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ABSTRACT 

Therapeutic co-targeting of WEE1 

and ATM downregulates PD-L1 

expression in pancreatic cancer  

 

 

JIN MEIHUA 

Department of Internal Medicine 

Graduate School 

 College of Medicine 

Seoul National University 

 

Background: Pancreatic cancer (PC) is one of the most lethal cancers 

worldwide, but there are currently no effective targeted treatments. The DNA 

damage response (DDR) is under investigation for the development of novel 

anti-cancer drugs. Since DNA repair pathway alterations have been found 

frequently in PC, the purpose of this study was to test the DDR-targeting 



 

ii 

strategy in PC using WEE1 and ATM inhibitors. 

Materials and Methods: We performed in vitro experiments using a total of 

ten human PC cell lines to evaluate anti-tumor effect of AZD1775 (WEE1 

inhibitor) alone or combination with AZD0156 (ATM inhibitor). We 

established Capan-1-mouse model for in vivo experiments to confirm our 

findings. 

Results: In our research, we found that WEE1 inhibitor (AZD1775) as single 

agent showed anti-tumor effects in PC cells, however, targeting WEE1 

upregulated p-ATM level. Here, we observed that co-targeting of WEE1 and 

ATM acted synergistically to reduce cell proliferation and migration, and to 

induce DNA damage in vitro. Notably, inhibition of WEE1 or WEE1/ATM 

downregulated PD-L1 expression by blocking GSK-3β serine 9 

phosphorylation and decrease of CMTM6 expression. In Capan-1 mouse 

xenograft model, AZD1775 plus AZD0156 (ATM inhibitor) treatment reduced 

tumor growth and downregulated tumor expression of PD-L1, CMTM6, and 

CXCR2, all of which contribute to tumor immune evasion. 

Conclusion: Dual blockade of WEE1 and ATM might be a potential therapeutic 

strategy for PC. Taken together, our results support further clinical development 

of DDR-targeting strategies for PC. 

Keywords: Pancreatic cancer, DNA damage response, WEE1, ATM, PD-L1 

Student Number:  2017-33939 
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INTRODUCTION 

Pancreatic cancer (PC) is one of the most lethal diseases worldwide, and 

there is an urgent need to develop effective therapies for this disease [1]. 

Recently, genomic analyses have revealed that many cancer susceptibility 

genes are frequently mutated in PC, including KRAS (92% of cases) and TP53 

(78%). In addition, germline and somatic mutations in genes encoding breast 

cancer 1 and 2 (BRCA1, BRCA2), ataxia telangiectasia mutated (ATM) and 

partner and localizer of BRCA2 (PALB2) are present in PC patients with 

frequencies of 5% (germline mutations) and 12% (somatic mutations) [1]. 

These genes play critical roles in the DNA damage response (DDR), which 

signals the presence of strand breaks and other forms of DNA damage and 

coordinates their repair. Paradoxically, mutations in genes that compromise the 

DDR can both cause and protect against cancer. On the one hand, defects in the 

DDR can lead to genomic instability and the accumulation of mutations that 

increase the probability of cancer. On the other hand, DDR pathway 

dysfunction can render tumor cells susceptible to chemotherapeutic agents that 

damage DNA and/or impair alternative DDR pathways [2]. Thus, targeting of 

specific molecules in the DDR is a potential strategy for the development of 

new drugs for cancers with urgent unmet needs, including PC.  

The cellular response to DNA damage, including single-stranded or double-

stranded DNA breaks, is controlled by a network of proteins that include 

damage-sensing proteins such as poly (ADP-ribose) polymerase (PARP); 
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transducers such as the kinases ataxia telangiectasia mutated (ATM) and ataxia 

telangiectasia and Rad3 related (ATR); and effectors such as the nuclear kinase 

WEE1, which is a key protein in cell cycle checkpoint control and inhibits entry 

into mitosis [2]. Ultimately, the DDR results in one of three outcomes for the 

cell: successful DNA repair, cell cycle arrest, or apoptosis.  

Therapeutic targeting of the DDR pathway has been examined in diverse 

tumor types [2]. Notably, inhibition of PARP, ATM, ATR or WEE1 has been 

shown to abrogate DNA repair via homologous recombination (HR) in many 

cancers with a genetically defective DDR, thus leading to synthetic lethality [3-

6]. WEE1 acts as a gatekeeper of the G2/M cell cycle checkpoint, and its 

activity increases during the S and G2 phases; thus, WEE1 inhibition can induce 

growth arrest in S phase [7]. In contrast, cancer cells expressing mutant TP53 

lack a functional G1 checkpoint, and DNA damage must be repaired during the 

G2/M transition. Given that TP53 is often mutated in PC [7], PC is the good 

candidate for the development of the DNA damage response (DDR) acting 

agents. 

The tumor microenvironment plays a critical role in cancer progression [8]. 

PC is unique compared with other tumor types in being surrounded by strong 

stroma. Abundant immunosuppressive cells reside in the tumor 

microenvironment, including regulatory T cells, myeloid-derived suppressor 

cells (MDSCs), M2-type macrophages, and cancer-associated fibroblasts 

(CAFs) [8, 9]. Recruitment of these cells establishes a barrier to the anti-tumor 
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immune response [8, 9]. In addition, signaling via the chemokine receptor 

CXCR2 can drive PC growth by recruiting MDSCs and tumor-associated 

neutrophils and by enhancing the metastatic process [9]. Programmed cell death 

ligand 1 (PD-L1) is a negative regulator of the immune response and acts by 

binding to its receptor programmed cell death 1 (PD-1) on T cells, which 

inactivates the cells and thus allows the tumor to escape immune surveillance 

[10]. Data from genomic analyses indicate that immunogenic subtype of PC, 

which exhibits high levels of PD-L1, cytotoxic T-lymphocyte-associated 

protein 4 (CTLA4) and CXCR2 among several subtypes [1]. Notably, the 

chemokine-like factor-like MARVEL transmembrane domain containing 

family member 6 (CMTM6) has been suggested as one of the mechanisms of 

regulation of PD-L1 through preventing PD-L1 degradation by lysosome [11].  

