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ABSTRACT

Purpose: Corneal xenotransplantation using pig donors has been investigated as a 

substitute for human donor corneas. In this study, we investigated long-term 

survival of corneal grafts from α1,3-galactosyltransferase gene-knockout miniature 

(GTKOm) pigs in nonhuman primates (NHPs). We also investigated the clinically 

applicable predictive biomarkers for corneal xenograft rejection including the 

results of our previous experiments.  

Methods: For GTKOm survival study, nine rhesus macaques undergoing full-

thickness corneal xenotransplantation using GTKOm pigs were systemically 

administered steroid, basiliximab, intravenous immunoglobulin, and tacrolimus 

with (CD20 group; n = 4) or without (control group; n = 5) anti-CD20 antibody. 

The graft score (0-12) was calculated based on opacity, edema, and vascularization. 

Scores ≥ 6 were defined as rejection. Changes in T/B cell subsets, levels of anti-

αGal IgG/M, donor-specific IgG/M from blood, and C3a from plasma and aqueous 

humor (AH) were evaluated. For biomarker study, 34 NHPs which had undergone 

full-thickness porcine corneal xenotransplantation were included. Five of them 

received GTKOm pig corneas, and 29 received SNU wild type miniature pig 

corneas. They were divided into two groups: (a) graft rejection within 6 months

(rejection group); and (b) graft survival until 6 months (survival group). The entire 

rejection group included all NHPs whose graft was rejected within a 6-month 

period, while late rejection group included NHPs whose graft was rejected after 
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more than 4 weeks up to 6 months. None of the NHPs showed rejection at 

postoperative week 2. In the evaluation of the 2-week biomarkers, entire rejection 

group (n = 16) or late rejection group (n = 12) was compared to survival group (n = 

18). In the evaluation of 4-week biomarkers, four NHPs showing rejection within 4 

weeks were excluded and late rejection group (n = 12) was compared to survival 

group (n = 18). Analysis of biomarker candidates included T/B cell subsets, levels 

of anti-αGal IgG/M, donor-specific IgG/M from blood, and C3a from plasma and 

aqueous humor (AH).

Results: In GTKOm survival study, graft survival was significantly longer (P = 

0.008) in the CD20 group (>375, >187, >187, >83 days) than control group (165, 

91, 72, 55, 37 days). Activated B cells were lower in the CD20 group than control 

group (P = 0.026). Aqueous humor complement C3a was increased in the control 

group at last examination (P = 0.043), and was higher than that in the CD20 group 

(P = 0.014). At last examination, anti-non-Gal IgG was increased in the control 

group alone (P = 0.013). In biomarker study, CD8+IFNγ+ cells at week 2 and AH 

C3a at week 4 were significantly elevated in the rejection group. Receiver 

operating characteristic areas under the curve was highest for AH C3a (0.847) 

followed by CD8+IFNγ+ cells (both the concentration and percentage: 0.715), 

indicating excellent or acceptable discrimination ability

Conclusion: The GTKOm pig corneal graft achieved long-term survival when 

combined with anti-CD20 antibody treatment. Inhibition of activated B cells and 
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complement is imperative even when using GTKO pig corneas. CD8+IFNγ+ cells at 

week 2 and AH C3a at week 4 are reliable biomarkers for predicting rejection in 

pig-to-NHP corneal xenotransplantation. Those biomarkers may be used as a 

standard of reference to predict rejection in clinical trials of corneal 

xenotransplantation.

Keywords: anti-CD20 antibody, biomarker, rejection, cornea, xenotransplantation, 

α1,3-galactosyltransferase gene knockout miniature pig, nonhuman primate

Student Number: 2017-31825
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CHAPTER 1

Long-term survival of full thickness corneal 

xenografts from α1,3-galactosyltransferase 

gene-knockout miniature pigs in nonhuman 

primates
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INTRODUCTION

Corneal blindness causes global vision loss, and corneal transplantation is the 

treatment of choice.1-3 Unfortunately, the demands for transplantation exceed donor 

availability in developing countries. Therefore, corneal xenotransplantation has 

been studied as an alternative treatment.4 The Galα1,3Galβ1,4GlcNAc-R(αGal) 

epitope is a major xenoantigen in solid organ xenotransplantation synthesized by 

α1,3-galactosyltransferase (GT).5,6 Xenograft survival is prolonged with α1,3-

galactosyltransferase gene knockout (GTKO) pig organs.5,6 Although the cornea 

expresses less αGal than that expressed by other organs, evidence suggests that 

αGal is involved in xenogeneic rejection of corneal grafts.7,8

By eliminating αGal-related reaction, GTKO pig corneal grafts should 

survive longer than wild type (WT) grafts.9 However, previous studies have 

reported otherwise in non-human primates (NHPs).10-12 Although the rejection 

mechanism in GTKO pig corneal xenotransplantation remains controversial, there 

are two possibilities for graft failure: (1) antibody-mediated rejection may still 

occur although GTKO lacks αGal or (2) disparity of the corneal thickness may 

affect survival. Donor and recipient corneal thickness must be matched for optimal 

wound approximation. Genetically engineered non-miniature pig cornea is thicker 

than miniature pig cornea of the same age, therefore younger donors (£ 3-month-

old) were used in previous studies.10,11 However, younger donor corneas are too 

flaccid to handle properly, resulting in severe inflammation.10 Miniature pigs allow 

older donors (> 7-month-old) to be used with appropriate thickness match. 
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In this study, we conducted full-thickness corneal xenotransplantation in 

NHPs using GTKO miniature (GTKOm) pigs with a mean age of 11.8 months (1.5-

24-month-old) with or without anti-CD20 antibody (Ab) treatment to evaluate 

whether GTKOm pig can prolong graft survival. Regardless of donor age, long-

term survival of the graft depended on the administration of anti-CD20 Ab 

treatment. To our knowledge, this is the first report demonstrating graft survival 

beyond 6 months in GTKOm pig-to-NHP full thickness corneal 

xenotransplantation. 
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MATERIALS AND METHODS

This study adhered to ARVO Statement regarding the Use of Animals in 

Ophthalmic and Vision Research. Study protocol was approved by Research Ethics 

Committee at Seoul National University Hospital (IACUC No. 15-0171). 

We used 14 eyes from seven GTKOm pigs: four GTKOm (three from 

Optipharm Inc. and one from National Institute of Animal Science, South Korea); 

two GTKO/hCD39 knock-in miniature (KIm; from Optipharm Inc.); and one 

GTKO/CMAH/iGb3s triple knock-out miniature (TKOm; from Optipharm Inc.) 

pigs.13,14 Among them, nine eyes were used for in vivo transplantation to evaluate 

efficacy and the remaining five corneas (four from GTKOm and one from 

GTKO/CD39 KIm) were used for in vitro studies to evaluate bio-physical 

characteristics, such as endothelial density changes over time, endothelial cell 

proliferation, and the presence of ATPase pump by immunofluorescence staining; 

these results are presented in Figure 1.1. Before allocating corneas into the in vivo

or in vitro studies, we measured the optical properties of six of the eyes (Table 1.1).

Nine Chinese rhesus macaques were divided into two groups based on the 

administration of anti-CD20 Ab. In the control group, five NHPs (four with 

GTKOm and one with GTKO/hCD39 KIm corneas) were systemically 

administered steroid, basiliximab, intravenous immunoglobulin (IVIG), and 

tacrolimus. In the CD20 group, four NHPs (two GTKOm and two TKOm corneas) 

were systemically administered steroid, basiliximab, IVIG, tacrolimus, and anti-

CD20 Ab. 
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Pig-to-NHP full-thickness corneal transplantation

All corneal grafts sized of 7.5 mm were transplanted in each right eye of the rhesus 

macaque, trephined with 7.0 mm using the same keratoplasty technique described 

previously.15,16 Immediately after the surgery, dexamethasone 1.5 mg/0.3mL (JW 

Pharmaceutical, Seoul, Republic of Korea) and 0.25 mL of aflibercept (EYLEA®, 

Regeneron Pharmaceuticals, Inc., Tarrytown, New York) were injected 

subconjunctivally. 

Postoperative topical and systemic immunosuppressive regimen  

Postoperatively, all nine NHPs received the following medications. Levofloxacin 

0.5% (Cravit®, Santen Pharmaceutical, Osaka, Japan) and prednisolone acetate 1% 

(Pred forte®, Allergan, Irvine, CA) were topically administered once daily. 

Dexamethasone 1.5 mg/0.3 mL (JW Pharmaceutical) was injected weekly 

subconjunctivally. Methylprednisolone (Solu-medrol®, Pfizer, New York, NY) was 

injected intramuscularly at an initial dose of 2 mg/kg/day. It was tapered over five 

weeks and discontinued at a final dose of 0.25 mg/kg. Basiliximab (0.3 mg/kg; 

Simulect®, Novartis Pharmaceuticals Corporation, East Hanover, NJ) was 

intravenously administered on days 0 and 4 after transplantation. IVIG (1 g/kg) 

was administered on day 1 and at 2 weeks after transplantation. Tacrolimus 

(Prograf®, Astellas Pharma US, Deerfield, IL) was intramuscularly injected twice 

daily with a dose of 0.035 mg/kg (control) or 0.05 (CD20 group) from two days 

before and up to 6 months after the surgery. The dosage of the tacrolimus was 
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temporarily adjusted (tapering or intermittent discontinuation) accordingly when 

the systemic deterioration was detected in the recipients. 

Anti-CD20 Ab (MabThera®, Hoffmann-La Roche, Basel, Switzerland) 

was administered twice in the first week (D0 and D7) and then every two months 

only in CD20 group, which is the same protocol in our previous report.16

Postoperative intra-group and inter-group analysis for a survival and 

immunologic profile changes

Clinically, graft survival and increased intraocular pressure (IOP) were monitored. 

Graft score (0-12) was calculated as the sum of grades for opacity, edema, and 

vascularization measured by slit-lamp microscopy.17 Graft scores ≥ 6 were 

considered as rejection. IOP and central corneal thickness (CCT) were measured 

using a Tono-Pen (Medtronic Solan, Jacksonville, FL) and an ultrasonic 

pachymeter (Quantel Medical, Clermont-Ferrand, France), respectively. Recipients 

diagnosed with graft rejection were sacrificed within two weeks. The recipients 

with survived grafts were monitored up to 6 months. Graft survival was compared 

based on the administration of anti-CD20 Ab (control vs CD20 group) or donor pig 

age (£ 7-month-old vs > 7-month-old). The fluctuation of lymphocyte, complement, 

and antibody levels were compared pre- and post-operatively within each group 

and between the CD20 and control groups at three time points: preoperatively, four 

weeks postoperatively, and at the last examination. Last examination was defined 

as the time of sacrifice in rejected recipients or the final follow-up in survived 

recipients.



