thus we obtain h € L?*2(U,).
Now take (; € Cg°(U,) such that (; = 1 on B. Note that a.e. on U; it holds

_%trace (pAV2(C2Gaf))
= —%CZ . trace(pAVQGaf) — %Gaf . trace(pAVQCQ) — (pAV (G, VG f).
— —%Cgh — %Gaf -trace(pAV3(a) — (pAV (o, VG o f) =: h.

Since ||[VGof|| € L®(Uy), h € L¥*2(U), by [27, Theorem 9.15], we get (2Gof €
H%2+2(Uy), hence G.f € H*?2(B). Using [27, Lemma 9.17], (9.10), (9.17), there
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exist positive constants C5, Cs which are independent of f such that

HGaf”HZ?d*?(B) HC2G04HH2’2‘1+2(U1)

C5”h”L2d+2(U1)

CsCs (|| f | oo ey + |00 f || L2a+21,))
CsCs (|| f 1| oo (re ) + ||P¢|\Lq(U1)(iT[}f p) N £l oo (et )
Cll f Nl oo (re iy (9.18)

IAN AN IA A

IN

where C' = C5Cs(1 V ||pt|| paqn (infy pip) ~Y/®). Using the denseness of Cg°(R?) in
Lo (RY 1), (9.18) extends to f € L(R?, u). Now let u € D(L,,), Then (1 — Ly )u €
L% (R%, 1), hence by (9.18), it holds u = Gy(1 — Ly, )u € H22"*(R?) and

loc

1G1(1 — Ly )ul| 2202 ()
C|(1 = Lgy )ul| Lao e )
Cllullp(zgy)-

HUHHZJ‘H?(B)

VARRPAN

]

Theorem 9.3.4. Assume (A1), (A2). Let f € D(L), N D(L,) N D(Ly) and define
up := Pf € C(R? x [0,00))
as in Lemm 8.5.4. Then for any open set U in R? and T > 0,
Owuy, Ojuy € L**(U x (0,T)) for all 1 <14 < d,
and for each t € (0,T), it holds
Opuyp(-,t) = TiLof € L*(U), and Ouy(-,t) = 0;P.f € L*(U).

Furthermore, if we additionally assume f € D(Ly,) and (A4'), then 0;0;uy € L*2°°(U x
(0,7)) for all 1 <i,j <d, and for each t € (0,T), it holds

@@-uf(-, t) = @@Ptf c L2d+2<U).
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Proof Assume (A1), (A2). Let f € D(L), N\ D(L,) N D(Ly) and t > 0, ty > 0. Then
by Theorem 8.2.7(c),
P.f=Tyf € D(L), C D&,

where Ty := id. Observe that by Theorem 8.2.7(c), for any open ball B in R? with
U C B,

IVP.f =V Py flZ25
Aping ) / (AV(Pf — Py f),V(P.f — Py f)) pda
B

< (
S 2(}\3 1%fp>_150(Ptf - Ptof7 Ptf - Ptof)

S 2()\3 Héf p)_l/ _Z(th - Ttof) ’ (th - Ttof)d:u

Rd
< 4(Ap inf P) T Nl @i | TeLf — Tio Lf || o ma - (9.19)
Likewise,
IVP 725 < 205 inf P) " f oo et iy 1T L f || 2t (et -
For each i =1,...,d, define a map

OPf:[0,T] = L*(U), tw O;P.f.

Then by (9.19) and the L!(R%, u)-strong continuity of (7)o, the map 9;P. f is contin-
uous with respect to the || - || ;2(p)-norm, hence by [48, Theorem, p91](or [12, Exercise
1.8.15]), there exists a Borel measurable function u% on U x (0,T) such that for each
t € (0,7) it holds

ul(-,t) = ;P f € L*(U).

Thus using (9.19) and the L'(R? u)-contraction property of (T;)sso, it holds u% €
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L**°(U x (0,T)) and

lillzz@xory = sup [10:Pfllzw)
te(0,7)
< 200pinf )22 | TSI

Loo(Rd, L1(R4

Now let 1 € C5°(U) and ¢y € C°((0,7T)). Then

T
// uys - 0i(p1p2)dadt = / </ Pf- @gplda:) padt
Ux(0,T) 0 U

T
0 U
= — // u'y - prpadadt. (9.20)
U

Using the approximation as in Theorem 8.4.5, dyuy = uy € L>**(U x (0,T)).
Now define a map
T Lyf :[0,T] = L*(U), t+~ TiLof,

where T} := id. Since
| T Lo f — Ty Lo f|| L2y < (igf p) 2| T Lo f — Tio Lo f || 2 e )

using the L?(RY, p)-strong continuity of (T})¢o and [48, Theorem, p91](or [12, Exercise
1.8.15]), there exists a Borel measurable function u} on U x (0,T) such that for each
€ (0,7) it holds
W( ) = TLof € LA(U),

Using the L*(R?, 1)-contraction property of (13);so, it holds u} € L>*(U x (0,T)) and

lufll2ec@wxomry) = SUP | T La f 1l 2wy
te(0,7

< s
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Observe that

T
// us - O(pripa)dedt = / </ T,f - gpldx) Oy podt
Ux(0,T) 0 U

T

= / - </ Tthf-wld:c) padt
0 U

= —//ng)c-golgogdazdt.

Using the approximation of Theorem 8.4.5, we obtain Jyuy = u(} € LU x (0,7)).
Now assume (A4’). Then by Theorem 9.3.3, P, f € D(L,,) C H22*(R%) and for each
1 <1,7 <d, it holds

10:0; Pif — 0:i0; Py f || L2a+2 0y
S HPtf - PtOfHH2,2d+2(U)
< Hth - TtofHLqO(Rd,u) + HT;fLQOf - EOL(IOfHLqO(Rd,,U«) (9'21>

Define a map

By the L% (R?, p1)-strong continuity of (7});~0 and (9.21), the map 9,0, P. f is continuous
with respect to the || - || 2a+2¢)-norm. Hence by [48, Theorem, p91](or [12, Exercise
1.8.15]), there exists a Borel measurable function u} on U x (0,T’) such that for each
t € (0,7), it holds

uf (- t) = i0;P.f.

Using Theorem 9.3.3 and the L% (R, i1)-contraction property of (T} )0, u? € L22°(Ux

(0,7)) and

||U§cj||L2d+Qv°°(U><(07T)) < sup ||8z'8thf||L2d+2(U)
te(0,T)
< sup ||Ptf||H272d+2(U)
te(0,T)

< sup C (”T;SfHL‘IO(]Rd,u) + ||Ttquf||Lq0(Rd,u))
te(0,7)

< Ol fllp(Lg)s
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where C' > 0 is a constant which is independent of f. Using the same line of arguments

as in (9.20) and the approximation as in Theorem 8.4.5,

&ﬁjuf = u? S L2d+2’oo(U X (O, T))

Theorem 9.3.5. Assume (A4’) and f € C°(RY). Then there exists

up € Gy (R x [0,00)) N (Y Wiiho (B x (0,00)))

r>0

satisfying uy(x,0) = f(x) for all € R such that

Oy € L¥(R? x (0,00)), duy € () L¥(B, x (0,00)) for all 1 <i<d,

r>0

and
1 ~
Oyuy = §trace(AV2uf) + (G, Vuy) a.e. on R x (0,00).