Increasing evidence suggests the existence of crosstalk between the DDR 

signaling network and immune pathways [12, 13]. For example, recent studies 

have demonstrated that the DDR regulates PD-L1 expression in cancer cells via 

a pathway involving activation of STAT (signal transducer and activator of 

transcription) signaling and inactivation of glycogen synthase kinase-3β 

(GSK3β) [14, 15]. However, such interactions between the DDR and immune 

signaling have not yet been studied in PC. 

Here, we evaluated the anti-tumor effects of targeting the DDR using a 

WEE1 inhibitor (AZD1775) and an ATM inhibitor (AZD0156) in PC cells in 

vitro and in a mouse xenograft model.  
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MATERIALS AND METHODS 

1. Human cell lines and reagents 

Ten human PC cell lines were employed in this study: Aspc-1, Capan-1, 

Capan-2, MIA PaCa-2, PANC-1, SNU213, SNU324, and SNU410 were 

purchased from the Korean Cell Line Bank (Seoul, Korea), and SNU2913 and 

SNU2918, patient-derived cell lines, were successfully established from patient. 

Cells were cultured in medium (MIA PaCa-2 and PANC-1 cells in DMEM, all 

other cell lines in RPMI-1640, both from Welgen Inc., Gyeongsan, Korea) 

supplemented with 10% fetal bovine serum and 10µg/mL gentamicin and were 

maintained at 37°C in a 5% CO2 atmosphere. The WEE1 inhibitor AZD1775 

and ATM inhibitor AZD0156 were kindly provided by AstraZeneca 

(Macclesfield, Cheshire, UK).  

2. Cell viability assay 

Cells were seeded in 96-well plates at a density of 2–8×103 cells per well, 

incubated overnight at 37°C, and then exposed to various concentrations of 

AZD1775 and/or AZD0156 for 3 days. No treatment was a control. A 50µL 

aliquot of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) 

solution (Sigma-Aldrich, St. Louis, MO, USA) was added to each well and the 

incubation was continued at 37°C for 4h. The medium was removed and 150µL 

of dimethyl sulfoxide (DMSO) was added to each well and mixed. The 

absorbance at 540nm was measured with a VersaMax Microplate Reader 
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(Molecular Devices, Sunnyvale, CA, USA). The experiments were performed 

three times. 

3. Colony-forming assay 

Cells (0.5–4×103) were seeded in 6-well plates and exposed to various 

concentrations of AZD1775 for 10 days. The colonies were then stained with 

Coomassie Brilliant Blue for 2h and counted using Gel Doc system software 

(Bio-Rad, Hercules, CA, USA). Each experiment was repeated three times.  

4. Western blot analysis 

Cells (1×106) were seeded in 100-mm dishes and treated with AZD1775 

and/or AZD0156 for 24, 72 or 120h. The cells were harvested and lysed in RIPA 

buffer containing protease inhibitors on ice for 30 min. Samples of lysate 

containing equal amounts of protein were resolved by SDS-PAGE and 

transferred to membranes for western blotting. Primary antibodies against the 

following molecules were purchased from Cell Signaling Technology 

(Beverley, MA, USA): ATR (#2790), p-ATR-Ser428 (#2853), caspase-7 

(#9492), CDC2 (#9112), p-CDC2-Tyr15 (#9111), WEE1 (#4936), p-WEE1-

Ser642 (#4910), c-Myc (#5605), p-NF-κB p65-Ser536 (#3033), NF-κB (#8242), 

MCL-1 (#4572), CtIP (#9201), MMP-9 (#3852), MMP-2 (#4022), PD-L1 

(#13684), STAT-1 (#9172), and p-STAT-1-Tyr701 (#9167). Anti-β-actin 

antibody was from Sigma-Aldrich; antibodies against p-ATM-Ser1981 

(#ab81292), ATM (#ab78), CXCR-2 (#ab217314), and PA32/RPA2 (#ab2175) 

were from Abcam Bioscience (Cambridge, UK); anti-p-RPA32 S4/S8 (#A300-



 

６ 

245A) was from Bethyl Laboratories (Montgomery, TX, USA); anti-γH2AX 

antibody (#05-636) was from Millipore (Billerica, MA, USA); anti-Rad51 (#sc-

8349) and anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; #sc-

25778) were from Santa Cruz Biotechnology (Dallas, TX, USA); and anti-

CMTM-6 (#PA5-34747) and secondary antibodies were from Thermo Fisher 

Scientific (Waltham, MA, USA). 

5. Immunoprecipitation 

Cells were seeded in 150 mm dishes at a density of 2.5×106 cells/dish, treated 

with inhibitors for 72h. Anti-PD-L1 antibody (#13684), anti-IgG antibody 

(#ab133470, Abcam Bioscience) and Protein A/G PLUS agarose (#sc-2003, 

Santa Cruz Biotechnology) were used. Finally, samples were analyzed by 

western blotting as described above. 