7

Flow cytometry-based T and B cell assay

T cell sub-populations (interferon-γ+[IFNγ+], CD28+CD95+ central memory, 

CD28−CD95+ effector memory, and CD4+CD25+Foxp3+ regulatory cells) and B 

cell populations (CD3-CD20+ B and CD3-CD20+CD28+ activated B cells) were 

evaluated using flow cytometry analysis of whole blood as previously 

mentioned.15,18 For extracellular surface staining, cell suspensions were incubated 

at 4°C for 30 minutes with fluorescein-conjugated mouse anti-human Abs as 

follows: CD3-FITC (1:40), CD4-FITC (1:200), CD8-PerCp-Cy5.5 (1:200), CD25-

APC, CD28-APC (1:200), CD95-PE (1:200), and CD20-PE (1:200). For 

intracellular Ab staining, cell suspensions were incubated at 4°C with fluorescein-

conjugated mouse anti-human Abs as follows: IFN-γ-PE (1:200, 30 minutes) and 

Foxp3-PE (1:200, one hour). Intracellular IFN-γ staining was performed after 

stimulation overnight with anti-CD28 Ab (0.25 μg/ml) and anti-CD3 Ab (2.5 μg/ml) 

in the presence of GolgiPlug (brefeldin A; 1 μl/1ml). All Abs were purchased from 

eBioscience (San Diego, CA, USA), except CD3-FITC (BD PharMingen, San 

Diego, CA, USA) and anti-CD3 Ab (U-CyTech, Utrecht, The Netherlands). Data 

were acquired using a FACSCanto flow cytometer (Becton-Dickinson, Mountain 

View, CA, USA) and analyzed using FlowJo software (Tree Star, Ashland, OR, 

USA).

Complement (C3a) and antibody assay

Concentrations of C3a in the plasma and aqueous humor (AH) were measured 
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using commercial ELISA kits (BD OptEIATM Human C3a ELISA Kit; BD 

Biosciences, San Diego, CA) according to the manufacturer’s protocols. 

Plasma anti-αGal IgG/IgM Abs were measured by ELISA as previously 

described.19,20 To determine anti-non-Gal IgG Ab-binding responses, flow 

cytometry was used with a GTKO porcine endothelial cell line (PEC69). For 

supplemental purposes, WT porcine endothelial cells (MPN-3) were incubated with 

1/10 diluted plasma samples. The level of Ab binding was determined as net mean 

fluorescence intensity (nMFI) calculated by subtracting MFI value of porcine 

plasma (negative control) from MFI value of the sample. Plasma levels of donor 

pig-specific IgM/IgG Abs were measured by flow cross-match technique as 

described previously18 using donor peripheral blood mononuclear cell as targeting 

cells.

Immunofluorescence staining 

Corneas from sacrificed recipients were subjected to hematoxylin and eosin (H&E) 

staining and immunofluorescent staining. Stainings for CD3+CD4+ T cells, 

CD3+CD8+ T cells, CD3−CD20+ B cells, CD68+ macrophages, C3c, and IgG were 

carried out as previously described.7,16,18 The primary Abs used are as follows: anti-

CD3 Ab (1:200; Abcam, Cambridge, MA), anti-CD4-alexa Fluor 488 conjugated 

Ab (1:50; Novusbio, Littleton, CO), anti-CD8 Ab (1:150; Abcam), anti-CD20 Ab 

(1:100; eBioscience, San Diego, CA), anti-CD68 Ab (1:100; Thermo Scientific, 

Runcorn, United Kingdom), anti-C3c Ab (A0062; 1:100, DAKO, Glostrup, 

Denmark), and anti-IgG (Fc specific) Ab (AP31438FC-N; 1:20, Acris Antibodies, 



9

Inc., San Diego, CA). 

Statistical analysis

Kaplan–Meier survival test was used for graft survival analysis, Friedman test for intra-

group time dependent analysis, and Mann-Whitney U test for inter-group analysis. 

Statistical significance was accepted at P< 0.05. Data are presented as mean ± standard 

error (SE). GraphPad Software (GraphPad Prism, Inc., La Jolla, CA) was used for 

statistical analyses.  
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Table 1.1. Physical and optical properties of cornea in GTKOm pigs (N = 6)  

GTKOm pig SNU WT miniature pig30 Human30 P*

Age (months) 11.25 ± 3.37 41.73 ± 3.62 mm NA <0.001

Horizontal corneal diameter 18.0 ± 0.0 mm 17.1 ± 0.4 mm 11.4 ± 0.7 mm <0.001

Vertical corneal diameter 16.5 ± 0.9 mm 15.5 ± 0.5 mm 10.5 ± 0.5 mm 0.001

Axial length (IOLMaster) 19.33 ± 2.45 mm 23.12 ± 0.97 mm 23.58 ± 1.13 mm<0.001

Sim K maximum value (Orbscan) 44.5 ± 6.2 D 37.4 ± 1.8 D 44.0 ± 2.4 D 0.002

Sim K minimum value (Orbscan) 41.8 ± 5.9 D 35.2 ± 1.6 D 42.1 ± 1.8 D 0.001

Sim K astigmatism (Orbscan) 2.6 ± 0.7 D 2.3 ± 0.9 D 1.1 ± 0.9 D 0.986

ACD (AS-OCT) 2.39 ± 0.57 mm 3.18 ± 0.41 mm 3.64 ± 0.33 mm 0.021

CCT (ultrasound pachymetry) 762.9 ± 137.4 ㎛ 852.6 ± 65.2 ㎛ 542.3 ± 36.7 ㎛ 0.099

* Between GTKOm vs. SNU miniature pigs, Mann-Whitney test

Data are presented as mean ± standard deviation. GTKOm, α1,3-

galactosyltransferase gene knockout miniature; SNU, Seoul National University; 

WT, wild type; K, keratometric value; Sim K, simulated keratometric value in 

corneal topography; D, diopter; ACD, anterior chamber depth; AS-OCT, anterior 

segment optical coherence tomography; CCT, central corneal thickness. 
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Figure 1.1. (A) Serial changes of corneal endothelial cell density (ECD) of 

GTKOm pigs (n = 5, mean age = 7 months) and SNU WT miniature pigs (adopted 

from previous study21); n = 23, mean age = 37 months) corneas after preservation 

in Optisol GS. Mean ECD of GTKOm pigs was higher than that of SNU miniature 

pigs (all P< 0.05, Mann-Whitney test). (B) Proliferative capacity of corneal 

endothelial cells in GTKOm and SNU WT miniature pigs. Proliferative capacities 

of endothelial cells of GTKOm were comparable to those of SNU WT miniature 

pigs (P = 0.403, Mann-Whitney test). (C) Immunofluorescence staining of Na- and 

K-dependent ATPase pump in GTKOm and SNU WT miniature pig cornea. Na-

and K-dependent ATPase pumps in both groups were well observed. All data are 

described as mean ± standard error. GTKOm, α1,3-galactosyltransferase gene 

knockout miniature; SNU, Seoul National University; WT, wild type; *P< 0.05.
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RESULTS

GTKOm corneal grafts survived longer with anti-CD20 Ab treatment

Table 1.2 shows the demographic data of the recipients and donors. The CD20 

group showed significantly longer graft survival (>375, >187, >187, >83 days) 

than the control group (165, 91, 72, 55, 37 days; P = 0.008, log-rank test; Figures 

1.2 and 1.3A). One recipient in the CD20 group (No. 2.) died on postoperative day 

(POD) 83 secondary to immunosuppression-related microangiopathy, at which 

point the graft was transparent. When we compared the graft survival time between 

older (> 7-month-old) and younger (£ 7-month-old) aged donor recipients, there

was no significant difference (Figure 1.3B). 

The CCT was well-maintained in the CD20 group, while two recipients in 

the control group showed increased thickness associated with graft rejection 

(Figure 1.3C). Transient IOP elevation occurred in one recipient, but was managed

with anti-glaucoma treatment (Figure 1.3D). Within the first postoperative month, 

six recipients (three from each group) developed thin retrocorneal membranes,

which resolved within 12-50 days (28.5 ± 6.9 days), restoring corneal transparency. 

Thick retrocorneal membranes that developed around the rejection period were

permanent in two recipients in the control group (No. 2 and No. 5). The incidence 

of those retrocorneal membranes (thin or thick) was not associated with donor pig 

age (P = 0.262 or 0.333, respectively). Notably, peripheral stromal melting 

progressed near the recipient site of the graft junction in four recipients with 

rejected grafts in the control group (Figure 1.4). 

After six months, surviving grafts showed well-maintained endothelial 
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cell density (Figure 1.5A). Anterior segment optical coherence tomography and 

corneal topography examinations showed well-adapted graft-recipient junctions, 

open angles and deep anterior chambers, and acceptable optical properties without 

edema (Figures 1.5B-D).

Reduction of B cells in GTKOm pig-to-NHP corneal xenotransplantation treated 

with anti-CD20 

The levels of IFNγ+, effector memory and central memory CD4+/CD8+ T cells, and 

regulatory T cells remained unchanged before and after surgery in each group 

(intra-group analysis) and were not significantly different between the two groups 

at any of the time points (inter-group analysis, Figure 1.6). The level of B cells was 

significantly lower in the CD20 group than in the control group at the 4-week

follow-up and last examination (all P = 0.014; Figure 1.7A). The level of activated 

B cells was also significantly lower in the CD20 group than in the control group at 

the last examination (P = 0.026). Compared to baseline, levels of activated B cells 

were significantly lower at 4 weeks in the control group (P = 0.034) and at the last 

examination in the CD20 group (P = 0.014, Figure 1.7B).

Increased complement (C3a) and anti-non-Gal IgG were observed in GTKOm 

pig-to-NHP corneal xenotransplantation without anti-CD20 Ab treatment

The level of C3a in the AH was significantly higher in control group than in the 

CD20 group at the last examination (P = 0.029, Figure 1.7D). Complement levels

in the control group were significantly higher at the last examination than at the 



14

baseline (P = 0.008), while levels were unchanged in CD20 group across all time 

points.

Although donor-specific IgM levels were significantly higher in the CD20 

group than in the control group preoperatively, they were stable during follow-up 

examination in either group (Figure 1.8A). Levels of anti-αGal IgM and IgG were 

not increased in either of the groups (Figures 1.8B and 1.8E). Also of note, levels 

of anti-GTKO PEC IgG (anti-non-Gal IgG) were significantly increased from 

baseline in the control group at the last examination (P = 0.013, Figure 1.8C), 

while they were unchanged in the CD20 group.

Histology of GTKOm corneal grafts  

αGal was not expressed in GTKOm cornea. Human CD39 was well-expressed in 

hCD39 KI cornea (Figure 1.9).

Rejected grafts showed diffuse inflammatory cell infiltration at the graft 

junction and thick retrocorneal membrane formation (Figures 1.10A and 1.10B) 

while the graft junction in surviving grafts had much less infiltrating inflammatory 

cells (Figure 1.10C). 

Immunofluorescence staining presented extensive infiltration of 

CD3+CD4+ T, CD3+CD8+ T, CD3-CD20+ B lymphocytes and CD68+ macrophages 

at the graft junction in rejected grafts (Figure 1.11A) as well as in the retrocorneal 

membranes (Figure 1.11B), while few inflammatory cells were identified in 

surviving grafts (Figure 1.11C). Compared with a surviving grafts, rejected grafts

showed dense depositions of C3c and IgG at the graft junction and in the 
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retrocorneal membranes (Figure 1.11).
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Table 1.2. Demographic data of the recipients and donors, systemic 

immunosuppressive regimen, and graft survival. 