Proof Let f € C°(RY). Then f € D(Lg). Define uy := P f(-). Then by Lemma
8.3.4, uy € Cy(R? x [0,00)) and uy(x,0) = f(z) for all z € R% In particular, since
G € L (RYRY), it holds f € D(L,,), so that P,f € D(L,) for any ¢ > 0. By

Theorem 9.3.4, for each ¢ > 0, it holds dyuy(-,t) = TyLsf = T,Lf p-a.e. on R% Note
that for each ¢ > 0, using the sub-Markovian property,

[0us (-, )| Loy = [ TLLf | poo (mey
< LS poo ey

hence dyuy € L=®(R? x (0,00)). By Theorem 9.3.4, for 1 <,j <d, t >0, dus(-,t) =
0P, f, 0;0;up(-,t) = 0,0;P,f p-a.e. on R%. Using Theorem 9.3.3 and the L%(RY, p)-
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contraction property of (7})¢~q, for any R > 0 and for each 1 <1i,j <d, ¢t > 0, it holds

HPtf”H2,2d+2(BR)
C (172 f || 2o R oy + 1T Lo f1] L0 (Rt 1))
ClflID(zqy):

10:0;uy (-, ) || L2a2(y)

IN A IA

where C' > 0 is as in Theorem 9.3.3 and independent of f. By Morrey’s inequality,
there exists a constant C'r 4 > 0 such that for each t > 0, 1 <17 <d,

10: P f | o< ()
Crall Pef || 22042 (B
CraCll fllD(Lyy)-

1055 (-, )| oo ()

INIAIA

Thus, uy € W226’l:-2,oo(BR X (0,00)) and Qyuy, O;uy € L®(Bg x (0,00)) for all 1 <17 <d.
By (8.39), it holds

1
// <—pAVuf, w> — (pUB, Vuy ) dadt
Réx(0,00) 2
= // —Oyuys - ppipdadt  for all p € C5° (R x (0, 00)).
R4 x (0,00)
Using integration by parts, we obtain
1 ~
— // <—trace(AV2uf) + (P4 + B, Vuf>>g0 dpdt
Réx(0,00) \ 2
= // —Owuys - pdudt  for all p € C°(R? x (0,00)).
R4 x (0,00)
Therefore,

1 ~
Ouy = §trace(AV2uf) + (G, Vu;) ae. on R x (0,00).
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Theorem 9.3.6. Assume (A4’). Then uniqueness in law for (9.6) holds.

Proof Assume both M = (2, (F3)t>0, (Xt)t>0, (Ps)zera)

and M = (Q, (F)iz0, (X0)iz0, (Py)pera) satisfy (9.6). Let f € C°(RY). For T > 0,
define g(z,t) := up(z, T —t), (z,t) € R? x [0, 7], where u; is defined as in Theorem
9.3.5. Then by Theorem 9.3.5,

g = Cb (Rd <ﬂ W21d3-2oo (O7T)))7
r>0
09 € L*(R* x (0,T)), dig e |L®(B, x (0,T7)), 1 <i<d,
>0

and it holds

%qLLg—O a.e. in R x (0,T), g(x,T)= f(x) for all z € R%

Applying Theorem 9.3.1 to M, for € R¢, R > 0, it holds

TADg
=[5
0

0

TADR

/ <8g + Lg) (Xs,8)ds =0, P,-as.,
0 ot

t+Lg‘ X, 8) ds] =0,

hence

hence by Theorem 9.3.2,
TADR
9(Xrapg, T N Dg) —g(x,0) = / Vg(Xs,8)o(Xs)dW,, P-as.
0

Therefore
E:E [g(XT/\DR7 T A DR)] = 9(1.7 O)

Letting R — oo and using Lebesgue’s Theorem, we obtain

Eo[f(X7)] = Ee[9(X7, T)] = g(z,0).
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Analogously for M, we obtain E,[f(X7)] = g(z,0). Thus

E,[f(X7)] = Eu[f(X7)].

Since & and G are locally bounded on R%, we can apply the Markov-like property
obtained in [37, Chapter 5, 4.19 Lemma]. Thus using the same way of proof as in [37,
Chapter 5, 4.27 Proposition |, the assertion follows.

]

Combining Theorem 9.3.6, Remark 9.1.4 and Theorem 9.1.5, we directly obtain the
following result.

Theorem 9.3.7. Under the assumption (A4’), suppose there exists a constant M > 0
and some Ny € N such that
(A(x)z, z)

1 ~ ) ,
_W + EtraceA(a:) + <G(x),a:> <M (”x” + 1) (hl(HxH +1)+ 1)

for a.e. ¥ € R\ By,. Then M from Theorem 9.1.3 is non-explosive and a unique
solution to (9.6) in a weak sense.

Remark 9.3.8. Consider the situation in Example 9.2.3 except the conditions (1), (2),
(3). Let p := 2d+2 and assume G € L2, (R RY). Let o > 0 be such that a(2d+2) < d.

Take q € (2d + 2, g) Then A, G, ¢ satisfy (A4’). Therefore, the Hunt process M of
Theorem 9.1.5 solves weakly P,-a.s. for any x € RY,

1
Vo(Xs)

Assume that there exists a constant M > 0 and some Ny € N, such that

il _<A(a7)x,x> 1race x x), T 212 n(||z||?
¢<x)( E e el >)+<G< ), w) < M (|2l + 1) (tn(||]” + 1) +1)

t t
Xt:er/ 1|2 -J(Xs)dWs+/ G(X)ds, 0<t<C  (9.22)
0 0

for a.e. ¥ € R\ By,. Then by Remark 9.1.4, M is non-explosive, i.e. P,(¢ = 00) = 1
for all z € R, In that case, by Theorem 9.5.6, M is the unique solution to (9.22) in a
weak sense.
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Existence and regularity of
transition functions with general
pre-invariant measures and
corresponding Ito-SDEs

171



Chapter 10

Regularity results for weighted
parabolic PDEs

In this Chapter, we derive some regularity results including the parabolic Harnack
inequality of solutions to linear parabolic equations in divergence form involving a
weight function. We adapt some methods from [2] to derive a fundamental inequality,
but some technical details are at times different to those of [2] since our parabolic
PDEs involve weight functions in the time derivative term which are bounded below
and above by some positive constants. To derive our regularity results, consider the

following condition.

(I') U is abounded open subset of R? and 7' > 0. u € HY?(U x (0, T))NL>(U x(0,T)).
A = (a;j)1<ij<a Is a matrix of functions on U that is strictly elliptic and bounded,
i.e. there exists constants A > 0, M > 0 such that for any £ = (&...,&) € R4,
relU,
d
D eul@ely 2 eI, max fos(@)] < M
i,j=
B € LP(U,R?) for some p > d. v is a positive function on U satisfying locally
bounded below and above, i.e. there exists constants cg, c; > 0 such that
co<yY<conlU.
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Assume (I') and consider the following divergence form of linear parabilic equation

with a weight function in time derivative term.
// (uOyp)hdxdt = // (AVu, Vo) + (B, Vuyp dadt,
Ux(0,T) Ux(0,T)
for all ¢ € Cg°(U x (0,T)). (10.1)

Let n € C3°(U x (0,T1]). Noting that assumption (I') is surely stronger than assumption
(I) in Part III, through the same procedure as in Section 7.1, we first get for 5 > 1
and a.e. 7 € (0,7)

1
m/{]nQ(u—i_)’B—i_l ‘t T@Dd.f—F—/ / 'B lHVU—i_HQdmdt

' IBI . 4M* 2\ (,,+)B+1 : /T/ 1
< + \4 u dxdt + —— Ol (w1 wde.
_/0/U</\n vl ll?) ) 5o, ), ey
(10.2)

Furthermore, if x(o ) is replaced by x(r, -, for a.e. 7.7 € (0,7), then for g > 1,

6—1%1/ 2(ut) 2 pda +—ﬁ/ / )Vt |2 dedt

|||;||2 47\12 B+1 2 /7—2/
< Vn dxdt + —— n|dm| (u B+l abd.

(10.3)

Finally we need another type of the fundamental inequality to derive a parabolic
Harnack inequality. Given € > 0, let @ := u + ¢ and G(u) := @”, where 8 € R is fixed.