6. Cell cycle analysis 

Cells (2×105) were seeded in 60-mm dishes and treated with or without 1μM 

AZD1775 for 24h. The cells were then harvested, and fixed with 70% ethanol 

at −20°C for 2 days. An aliquot of 7µL of 20mg/mL RNase A (Invitrogen, 

Carlsbad, CA, USA) was added to each well and the plates were incubated for 

10 min at 37°C. Finally, propidium iodide (PI; Sigma-Aldrich) was added to 

each well and the cells were analyzed on a FACSCalibur flow cytometer (BD 

Biosciences, Franklin Lakes, NJ, USA). Each experiment was repeated three 

times. 
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7. Annexin V/PI apoptosis assay 

Cells (2×105) were seeded in 60-mm dishes and treated with or without 1μM 

AZD1775 for 48h. Apoptosis was measured by double-staining the cells with 

Annexin V-FITC and PI (#556547, BD Biosciences) according to the 

manufacturer’s protocol. The cells were then analyzed on a FACSCalibur flow 

cytometer. Cells in early and late apoptosis were defined as Annexin V-FITC-

positive/PI-negative and Annexin V-FITC-positive/PI-positive, respectively. 

The results are presented as the means of three independent experiments. 

8. Comet assay 

Cells (2×105) were treated with 1μM AZD1775 and/or AZD0156 for 24h, 

resuspended at 1×105 cells/mL in ice-cold phosphate-buffered saline (PBS), and 

mixed with molten LMAgarose at a ratio of 1:10. Aliquots were placed on 

comet slides and incubated at 4°C in the dark for 40 min. The slides were 

immersed in precooled lysis solution (#4250-050-01, Trevigen Inc., Maryland, 

USA) at 4°C for 40 min and then in freshly prepared alkaline unwinding 

solution (200mM NaOH, 1mM EDTA, pH >13) for 30 min at room temperature 

in the dark. The slides were subjected to electrophoresis for 30 min and dried 

at room temperature overnight. Diluted SYBR Green staining solution (100μL) 

was placed onto each circle of agarose and the samples were covered with a 

coverslip. Tail moment (migration of DNA fragments) and intensity (DNA 

content) were measured using the Comet Assay IV program (Andor Technology, 

Belfast, UK). Each condition was analyzed in three independent experiments. 
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9. Transwell migration assay 

Migration assays were conducted using 6.5 mm Transwell insert chambers 

with 8 μm-pore polycarbonate membranes (#CLS3422, Sigma-Aldrich). Cells 

(0.3–2×105) were seeded into the upper chamber in 200μL medium containing 

0.1% FBS, and 500μL medium containing 10% FBS was added to the lower 

chamber. AZD1775 and/or AZD0156 were added to the upper chamber and the 

plates were incubated at 37°C for 24h. The non-migrated cells remaining on the 

upper side of the membranes were removed with cotton swabs, and the filters 

were fixed with 4% paraformaldehyde (#P2031, Biosesang, Gyeonggi-do, 

Korea) for 20 min at room temperature. The membranes were then incubated 

in 1% crystal violet solution (#V5265, Sigma-Aldrich) for 10 min. The cell 

were visualized using microscope and photographed, and the cells were then 

dissolved by incubating the membranes in 300μL of 33% acetic acid 

(#1.00063.2511, Merck, Darmstadt, Germany) for 10 min. The liquid was 

collected and the absorbance at 573 nm was measured using a microplate reader. 

10. PD-L1 expression analysis by flow cytometry 

Cells (2×105) were seeded in 60-mm dishes and incubated with AZD1775 

and/or AZD0156 for 72h. The adherent cells were harvested, resuspended in 

cell staining buffer (#420201, BioLegend, San Diego, CA, USA), and incubated 

with anti-PD-L1 antibody (#329708, BioLegend) for 30 min at room 

temperature. Cells were then washed once with the same buffer and analyzed 

on a FACSCalibur. The results are presented as the means of three independent 
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experiments. 

11. Human cytokine array 

Cells (1×106) were seeded in 60-mm dishes and exposed to AZD1775 and/or 

AZD0156 for 24h. The cell supernatant was then collected and 500μL/sample 

was analyzed using the Proteome Profiler Human Cytokine Array Kit 

(#ARY005B, R&D Systems, Minneapolis, MN, USA) according to the 

manufacturer’s instructions. Spot intensities were measured using ImageJ 

software (National Institutes of Health, Bethesda, MD, USA). 

12. Human phospho-kinase array 

Cells (1×106) were seeded in 100-mm dishes and exposed to AZD1775 

and/or AZD0156 for 72h. The cells were harvested, and lysate samples 

containing 300μg of proteins were analyzed using the Proteome Profiler Human 

Phospho-Kinase Array Kit (#ARY003B, R&D Systems) according to the 

manufacturer’s instructions. Spot intensities measured using ImageJ software. 

13. Tumor xenograft experiments 

Animal experiments were performed at the Biomedical Center for Animal 

Resource Development of Seoul National University (Seoul, Korea) according 

to institutional guidelines, and prior approval of the study protocol was obtained 

from the Institutional Animal Care and Use Committee. Four-week-old female 

athymic nude mice were purchased from Orient Bio Inc. (Gyeonggi-do, South 

Korea). Capan-1 cells were resuspended at 3×107 cells in 100 μL of PBS and 
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injected subcutaneously. Tumor size was measured every other day and the 

volume was calculated using the formula: volume = [(width)2 × height]/2. 