Recipient rhesus Donor pig Graft 
survival 
(days)Name

Age 
(mo)

Systemic 
Immunosuppression

Genotype Strain
Age 
(mo)

CCT 

(㎛)
ECD 

(number/mm3)

Control No. 1 55

Steroid
+ Basiliximab 

+ IVIG 
+ Tacrolimusa

GTKOm

White Yucatan

24 914 2604 55

Control No. 2 52

15

831 2874 37

Control No. 3 52 806 2865 72

Control No. 4 54
Crossbreeding 
Landrace with 

Chicago minipig
4.5 595 4184 165

Control No. 5 56
GTKO/

hCD39KIm
White Yucatan 1.5 707 6135 91

CD20 No. 1 59

Steroid
+ Basiliximab 

+ IVIG 
+ Tacrolimusb

+ Anti-CD20 Ab

GTKOm White Yucatan 19

898 2381 >365

CD20 No. 2 59 919 2381 >83

CD20 No. 3 59
GT/CMAH/i
Gb3s TKOm 

White Yucatan 7

767 3546 >187

CD20 No. 4 58 752 3472 >187

Methylprednisolone (Solu-medrol®, Pfizer, New York, NY) was injected 

intramuscularly at an initial dose of 2 mg/kg/day. It was tapered over five weeks 

and discontinued at a final dose of 0.25 mg/kg. 

Basiliximab (0.3 mg/kg; Simulect®, Novartis Pharmaceuticals Corporation, East 

Hanover, NJ) was intravenously administered on days 0 and 4 after transplantation. 

IVIG (1 g/kg) was administered on day 1 and at 2 weeks after transplantation. 

Tacrolimus (Prograf®, Astellas Pharma US, Deerfield, IL) was intramuscularly 

injected twice daily with a dose of 0.035 mg/kg (control group)a or 0.05 (CD20 

group)bfrom two days before and up to 6 months after the surgery.

Anti-CD20 Ab (MabThera®, Hoffmann-La Roche, Basel, Switzerland) was 

administered twice in the first week (D0 and D7) and then every two months only 
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in CD20 group.

IVIG, intravenous immunoglobulin, mo, month; CCT, central corneal thickness; 

ECD, endothelial cell density; GTKOm, α1,3-galactosyltransferase gene knockout 

miniature; hCD39KIm, human CD 39 knock-in miniature; TKO, triple knock-out 

miniature
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Figure 1.2. Representative photographs of corneal xenografts in NHPs. The CD20 

group showed significantly longer graft survival (>365, >187, >187, >83 days) 

than the control group (165, 91, 72, 55, 37 days). One recipient in the CD20 group 

died on postoperative day 83 secondary to immunosuppression-related

microangiopathy, at which point the graft was transparent. GTKOm, α1,3-

galactosyltransferase gene-knockout miniature; hCD39KIm, human CD 39 knock-

in miniature; TKOm, GTKO/CMAH/iGb3s triple knock-out miniature; IVIG, 

intravenous immunoglobulin. 
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Figure 1.3. Graft survival curves according to treatment with anti-CD20 Ab (A) or 

donor pig age (£ 7-month-old vs > 7-month-old) (B). (A) There was a significantly 

prolonged survival time in the anti-CD20 group compared with that in the control 

(P = 0.008, log- rank test). The black solid line indicates control and dotted line 

indicates CD20 groups. (B) There was no significant difference in survival based 

on donor age. The black solid line indicates older donor pigs (more than 7 months 

of age) and dotted line indicates young donor pigs (equal to or less than 7 months 

of age). (C) The central corneal thickness increased after rejection in two recipients 

in the control group (No. 1 and 3). The central corneal thickness was well 

maintained in the CD20 group during the follow-up (black line). (D) Intraocular 

pressure was well maintained within the normal range in most recipients; transient 

elevation occurred in one recipient, but was managed with anti-glaucoma treatment 

(control No. 2). All data were described as mean ± standard error.  
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Figure 1.4. Representative white and fluorescein photographs of corneal melting 

on the recipient side of the junction in rejected grafts using slit beam microscopy. 

Around graft-recipient junction (white arrow), recipient stromal melting (white 

arrowhead) was observed near the rejection period.
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Figure 1.5. Representative photographs of a surviving graft immediately after 

sacrifice (postoperative 187 days) demonstrating acceptable optical properties. (A) 

Specular microscopy shows endothelial cell density was well-maintained over 

2900/mm2. (B) Cross-sectional image in AS-OCT shows well-approximated 

thickness-matched graft-recipient junction (white arrows), well-preserved depth of 

anterior chamber and open angle. (C) Pachymetry map in AS-OCT shows graft 

thickness was within normal ranges. (D) Topographic image shows an astigmatic 

graft. AS-OCT, anterior segment optical coherence tomography. 
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Figure 1.6. Comparative analysis of T cell responses between the control and 

CD20 groups. The levels of IFNγ+, effector and central memory CD4+/CD8+ T cells, 

and regulatory T cells remained unchanged before and after surgery in each group 

and were not significantly different between the two groups at any of the time 

points. All data are described as mean ± standard error. EM, effector memory; CM, 

central memory; Treg, regulatory T cell. “Preop” indicates pre-operative baseline 

data. “Last” indicates data at the last examination, and *P < 0.05. The last 

examination was defined as the time of sacrifice in rejected recipients or the last 

follow-up in survived recipients.
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Figure 1.7. Comparative analysis of B cells and complement (C3a) between the 

control and CD20 groups. (A) The level of B cells was significantly lower in the 

CD20 group than in the control group at the 4-week follow-up and last examination 

(all P = 0.014, Mann-Whitney test). (B) The level of activated B cells was also 

significantly lower in the CD20 group than in the control group at the last 

examination (P = 0.026, Mann-Whitney test). Compared to baseline, levels of 

activated B cells were significantly lower at 4 weeks in the control group (P = 

0.034, Friedman test and Dunn multiple comparison test) and at the last 

examination in the CD20 group (P = 0.014, Friedman test and Dunn multiple 

comparison test). (C) The levels of plasma C3a were not different between the 

groups and were not changed between pre-operation and 4 weeks/last examination 

in each group. (D) The level of C3a in the aqueous humor was significantly higher 

in control group than in the CD20 group at the last examination (P = 0.029, Mann-
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Whitney test). Complement levels in the control group were significantly higher at 

the last examination than at the baseline (P = 0.008, Friedman test and Dunn 

multiple comparison test), while levels were unchanged in CD20 group across all 

time points. All data are described as mean ± standard error. “Preop” indicates pre-

operative baseline data. “Last” indicates data at the last examination, and *P < 0.05. 

The last examination was defined as the time of sacrifice in rejected recipients or

the last follow-up in survived recipients.
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Figure 1.8. Comparative analysis of donor pig-specific antibody (A, D), anti-αGal 

antibody (B, E), and IgG against GTKO PEC (C) or against wild-type PEC (F) 

between the control and CD20 groups. (A, D) Although donor-specific IgM levels 

were significantly higher in the CD20 group than in the control group 

preoperatively (P = 0.021, Mann-Whitney test), they were stable during follow-up 

examination in either group. (B, E) Levels of anti-αGal IgM and IgG were not 

increased in either of the groups. (C, F) Levels of anti-GTKO PEC IgG (anti-non-

Gal IgG) were significantly increased from baseline in the control group at the last 

examination (P= 0.013, Friedman test and Dunn multiple comparison test), while 

they were unchanged in the CD20 group. There were no significant changes in MFI 

values against wild-type PEC in both groups (F). All data are described as mean ± 

standard error. GTKO, α1,3-galactosyltransferase gene knockout; PEC, porcine 

endothelial cell; WT, wild-type. “Preop” indicates pre-operative baseline data. 

“Last” indicates data at the last examination, and *P < 0.05. The last examination 

was defined as the time of sacrifice in rejected recipients or the last follow-up in 

survived recipients.
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Figure 1.9. Corneal immunofluorescence staining of αGal (A, E) and human CD39 

(B, F) expression in SNU WT (upper) and GTKO/human CD39 knock-in miniature 

(CD39KIm, lower) pigs, respectively. Dash lines indicate corneal epithelial layer 

(epithelial side up). SNU WT cornea expressed αGal without expressing human 

CD39 while GTKO/CD39KI cornea well expressed hCD39 without expressing 

αGal. (D, H) αGal staining at recipient (left) – graft (right) junction. SNU WT pig 

graft showed positive staining for αGal. However, recipient (Rhesus) or GTKO pig 

cornea did not show positive staining for αGal (magnification × 200). For αGal 

epitopes, the Griffonia simplifolia I isolectin B4 (GSIB4; Molecular Probes, 

Eugene, OR) conjugated with Alexa Fluor 488 (I-21411; Molecular Probes) was 

used. For human CD39, anti-human CD39 Ab (mouse monoclonal IgG, Santa Cruz 

biotechnology, Dallas, TX, USA) was used. SNU, Seoul National University; WT, 

wild type; GTKO, α1,3-galactosyltransferase gene knockout; αGal , 

Galα1,3Galβ1,4GlcNAc-R; hCD39KIm, human CD 39 knock-in miniature.
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Figure 1.10. Representative hematoxylin & eosin staining of grafts. (A) Rejected 

graft as well as the retrocorneal membrane showed diffuse inflammatory cell 

infiltration (control group). (B) Retrocorneal membrane (red arrows) was well 

observed in anterior segment optical coherence tomography. The retrocorneal 

membrane was detached during the tissue staining process (hollow red triangle 

indicates that each edge of the retrocorneal membrane). (C) Surviving graft showed 

minimal infiltration of inflammatory cells limited to the donor-recipient junction 

(CD20 group).
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Figure 1.11. Immunofluorescence staining of rejected graft-recipient junction (A), 

retrocorneal membrane of rejected graft (endothelium side down; B), and surviving 

graft-recipient junction (C). Rejected graft showed dense infiltrating inflammatory 

cells at the graft junction (A) and retrocorneal membrane (B). There were also 

dense depositions of C3c and IgG in the rejected grafts. However, there were few 

staining of inflammatory cells, C3c, and IgG in a surviving graft (C). 

(magnification: × 200).
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DISCUSSION

Our study reports that 1) GTKOm pig-to-NHP full thickness corneal 

xenotransplantation can attain successful graft survival time beyond 6 months, 2) 

anti-CD20 Ab treatment is required even when using GTKO grafts, and 3) graft 

survival is not dependent on the donor ages. 

GTKO alone cannot overcome the rejection of corneal xenotransplantation. 

B cells were only inhibited with anti-CD20 Ab treatment. Because of GTKO, the 

level of anti-αGal Abs were not increased in any of the recipients, as reported in a 

previous study.11 The degree of anti-non-gal Ab and extensive antigen-specific IgG 

deposits in rejected grafts corresponded with Chen’s report which showed a 

correlation between anti-non-Gal Ab and humoral rejection after anti-αGal 

neutralization in kidney xenotransplantation.22 These results suggest that anti-non-

Gal Ab or other unknown antigens may play a role in GTKOm corneal graft 

survival. 

Given that T cells are key players in allotransplantation and that rejected 

corneal xenografts demonstrated severe T cell infiltration,23-25 T cell response must

be suppressed in both WT and GTKOm corneal grafted NHPs. Tacrolimus was 

administered in both groups for this purpose. However, this study was not designed 

simultaneously. We first assessed the efficacy of GTKOm xenograft using minimal 

dosages of tacrolimus, and found this protocol was inadequate for the control of 

rejection. Thereafter, we evaluated the efficacy of GTKOm xenograft using a 

maximal dosage of tacrolimus along with anti-CD20 Ab application. The difference 
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in tacrolimus dose could have affected the survival outcome, but since the T cell 

profiles did not differ between the groups, the effect of inconsistent tacrolimus 

administration on the survival rates is considered to be minimal. 

In this study, complement activation in the AH was associated with graft 

rejection, consistent with previous study finidings.15,26 Transgenic pigs expressing 

human complement regulatory proteins (CRPs) show prolonged xenograft 

survival.27 Thus, GTKO/CRP knock-in pigs may be promising for corneal 

xenotransplantation. We used TKOm or GTKO/hCD39 KIm pigs. The two 

recipients with TKOm corneas showed graft survival greater than 6 months. 