Define
H(u) := {BHMBH if 71
log u if g =—
so that H'(u) = G(u). Given [11, 7] C (0,T) define ¢ := n*G(u)X(r,,r,). Then
—_— {772G’(u)Vu +2nVn G(u) T <t<m
0 te€ (0,7)\ (11, 72)
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Using the same procedure as in Section 7.1, we obtain

/7)2H( ) |i=r wdxdt—l—/ / (AVu, V@) + (B, Vu)pdudt
/ / 2n Oy H (u) Ydxdt, for a.e. 7,7 € (0, 7). (10.4)

Observe that

sign((AVu, V@) + (B, Vu)3)
(AVu, |G (v)| V) +signﬁ<<AVu 2nVn G(u)) + (B, Vu)n*G(u ))
NP |G ()| Vall* = 20| G (u)[dM [Vl [ Va] —n*|G ()| IB][[Val.

v

and
1B1(@) 7~ G(u)? = |G (u)]-
Thus using Cauchy inequality we obtain

277G(U)6W||V77IIIIVﬂII

(VAVIBI@) 5 Gluyn [V ) (T @' Fv))’

1
<2.- 2.4
=7y 2 * 2

4d? M*?
21N (W)|||Vul]? + v A+l
I ) [V + AN
and
GBI
B+1

) (f VI~ Gl val)” (VATVIBT () 5 Bl
< S +2-

2 2 2

A
< 2221 all2 + B B+12
< PG WIIval+ AwH 2@
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Therefore for a.e. 71,7 € (0,7),

sign/3 </ *H(u) [;1=2 ydx dt+—6/m/nzﬂﬁ1HV12|]2dxdt>

B2 d2M2
< [, G+ S vl s [ [ onoun 100 vt
(10.5)

The following Theorem 10.1.1 which presents an estimate of the L*°-norm in terms of
the L2-norm improves Theorem 7.1.2 in which an estimate of the L>-norm in terms of
the L7-2-norm is given. To prove the following Theorem 10.1.1, we use the fundamental
inequalities (10.2) and (10.4). Given r > 0 and a fixed (Z,t) € U x (0,7, let Q(r) :=
Rz(r) x (t —r% 1) and Rg(r) := R(r).

10.1 L*-estimate in terms of the L?>-norm

Theorem 10.1.1. Assume (I') and Q(3r) C U x (0,T). If (10.1) holds, then

[ull @)y < Cllullz2@er):

where C'is a constant depending only on r, X, M and ||B|| Lr(r@r))-

Proof Let n € C°(Rz(r) x (t — 9r%,1]). Then (10.2), (10.3) hold with U x (0,7)
replaced by @(3r). Using appropriate scaling arguments (cf. [2, proof of Theorem 2]),
we may assume r = % By Theorem 7.1.2,

Il @arsy < VCsllull 2, . (10.6)

2%(Q(2/3))

where C'3 > 0 is a constant from Theorem 7.1.2. Now choose a smooth function 7 so
that n = 1 in Q(2/3), n = 0 outside Q(1) and 0 < n < 1, |9n],||Vn| < 8d. We

ill estimat in t f . By (10. ith § = 1, for a.e.
will estimate ||u||Lp2Tp2,2(Q(2/3)) in terms of [|ul[z2(a). By (10.3) with 3 , for a.e
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1,79 € (t—1,1), we get

/ 7 (u )!i‘ifwdxm// n?||Vut | 2dedt
R(1)
B2 4d2M2
<2// H H an|12+cmyamy)( Ndedt =T  (10.7)

Note that
IBI* 5, 112 2 12
2 L p*(ut)dxdt < =||B ut|?
//Ru)x(n,m) n ) _\AH HLP(R(”),HH I 222 sy
=:Cy
and

A4d> M?
2 | (CEE NI + eonlom] ) (P
R(1)x(71,m2)

4d>M?
< 12842 ( : vC1> 1 2 (1) (1 -
—C
By [2, Lemma 3] we have
T < Cylnut|f? 2 B +05||u+||%2(R(1)><(71,72))

LP=2"(R(1) % (71,72))
< KCy(n — 72) (||77U+||%2,oo(R(1)x(n,72)) + ||v(lr]u+)||%2(R(1)><(T1,7'2))>

+C5||u+H%2(R(1)><(T1,7'2))
< (051 V 2) KCy(m — 7'2)9( sup /R(l) n?(uh)?yda

tE(T1,7'2)

+||<nvu+>||%2(R(1)X(7’1,TQ)) + 64d2Hu+H%Q(R(l)x(ﬁﬁz))) + 05||U/+||%2(R(1)X(T1,T2))7

where K > 0 is a constant as in [2, Lemma 3] and 6 := 1 — % ifd>3, 0:=5—-if

d=2.

1_1
2 p
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0
Now set € := (%) . Consider 7y =t asin t € (171,71 + €) and define

Z(t) = /R(l) n? (ut)*pda

Then by (10.7),

)\ t
+—/ / 0 |IVu't|Pdzdt
2 71 J R(1)

AN
< T(t (SUP Z(t) + 64d2Hu+||2L2(R(1)><(7-1,7-1+a))>
S

T1,T1+€)

+Cs [l L2y xmm ey + Z(1)- (10.8)

Taking the supremum over t € (11,71 + €) on the left hand side of (10.8), we get

t+e
sup  Z(t) + )\/ / 0| Vu't||Pdzdt

te(r1,m1+4¢)

< (64d” + 2C ) ut |22 +22(ﬁ)

v

Similarly, we obtain

t+2¢
sup Z(t) + )\/ / P |[Vut|Pdedt <O +2 sup  Z(t).
T R(1)

te(ti+e,m1+2¢) 14¢€ te(ri,m1+e)

Hence by iterating these procedures for 1 + [%] times with starting time 7 € (t — %, t),

we get
sup  Z(t) < ol+1 . @
te(t—1,t)
and
! 0 ) 1
/ / 772||Vu+||2dxdt < _(1 + 22+g) (1 + —) . (10.9)
i-1JRr) A £
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Hence,
lut | Zem@uy < ' sup  Z(1)
te(t—1,t)
< eyl (64d% + 205) [lut | 2oy (10.10)
—Cs
and

1 1
(14 2%+2) (1 + g) (64d* +2C5) [lu™ || 2@

/

InVut]Z2 o) <

(>~

~

L7

Therefore by (10.9), (10.10) and the similar way as in the proof of [2, Lemma 3],
U+ 2 2p

| ”LW*%Q@/:&))

1

L

IA

2p

nu
| =22(Q(2/3))
K (Hnuﬂﬁz,m@(l)) + |’V(77U+)H%2(Q(1))>

IA

IN

2K <||nu+||%2,oo@(1)) + (21(111; ||V77||2> [t 112200y + ||77Vu+||%2(Q(1))>

2K (Cs v 64d” V O7) [u™ |72 (g (10.11)

N

IA

=:Cjg

Combining (10.11) and (10.6), we obtain

lu || @z < vV C3Cs||lu™ || 20

Exactly in the same way, but with u replaced by —u, (7.9) holds with C' = 21/C3Cs.
O
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10.2 Parabolic Harnack inequality

In this section, we prove a parabolic Harnack inequality, which is one of the most
important results to derive the L!-strong Feller property and irreducibility and strict
irreducibility of the semigroup. Before proving the parabolic Harnack inequality, we
prove the following technical lemma which generalizes [53, Lemma 7]. The generaliza-
tion results from considering weight functions ), which then lead to a modification of
the original proof.

Lemma 10.2.1. Let U be a bounded open subset in R:. Let p € Co(U) be positive on
U and satisfy that there exists a constant L > 0 such that

sup{||z — y|| | =,y € supp(p)} < L.