When the tumor volume reached 200 mm3, the mice were randomly assigned 

to four groups of five mice to receive (1) vehicle (2-hydroxypropyl-β-

cyclodextrin solution), (2) AZD1775 once daily at 30 mg/kg for 4 weeks (5 

days on/2 days off), (3) AZD0156, as described for (2), or (4) AZD1775 plus 

AZD0156, as described for (2). All treatments were administered by oral 

gavage. Body weights and tumor sizes were measured every other day.  

14. Mouse cytokine array 

Immediately before sacrifice, the mice were bled and serum samples were 

prepared. Aliquots of 500μL were analyzed using the Proteome Profiler Mouse 

Cytokine Array Kit, Panel A (#ARY006, R&D Systems) according to the 

manufacturer’s instructions. Spot intensities were measured using ImageJ 

software. 

15. Statistical analysis 

Analyses were conducted using SigmaPlot version 10.0 (Systat Software Inc., 

San Jose, CA, USA). Data are presented as the means ± standard errors (SE). 

All statistical tests were two-sided. Differences were considered significant if 

the p-values were <0.05. Half-maximal inhibitory concentrations (IC50) were 

calculated using SigmaPlot software. Combined drug effects were analyzed by 

calculating the combination index (CI) with CalcuSyn software (Biosoft, 

Cambridge, United Kingdom). CI values of <1, 1, and >1 indicate synergistic, 
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additive, and antagonistic effects, respectively. 
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RESULTS 

1. WEE1 inhibition inhibits the proliferation of PC cells  

To evaluate the anti-tumor effects of WEE1 inhibition in PC, we used the 

MTT assay to assess the proliferation of 10 human PC lines in the presence of 

AZD1775 for 72 h. As shown in Figure 1A, AZD1775 inhibited the 

proliferation of all PC cell lines in a dose-dependent manner. The 

concentrations causing 50% inhibition (IC50s) ranged from 0.5μM to 2.1μM 

(Table S1). To verify these data, we examined the ability of the PC cell lines to 

form colonies after 10 days of incubation with AZD1775. This analysis also 

indicated a profound suppression of colony formation in all PC cell lines (Fig. 

1B), and the low IC50 values for colony formation (0.03–0.36μM) confirmed 

the sensitivity of human PC cells to WEE1 inhibition (Table S1). Because all 

10 of the PC cell lines showed comparable inhibition by AZD1775, we 

randomly selected four cell lines (Capan-1, SNU213, SNU410, and SNU2913) 

for the following experiments.  

To determine whether AZD1775 blocked signaling in the DDR pathway, we 

performed western blot analysis of the expression and activation 

(phosphorylation) of a number of molecules involved in DDR signaling 

downstream of WEE1. For these experiments, PC cells were incubated with or 

without AZD1775 for 24 h before analysis by western blotting. As shown in 

Figure 1C, we confirmed that AZD1775 dose-dependently reduced the 

expression of total and phosphorylated (p-) WEE1 in all PC cells tested. In 
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addition, AZD1775 also decreased the expression of phosphorylated cell 

division cycle protein 2 (p-CDC2), c-Myc, and phosphorylated nuclear factor 

kappa-light-chain-enhancer of activated B cells (p-NF κB), and upregulated the 

expression of γ-H2AX compared with control (Fig. 1C). These results suggest 

that AZD1775 monotherapy has anti-proliferative activity in PC cells. 

2. WEE1 inhibition induces S-phase arrest and apoptosis in PC cells.  

Since WEE1 inhibition reduced PC cell proliferation, we next determined 

whether AZD1775 induced apoptosis. For this, the cells were incubated with or 

without AZD1775 for 48 h and apoptosis was examined by flow cytometry of 

Annexin V/PI-stained cells or by western blot analysis of an apoptosis regulator, 

MCL-1, and an effector, cleaved caspase 7. We found that AZD1775 treatment 

significantly increased the proportion of apoptotic cells compared with control 

cells (Fig. 1D and 1E) and concomitantly diminished the expression of MCL-1 

and elevated the expression of cleaved caspase-7 (Fig. 1F). Since WEE1 

functions as a regulator of cell cycle progression, we also assessed the 

proportion of cells in the cell cycle phases by flow cytometric analysis of PI-

stained cells. As shown in Figure 1G, a significantly greater proportion of cells 

treated with AZD1775 than control was arrested in S-phase. To verify this, we 

examined expression of phosphorylated replication protein A 32 (p-RPA32), an 

S-phase marker that binds to single-stranded DNA. Indeed, AZD1775 treatment 

for 24 h resulted in increased phosphorylation of RPA32 at serine 4 and 8, 

indicating that WEE1 inhibition leads to replication stress (Fig. 1H). 
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Figure 1. Growth inhibitory effect of AZD1775 in PC cell lines. 

(A) Ten PC cell lines were exposed to control (0) or 0.001, 0.01, 0.1, 1, and 

10μM AZD1775 for 72 h, and cell viability was measured using the MTT assay. 