However, the advantage of TKOm over GTKOm is inconclusive, considering that 

rhesus macaques express N-glycolylneuraminic acid synthesized by the CMAH 

gene. Silencing the iGb3s gene does not appear to contribute to xenogeneic 

rejection.28 Expression of hCD39, known to reduce platelet activation,29 may 

contribute to graft survival.

Unlike WT grafted NHPs, retrocorneal membranes were frequently found 

in GTKOm grafted NHPs, which corresponded with previous study findings.10,11

Retrocorneal membranes expressed CK8/18, α-SMA, and vimentin, indicating that 

they may originate from metaplastic endothelial cells (Figure 1.12).10 Early 

formation of a thin membrane resolved, suggesting that inflammatory cells may be 

contributing to its presence. Aflibercept, known to reduce early frequency of 

immune cells, may be related to the resolution.30 Conversely, formation of thick 

retrocorneal membranes in later stages were persistent, presumably because they 

may originate from metaplastic endothelial cells during inflammation.  
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Notably, corneal melt was frequently observed on the recipient side of the 

junction in GTKOm graft rejection cases (Figure 1.4). It was rarely observed in 

recipients with WT grafts.15,16,18 Corneal melt is also rare in human 

allotransplantation. Other unknown xenoantigens may be hypersensitized to 

compensate for the reduction of αGal. Further study is warranted. 

We evaluated corneal optical profiles and endothelial cell functions in 

GTKOm corneas and found that data of these cornea were comparable to the data 

in SNU WT miniature pig or human cornea (Table 1.1 and Figure 1.1).21 This

suggests that GTKOm donors are appropriate for corneal transplantation. 

This study was limited in that 1) heterogeneously genetic modified pigs 

along with GTKO pigs were included, although the effect seems to be insignificant; 

2) tacrolimus dosage was variable between those two groups, which may have 

affected the survival; 3) small sample size; and 4) the data of last examination was 

collected at the point of sudden death (POD 83) in one recipient with a surviving 

graft. Nonetheless, we believe our study is valuable because it demonstrates long-

term graft survival in GTKOm pig-to-NHP full thickness corneal 

xenotransplantation when treated with anti-CD20 Ab. 

In conclusion, GTKOm pig corneas are a practical substitute for human 

transplantation but require appropriate immunosuppression, including anti-CD20 

Ab. GTKO alone is insufficient to reduce rejection, and inhibition of B cells and 

complement activation are required. 
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Figure 1.12. Immunofluorescence staining of retrocorneal membranes (red arrow) 

in SNU WT (upper) and GTKOm (lower) pig grafts showing positive stain for 

cytokeratin (CK8/18), α-smooth muscle (α-SMA), and vimentin, indicating that 

they may originate from metaplastic endothelial cells. In immunofluorescent 

staining for αGal, WT pig graft was positive. As expected, GTKOm pig graft was 

negative with αGal expression. None of the retrocorneal membranes of WT and

GTKOm pig grafts expressed αGal, suggesting that it may be derived from the 

NHP cells (host) and not from pig cells (donor). (magnification × 200). SNU, Seoul 

National University; WT, wild type; GTKOm, α1,3-galactosyltransferase gene 

knockout miniature.
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CHAPTER 2 

Predictive biomarkers for graft rejection in pig-

to-non-human primate corneal 

xenotransplantation 
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INTRODUCTION

Corneal xenotransplantation using pig donors has been investigated as a substitute 

for human donor corneas.15,18,31,32 One of the challenges involving 

xenotransplantation relates to hyperacute rejection mediated by the natural 

antibody against Galalpha1,3Galbeta1,4GlcNAc-R (αGal) synthesized by α1,3-

galactosyltransferase because non-human primates (NHPs) and humans carry 

natural anti-αGal IgM.24 Corneas express αGal, although at lower levels than 

vascular endothelial cells do.7 Further, the cornea is immune-privileged.33-35 Pig-to-

NHP corneal xenotransplantation has been reported to result in longer graft 

survival compared with other solid organ xenotransplantation.4

Although the success rate of low-risk corneal allotransplantation is greater 

than 90%,34 the rejection rate can be up to 70% in high-risk cases.36,37 In allograft 

rejection, both innate and adaptive immunities are involved.38 Th1 cells play an 

important role.23,39 In corneal xenotransplantation, the rejection process may evoke 

higher innate response in addition to T-cell responses.24

Several biomarkers are associated with corneal allograft rejection. 

Cytokines such as interleukin (IL)-6, IL-10, interferon (IFN)-γ, monocyte 

chemoattractant protein-1, and inflammatory monocytes in aqueous humor (AH), 

and impaired regulatory T cells have been reported in corneal allograft rejection.39-

42 In pig-to-NHP corneal xenotransplantation, the increase in IFN, tumor necrosis 

factor, IL-4, IL-5, IL-6, IL-10, and C3a levels was related to graft rejection.11,43,44
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However, these biomarkers were based on a small population of subjects and no 

study analyzed the predictive ability of biomarkers in corneal xenotransplantation.

In this study, a retrospective analysis of various parameters was conducted 

to investigate the role of predictive biomarkers in graft rejection within 6 months in 

NHPs who underwent corneal xenotransplantation, using unpublished data or 

results of previous studies.15,31,45
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MATERIALS AND METHODS

This study adhered to ARVO Statement regarding the Use of Animals in 

Ophthalmic and Vision Research. This study was approved by Seoul National 

University (SNU) (IACUC: SNU-151102-3) and SNU Hospital (IACUC: 09-0156, 

11-0152, 12-0207, 13-0221, 15-0171). 

Recipient characteristics and study design 

Between 2010 and 2018, 38 rhesus macaques which had undergone full-thickness 

porcine corneal xenotransplantation were included.15,31,45 Among them, four NHPs 

dying within 3 months without graft rejection were excluded. Donor pig 

characteristics, immunosuppressants used, and graft survival in all NHP recipients 

(n = 34) are summarized in Table 2.1. Briefly, 29 NHPs grafted with SNU wild-

type (WT) miniature pig corneas reported previously,15,31,45 and five NHPs grafted 

with α1,3-galactosyltransferase gene-knockout (GTKO, n = 4) or GTKO/human 

CD39 knockin (n = 1) miniature pig corneas in a new experiment were included.  

Penetrating keratoplasty procedures were described previously.15,31 NHPs 

were administered systemic and topical immunosuppressants listed in Table 2.1. 

Systemic immunosuppression was scheduled for six months. All NHPs received 

topical prednisolone acetate 1% (Pred forte®; Allergan, Irvine, CA, USA) daily for 

3 months and injected subconjunctivally with dexamethasone 1.5 mg/0.3 mL (JW 

Pharmaceutical, Seoul, Republic of Korea) every week for 6 months. 
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Postoperative 2 or 4-week biomarkers for predicting graft rejection within 

6 months were evaluated. To investigate 2 or 4-week biomarker candidates, 34 

NHPs were divided into two groups: (a) graft rejection within 6 months (rejection 

group); and (b) graft survival until 6 months (survival group) (Table 2.2). The 

entire rejection group included all NHPs whose graft was rejected within a 6-month 

period, while late rejection group included NHPs whose graft was rejected after 

more than 4 weeks up to 6 months. None of the NHPs showed rejection at 

postoperative week 2. In the evaluation of the 2-week biomarkers, entire rejection 

group (n = 16) or late rejection group (n = 12) was compared to survival group (n = 

18). In the evaluation of 4-week biomarkers, four NHPs showing rejection within 4 

weeks were excluded and late rejection group (n = 12) was compared to survival 

group (n = 18).

To analyze 2 or 4-week biomarker candidates, blood or AH was collected 

to obtain the T and B cells, Abs, and C3a. Biomarker candidates were evaluated by 

comparing the rejection and survival groups at baseline, week 2, and week 4. AH 

C3a assay was performed only at week 4. In addition, we performed subgroup 

analysis to evaluate the effect of GTKO on predictive biomarkers. The subgroup 

analysis involved NHPs carrying rejected WT grafts and those carrying rejected 

GTKO grafts. Similar analysis was conducted to compare NHPs carrying surviving 

WT grafts and NHPs with rejected WT grafts after excluding those with GTKO 

xenografts. Receiver operating characteristic (ROC) curve analysis was performed 

to determine the predictive ability of the biomarkers, and areas under the curves 

(AUCs) were calculated to determine the level of discrimination.46
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Graft score and definition of rejection 

The corneal graft score (0-12) was calculated based on opacity, edema, and 

vascularization as described previously.17 Scores ≥ 6 were defined as graft rejection. 

Success criteria for corneal xenograft are based on 6-month graft survival.17

Therefore, data were analyzed up to 6 months.  

T and B cell assays

Sub-populations of T cells (CD28+CD95+ central memory, CD28−CD95+ effector 

memory, and CD4+CD25+Foxp3+ regulatory cells) and activated B cells (CD3-

CD20+CD28+) in blood were evaluated.15,18 For extracellular surface staining, cell 

suspensions were incubated for 30 minutes at 4°C with fluorescein-conjugated 

mouse anti-human Abs as follows: CD3-FITC (1:40), CD4-FITC (1:200), CD8-

PerCp-Cy5.5 (1:200), CD25-APC, CD28-APC (1:200), CD95-PE (1:200), and 

CD20-PE (1:200). For intracellular Ab staining, cell suspensions were incubated at 

4°C with fluorescein-conjugated mouse anti-human Abs as follows: IFN-γ-PE 

(1:200, 30 minutes) and Foxp3-PE (1:200, 1 hour). Intracellular IFN-γ staining was 

performed after stimulation overnight with anti-CD3 Ab (2.5 μg/mL) and anti-

CD28 Ab (0.25 μg/mL) in the presence of GolgiPlug (brefeldin A; 1 μL/1 mL). All 

Abs were purchased from eBioscience (San Diego, CA, USA), except CD3-FITC 

(from BD PharMingen, San Diego, CA, USA) and anti-CD3 Ab (U-CyTech, 

Utrecht, The Netherlands). Data were acquired using a FACSCanto flow cytometer 

(Becton-Dickinson, Mountain View, CA, USA) and analyzed using FlowJo 

software (Tree Star, Ashland, OR, USA) (Figure 2.1). Data were presented as the 
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absolute number of cells per unit volume or percentage of peripheral blood 

mononuclear cells.

Antibody assay

Plasma anti-αGal IgM/G Abs were measured by ELISA as previously described.19

Concentrations of anti-αGal Abs were expressed as artificial units (AU)/mL. 

Plasma levels of donor pig-specific (DS) IgM/G Abs were measured using flow 

cytometric cross-match technique using donor PBMCs as targeting cells.32

Concentrations of DS Abs were semi-quantitatively expressed as mean 

fluorescence intensity (MFI).

Complement (C3a) assay 

Levels of C3a in the plasma or in the AH were measured using the OptEIATM

Human C3a ELISA Kit (BD Biosciences, San Diego, CA, USA) according to the 

manufacturer’s protocols. The upper detection limit of C3a concentration of AH 

was 25 ng/mL. 