Moreover assume {x € U | p(x) > ¢} is convex for any constant ¢ > 0. Let ¢ be a Borel

measurable function on U such that cg < ¢ < ¢y for some positive constants cgy, ;.
Then for any v € HS2(U), it holds

1}ww—w%mesgéwmw%@Ma

where

_va(x)p(x)@/)(x)dx _(a 2u)deHmaXUp
[ T = () 2 Jy @)

Proof Since supp(p) C U, we may assume that U has Lipschitz boundary and u €
H'2(U) by appropriately shrinking U so that supp(p) C U. Observe that a constant V/
satisfies that

2mewmmﬁwuww¥mmwmm
= [ [ )=o) semvvmdrdy (1012
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if and only if

o(/ p(x)¢(x)dx)2 viea( [ ) ([ vowower) v

v2( [ sowtarts ) ([ epeta)

2 ([ vt ([ smtv)

if and only if
(/[Jp(x)w(x)dq; V- /Uv(x)p(;c)w(x)dx)z _0

d
Therefore if we set V' := Jy v(@p(@)i(a) $, then (10.12) holds. Now by [21, Theorem
Ju p@)¥(z)dr

4.7), extend v € H*?(U) on R, say again v € H"!(R?)y and extend p on R? by zero
extension. Let 7, be a standard mollifier on R? and v, := v * n,,.

Let z,y € U be given and we may assume p(z) < p(y). Let l,, be the oriented
straight line segement from x to y. Then by the ‘Fundamental Theorem of Calculus’ and
Holder inequality,

(vn(2) — va(y))? p(2)p(y)

= ands) -p(z)p(y)

lzy

_ /l ,y (@W@%ds) p(@)p(y)

< / ||wnr\2pds> ( /
lg;,y l

z,y

%ds> p(2)p(y).

Since {z € U | p(z) > ¢} is convex for any constant ¢ > 0, we have rlninp = p(x), so
z,y
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that

Therefore we have

lay

(va (@) = va(y))” p(2)ply) < (/ HWnIIQPdS> - L-maxp. (10.13)
Using the Fubini Theorem,

| [ onle) = ) oty dy
= / / (Un(2) — vn(x 4 2))? p(2)p(x + 2)dz da
UJU—x
< () — vz + 2)) p(z)plx + 2)dz dzx
< [ [ 0o e ) a2
= / / (vn(2) — vn(x 4 2))? p(z)p(z + 2)dx d2. (10.14)
BL(0) JU
Let z € Br(0) and x € U. If z + z € U, then by (10.13),
(0n(2) — vn(z + 2))° p(2)p(z + 2)
< L-maxp- (/l IIan||2pd8>

1
< LQ.méixp-/ Von (2 + t2)||” p(z + tz) dt. (10.15)
0

If 42 € RI\ U, then (v,(x) — vn(x + 2)) p(@)p(x + 2) = 0, hence (10.15) holds. Thus
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for any z € B1(0), using Fubini Theorem,
[ 0a(o) = vt + 2 oo + 2)da
U
1
< L*. mgxp/ / Vv (z + t2)|] p(z + t2)dz dt
o Ju
1
= Py [ 90,0y e
0 U+tz
< L*. méxxp/ Vo, (2)]| p(a)da. (10.16)
U
Combining (10.14) and (10.16), we obtain
[ | (wnle) = a0 o)z dy
vJu
< wgL*? mgxxp/ Vo, ()] p()de, (10.17)
U

where wy = fBl ldx. Since p € L>®(U) and lim,, o, v, = v in H“*(U), letting n — oo
in (10.17), we obtain

/ / (v(2) — v(y))* pla)p(y)dz dy
UJU

< wyL? mgxp/ |Vo(z)|]? p(z)dz.
U
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Finally by (10.12) and (10.17) we have

23 [ pade [ (o) = V) pla)ds

2 [ ployia)d / (v(2) = V) plo)ula)da
= [ ] 0@ =) sttt dedy

i/ / (0(2) — v()? p@)p(y) d dy

2w L mgxxp/ IVu(z)|]? p(z)dz
U

IN

IN

IA

as desired.

Gven (z,t) € U x (0,T), set Q*(r) := Rz(r) x (t — 8r%,t — 7r?).
Theorem 10.2.2. Assume (I)' and Q(3r) C U x (0,T). If (10.1) holds, then

sup u < C inf u,
Q*(r) Q(r)

where C' > 0 s a constant which is independent of u.

Proof As in the proof of Theorem 10.1.1, we may assume r =  and Ux (0,T) = Q(3r).
Moreover considering a translation, we may assume ¢ = 1. Given € > 0 define @ := u+-e.
For 8 € R\ {-1}, let v := & and v := 7. Thus by (10.5), for a.e. 71,7 € (0,1), we

have
signfs (L/ n*v® 122 ydrdt + —/ / ||Vl da:dt)
||B||2 4(1l2M2 2 21
\Y% 15, vt =T 10.18
/ /Rm e e VI ! ) (1018)

Step 1: Consider the case of § > —1. Given s € [1/3,1/2], set

S(s) = R(s) x (%(1 — ), éu n s)).
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Let 1,1’ € R such that 3 <!’ <1 < 1. Take 5 € Cg°(S(1)) so that 0 <5 < 1 on S(I),
n=1on S(l') and |Vn|| < 2%, [0m| < ;& on S(I). Then

< _1 -1 2 "
I<C (B vIB+17) (=1 ol 22,2

where Cy = 4 (A [BI[3 ) + AP MA 426, ).

1

For the case of 8 > 0 we set 7, := 35 and 75 := 7. Then we obtain

AMnVollZz gy < 2C1687%(1 - ll)iZﬁY?HUHL%’Q(S(D)’

collnol|Za.ee gy < 4C187H(1 - l,)_QVQHUHL%’Q(S(z))'

For the case of —1 < 8 <0 weset =7 and 7, = i. Then we have

1 _ _
NVl < 5CAI2E = 1) 2ol 2,

Co”ﬁ””%%w(Q(l)) < Ol|5|_1(l - l/)_2HU||Lp2‘—pz’2(s(l))'

()’

Therefore for any § > —1 with g # 0 we have

I

||7]VU||%2(Q(1)) < 2/\_101|/3|_2(l - l,)_2<1 + 72)”@”[/%’2(3(1))

9 1 -1 n—2 2
\|nv||L2,oo(Q(1)) <deg LB (I =1) (1 4y )HU”L%’Q(S(Q)'

Now set

ap ! op ’ g
o = = ) o =0 =
b p—2 op—p-+2 ¢ o—1
Then it holds
i+i:1ifd23, iJri<1ifd:2.
20, 4o 2ps 4o
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By [2, Lemma 3],

ol2/o 2/o0
7115, < )15, .
Lp=2"7(S(1")) Q(1))
g T]’U 2
| ” 22227 (Q(1))
= Hnv‘|L2(Pa)/v2(Qo>/(Q(l))
< K (Invlmy + 1V 00) 2y )
< K(HWH%&?(Q@)) + 2|9Vl 72 gy + 87 (1 — l/)_2||v||%2(3(1))>
< Gy(1+ !ﬁ!’z)(l—l’)’2(1+72)\|vH2 EY (10.19)

(@)

where K > 0 is a constant from [2, Lemma 3] and Cy := K (2A7'C} + 4c;'C) + 8d?).
For the iteration method, choose a small number v, > 0 and set v = v, = o™,
m € NU{0}. In order for iteration to work well, we have to get v,, # 3 for all
m € NU{0}. To do this, we let 7o have the form

o-N
=T, for some N € N (10.20)
Then vy < 3 < Yn41 since o > 1. Note that given m € NU{0}, 8 = B, =2y, — 1 =
om—N m— om—N o—
21+0 — 1. If m < N, then 20™ % <2 <1+, so that |3, :1—21+U > U—Jr% If
— a.m—N
m > N, then 20™ " > 20 > 1+0, s0 that |3,,| = 27, —1 = 21+ —1> 2 = —-1= U+1
Therefore,
o+ 1
Additionally we get
L+9% = (L+%)(1/7%)* < 2(v/%).
Therefore from (10.19) we obtain
oI5, , <G =120 M0l 2,
Lp=27(S(1")) Lr=27(S(1))
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where Cy = 20, (1+ (21)%)