(B) Cell lines were treated as described in (A) and colony formation was 

analyzed after 10 days. (C) Western blot analysis of total or phosphorylated 

signaling molecules in Capan-1, SNU213, SNU410, and SNU2913 cells treated 

with 0, 0.1 or 1μM AZD1775 for 24 h. Experiments were repeated three times.  
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Figure 1. (D) Annexin V/PI apoptosis assay of Capan-1, SNU213, SNU410, 

and SNU2913 cells treated with 0 or 1μM AZD1775 for 48 h. (E) 

Quantification of three independent Annexin V/PI assays. *p<0.05, **p<0.01, 

***p<0.001. (F) Western blot analysis of apoptosis-related proteins in cells 

treated with 0, 0.1, or 1μM AZD1775 for 48 h. (G) Cell cycle analysis of PI-

stained PC cells treated with 0 or 1μM AZD1775 for 24 h. (H) Western blot 

analysis of cell cycle arrest-related signaling molecules in cells treated with 0, 

0.1, or 1μM AZD1775 for 24 h. *p<0.05, **p<0.01, ***p<0.001. Experiments 

were repeated three times. 
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Table 1. MTT Assay and Colony Formation Assay IC50 of AZD1775 

treatment.  

 

Cell lines AZD1775 (μM) 

MTT CFA 

AsPC-1 1.6 0.08 

Capan-1 1 0.03 

Capan-2 0.6 0.25 

MIA PaCa-2 0.5 0.3 

PANC-1 1 0.3 

SNU213 1 0.36 

SNU324 2.1 0.1 

SNU410 1.3 0.18 

SNU2913 1.1 0.12 

SNU2918 0.6 0.34 
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3. Co-inhibition of WEE1 and ATM profoundly impairs activation 

of the HR pathway of DNA repair 

Having evaluated the effects of AZD1775 as a single agent, we asked 

whether WEE1 inhibition influences the activity of other core members of the 

DDR, such as ATM or ATR. Indeed, we found that phosphorylation of ATM 

and ATR was increased in cells treated for 24 h with AZD1775 (Fig. 2A). Since 

AZD1775 had a greater effect on promoting phosphorylation of ATM than of 

ATR, we next examined the anti-proliferative effects of AZD1775 in 

combination with the ATM inhibitor AZD0156 using the MTT assay. As shown 

in Figure 2B, the combination index (CI) values of AZD0156 plus AZD1775 

were less than 1 for all four PC cell lines, indicating that the drugs had a 

synergistic effect on proliferation. 

To better understand the effects of combination AZD1775 and AZD0156 

treatment, we examined the expression levels of several molecules required for 

DNA repair via HR, after treatment of cells for 72h with AZD0156 and/or 

AZD1775. We found that expression of p-NF κB, Rad51, excision repair cross-

complementing protein 1 (ERCC-1), C-terminal binding protein-interacting 

protein (CtIP), and p-STAT1 were all downregulated by AZD1775 or AZD0156 

when added alone, but a greater effect was observed in cells co-treated with 

both agents (Fig. 2C). These data suggest that co-inhibition of WEE1 and ATM 

strongly blocks the HR pathway of DNA repair. 
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Figure 2. Effects of combination treatment with WEE1 and ATM 

inhibitors on cell growth. 

(A) Western blot analysis of total and phosphorylated ATM and ATR in cells 

treated with 0, 0.1, or 1μM AZD1775 for 24 h. (B) CI values in the MTT assay 

after combination treatment with AZD1775 and AZD0156 for 72 h. CI >1, 1, 

<1 indicate antagonistic, additive, and synergistic effects, respectively. (C) 

Western blot analysis of cells treated with 0 or 1μM AZD1775 and/or AZD0156 

for 72 h.  
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4. Co-inhibition of WEE1 and ATM synergistically induces DNA 

damage 

Having demonstrated that co-inhibition of WEE1 and ATM blocks DNA 

repair, we next asked whether these agents could induce DNA damage. We 

exposed the cells to AZD1775 and/or AZD0156 for 24 h, and then monitored 

DNA fragmentation at the single-cell level using a comet assay. We found that 

AZD1775 or AZD0156 alone promoted DNA damage compared with control, 

but both agents in combination caused markedly increased fragmentation, as 

indicated by comet tail intensity and moment (Fig. 3A and 3B). Consistent with 

this, western blot analysis revealed upregulated expression of the DNA damage 

marker γ-H2AX, with a greater effect observed in cells subjected to 

combination AZD1775 and AZD0156 treatment compared with monotherapy 

(Fig. 3C). 
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Figure 3. Effect of WEE1 and ATM co-inhibition on DNA damage. 

(A) and (B) Displayed Comet Assay results after treated with 0, AZD1775 

(1μmol/L) alone, AZD0156 (1μmol/L) alone, or both for 24 hours. Tail intensity 

and moment were analyzed using the Comet Assay IV program. (C) The related 

DNA damage signals were detected after exposed at combination treatment 

setting for 24 hours. *p<0.05, **p<0.01, ***p<0.001. Experiments were 

repeated three times. 

 

 



 

２１ 

5. Co-inhibition of WEE1 and ATM efficiently suppresses PC cell 

migration  

To determine the consequences of WEE1 and ATM inhibition on PC cell 

function, we examined cell migration and invasion, which play well-

characterized roles in cancer progression. Importantly, very few studies have 

evaluated the effects of DDR-targeted agents on tumor cell migration. In this 

study, Transwell migration assay was employed. Interestingly, we found that 

cell migration and invasion of all four PC cell lines were significantly 

suppressed by treatment with 1μM AZD1775 or AZD0156 alone. However, the 

combination of both drugs resulted in efficiently inhibition of cell migration 

(Fig. 4A and 4B). Thus, WEE1 and ATM appear to have previously 

unrecognized functions in promoting PC cell migration. 