Statistical analysis  

Normality was assessed by Shapiro-Wilk test. Independent continuous variables 

were compared using the Mann-Whitney U test or independent t-test. To determine 

the predictive ability of biomarkers, we performed ROC curve analysis. AUCs over 

0.7, 0.8, or 0.9 were considered as acceptable, excellent, or outstanding 
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discrimination, respectively.46 The value with the maximum Youden index (J = 

sensitivity + specificity − 1) was regarded as the optimal cut-off.47 Mann-Whitney 

U test/independent t-test or ROC curve analysis was performed using SPSS v20.0 

(SPSS Inc., Chicago, IL, USA) or the pROC package in R (V.3.5.0; R Foundation, 

Vienna, Austria), respectively. A P value of < 0.05 was considered statically 

significant. 



42

Table 2.1. Systemic immunosuppressive regimen and corneal graft survival in 

NHPs (n = 34)  

Group No. Group
Systemic 

Immunosuppressive 
regimen

Subject 
number

Donor pig Graft survival
Reported 

year

1
Conventional 

steroid
Methylprednisolone 3 WT 21, 28, 29 201515

2 CD154
Anti-CD154 Ab

IVIG
Methylprednisolone

4 WT
>192, >243, 

318, 933
201515

3 CD40
Anti-CD40 Ab

IVIG
Methylprednisolone

6 WT
41, >196, 

>203, >273, 
>422, >511

201831

4
CD20 

(Full dose)

Anti-CD20 Aba

Tacrolimusc

IVIG
Basiliximab

Methylprednisolone

6 WT
134,>184,>21
0,>260,297,>4

70
201831

5
CD20 

(Low dose)

Anti-CD20 Abb

Tacrolimusd

IVIG
Basiliximab

Methylprednisolone

7 WT
56, 92, 162, 
>181, >182, 
>182,>198

201845

6
Tacrolimus 

only

Tacrolimuse

IVIG
Basiliximab

Methylprednisolone

5
GTKO (n = 4), 

GTKO/hCD39KI 
(n = 1)

37, 55, 72, 91, 
165

Unpublished

3 WT 29, 149, 161 201845

Groups 1-6 with topical immunosuppressants: All NHPs received topical 

prednisolone acetate 1% (Pred forte®; Allergan, Irvine, CA, USA) daily for 3 

months and injected subconjunctivally with dexamethasone 1.5 mg/0.3 mL (JW 

Pharmaceutical, Seoul, Republic of Korea) every week for 6 months. 

Groups 1-6: Methylprednisolone was used with the same protocol in all groups. It 

was intramuscularly administered at an initial dose of 2 mg/kg/day and tapered 

over 5 weeks. 

Groups 2-5: IVIG was used with the same protocol in groups 2-5. It was 

intravenously administered on preoperative day 1 and postoperative day 14 at a 
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dose of 1 g/kg. 

Group 2: Recombinant anti-CD154 Ab (V-regions from mouse 5C8 clone; C-

regions human IgG1k) was intravenously administered 15 to 19 times at a dose of 

20 mg/kg. (Am J Transplant. 2015;15:628-641) 

Group 3: A mouse-rhesus chimeric monoclonal anti-CD40 Ab (2C10R4, NIH 

Nonhuman Primate Reagent Resource) was intravenously administered 15 times at 

a dose of 30-50 mg/kg. (Am J Transplant. 2018;18:2330-2341.)

Groups 4 and 5: Anti-CD20 Ab (Rituximab; MabThera®, Hoffmann-La Roche, 

Basel, Switzerland) was intravenously administered at a dose of 20 mg/kg on 

postoperative days 0 and 7, and every 2a or 3b months. (Am J Transplant. 

2018;18:2330-2341.; Xenotransplantation. 2018;25:e12442) 

Groups 4-6: Tacrolimus (Prograf®; Astellas Pharma US, Deerfield, IL, USA) was 

intramuscularly administered twice daily at a dose of 0.05c or 0.035e mg/kg or at a 

dose of 0.05 mg/kg for 4 weeks followed by 0.035 mg/kgd. 

Groups 4-6: Basiliximab was intravenously administered at a dose of 0.3 mg/kg on 

postoperative days 0 and 4.

WT, wild type; Ab, antibody; IVIG, intravenous immunoglobulin; GTKO, 

alpha1,3-galactosyltransferase gene-knockout; hCD39KI, human CD39 knockin
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Table 2.2. Schematic of the study design for the 2 or 4-week biomarker candidates 

and group characteristics at weeks 2 and 4.  

Analysis 
time

Biomarker candidates
Rejection group 

(number)

Average graft survival of 
each rejection group, 
mean ± SD (ranges)

Survival 
group 

number

Total 
number

Week 2
Blood: C3a, DS Abs, 
anti-αGal Abs, T and 

B cell subsets

Entire rejection* (16) 82.63 ± 54.38 (21~161) 18 34

Late rejection† (12) 101.25 ± 50.15 (41~161) 18 30

Week 4

Blood: C3a, DS Abs, 
anti-αGal Abs, T and 

B cell subsets
AH: C3a

Late rejection† (12) 101.25 ± 50.15 (41~161) 18 30

*named as “Entire rejection group”. Entire rejection group includes NHPs whose 

grafts were rejected within 6 months. 

†named as “Late rejection group”. Late rejection group includes NHPs whose grafts 

were rejected at > week 4 up to month 6.  

DS, donor pig-specific; Abs, antibodies; αGal, galactose-alpha-1,3-galactose; AH, 

aqueous humor
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Figure 2.1. Representative multi-color flow cytometry gating strategies for IFNγ+

CD4+ or CD8+ T cells (A), CD28+CD95+ central memory T cells, CD28−CD95+

effector memory T cells (B), CD3-CD20+CD28+ activated B cells (C), and 

CD4+CD25+Foxp3+ regulatory T cells (D). 
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RESULTS

Comparison of biomarker candidates in the rejection and survival groups

Baseline levels of biomarker candidates in the rejection and survival groups are 

shown in Table 2.3. Biomarker candidate levels at baseline did not significantly 

differ between the two groups.

At week 2, the graft score did not significantly differ between the groups 

(Table 2.4). Both the concentration and percentage of CD8+IFNγ+ cells at week 2 

were significantly higher in the entire rejection group (52.32 ± 51.69 cells/mm3 and 

1.13 ± 1.16%, respectively) than in the survival group (17.68 ± 16.26 cells/mm3

and 0.48 ± 0.56%, respectively; all P = 0.032). The difference was also significant 

when four NHPs showing rejection within 4 weeks were excluded. Both the 

concentration and percentage of CD8+IFNγ+ cells at week 4 and last examination 

showed no group-wise significant differences (Tables 2.4 and 2.5). The other 

biomarker candidates revealed no significant group-wise differences at week 2. At 

the last follow-up, the AH and plasma levels of C3a, DS IgG, and anti-αGal IgG 

were significantly higher in the entire rejection group than in the survival group. 

The graft score at week 4 was not different between the groups (0.92 ± 

1.56 and 0.22 ± 0.73, respectively; P = 0.122; Table 2.5). The AH C3a 

concentration at week 4 was significantly higher in the rejection group (16.56 ± 

8.87 ng/mL) than in the survival group (6.25 ± 2.82 ng/mL; P = 0.001), and the 

other biomarker candidates did not differ between the groups. At the last follow-up, 
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the AH C3a and DS IgG concentrations were significantly higher in the late 

rejection group than in the survival group.

In subgroup analysis, the level of DS IgM was higher in the WT 

xenografted NHPs than in the GTKO xenografted NHPs throughout the follow-up. 

However, the DS IgG level was significantly higher in the WT xenografted NHPs 

at week 2 than in the GTKO xenografted NHPs without baseline differences (Table 

2.6). Excluding GTKO xenografted NHPs, no significant differences in anti-αGal 

and DS Abs were found between the rejection and the survival groups (Table 2.7). 

Predictability of presumptive biomarkers for graft rejection within 6 months

The CD8+IFNγ+ cells at week 2 and AH C3a at week 4 were presumptive 

biomarkers, which showed significant differences between the rejection and 

survival groups. The predictive abilities of these biomarkers were assessed (Figure 

2.2).

The AUC of CD8+IFNγ+ cells at week 2 (both the concentration and 

percentage: 0.715; P = 0.032) showed acceptable discrimination ability for 

predicting rejection. The concentration of CD8+IFNγ+ cells estimated at 47.15 

cells/mm3 (sensitivity, 44%; and specificity, 94%) and the percentage of 0.56% 

(sensitivity, 69%; and specificity, 78%) represented the optimal cut-off values. In 

addition, the AUC of the AH C3a at week 4 (0.847; P = 0.001) showed excellent 

discrimination ability. AH C3a of 14.785 ng/mL (sensitivity, 58%; and specificity, 

100%) was the best cut-off value. The positive and negative predictive values of 

AH C3a level of 14.785 ng/mL were 1.00 and 0.78, respectively, which indicates 
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that AH C3a concentration > 14.785 ng/mL at postoperative week 4 predicted 

rejection with a probability of 100%. Sensitivity, specificity, and positive and 

negative predictive values for each predictive biomarker are described in Table 2.8. 
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Table 2.3. Baseline levels of biomarker candidates in rejection and survival groups.   

Biomarkers
Entire rejection 

(n = 16)
Late rejection 

(n = 12)
Survival 
(n = 18)

P 
(Entire 

rejection vs. 
Survival)

P 
(Late 

rejection vs. 
Survival)

AH C3a (ng/mL) 3.98 ± 1.74 3.87 ± 1.69 4.10 ± 1.09 0.810* 0.659*

Plasma C3a (ng/mL) 178.11 ± 130.47 125.80 ± 31.54 162.93 ± 128.36 0.308† 0.783†

DS IgG (MFI) 175.52 ± 229.95 99.28 ± 123.88 123.64 ± 208.17 0.905† 0.514†

DS IgM (MFI) 217.42 ± 318.36130.79 ± 137.07214.22 ± 127.15 0.190† 0.071†

Anti-αGal IgG (AU/mL)102.33 ± 207.52106.08 ± 236.04 61.84 ± 159.23 0.512† 0.799†

Anti-αGal IgM(AU/mL)269.77 ± 243.15281.14 ± 277.50366.29 ± 202.75 0.053† 0.075†

CD4+IFNγ+ (cells/mm3) 12.14 ± 16.74 11.75 ± 17.24 17.02 ± 22.16 0.352† 0.330†

CD8+IFNγ+ (cells/mm3) 34.28 ± 30.39 35.25 ± 29.68 54.45 ± 51.71 0.317† 0.498†

CD4+ CM (cells/mm3) 329.44 ± 157.63365.36 ± 154.82287.15 ± 130.26 0.398* 0.146*

CD4+ EM (cells/mm3) 30.31 ± 32.82 35.68 ± 35.67 53.78 ± 63.30 0.370† 0.735†

CD8+ CM (cells/mm3) 130.52 ± 90.86 143.32 ± 95.86 110.71 ± 44.94 0.704† 0.421†

CD8+ EM (cells/mm3) 388.75 ± 239.71373.99 ± 248.89487.93 ± 319.19 0.408† 0.352†

ActB (cells/mm3) 8.21 ± 6.58 9.78 ± 6.65 8.00 ± 6.83 0.945† 0.397†

Treg (cells/mm3) 41.85 ± 29.41 49.66 ± 29.93 27.05 ± 24.07 0.112† 0.057†

CD4+IFNγ+ (%) 0.33 ± 0.47 0.30 ± 0.52 0.51 ± 0.70 0.334† 0.204*

CD8+IFNγ+ (%) 0.88 ± 0.79 0.82 ± 0.79 1.58 ± 1.62 0.157† 0.138*

CD4+ CM (%) 7.75 ± 3.40 8.19 ± 3.75 8.29 ± 4.08 0.679* 0.945†

CD4+ EM (%) 0.75 ± 0.90 0.84 ± 1.01 1.65 ± 2.24 0.301† 0.472*

CD8+ CM (%) 3.00 ± 1.70 3.18 ± 1.90 3.19 ± 1.39 0.719* 0.988†

CD8+ EM (%) 9.59 ± 5.47 8.30 ± 4.56 13.10 ± 7.96 0.138† 0.054*

ActB (%) 0.18 ± 0.16 0.22 ± 0.16 0.24 ± 0.22 0.469† 0.832*

Treg (%) 1.02 ± 0.59 1.10 ± 0.64 0.75 ± 0.60 0.195* 0.140†

Entire rejection group includes NHPs whose grafts were rejected within 6 months. 