For m = 0,1,..., set | =1, :=3Y1+2™1), I'=10 :=3Y1+2m72),
Om = ||*T0"m||2/‘2,, . Taking r = rpc™ and 1/3 <" =1, <1l =1, < 1/2 for
2(S(lm ))
m=20,1,2,... we obtain
Pt < (144C5) 7™ (20) F . (10.21)

Iterating (10.21) we have

mo 21

(144C3) z"io%(Qa) 05t g
(144C5) 771 1(20)c " 2 l? 2

0y

Pm+1

72%(s(d)

Letting m — oo we have

sup u"® < /Cy|lu"||

Q*(1/3) E=3 *(s(1/2))’

Step 2: Consider the case of § < —1. Let [ and [’ be real numbers satisfying
3 <l' <1< 3 asin Step 1. Take a cut-off function n € C§°(R(1) x (1 —1?,1]) satisfying
n=1inQ(')and 0 < n <1, ||Vn| < 2d(l —1), |0m| < 2(I—1)""in Q(I). Choose
71 =3 and 7 = 7 as in (10.18). Then by the same methods as in Step 1, we have

1
AnVo||? < —Ci(1=1)2|lv 20 5
V0l < 5O =)0l gy
2 -2
collnvl] 2.0 <Ci(l-7 v
ollnvllz2. QM) = 1 )7l ” 7222 Q)

where (' is as in Step 1, hence using the same methods as in Step 1 and [2, Lemma 1],

7% < C5(1 =172l
17 22 2 gy S O OV 2

where Cs := ( 71)\7101 + 05101 + 8 )
For the iteration, we let | = l,,, := 3741 +2™™ 1), ' =1 :=371(1+2""m72),

Om = ||Ju"T0" HQ/‘;T, 5 . Con51der1ng r=-—-roc™and 1/3<l'=101 <l=1,<1/2

—27(Qm))
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form=0,1,2,..., we get @, < (14405)%"50% so that

o1 < (144C5) =505 g < (144C5)77 (20) P P
—.Cs

Q)

Letting m — oo we have

supu " < G|l 2,
Qd) Lr=27(Q(3))
hence

[ ¥ < VG inf @™.
22(Q(h) o)

Therefore if we show existence of a constant C' > 0 satisfying

"l [

[k 2 <C, (10.22)

Lr=27(Q(3))

=2%(s(})

then the proof of Theorem 10.2.2 will be done.

Step 3: In order to show (10.22), consider the case of f = —1 as in (10.18). Set
—log . Then by (10.22), we obtain for a.e. 7,75 € (0, 1)

T2
/ 0o |, =2 dxdt + = / / || Vol 2dzdt
R(1) 1 R(1)

T2 B 2 4d2M2 T2
< / / (H ” n* + ||V77||2> dxdt + / / 2n Oy |v| Ydxdt
T R(1) A A T R(1)

Choose a cut-off function n as in the form

n(z,t) = ((x) - a(t),

where ( € C3° (R(1)) satisfying ¢ = 1 in R(5) and o € C*(R) satisfying a = 1 in

1
2
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[T1,00), a@=0in (oo, ). Moreover we can choose such functions ¢ satisfying
0<¢<1, V(|| <6d, and {¢ > c} is convex for any ¢ € R.

Then note that

T2
/ / 2n Oy |v| Ydxdt = 0.
T R(1)

Define

fR(l v(z t) Y(x)dz
le C2 Y(x)dr

V(t) = 0<t<l1.

Applying Lemma 10.2.1 with U = R(1), p = (%, L = d"/? and taking integration over
(0,1)

' d1+2/d
/0 /R(l) Clo = V)dadt < (co> 2|L} g2dx/ / C(IVol|*dzdt. (10.23)
R(1

Noting that [5,) (*dz > |R(3)] = 2% and «(m) = a(r2) = 1, we obtain from (10.23),

V(Tg)—V(Tl) ded1+d/2 / / . dZEdt

-1
(/ §2da:) (/ n*v =2 dxdt + = / / 772HV1)H2d;Edt>
R(1) R(1) n JRQ)

T2 2 4 2
< 2d/ / (”B” 4 LaadM )dwdt. (10.24)
1 R(1) A A

Since dyv(z,-) € L*((0,1)) for a.e. z € R(1), by ‘Fundamental Theorem of Calculus’,
for a.e. t € (0,1),

IA

t
v(x,t) = / O(z,s)ds, for a.e. x € R(1).
0
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Applying Fubini’s Theorem

/ Clx)o(e, 1) Yla)de = /0 t ( /R " t2($,t)(9tv(x,s)w(x)dx> ds,

hence V(t) has a absolutely continuous dt-version on (0, 1), say again V(). Therefore
V(t) is a.e. differentiable on (0, 1), hence from (10.24) we get

d B|?  144d*M?
vV Ao/ (v=V)dz < 2d/ (H I 4 >d:z:
dt R(%) R(1) A by

2d
< X (||B||%p(R(1)) + 144d4M2) = Cy

2
coA

— 1 1 _ 1
C%de—Hd/T Let Q@ = R(5) x (0,3), and @~ = R(3) X
(3,1). Define the function ¥ : R — [0, 00) by

for a.e. in (0,1), where Ay :=

\If(w):{ Vw  when w >0

0 when w < 0

By applying [2, Lemma 7] in the interval [%, 1) with a =2, v = %, we obtain

I (ot —v (72 Jamar < Ly 25V
Q+

Ay 9d+1

Likewise, by (2, Corollary of Lemma 7] in the interval [0, 1) with o =2, v = 1,

// V(1/2) — v(y, ))dde<Ai0++2d—+@-
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Therefore,

// //Q < 5 g)dxdtdyds

://Q_ //pr v(m,t)—v(y,s))dxdtdyds

g// //w\y v(x,t)—V(l/Q))—|—\II<V(1/2)—v(y,s))da:dtdyds

< 9-d-1 (//Q+ Vv (1/2) dxdt+//_ V(1/2) — v(y, ))dyds)

<2 (— - 2t ver/2 VC7) =: Cs. (10.25)

A 9d-+1

Let Q@ (1), Q1 (1) be pairs of rectangles in R(1/2) x (0,1) obtained from the fixed
pair Q1, @, respectively by the transformations

v lr+cy, tePtdc, 1€(0,1], ¢1,c0 > 0.
Now for (2/,t') € R(1) x (0,1) define

u' (2 V) = a(la’ + e, 1P + ), A(x):=A(lr + ),
B'(z") :=1-B(l2'+ 1), ¢'(2") :=9(lx

+

).

Then it holds

// (W' Opp)y dx'dt’ = // (A'VU, V') + (B, Vu')pda'dt,
R(1)x(0,1) R(1)x(0,1)
for all ¢" € C5°(R(1) x (0,1)).

Now let v/ := v/ + ¢. Then by (10.25),

////Q+ <log_ t/§>dxdtdyd3 < Cs.
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Therefore

l2n+4//Q o //Q+ l)‘I’< —82 ogu(x,t) — <—%10gu(y,s)>>dwdtdyds
- z2n+408 // " //Q+ )

( i
// // Ey;CI’%) dz dt dy d
l2n+4C8 l) Q+ u x_ZCIJtIQ ) Y
u s')
= — U ( log =2~ dx' dt’ dy’ ds' < 1. 10.26
oM, 1. (Ogu«f,t/)) oy < (1020

Thus applying [53, Main Lemma, p.106] to (10.26), there exist constants cg,c3 > 0
which only depends on d such that

// u?/ %y ds - // 0)?/ B dx dt < cs, (10.27)
_ Dt

where D™ := R(3) x (0, %) and DJr = R(3) x (3,1). Note that S(3) c D7, Q(3) C

1)
D*. Choose a small § > 0 so that -£5 < 1/§ and take o as in (10.20) satisfying

1) 1)
TOE[L CL]

) dx dt dy ds

2002 2C%
Hence
roC3
. < [z TP < —cz/ng d co
I “LPQTPQ'Q(S(%))_” ”WS( 3)) HUHL@(S@»_ <//—u e |

TOCS

“am“ 2p 2 1 = (// 1/U CQ/CSdl‘dt) ” .
LP=27(Q(3)) D+

By (10.27), it holds

0 Cg

770 0o < 2
PN 6 NPT
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Therefore
T‘ch 1/TO
sup u < VO Cg -3 inf w
Q*(1/3) Q(1/3)
20’C§ 075
< <1 + \/C4x/C6> e ~cg? inf

Q(1/3)

as desired.