The matrix metallopeptidases 9 and 2 (MMP-9 and MMP-2) are known to 

be crucial for cancer metastasis and invasion [16, 17]. Therefore, we asked 

whether the effects of WEE1 and/or ATM inhibition on PC cell migration were 

mediated via these enzymes. Western blot analysis revealed that treatment with 

AZD1775 or AZD0156 for 24 h slightly decreased the expression of the smaller, 

active form of MMP-9 compared with control cells, and this effect was 

augmented by co-treatment with both agents (Fig. 4C). In contrast, a reduction 

in active MMP-2 expression was only observed in combination-treated Capan-

1 and SNU410 cells (Fig. 4C).  

Next, we investigated the effects of DDR targeting on chemokine expression 
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in Capan-1 cells using a human cytokine/chemokine array. We found that the 

chemokines interleukin 8 (IL-8), CXCL1, CCL5, and CCL2 were significantly 

downregulated by AZD1775 treatment, combination therapy again showed an 

enhanced inhibitory effect on all four chemokines (Fig. 4D and 4E). 

Interestingly, previous work showed that signaling via the receptors for these 

chemokines (CXCR2, CCR5, and CCR2), facilitate the release of MMP-9, 

which contributes to enhanced angiogenesis and tumor metastasis [18-20]. 

Collectively, our results suggest that AZD1775 and AZD0156 act 

synergistically to suppress PC cell migration by reducing chemokine expression 

and MMP-9 release.  
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Figure 4. Effect of WEE1 and ATM co-inhibition on migration of PC cells.  

(A) The anti-migration effect was evaluated using cells with 0, AZD1775 

1μmol/L, or AZD0156 1μmol/L or both. The image was captured at 24 hours 

after treatment. (B) The percentage of migratory cells was analyzed after image 

was captured. The data represents three independent times. (C) Western blot 

analysis of migration-related molecules in cells treated as described in (A) for 

24 h. 
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Figure 4. (D) and (E) Human cytokine array analysis of Capan-1 cells treated 

as described for (A) for 24 h. Spot intensities were quantified using ImageJ 

software. 1, IL-8; 2, CXCL-1; 3, CCL5; 4, CCL2. *p<0.05, **p<0.01, 

***p<0.001.  

 

 

 

 

 

 

 

 

 



 

２５ 

6. Co-inhibition of WEE1 and ATM downregulates PD-L1 

expression in PC cells 

Next, given that the pivotal status of PD-L1 expression in cancer cell or 

cancer microenvironment [21], we explored the potential interaction between 

the DDR and the anti-tumor immune response by examining the effects of 

DDR-targeted agents on total and cell surface expression of PD-L1 in PC cells. 

Western blot analysis revealed that total cellular PD-L1 expression was 

decreased by AZD1775 or AZD0156 treatment alone, but combination 

treatment was even more effective (Fig. 5A). This pattern was also observed 

when cell surface PD-L1 expression was examined by flow cytometry, 

particularly in SNU2913 cells, which express high PD-L1 levels (Fig. 5B).  

To understand in more detail the effects of WEE1 and ATM inhibition on PD-

L1 expression, we investigated potential mechanisms that regulate PD-L1: 

CMTM6, which is thought to prevent PD-L1 degradation by lysosomes [11], 

and GSK-3β, which has recently been identified as a novel regulator of PD-L1 

expression [22]. Western blot analysis of CMTM6 expression showed a marked 

decrease in the protein levels after treatment for 72 h with AZD1775 and 

AZD0156, either alone or in combination (Fig. 5A). We also observed the 

reduction of PD-L1 expression at 24 h and 120 h by AZD1775, AZD0156 and 

combination treatment (Fig. 5A). To probe CMTM6-mediated regulation of 

PD-L1 further, we asked whether this molecule is associated intracellularly by 

immunoprecipitating with anti-PD-L1 and probing for the presence of CMTM6 
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in the immunoprecipitates. We found that CMTM6 was present in western blots 

of anti-PD-L1 immunoprecipitates, but not control IgG immunoprecipitates, of 

all four PC cell lines (Fig. 5C). Notably, IP with anti-PD-L1 antibody showed 

the CMTM6–PD-L1 binding was decreased upon WEE1 or ATM inhibition, 

with the greatest effects observed upon dual inhibition (Fig. 5C). It is possible 

that the reduction of CMTM6 by AZD1775 and AZD0156 led to decrease of 

CMTM6-PD-L1 bound form, which ultimately increase the PD-L1 degradation 

by lysosome supported by previous report [11]. 

To determine whether PD-L1 expression might be affected by the regulator 

GSK-3β in PC cells [22], we examined changes in phosphorylated kinase 

expression in AZD1775 and/or AZD0156-treated cells using a human phospho-

kinase array. We observed that while AZD1775 and AZD0156 both 

downregulated p-GSK-3β expression, the combination treatment was more 

effective than either agent alone (Fig. 5D and 5E). This indicated that PD-L1 

expression not only controlled by CMTM6 but also influenced by GSK-3β 

activity to a certain extent. Moreover, we found the same inhibitory effects on 

several other phospho-kinases, including p-cAMP response element-binding 

protein (p-CREB), p-Src, p-focal adhesion kinase (p-FAK), p-Yes, and p-P53 

(Fig. 5D and 5E). Taken together, these results indicate that dual blockade of 

WEE1 and ATM may reduce PD-L1 expression by downregulating the 

expression of CMTM6, and inactive GSK-3β.  
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Figure 5. Effect of WEE1 and ATM co-inhibition on PD-L1 expression. 