Late rejection group includes NHPs whose grafts were rejected at > week 4 up to 

month 6.  

Data are presented as mean ± SD.

vs, versus; AH, aqueous humor; DS, donor pig-specific; αGal, galactose-alpha-1,3-

galactose; IFN, interferon; CM, central memory T cells; EM, effector memory T 

cells; ActB, activated B cells; Treg, regulatory T cells 

*Independent T-test (two-tailed), †Mann-Whitney U test (two-tailed)



51

Table 2.4. Values of biomarker candidates at postoperative week 2 in the rejection and survival groups.

Biomarkers

Week 2 Last FU

Entire rejection
(n = 16)

Late rejection 
(n = 12)

Survival 
(n = 18)

P 
(Entire 

rejection vs. 
Survival)

P 
(Late 

rejection vs. 
Survival)

Entire rejection 
(n = 16)

Survival 
(n = 18)

P

Graft score 0.94 ± 1.73 0.25 ± 0.87 0.33 ± 1.41 0.145* 0.807* 6.56 ± 0.51 0.11 ± 0.47 < 0.001*

AH C3a (ng/mL)a NA NA NA NA NA 22.01 ± 5.94 6.50 ± 5.69 < 0.001*

Plasma C3a (ng/mL) 167.83 ± 131.33 117.89 ± 20.87 137.67 ± 62.22 0.863* 0.310* 183.38 ± 97.42 124.06 ± 52.63 0.028*

DS IgG (MFI) 680.30 ± 804.89 351.18 ± 386.45 395.23 ± 349.09 0.748* 0.438* 1124.00 ± 1269.31 240.83 ± 439.75 < 0.001*

DS IgM (MFI) 299.66 ± 534.32 148.94 ± 136.07 224.14 ± 105.64 0.343* 0.118† 252.13 ± 278.58 245.18 ± 144.93 0.485*

Anti-αGal IgG (AU/mL) 234.64 ± 248.13 136.05 ± 157.64 107.31 ± 75.46 0.255* 0.966* 385.48 ± 677.19 51.99 ± 111.92 0.007*

Anti-αGal IgM (AU/mL) 416.53 ± 337.88 320.23 ± 278.28 396.11 ± 209.65 0.512* 0.117* 353.34 ± 220.04 349.73 ± 171.86 0.730*

CD4+IFNγ+ (cells/mm3) 19.41 ± 31.94 21.12 ± 35.13 7.33 ± 10.52 0.098* 0.063* 8.19 ± 11.83 15.93 ± 24.74 0.350*

CD8+IFNγ+ (cells/mm3) 52.32 ± 51.69 58.60 ± 51.48 17.68 ± 16.26 0.032* 0.006* 33.88 ± 28.99 58.08 ± 52.49 0.142*

CD4+ CM (cells/mm3) 397.38 ± 194.67 450.52 ± 183.92 394.60 ± 377.43 0.317* 0.090* 352.13 ± 156.95 268.24 ± 125.61 0.093†

CD4+ EM (cells/mm3) 40.38 ± 58.57 49.81 ± 65.13 25.04 ± 32.95 0.558* 0.189* 31.44 ± 35.26 71.96 ± 107.06 0.617*

CD8+ CM (cells/mm3) 133.02 ± 70.14 146.60 ± 63.10 138.69 ± 130.00 0.605* 0.220* 138.69 ± 94.06 109.26 ± 56.17 0.270†

CD8+ EM (cells/mm3) 307.89 ± 159.73 325.36 ± 163.20 261.28 ± 253.64 0.121* 0.075* 498.63 ± 521.24 515.40 ± 430.83 0.641*

ActB (cells/mm3) 6.40 ± 5.76 6.47 ± 6.43 3.77 ± 6.02 0.073* 0.175* 6.88 ± 12.41 4.32 ± 5.68 0.794*

Treg (cells/mm3) 33.08 ± 32.11 40.49 ± 33.80 45.21 ± 72.34 0.490* 0.204* 27.75 ± 18.14 21.80 ± 16.84 0.233*

CD4+IFNγ+ (%) 0.48 ± 0.85 0.45 ± 0.88 0.18 ± 0.25 0.112* 0.099* 0.32 ± 0.62 0.29 ± 0.33 0.388*

CD8+IFNγ+ (%) 1.13 ± 1.16 1.04 ± 0.76 0.48 ± 0.56 0.032* 0.010* 0.98 ± 1.18 1.41 ± 1.32 0.227*

CD4+ CM (%) 8.30 ± 2.87 9.01 ± 2.72 9.69 ± 4.54 0.448* 0.643† 8.39 ± 2.93 6.80 ± 3.45 0.162†

CD4+ EM (%) 0.79 ± 1.16 0.96 ± 1.30 0.66 ± 0.66 0.863* 0.767* 0.70 ± 0.55 1.29 ± 1.47 0.370*

CD8+ CM (%) 2.79 ± 1.20 2.96 ± 1.15 3.26 ± 1.56 0.878† 0.573† 3.26 ± 1.97 2.77 ± 1.50 0.617*

CD8+ EM (%) 7.14 ± 4.80 6.10 ± 1.64 6.35 ± 4.14 0.334* 0.290* 10.52 ± 6.96 12.51 ± 8.66 0.605*

ActB (%) 0.12 ± 0.10 0.14 ± 0.11 0.08 ± 0.09 0.138* 0.162* 0.13 ± 0.22 0.12 ± 0.17 0.822*

Treg (%) 0.81 ± 0.69 0.87 ± 0.63 0.92 ± 0.97 0.918* 0.611* 0.80 ± 0.48 0.67 ± 0.54 0.546*
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Significant values at week 2 are shown in bold.

Entire rejection group includes NHPs whose grafts were rejected within 6 months. 

Late rejection group includes NHPs whose grafts were rejected at > week 4 up to month 6.  

Last FU; last follow-up; examination performed during the rejection period before sacrifice in the entire rejection group and at 

month 6 in the survival group. 

aAH C3a assay was not performed at week 2 to avoid possible damage to the graft in the early postoperative period. 

Data are presented as mean ± SD.

AH, aqueous humor; DS, donor pig-specific; αGal, galactose-alpha-1,3-galactose; IFN, interferon; CM, central memory T cells; 

EM, effector memory T cells; ActB, activated B cells; Treg, regulatory T cells

*Mann-Whitney U test (two-tailed), †Independent T-test (two-tailed).
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Table 2.5. Values of biomarker candidates at postoperative week 4 in the late rejection and survival groups.   

Biomarkers
Week 4 Last FU

Late rejection 
(n = 12)

Survival (n = 18) P
Late rejection 

(n = 12)
Survival (n = 18) P

Graft score 0.92 ± 1.56 0.22 ± 0.73 0.122* 6.25 ± 0.87 0.11 ± 0.47 < 0.001*

AH C3a (ng/mL) 16.56 ± 8.87 6.25 ± 2.82 0.001* 22.84 ± 5.87 6.50 ± 5.69 < 0.001*

Plasma C3a (ng/mL) 136.58 ± 38.23 134.51 ± 90.86 0.122* 159.75 ± 46.15 124.06 ± 52.63 0.067†

DS IgG (MFI) 504.96 ± 684.17 337.04 ± 460.07 0.783* 585.91 ± 519.57 240.83 ± 439.75 0.001*

DS IgM (MFI) 182.66 ± 170.71 237.86 ± 105.88 0.477† 188.64 ± 164.677 245.18 ± 144.93 0.290*

Anti-αGal IgG (AU/mL) 112.82 ± 104.00 69.10 ± 81.70 0.057* 92.39 ± 115.24 51.99 ± 111.92 0.065*

Anti-αGal IgM (AU/mL) 337.70 ± 249.59 463.41 ± 320.68 0.138* 331.62 ± 246.16 349.73 ± 171.86 0.374*

CD4+IFNγ+ (cells/mm3) 18.43 ± 29.32 9.03 ± 10.49 0.374* 7.58 ± 12.89 15.93 ± 24.74 0.268*

CD8+IFNγ+ (cells/mm3) 60.23 ± 72.74 51.46 ± 68.79 0.352* 32.75 ± 30.14 58.08 ± 52.49 0.144*

CD4+CM (cells/mm3) 398.93 ± 187.66 305.11 ± 173.46 0.171† 357.83 ± 150.53 268.24 ± 125.61 0.088†

CD4+EM (cells/mm3) 79.95 ± 157.66 36.55 ± 45.12 0.498* 38.67 ± 38.15 71.96 ± 107.06 0.816*

CD8+CM (cells/mm3) 140.89 ± 66.14 105.92 ± 54.43 0.125† 140.67 ± 92.68 109.26 ± 56.17 0.256†

CD8+EM (cells/mm3) 557.01 ± 453.75 390.70 ± 305.89 0.253* 504.17 ± 567.70 515.40 ± 430.83 0.719*

ActB (cells/mm3) 3.74 ± 3.46 2.82 ± 4.04 0.175* 4.42 ± 5.27 4.32 ± 5.68 0.966*

Treg (cells/mm3) 41.51 ± 44.26 42.58 ± 56.44 0.949* 29.25 ± 18.40 21.80 ± 16.84 0.182*

CD4+IFNγ+ (%) 0.45 ± 0.93 0.25 ± 0.26 0.933* 0.27 ± 0.66 0.29 ± 0.33 0.189*

CD8+IFNγ+ (%) 1.23 ± 1.55 1.23 ± 1.50 0.657* 0.81 ± 1.08 1.41 ± 1.32 0.138*

CD4+ CM (%) 8.21 ± 2.70 8.82 ± 3.55 0.866* 8.38 ± 3.05 6.80 ± 3.45 0.209†

CD4+ EM (%) 1.43 ± 2.30 1.02 ± 0.95 0.672* 0.83 ± 0.58 1.29 ± 1.47 0.703*

CD8+ CM (%) 3.06 ± 1.53 3.23 ± 1.23 0.611* 3.39 ± 2.22 2.77 ± 1.50 0.366†

CD8+ EM (%) 11.18 ± 6.52 11.12 ± 5.55 0.882* 10.57 ± 7.07 12.51 ± 8.66 0.582*

ActB (%) 0.08 ± 0.08 0.10 ± 0.12 0.703* 0.09 ± 0.09 0.12 ± 0.17 0.916*

Treg (%) 0.89 ± 0.78 1.25 ± 1.16 0.421* 0.82 ± 0.52 0.67 ± 0.54 0.512*
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Significant values at week 4 are shown in bold.

Last FU; last follow-up; examination performed during the rejection period before sacrifice in the entire rejection group and at 

month 6 in the survival group. 

Late rejection group includes NHPs whose grafts were rejected at > week 4 up to month 6.  

Data are presented as mean ± SD.