]

In the same manner as in [2, Thoerem 4, Theorem 5], we obtain the following
parabolic Holder regularity, estimate and pointwise parabolic Harnack inequality as
consequences of Theorem 10.2.2

Theorem 10.2.3. Assume (I) and Q(3r) C U x (0,T). If (10.1) holds, then there
exists a constant v € (0,1) such that u € CV2(Q(r)). Furthermore for (x,t), (y,s) €
Q(r) , we have

ol
ju(e,t) = uly, )| < ¢ (llz = yll+ VIE=5]) sup w,

Q@3r)

where C' > 0 s the constant which is independent of u.

Theorem 10.2.4. Assume (I)" and u is non-negative. Suppose U’ is convex with U’ C

Uandlet 6 := inf |z —y|, T >0.If (10.1) holds, then for any xz,y € U’ and all
zelU’ yeU

s,t with 0 < s <t<T, we have

lz—yl*  t—s
< ulz,t) - 1
u(y,s) < u(z,1) expC( .t T1)

where R := min{1,s, 0%} and C > 0 is a constant which is independent of .
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Chapter 11

Analytic and probabilistic results

11.1 Strong Feller property and irreducibility with

general pre-invariant measures

Here we state a basic condition for our main results.

(C1) ¢ is a positive Borel measruable function on R%. Given open ball B in R?, there
exist positive constants cg, Cg such that

cg <Y< Cp onB. (11.1)

p e HP?RYHNLE

s % (R?) is a positive function and % € L2 (RY). A = (aij)1<ij<d

loc

is a matrix of functions satisfying a;; € Hll.gf(Rd) for all 1 < 7,57 < d. Given

open ball B in R?, there exist positive constants Ag, Mp such that for any £ =
(&1,...,&) € RY 2 € B, it holds

1<i,j<d

d
> aii()&E = Asll€), max [a;;(z)| < Mp. (11.2)
ij=1

Set g = (aij)1§i7jgd = A+2AT and 121 = (dij>1§i,j§d = AEAT. wB € LZQOC(Rd,Rd)
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satisfies

/ (B, Vp)phdr =0, for any o € C°(RY). (11.3)
Rd

From now on, we assume (C1) and let u := pidr. For f,g € C°(RY), define
(€%, C5°(RT)) by
1 1~
0 == —A dp.
&1 9) 2/Rd<¢ Vf,V9> o
Then by [51, Subsection I1.2b)], (€9, C5°(R?)) is closable in L?(R?, i), hence denote its
closure on L%(R%, i) by (€%, D(E°)) and its associated generator by (L°, D(L?)). Define

Lf :=L°f + (B + A" V), fe DLy

Note that

(B + 84" Vphdu =0, for any ¢ € C°(RY).
Rd

Moreover C§°(R%) C D(L)q, and
1 ~ T
Lf= ﬂtrace(Av? H+ BBV NV, feOrRY.

Thus by Theorem 8.2.7, there exists an L*(R?, u)-closed extension (L, D(L)) of (L, D(L°)oy)
in L'(R? 1) which generates a sub-Markovian Cy-semigroup of contractions (7})s~0
on LY (R, ). Restricting (T})iso to L*(R?, 1)y, by Riesz-Thorin interpolation, (7})¢o
can be extended to a sub-Markovian Cy-semigroup of contractions on each L™ (R%, ),

€ [1,00). As in Part II, denote by (L, D(L,)), (G4)a=o0 the corresponding generator
and resolvent in L"(R?, ), respectively. Denote by (L,, D(L,)) for the corresponding
co-generator on L"(RY, ). Using sub-Markovian property, semigroup (7});~o and resol-
vent (Gy)aso can be extended on L>®(R%, i) which satisfies contraction property, but
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no longer strongly continuous on L>®(R?, ;). Define £ by

g(f ) o _fRd LQngd:u fOI‘ f € D(L2>7 g € LQ(Rdl\M)a
DT < Jpaf Lagdn for f € IR ), g € D(L).

Then € is called a generalized Dirichlet form associated with (La, D(Ls)).

Remark 11.1.1. Let RY := {z = (21,...,24) € R* | 24 > 0}. Given o € (0,1), define
o= Q(OdRi +(1- oz)le\Ri). Let p € HE2(RY)NC(RY) be positive and define p = ¢p,
m = pdx. Let A = (a;j)1<ij<a be a matriz of functions satisfying (11.2) and assume

a; € H2(RY) for all 1 < i,5 < d. Let A = (Gij)1<ijea = A_QAT and assume there

exists a positive constant A such that for any open ball B in R, it holds

s < A .
lgg@;{d la;j(x)] < A-Ap, forallx € B.

Let
Ef,9) = / (AVf.Vg)dm, [.g€ CF(RY).
R4
Then (E°, C3°(RY)) satisfies the strong sector condition and we can hence define (€%, D(EY))

as the closure of (€Y, C5°(RY)) on L*(R4,m). Denote by (L°, D(L)) the associated gen-
erator on L*(R%, m). Let B € L*(R% m) be such that

/ (B,Vo)dm =0, for any p € C°(RY).
R4

Define
Lf = Lof + <Ba Vf>, f € D(LO)O,b~
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Using integration by parts, for any f € C°(R*\ ORY), g € C5°(RY) we have

1

(.9 = 5 [ (AVLVg)dm

o
-

(AVf,Vg)pdx + (1 — a)/ (AV f,Vg)pdx

d a\Rd
+ RARE

(%trace(AV2f) + <5P’AT, Vf>) g-2apdx

+/ (ltrace(AVZf) + (T Vf>) g-2(1 —a)pdx
RARYE 2
- / (%trace(AVQf) + (8, Vf>) gdm.

Rd

Hence f € D(L°) and L°f = Ltrace(AV2f) + (874", V f). Note that Cg°(R?\ OR%)
is dense in L*(R%,m) and C3°(R?\ ORL) C D(L%)oy. Hence by [29, Lemma 13] there
exists an L*(R%,m) closed extension (L, D(L)) of (L,D(L%)o,) on L*(R% u) which
generates a sub-Markovian Cy-semigroup of contractions (Ti)i~o on L'(R? m). Like
above, we obtain correspondingly the sub-Markovian semigroup of contractions (T})i>o
and the sub-Markovian resolvent of contractions (Ga)aso on L"(RY,m), r € [1,00). And
we also obtain the corresponding generator (L,, D(L,)), co-generator (L,, D(L,)) on
L"(R%,m), r € [1,00) and a generalized Dirichlet form & associated with (Lq, D(Ls)).
& is associated with a Hunt process with skew-reflection on 8Ri.

From now on, we fix p > d and let ¢ := p’%.

Theorem 11.1.2. Assume (C1) and B € L} (RY,RY). Let [ € Uegogl” (R, p).

loc
Then Guof has a locally Holder continuous p-version Rof on R Furthermore for any

open balls B, B' with B C B’, we have the following estimate

1Rafllcorm) < c2 (Iflzew + 1Gatf L) -

where co > 0, v € (0,1) are constants which are independent of f.
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Proof Let f € C°(R?) and a > 0. Then by Theorem 8.2.7 (c),

Gof € D(L), € D(E%) c H X (RY)

loc

and
E(Gat. o)~ [ B+ 5N TGaf)pd
Rd
_ / (TG f) ey
]Rd
:/ (f —aGuof)pdu, for all o € CO(RY).
R‘i

Thus

/ <%pAVGaf,V<,0>dx—/ <p¢B,VGaf>cpdx+/ (appGof)p dx
R4 Rd R4
:/ (pf)pdr,  for all p € C°(RY).