(A) Western blot analysis of PD-L1 and PD-L1-regulatory signaling molecules 

in PC cells treated with 0 or 1μM AZD1775 and/or AZD0156 for 72 h, 24h and 

120 h. (B) FACS analysis of cell surface PD-L1 expression on Capan-1 and 

SNU2913 cells treated as described for (A) for 72 h. Experiments were repeated 

three times. (C) Western blot analysis of control IgG, or anti-PD-L1 

immunoprecipitates treated as described for (A) for 72 h. 
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Figure 5. (D) and (E) Human phospho-kinase array analysis of Capan-1 cells 

treated as described for (A) for 24 h. Spot intensities were quantified using 

ImageJ software. 1, GSK-3β Ser9; 2, p-CREB Ser133; 3, p-Src Tyr419; 4, p-

yes Tyr426; 5, p-FAK Tyr397; 6, p-P53 Ser15. *p<0.05, **p<0.01, ***p<0.001.  
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7. Co-inhibition of WEE1 and ATM augmented anti-tumor growth 

in Capan-1-xenograft model 

To confirm the anti-tumor effect of AZD1775 and AZD0156 in vivo, Capan-

1 xenograft model was established. Consistent with the in vitro observations, 

we found that single agent treatment with AZD1775 or AZD0156 significantly 

decreased tumor growth, but the combination treatment was markedly more 

effective than either agent alone (p<0.05; Fig. 6A). We observed no overt 

evidence of drug toxicity, as reflected by a lack of significant change in body 

weight (Fig. 6B).  

Next, we excised the tumors and performed immunohistochemical (IHC) 

staining (Fig. 6C). Combination treatment with both drugs also potently 

inhibited staining of the proliferation marker Ki-67 and increased TUNEL 

staining, which detects fragmented DNA (Fig. 6C). In parallel, we performed 

western blot analysis to confirm our in vitro findings in the isolated tumors. In 

line with the in vitro results, we confirmed that AZD1775 treatment upregulated 

p-ATM while combination treatment with AZD1775 and the ATM inhibitor 

reversed this. Moreover, the expression of p-NF κB and CXCR2 were 

profoundly blocked by AZD1775 and/or AZD0156 treatment, and AZD1775 

plus AZD0156 enhanced γ-H2AX accumulation. Furthermore, we validated the 

in vitro findings with PD-L1 and CMTM6 by confirming that both proteins 

were downregulated by single- or dual-agent treatment (Fig. 6D).  

Finally, we assessed the effects of the DDR-targeting agents on immune cell 
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activity by analyzing cytokine levels in the sera of tumor-bearing mice. Using 

a mouse cytokine array, we found that release of C5a, TIMP metallopeptidase 

inhibitor 1 (TIMP-1), macrophage colony-stimulating factor (M-CSF), CD54, 

IL-16, and CXCL12 were markedly reduced by AZD1775 and/or AZD0156 

treatment, with larger effects observed in drug combination-treated mice (Fig. 

6E and 6F). Collectively, these in vivo data confirm that dual targeting of the 

DDR pathway components WEE1 and ATM profoundly suppress tumor growth 

in vivo compared with blockade of either molecule alone. 
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Figure 6. Anti-tumor effects of WEE1 and WEE1/ATM co-inhibition in the 

Capan-1 xenograft mouse model. 

(A) and (B) Tumor growth curves (A) and mouse body weights (B) in Capan-

1-xenografted mice treated with vehicle, AZD1775 (30 mg/kg), AZD0156 

(30 mg/kg), or both AZD1775 and AZD0156 for up to 4 weeks. (C) 

Immunohistochemical analysis of Ki67, and TUNEL staining in Capan-1 

xenografts excised tumors. Scale bars: 100 µm. (D) Western blot analysis of 

various proteins harvested from isolated tumors. 
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Figure 6. (E) and (F) Mouse cytokine array analysis of serum collected from 

xenografted mice. Spot intensities were measured using ImageJ software. 1, 

C5/C5a; 2, TIMP-1; 3, M-CSF; 4, CD54; 5, IL-16; 6, CXCL-12. *p<0.05, 

**p<0.01, ***p<0.001.  
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DISCUSSION 

In this study, we demonstrate for the first time that targeting the DDR by 

inhibition of WEE1 has anti-tumor effects in PC and that co-inhibition of WEE1 

and ATM amplifies these effects. We also evaluated the PD-L1 expression on 

cancer cells after treatment with WEE1 and ATM inhibitors.  

One of the main findings of this study is that dual inhibition of WEE1 and 

ATM has profound effects on PC cell migration. Only a few studies have been 

performed on the anti-migratory effects of DDR-acting agents. One report 

showed that AZD1775 inhibits the migration of gastric cancer cells, although 

the mechanism of action was not elucidated [23]. Another study suggested that 

ATM might promote cell migration by regulating IL-8 expression 

independently of its role in DNA double-strand break repair [24]. We found that 

WEE1 and ATM co-inhibition reduced the expression of MMP-9, IL-8, CXCL1, 

CCL2, and CCL5, which is consistent with an anti-migratory effect. This is the 

first demonstration of the involvement of WEE1 or ATM in MMP-9 or IL-8 

regulation. Moreover, downregulation of CXCR2, which is the IL-8 and 

CXCL1 receptor, in PC tumors was confirmed in our in vivo experiments. 

Although CXCR2 inhibition was shown to profoundly suppress metastasis and 

augments anti-PD-1 therapy in PC [9], the current study is the first to examine 

CXCR2 expression in PC. In addition, the involvement of Src and FAK in 

promoting cell migration and invasion is well known [25], and a recent report 

implicates a similar role for p-CREB [26]. Thus, our finding that expression of 
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p-CREB, p-Src, p-Yes, and p-FAK are profoundly inhibited by WEE1 and ATM 

co-inhibition is consistent with a role for these molecules in PC cell migration. 