AH, aqueous humor; DS, donor pig-specific; αGal, galactose-alpha-1,3-galactose; IFN, interferon; CM, central memory T cells; 

EM, effector memory T cells; ActB, activated B cells; Treg, regulatory T cells  

*Mann-Whitney U test (two-tailed), †Independent T-test (two-tailed).
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Table 2.6. Subgroup analysis showed differences in DS IgG and IgM levels in the rejection group according to donor pig type. 

The DS IgM was higher in the WT xenografted NHPs than in the GTKO xenografted NHPs throughout the follow-up, which 

was not clinically relevant. However, DS IgG was significantly higher in the WT xenografted NHPs at week 2 than in the 

GTKO xenografted NHPs without baseline differences, suggesting a possible association between the DS IgG level and 

rejection in the WT xenografted NHPs.

Biomarkers

Baseline Week 2 Week 4 Last FU

WT (n = 11) GTKO (n = 5) P* WT (n = 11) GTKO (n = 5) P* WT (n = 7) GTKO (n = 5) P* WT (n = 11) GTKO (n = 5) P*

AH C3a (ng/mL) 3.96 ± 1.48 4.00 ± 2.38 0.713 NA NA NA 14.19 ± 10.14 19.88 ± 6.20 0.508 20.51 ± 6.88 25.00 ± 0.00 0.116 

Plasma C3a (ng/mL) 198.71 ± 153.21 132.80 ± 37.64 0.865 193.12 ± 153.37 112.20 ± 15.72 0.234 138.13 ± 49.92 134.40 ± 16.44 0.808 194.18 ± 112.73 159.60 ± 52.80 0.734 

DS IgG (MFI) 234.73 ± 250.48 27.50 ± 4.36 0.157 915.14 ± 824.28 34.50 ± 14.73 0.004 694.51 ± 792.01 239.60 ± 442.05 0.062 1219.91 ± 1436.50 860.25 ± 716.81 0.896 

DS IgM (MFI) 298.49 ± 347.61 14.75 ± 5.19 0.005 400.26 ± 598.23 23.00 ± 16.04 0.004 275.11 ± 145.20 20.88 ± 11.56 0.008 334.27 ± 284.22 26.25 ± 11.15 0.004 

Anti-αGal IgG (AU/mL) 59.11 ± 79.90 197.40 ± 359.30 0.610 274.93 ± 257.86 146.00 ± 224.40 0.157 87.62 ± 68.43 148.10 ± 141.60 0.223 539.51 ± 776.69 46.60 ± 52.78 0.079 

Anti-αGal IgM (AU/mL) 290.84 ± 286.04 223.40 ± 115.11 0.955 485.14 ± 386.37 265.60 ± 116.10 0.336 382.91 ± 318.97 274.40 ± 100.58 0.935 380.68 ± 242.14 293.20 ± 168.56 0.533 

CD4+IFNγ+ (cells/mm3) 8.77 ± 11.35 19.55 ± 25.07 0.193 13.16 ± 19.78 33.16 ± 50.05 0.062 14.80 ± 24.98 23.51 ± 37.04 0.372 5.36 ± 6.50 14.40 ± 18.69 0.211 

CD8+IFNγ+ (cells/mm3) 22.58 ± 23.35 60.02 ± 29.92 0.008 38.98 ± 38.42 86.07 ± 58.80 0.123 63.06 ± 87.29 56.26 ± 55.59 0.685 29.55 ± 30.17 43.40 ± 26.67 0.335 

CD4+ CM (cells/mm3) 259.07 ± 137.95 484.26 ± 45.03 0.004 364.05 ± 178.08 470.70 ± 230.35 0.336 388.50 ± 202.00 413.53 ± 187.57 0.685 335.55 ± 166.87 388.60 ± 142.62 0.533 

CD4+ EM (cells/mm3) 19.26 ± 23.06 54.63 ± 40.44 0.047 34.39 ± 63.54 53.57 ± 49.57 0.079 96.84 ± 206.41 56.32 ± 57.03 0.372 29.64 ± 40.62 35.40 ± 22.56 0.100 

CD8+ CM (cells/mm3) 95.76 ± 58.61 207.00 ± 108.34 0.036 112.62 ± 59.05 177.90 ± 77.90 0.100 124.00 ± 67.65 164.54 ± 63.00 0.223 126.18 ± 84.86 166.20 ± 117.44 0.461 

CD8+ EM (cells/mm3) 334.19 ± 200.55 508.76 ± 297.89 0.157 261.29 ± 125.24 410.41 ± 193.26 0.157 631.32 ± 594.31 452.98 ± 114.83 0.935 543.36 ± 618.41 400.20 ± 212.52 0.865 

ActB (cells/mm3) 6.79 ± 6.65 11.31 ± 5.85 0.193 4.81 ± 4.11 9.90 ± 7.74 0.192 3.98 ± 4.32 3.40 ± 2.18 0.808 7.27 ± 14.91 6.00 ± 4.53 0.153 

Treg (cells/mm3) 26.71 ± 18.23 75.15 ± 19.87 0.003 34.81 ± 37.46 29.27 ± 18.24 0.777 46.20 ± 47.11 34.95 ± 44.34 0.685 23.91 ± 13.32 36.20 ± 25.70 0.335 

CD4+IFNγ+ (%) 0.25 ± 0.26 0.50 ± 0.78 0.533 0.35 ± 0.57 0.74 ± 1.33 0.335 0.23 ± 0.29 0.76 ± 1.44 0.935 0.22 ± 0.37 0.55 ± 1.01 0.496 

CD8+IFNγ+ (%) 0.67 ± 0.62 1.33 ± 1.01 0.126 0.79 ± 0.46 1.40 ± 1.00 0.291 1.02 ± 1.04 1.52 ± 2.18 0.935 0.84 ± 1.00 1.28 ± 1.60 0.692 

CD4+ CM (%) 6.82 ± 3.42 9.80 ± 2.53 0.062 8.76 ± 3.29 7.30 ± 1.46 0.282 8.33 ± 2.92 8.03 ± 2.68 0.807 8.59 ± 3.26 7.94 ± 2.29 0.692 

CD4+ EM (%) 0.51 ± 0.53 1.28 ± 1.36 0.126 0.65 ± 1.08 1.08 ± 1.41 0.126 1.34 ± 2.47 1.55 ± 2.31 0.685 0.63 ± 0.49 0.86 ± 0.69 0.692 

CD8+ CM (%) 2.44 ± 1.17 4.22 ± 2.16 0.157 2.74 ± 1.30 2.89 ± 1.07 0.692 2.73 ± 1.28 3.53 ± 1.87 0.465 3.06 ± 1.76 3.71 ± 2.56 0.955 

CD8+ EM (%) 9.30 ± 5.62 10.23 ± 5.70 0.777 7.46 ± 5.71 6.44 ± 2.02 0.865 11.69 ± 6.78 10.48 ± 6.86 0.465 11.50 ± 7.93 8.36 ± 4.01 0.396 

ActB (%) 0.16 ± 0.18 0.22 ± 0.11 0.234 0.11 ± 0.11 0.15 ± 0.09 0.461 0.10 ± 0.11 0.06 ± 0.03 0.808 0.14 ± 0.26 0.11 ± 0.08 0.193 
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Treg (%) 0.80 ± 0.52 1.51 ± 0.46 0.027 0.93 ± 0.76 0.56 ± 0.50 0.533 0.99 ± 0.83 0.74 ± 0.77 0.465 0.81 ± 0.51 0.77 ± 0.47 0.777 

Significant P values are shown in bold.

Last FU; last follow-up; examination performed during the rejection period before sacrifice in the entire rejection group and at 

month 6 in the survival group. 

Data are presented as mean ± SD.

DS, donor pig-specific; WT, wild type; GTKO, α-1,3-galactosyltransferase gene knockout; NHPs, non-human primates; AH, 

aqueous humor; NA, not available; αGal, galactose-alpha-1,3-galactose; IFN, interferon; CM, central memory T cells; EM, 

effector memory T cells; ActB, activated B cells; Treg, regulatory T cells

*Mann-Whitney U test (two-tailed)
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Table 2.7. Subgroup analysis was performed to determine whether the inclusion of 

GTKO xenografted NHPs affected the anti-αGal or DS Abs as a biomarker. This 

analysis excluded GTKO xenografted NHPs from the rejection groups, because 

survival group did not include GTKO xenografted NHPs. There was no significant 

difference between the rejection and survival groups in the levels of anti-αGal and 

DS Abs.

Entire rejection (n = 11) 
w/o GTKO

Survival (n = 18) P

Baseline 

Donor specific IgG (AU/mL) 234.73 ± 250.48 123.64 ± 208.17 0.269*

Donor specific IgM 
(AU/mL)

298.49 ± 347.61 214.22 ± 127.15 0.880*

Anti-αGal IgG (AU/mL) 59.11 ± 79.90 61.84 ± 159.23 0.653*

Anti-αGal IgM (AU/mL) 290.84 ± 268.04 366.29 ± 202.75 0.116*

Week 2

Donor specific IgG (AU/mL) 915.14 ± 824.28 395.23 ± 349.09 0.051*

Donor specific IgM 
(AU/mL)

400.26 ± 598.23 224.14 ± 105.64 0.693*

Anti-αGal IgG (AU/mL) 274.93 ± 257.87 107.31 ± 75.46 0.059†

Anti-αGal IgM (AU/mL) 485.14 ± 386.37 396.11 ± 209.65 0.964*

Late rejection (n = 7) 
w/o GTKO

Survival (n = 18) P

Week 4

Donor specific IgG (AU/mL) 694.51 ± 792.01 337.04 ± 460.07 0.069*

Donor specific IgM 
(AU/mL)

275.11 ± 145.20 237.86 ± 105.88 0.593*

Anti-αGal IgG (AU/mL) 87.62 ± 68.43 69.10 ± 81.70 0.226*

Anti-αGal IgM (AU/mL) 382.91 ± 318.97 463.41 ± 320.68 0.276*

Entire rejection group includes wild type xenografted NHPs whose grafts were 

rejected within 6 months. 

Late rejection group includes wild type xenografted NHPs whose grafts were 

rejected at > week 4 up to month 6.  
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Data are presented as mean ± SD.

w/o, without; GTKO, α1,3-galactosyltransferase gene-knockout; NHP, non-human 

primate; αGal, galactose-alpha-1,3-galactose; DS, donor pig-specific; w/o GTKO, 

without GTKO xenografted NHPs;

*Mann-Whitney U test (two-tailed), †Independent T-test (two-tailed).
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Table 2.8. Sensitivity, specificity, positive predictive value, and negative predictive 

values for each predictive biomarker.