Rd

Note that pyB € L
B C B'. By Theorem 7.2.2, there exists a locally Hélder continuou p-version R, f of

PARYERY), apy € L2 (RY). Let B, B’ be open balls in R? satisfying

G.f on R? and there exist positive constants v € (0, 1), ¢y, ¢z, independent of f, such
that

a1 (IGaf iy + o0 fllLocsry)
¢ ([|Gaf s + 11l o) -

[1Bafllonm <
<

The remained part is analogous to Theorem 5.3.1. For f € Ure[q o) L"(R%, 11), we use
the denseness of C5°(R?) and contraction properties. And for f € L®(R%, ), we use
pointwise approximation by L!'(R? 1), and Lebesgue’s Theorem which is analogous to

Theorem 5.3.1.
O

Analogously to Lemma 8.3.4, we obtain

Lemma 11.1.3. Assume (C1) and B € L (R* RY). Forany t >0, f € J y D(L,),

re(g,00)
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Tif has a locally Hélder continuous version P,f on RY. Moreover the map
(l’,t) = Ptf(x)

is continuous on RY x [0, 00).

Theorem 11.1.4. Assume (C1) and B € L} (R, R?). Let f € Usepr,o0)L*(R?, 1) and
t > 0. Then T,f has a locally Hélder continuous u-version P,f on R and P f(-) is
locally parabolic Holder continuous on R x (0, 00). Furthermore, for any bounded open
sets U, VinR*withU CV and 0 < 73 < 7, < 7o < T4, i.e. [Ty, To] C (73,74), we have
the following estimate for all f € Usep oo L*(RY, p) with f >0,

2SOl ez < Coll POt v (rra) ey (11.4)

ﬁX [7‘1,7'2})

where Cg, 7y are positive constants that depend on U X |1, 7],V x (73,74), but are in-
dependent of f.

Proof First assume f € D(L), N D(Ly) N D(L,) with f > 0. Using Lemma 11.1.3,
define u € C(R? x [0, 00)) by u(z,t) :== P,f(x). Then for any bounded open set O C R?
and T > 0, we have u € H"*(O x (0,T)) by the same way as in Theorem 9.3.4. Using
the same argument as (8.38), it holds

1
// <—pAVu, V<p> — (pUB, Vu)p drdt
Rix(0.T) \2
= // u Oyp - pipdadt  for all o € C°(R? x (0,T)).  (11.5)
R4 x (0,T)
Then by Theorem 10.2.3, Theorem 10.1.1 and Theorem 10.2.2 and using the same
method as in the proof of Theorem 3.1.8, we obtain u € C"2(U x [y, ]) and there

exists a constant v € (0,1) and C' > 0 which is independent of u such that

||u||C“/:%(UX [r1,72]) S C||UHL1(V><(7'3,T4),/J,®dt) .
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Given s € [1,00), using L*(R?, ;1)-contraction property of (P);~o we have

HPme 3 Ox[rm) < CIPfllorws(rs 74) p®dt) -

< COln— Ts)HWHLI

smiyy, S € [1,00],

For f € L*(R?, ) N L>®(R%, p) with f > 0 let f, := nG,f. Then f, € D(L), N D(Ly) N
D(L,) with f, > 0 and f, — f in L*(R% p) for any s € [1,00). Thus (11.4) extend
to f € LYRY, ) N L®(RY, p) with f > 0. If f € L5(R% pu), f > 0 and s € [1,00),
let f, := 1p, - (f An). Then f, € LY(R?, u) N L=(R?, u) with f, > 0 and f, — f in
L5(R?, p1). Thus (11.4) extend to f € L*(R%, u) with f > 0. For f € L>*(R?, ), the
result follows exactly as in Theorem 3.1.8.

0

The following Lemma is a key intermediate step to show irreducible and strict
irreducible of (P;);~o

Lemma 11.1.5. Assume (C1) and B € L} (R RY).

(i) Let A € B(R?) be such that Pyyla(zo) = 0 for some ty > 0 and xy € R Then
pu(A) =0.

(i) Let A € B(R?) be such that Py,14(x) = 1 for some ty > 0 and xy € RY. Then
Pla(x) =1 forall (z,t) € R x (0,00).

Proof The proof of (ii) is almost analogous with (i) noting the proof of Lemm 4.2.2
(ii), hence we will only prove (i). Suppose u(A) > 0. Choose an open ball B,(xy) C R?
such that

0 < (AN B.(x)) < 0.

Let u := Planp,(ap)- Then 0 = u(wo,t0) < Piyla(zo) = 0. Set f, :== nGrlang, (o).
Then f, € D(L), N D(Ly) N D(L,) with f,, > 0 such that f, — LanB, (z0) i LY (R4, p).
Let u, := P.f,. Fix T >ty and U D B,(z(). Note that by (11.5), u,, € H“*(U x (0,T))
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satisfies

1
// <—pAVun, w> — (B, Vuy, Y dadt
Ux(0,T) 2
= // Uy, Opp - ppdxdt  for all ¢ € C°(U x (0,7)).
Ux(0,T)

Now take arbitrary but fixed (x,t) € B,(xy) x (0,ty). By Theorem 10.2.4,

20 — 2| to — 1
0<u, ot < Un b O( I 1> .
<y (z,t) < un(o, to) eXp( to—t + min(1, ) *

Applying (11.4) with U D B,(x0), [11, 2] D [t, 0], it holds

lwo —al*  to—t
)< alot) < uen. s C( : 1) — 0.
< wu(z,t) < ulxg,ty) exp ( to—t + min(1,t) *

Thus, Pi1ang,(z)(x) = 0 for all x € B,(zy) and 0 < t < tg, so that

0= / LanB, (@) Pl ans, (zo)dit — p(Br(x0) N A) >0,
R4 t—0+

which is contradiction. Therefore, we must have u(A) = 0.
O

Directly using Lemma 11.1.5 and proof of Theorem 4.2.4, we obtain the following result.

Corollary 11.1.6. Assume (C1) and B € L} (R4 RY).

loc

(1) (T})i=0 is strictly irreducible.

(ii) Let A € B(RY) with m(A) > 0. Then P,(X; € A) > 0 for all v € R: ¢t > 0, i.e.

(Py)¢>0 1s irreducible.

From Theorem 11.1.2, for any a > 0, x € R?, we define

R, (z,A) = lllglo Ro(1p,n4)(7), A€ B(R?.
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Then aR,(-, A) is a sub-probability measure on (R¢, B(R?)) that is absolutely con-
tinuous with respect to p. Using the Radon-Nikodym derivative, the resolvent kernel
density is defined by

Ro(x, dy)

, r € RY
p(dy)

rol(z,+) =

Similarly, from Theorem 11.1.4, for any t > 0, x € R? we define

P(z, A) := lim P,(1g,n4)(7), A€ B(R?).

- =00

Then P,(-, A) is a sub-probability measure on (R?, B(R?)) that is absolutely continuous
with respect to . Using the Radon-Nikodym derivative, the resolvent kernel density is
defined by

N Pt(xady)
P = )

Therefore using the exacly same method as in Proposition 8.3.8, we derive the following

x € RY.

result.

Proposition 11.1.7. Assume (C1) and B € L} (R4 RY). Let o > 0, t > 0. Then it
holds:

(1) Gag has a locally Hélder continuous p-version and

Rog= [ gt = [ owraCutin. Yoe |J LR ). (116

re(gq,00]

In particular, (11.6) extends by linearity to all g € LI(R? u) + L®°(RY, p), i.e.
(Ra)aso is LIoN(RY, 1)-strong Feller.

(i) Tif has a continuous p-version Vf € Usep o L (R?, 1) and

P f = Rdf(y)Pt(ndy)z Rdf(y)pt(»y)u(dy), (11.7)
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In particular, (11.7) extends by linearity to all f € LY(R?, p) + L=(RY, 1), i.e.
(P >0 is L>I(RY, 1)-strong Feller.