Prior to this study, there had been no reports of a relationship between 

Src/FAK/CREB and the DDR pathway in PC. 

An interesting recent study reported that PARP inhibition upregulates PD-L1 

expression in breast cancer via inactivation of GSK-3β [15]. We also found a 

similar increase in PD-L1 expression in PARP inhibitor (Olaparib)-treated PC 

cells (data not shown). In contrast, the present study showed here that targeting 

of the DDR by WEE1 and/or ATM inhibition reduced PD-L1 expression 

concomitantly with downregulation of p-GSK-3β Ser9 level, the inactive form 

of GSK-3β. This mechanism might at least partly explain the reduction in PD-

L1 induced by WEE1 and/or ATM inhibition. It is interesting to note that PARP, 

WEE1, and ATM have distinct effects on PD-L1 expression, despite the fact 

that they are all core members of the DDR signaling network. Thus, while 

PARP inhibition increases PD-L1 expression by enhancing GSK-3β 

inactivation, WEE1 and/or ATM inhibition does the opposite by decreasing the 

expression of inactive GSK-3β.  

Among the mechanisms known to regulate PD-L1 expression, many act at 

the transcriptional level, including the JAK-STAT pathway, c-Myc, and NF-κB 

[14, 27, 28]. Consistent with this literature, we also observed a reduction in p-

STAT-1 and p-NF κB concomitant with PD-L1 downregulation in WEE1 and/or 

ATM inhibitor-treated cells. More recently, Burr and colleagues used 
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CRISPR/Cas9 technology to screen approximately 20,000 genes in the human 

PC cell line BxPC-3, and they identified a novel protein, CMTM6, as a major 

regulator of PD-L1 expression [11]. Importantly, we observed that CMTM6 

binds to PD-L1 in PC cells and that CMTM6 expression was reduced upon 

inhibition of WEE1 and/or ATM. The mechanism by which DDR targeting 

blocks CMTM6 expression remains to be clarified. 

As we all known, both tumor and immune cells could express PD-L1 [21]. 

In our study, we focused on the PD-L1 expression in cancer cells by DDR-

targeted agents. Whether the WEE1 or ATM inhibitors could regulate PD-L1 

levels of immune cells, need to be further addressed. Most recently, intracellular 

PD-L1 has been demonstrated that participates DDR process and anti-PD-L1 

treatment enhances cancer cells response to radiation or chemotherapy [29]. 

PD-L1 on cancer cells might have an important role of DDR signaling networks.       

We used high concentrations of WEE1 inhibitor (AZD1775-1μM) and ATM 

inhibitor (AZD0156-1μM) in current in vitro experiments considering the 

active pharmacology of compounds. Particularly, AZD0156-1μM might have 

off-target effects.  

Taken together, our results demonstrate that DDR-targeting agents such as 

WEE1 and ATM inhibitors have potent, synergistic anti-tumor effects in PC. 

WEE1/ATM inhibition downregulates CXCR2 and PD-L1 expression, the 

latter by blocking expression of inactive p-GSK-3β and CMTM6. The findings 

in this study support further clinical development of DDR-targeting strategies 
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for the treatment of PC.  
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국문 초록 

췌장암은 전 세계적으로 가장 치명적인 암중의 하나이지만 현

재 효과적인 표적치료제가 없다. 최근 DNA 손상 반응을 이용한 새

로운 항암제 개발 연구가 큰 각광을 받고 있다. 췌장암에서 DNA 

복구 경로의 변이가 많이 보고되어 있다. 이에 본 연구는 WEE1과 

ATM 억제제를 이용하여 췌장암 세포주에서 DNA 손상 반응을 이

용한 새로운 치료 전략을 연구하고자 진행되었다.  

10개의 췌장암 세포주를 이용한 in vitro 실험을 통하여 

AZD1775 (WEE1 억제제)의 단독 또는 AZD0156 (ATM 억제제)

와의 병합 요법을 테스트 하였다. 이 결과를 바탕으로 Capan-1 마

우스 모델에서 이 두가지 항암제의 항종양효과를 관찰하였다. 

실험 결과 AZD1775는 단독 치료는 모든 췌장암 세포주들에서 

효과적으로 세포 증식을 억제하고 s-phase의 증가와 세포사멸을 

유도하는 등 뛰어난 항암효과를 보였고 반면에 p-ATM의 발현을 

증가시켰다. AZD1775와 AZD0156의 병합 요법은 세포 증식과 전

이를 억제하고 DNA 손상을 유도하는 방면에서 시너지 효과를 나타

냈다. 또한 이런 병합 요법은 p-GSK 3β와 CMTM6의 발현을 감소

시킴으로써 PD-L1의 발현을 현저히 감소시키는 것을 확인 하였다. 

In vivo 모델에서도 병합 요법은 종양의 성장을 억제할 뿐만 아니라 

면역 반응에서 중요한 역할을 하는 PD-L1, CMTM6, CXCR2의 발

현도 감소시킴을 확인 하였다.   

이 연구의 결과는 WEE1와 ATM의 병용 요법의 항종양효과는 

췌장암에서의 잠재적인 표적치료제가 될 수 있는 근거를 제시하고 
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더 나아가 임상에서 DNA 손상 반응을 표적으로 하는 치료제 개발

전략에 대한 근거를 제공한다.           

 

주요어:  췌장암, DNA 손상 반응, WEE1, ATM, PD-L1 
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