Finally, for any a > 0,2 € RY, g € LI(R?, ) + L=®(RY, 1), we have

R.g(x) :/ e " Pyg(x) dt.
0

Remark 11.1.8. Assume the situation of Remark 11.1.1. Then we obtain

/ <%p¢AVGaf,Vgo>dx—/ <p¢B,VGaf>SOd9U+/ (appGaf) pdx
R

R4 R4

- /Rdwf) pdv,  for all p € C3*(RY)

and given T > 0, it holds

1
// <—p¢AVu, V90> — (p¢B, Vu)yp dudt
Réx(0,T) ‘2
= // w Oy - ppdxdt  for all o € CP(RY x (0,T)).
Rx(0,T)

Thus using analogous methods to the above, we obtain the analogue of Theorem 11.1.2,
Lemma 11.1.3, Theorem 11.1.4, Lemma 11.1.5, Corollary 11.1.6.

11.2 Application to weak existence of 1t6-SDEs

In order to construct a Hunt process associated with (P,);~o which is identified to a
weak solution to the corresponding [to-SDE, we present a final condition.

. L d
(C2): Fixp>dand ¢:= 1. Be L,

(R%,RY), VAT € L (RY) and p € HY(RY).

loc loc

If we assume (C1) and (C2), then one can directly check that (H2)" of Part I holds.
Thus, using Proposition 9.1.1 and the analogous method to Theorem 3.2.1, we arrive
at the following theorem.
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Theorem 11.2.1. Assume (C1), (C2). Then there ezists a Hunt process

M = (Q, F, (Fi)iz0, (Xt)i205 (Pe)zerivgay)

with state space R and life time
C=inf{t>0: X, =A}=inf{t >0 : X, ¢ R},

having the transition function (P;)i>o as transition semigroup, such that M has contin-
uous sample paths in the one point compactification R of R with the cemetery A as
point at infinity, i.e. for all v € R?

Pm({w € Q| X (w) € C([0,00),RL), X.(w) = AVt > g(@}) =1

Remark 11.2.2. Consider the situation of Remark 11.1.1 and assume (C2). Then
one can check that (H2)" of Part I also holds since

C?(RY\ ORL) € D(L%)o; C D(Ly) N Co(RY)

and Ly f € LY(RY)y for all f € C3°(R?\ ORY). Hence using the analogous way to The-
orem 3.2.1, there exists a Hunt process M which has skew reflection on the hyperplane
6Ri, Moreover the transition function (P;);~o of M satisfies general strong Feller prop-
erties, irreduciblity and strict irreducibility.

Using Theorem 11.1.2 and the analogous method to Theorem 3.2.3 (ii), we obtain
the following Krylov type estimate.

Proposition 11.2.3. Assume (C1), (C2). Let g € L"(R? pu) for some r € [q,00].
Then for any open ball B there exists a constant Cp, which depends on B and r and
does not depends on the VMO condition of A, such that for allt >0

t
sup E, [/ |g|(XS)ds} < e'Cryllgll r®a - (11.8)
0

z€B
Using the analogous method to proof of Theorem 3.2.8, we obtain the following result.
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Theorem 11.2.4. Assume (Cl) (C2). C’onsider the Hunt process M from Theorem

Syl >j) >

JlJELOO(Rd) foralllgzgd 1 <5 <m, such thatA—cmT i.e.

loc

aij(z Zazk z)oji(x), Y e R4, 1<,y <d,

Then on a standard extension of Ml = (Q, F, (F})i>0, Pz) with life time ¢, x € RY, that
we denote for notational convenience again by M = (2, F, (Ft)i>o0, Pr) with life time C,
x € RY, there exists a standard m-dimensional Brownian motion W = (W, ..., W™)
starting from zero such that Py-a.s. for any x € R?, it holds

t T ATvp
Xt—a:+/\/_ X)dW+/ (wVA e +B>(X)ds, 0<t<C

The corresponding resolvent (Gy)as0 and semigroup (Ty)io satisfy general strong Feller
properties as in Theorem 11.1.2 and Theorem 11.1.4, respectively. Furthermore, M
satisfies wrreducibility and strict irreducibility as in Corollary 11.1.6. Various properties
of Part I, 11, such as conservativeness in Theorem 4.1.2, moment inequality in Theorem
4.1.4 (i), Theorem 6.1.4, recurrence and transience in Proposition 4.2.5, Theorem 4.2.7,
Lemma 4.2.8, Theorem 4.2.9, ergodic properties in Theorem 4.2.11 hold in the situation
of Part IV.

11.3 Explicit conditions for global well-posedness

and ergodic properties

The finial section is devoted to present some conditions to derive our previous results in
the case where diffusion and drift coefficients are explicitly given. By a direct application
of Theorem 8.3.1, we show existence of a pre-invariant measure for a large class of second

order partial differential operators.

Theorem 11.3.1. Let A = (a;j)1<ij<a be a matriz of functions satisfying (11.2) and
a; € H2(RY) for all 1 < i,j < d. Let ¢ be a positive function satisfying (11.1). Let

loc
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G € L} (R4 RY) be such that

loc

1
§VAT —¢G € L} (RYRY).
Then there exists p € HEP(RY) N CYIYP(RY) satisfying p(x) > 0 for all z € RY such
that
[ (G =5 N ppdn =0, Jor allp € CiF(RO),
Rd

i.e.

1 1
/R d (@div (AVy) 4 (G — ﬁVAT, w>> pidz,  for all p € C5°(RY).

Moreover G — 3PA"Y ¢ [P

loc

(R, RY).

Now let B := G — 374" % and consider all situations of Section 11.1. Then all results
of Section 11.1 automatically hold under the assumption of Theorem 11.3.1. Using The-
orem 11.2.4, we obtain the following result which presents global well-posedness and
ergodic properties in the case where diffusion and drift coefficients that are possibly

discontinuous are explicitly given.

Theorem 11.3.2. Under the assumption of Theorem 11.3.1, suppose VAT € LI

loc

(R?, RY).

S0yl >

of functions o;; € L2(RY) for all 1 <i<d, 1 < j <m, such that A=0o0", e

loc
() =Y oa(z)o(z), Yo eRY, 1<ij<d
k=1

Then there exists a standard extension of a Hunt process Ml = (Q, F, (Ft)i>0, Ps)
with life time (, x € RY, that we denote for notational convenience again by M =
(Q, F, (F)is0,P2) with life time ¢, x € RY, and there exists a standard m-dimensional
Brownian motion W = (W1 ... W™) starting from zero such that for any v € R?, it
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weakly solves P,-a.s

‘&=$+[j7ﬁ}5dXﬂmé+A%%&M& 0<t<C (11.9)

If there exists a constant M > 0 and some Ny € N, such that

! _<A(x)x,x) 1race x x),x 212 n(||z|
M@( P+l 2 m>)+m(%>§MWH44HHHH+U+Q

for a.e. x € R?\ By,, then M is non-explosive, i.e. P,(( = o) = 1 for all v €
R, Moreover M is irreducible and strict irreducible, hence satisfies the result as in
Proposition 4.2.5 in the situation of Part IV. If there exists a constant M > 0 and
some Ny € N, such that

1 _<A(x)x,:1;> 11"auce x x), T
w@>(|nw+1+2t A<0+<G(%><o

for a.e. x € R4\ By,, then M is recurrent in the probabilistic sense as in (4.16). If
there exists a constant C' > 0 and some Ny € N, such that

1 (A(z)x, x)
el

= 2
T + 5traceA(x)> +(G(x),z) < =C([|=]* + 1)

for a.e. x € R\ By,, then pydx is a probability invariant measure of M and ergodic
properties as in Theorem 4.2.11 holds in the situation of Part IV. Finally if G €
L2 (R4, RY) and M is non-explosive, then M is a unique solution to (11.9) in a weak
sense.
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