CD8+IFNγ+ at week 2 (cells/mm3) CD8+IFNγ+ at week 2 (%) AH C3a at week 4 (ng/mL)

Value
Sensiti

vity
Specifi

city
PPV NPV Value

Sensiti
vity

Specifi
city

PPV NPV Value
Sensiti

vity
Specifi

city
PPV NPV

0.00 1.00 0.00 0.47 NA 0.00 1.00 0.00 0.47 NA 0.000 1.00 0.00 0.40 NA

0.58 0.94 0.00 0.45 0.00 0.02 0.94 0.00 0.45 0.00 2.385 1.00 0.06 0.41 1.00 

1.81 0.94 0.06 0.47 0.50 0.06 0.94 0.06 0.47 0.50 3.885 1.00 0.11 0.43 1.00 

2.50 0.94 0.11 0.48 0.67 0.09 0.94 0.11 0.48 0.67 4.315 1.00 0.22 0.46 1.00 

3.12 0.94 0.17 0.50 0.75 0.11 0.94 0.17 0.50 0.75 4.661 1.00 0.28 0.48 1.00 

4.08 0.94 0.22 0.52 0.80 0.12 0.81 0.22 0.48 0.57 4.771 1.00 0.33 0.50 1.00 

4.77 0.94 0.28 0.54 0.83 0.14 0.81 0.28 0.50 0.63 4.875 1.00 0.39 0.52 1.00 

5.72 0.94 0.33 0.56 0.86 0.17 0.81 0.33 0.52 0.67 5.050 0.92 0.39 0.50 0.88 

6.41 0.88 0.33 0.54 0.75 0.22 0.81 0.44 0.57 0.73 5.285 0.92 0.44 0.52 0.89 

6.65 0.81 0.33 0.52 0.67 0.30 0.81 0.50 0.59 0.75 5.535 0.92 0.50 0.55 0.90 

6.85 0.81 0.39 0.54 0.70 0.38 0.81 0.56 0.62 0.77 5.850 0.83 0.50 0.53 0.82 

8.88 0.81 0.44 0.57 0.73 0.41 0.81 0.61 0.65 0.79 6.020 0.83 0.56 0.56 0.83 

11.46 0.81 0.50 0.59 0.75 0.43 0.75 0.61 0.63 0.73 6.095 0.83 0.61 0.59 0.85 

12.91 0.75 0.50 0.57 0.69 0.45 0.69 0.61 0.61 0.69 6.275 0.75 0.61 0.56 0.79 

14.44 0.69 0.50 0.55 0.64 0.48 0.69 0.67 0.65 0.71 6.755 0.75 0.67 0.60 0.80 

15.33 0.69 0.56 0.58 0.67 0.51 0.69 0.72 0.69 0.72 7.155 0.75 0.72 0.64 0.81 

16.23 0.69 0.61 0.61 0.69 0.56 0.69 0.78 0.73 0.74 7.395 0.75 0.78 0.69 0.82 

18.73 0.63 0.61 0.59 0.65 0.64 0.63 0.78 0.71 0.70 8.300 0.67 0.78 0.67 0.78 

20.79 0.63 0.67 0.63 0.67 0.72 0.63 0.83 0.77 0.71 9.305 0.67 0.83 0.73 0.79 

21.01 0.63 0.72 0.67 0.68 0.78 0.56 0.83 0.75 0.68 9.850 0.67 0.89 0.80 0.80 

22.75 0.56 0.72 0.64 0.65 0.82 0.56 0.89 0.82 0.70 10.805 0.58 0.89 0.78 0.76 

25.22 0.50 0.72 0.62 0.62 0.85 0.50 0.89 0.80 0.67 11.790 0.58 0.94 0.88 0.77 

26.38 0.50 0.78 0.67 0.64 0.89 0.44 0.89 0.78 0.64 14.785 0.58 1.00 1.00 0.78 

32.38 0.44 0.78 0.64 0.61 0.98 0.38 0.89 0.75 0.62 20.000 0.50 1.00 1.00 0.75 

40.83 0.44 0.83 0.70 0.63 1.18 0.31 0.89 0.71 0.59 23.400 0.42 1.00 1.00 0.72 

43.81 0.44 0.89 0.78 0.64 1.36 0.25 0.89 0.67 0.57 24.650 0.33 1.00 1.00 0.69 

47.15 0.44 0.94 0.88 0.65 1.55 0.19 0.89 0.60 0.55 26.000 0.00 1.00 NA 0.60 

50.39 0.38 0.94 0.86 0.63 1.74 0.19 0.94 0.75 0.57

61.31 0.38 1.00 1.00 0.64 1.95 0.13 0.94 0.67 0.55

73.40 0.31 1.00 1.00 0.62 2.54 0.13 1.00 1.00 0.56

92.29 0.25 1.00 1.00 0.60 3.72 0.06 1.00 1.00 0.55

112.71 0.19 1.00 1.00 0.58 5.48 0.00 1.00 NA 0.53

115.45 0.13 1.00 1.00 0.56

143.40 0.06 1.00 1.00 0.55

172.33 0.00 1.00 NA 0.53

Bold text represents values at optimal cut-off.
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IFN, interferon, AH, aqueous humor; PPV, positive predictive value; NPV, negative 

predictive value; NA, not available 
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Figure 2.2. Receiver operator characteristic curve analysis of CD8+IFNγ+ at week 

2 (A) and aqueous humor C3a at week 4 (B) for predicting graft rejection. (A) The 

area under the curve (AUC) of the CD8+IFNγ+ cells at week 2 was 0.715 (both 

concentration and percentage), indicating acceptable discrimination ability. The 

CD8+IFNγ+ cell concentration of 47.15 cells/mm3 (sensitivity, 44%; and specificity, 

94%) and percentage of 0.56% (sensitivity, 69%; and specificity, 78%) were the 

best cut-off values. (B) The AUC of the AH C3a at week 4 was 0.847, indicating 

excellent discrimination ability. The AH C3a level of 14.785 ng/mL (sensitivity, 

0.58%; and specificity, 100%) represented the best cut-off value. Positive and 

negative predictive values of AH C3a of 14.785 ng/mL were 1.00 and 0.78, 

respectively. Round dot denotes the optimal cut-off value. AUC, area under the 

curve; PPV, positive predictive value; NPV, negative predictive value  
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DISCUSSION

Corneal xenograft rejection is mediated by both innate and adaptive immune 

systems. The innate immune response is immediate, while the adapted immune 

response occurs within several days or weeks.48 As shown in Tables 2.1 and 2.2, 

rejection in corneal xenotransplantation occurred frequently between months 1 and 

3. The graft scores were similar between the two groups at weeks 2 and 4, which 

indicates that changes in predictive biomarker levels precede corneal 

morphological changes during the rejection process. This finding suggests the 

clinical relevance of predictive biomarkers for the detection of rejection earlier 

than slit-lamp microscopy. Therefore, our study showed that the 2 or 4-week 

predictive biomarker profiles may facilitate early intervention against rejection. In 

this study, the levels of CD8+IFNγ+ cells at week 2 and AH C3a at week 4 were 

significantly higher in the rejection group than in the survival group and showed 

acceptable or excellent discrimination abilities for predicting rejection within 6 

months. 

In contrast to solid organ transplantation, corneal graft rejection can be 

detected by slit lamp examination. However, at early stages of immune reaction, 

the cornea may retain transparency, which may contribute to detection failure of 

early rejection.49 Corneal edema can be reversed upon early detection of rejection 

and appropriate management before irreversible graft failure occurs.50 In this 

regard, the changes in CD8+IFNγ+ cells may represent a key 2-week biomarker for 

the early detection of rejection. At the last follow-up, no systemic differences in 

CD8+IFNγ+ cells were found, which may be explained by the localization of cells 
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in the cornea, a finding supported by previous studies showing infiltration of CD8+

cells in rejected grafts.15,18,32,51

AH complement activation is related to both innate and adaptive 

immunity.52 Our previous studies indicated the presence of C3c deposits as well as 

high levels of AH C3a in NHPs with rejected grafts, but rarely in NHPs with 

surviving grafts.15,18,31,32 The combined data suggest that AH complement is a 

critical factor for rejection. The AH C3a assay was performed at postoperative 

week 4 to avoid possible graft damage in the early period. Therefore, further 

studies are needed to investigate the potential role of AH C3a as a 2-week 

biomarker.

We are planning a clinical trial of corneal xenotransplantation.53 The 

results obtained in this study will be used as a standard of reference to predict 

rejection in the clinical trial. In particular, our results indicated that AH C3a is a 

potentially critical biomarker with a positive predictive value of 1.0 at the optimal 

cut-off value. In our study, no complications occurred during AH collection,15,18,31,32

which is considered as a routine procedure for patients undergoing PCR testing for 

virus,54 and can be performed safely with adequate precaution.55

DS IgG and anti-αGal IgG were not significant predictors of rejection. In 

WT pig-to-NHPs corneal xenotransplantation, high levels of αGal epitope or IgG 

deposits are present in the rejected graft.15,18,31 Therefore, subgroup analysis was 

performed to determine whether the inclusion of GTKO porcine corneal grafts in 

NHPs affected the changes in DS or anti-αGal Abs as biomarkers (Tables 2.6 and 

2.7). The level of DS IgM was higher in WT xenografted NHPs than in GTKO 
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xenografted NHPs during the follow-up, which was not clinically relevant. 

However, DS IgG was significantly higher in WT xenografted NHPs at week 2 

than in GTKO xenografted NHPs without significant baseline differences, 

suggesting a possible association between the DS IgG level and rejection in WT 

xenografted NHPs. As shown in Table 2.7, subgroup analysis was performed after 

excluding GTKO xenografted NHPs from the rejection groups (11 in entire 

rejection / 7 in late rejection), because the survival group did not include GTKO 

xenografted NHPs. Although no significant differences in anti-αGal and DS Abs 

were found between the rejection and survival groups, we observed changes in DS 

IgG at week 2 in the rejection group, suggesting that the inclusion of GTKO 

xenografted NHPs might alter the DS IgG biomarker levels. Therefore, our study 

limitation related to inclusion of both WT and GTKO donor grafts. Another 

limitation involved inclusion of NHPs under various immunosuppression regimens. 

Heterogeneous immunosuppressants exhibit varied effects on the immune response. 

Further biomarker studies including homogeneous optimal donors and 

immunosuppressant types are needed. 

In conclusion, CD8+IFNγ+ cells at week 2 and AH C3a concentrations at 

week 4 showed potential as useful biomarkers for predicting graft rejection in pig-

to-NHP corneal xenotransplantation. Those biomarkers may be used as a standard 

of reference to predict rejection in clinical trials of corneal xenotransplantation. To 

the best of our knowledge, this study is the first to report predictive biomarkers for 

graft rejection in corneal xenotransplantation.   
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초 록

목적: 이종각막이식은 동종 공여각막의 대체제로서 연구되어 왔다. 이

연구에서는 α1,3-galactosyltransferase gene 을 knockout 시킨

형질전환 미니돼지 (GTKOm 돼지)-영장류 전층 이종각막이식에서

이식편의 장기 유효성을 분석하고자 하였다. 이 연구에서는 또한 이전의

야생형 SNU 미니돼지-영장류 전층 이종각막이식의 실험 결과를

포함하여 임상적으로 적용이 가능한 이식편 거부 반응을 예측할 수 있는

바이오 마커를 발굴하고자 하였다.

방법: GTKOm 돼지 각막의 장기 유효성 연구를 위해서 총 9 마리

영장류(Chinese rhesus macaques)의 우안에 GTKOm 돼지의 각막을

전층 이식 시행했다. 9 마리의 영장류를 대조군(n = 5)과 CD20 군(n =

4)으로 나눴다. 두 군 모두 전신 tacrolimus, basiliximab, steroid 를

투여했으며, CD20 군은 추가로 항-CD20 항체를 투여했다. 이식편의

부종, 혼탁, 신생혈관형성을 각 0-4 점으로 평가한 뒤 합산하여 이식편

점수(0-12) 를 산정했다. 이식편 점수가 6 점 이상일 경우 이식편의

거부반응으로 진단했다. 작동 및 기억 T 세포, 항 αGal 항체, 항 non-

αGal 항체, 공여자 특이 항체, 보체(C3a) 변화를 비교 분석했다.

바이오마커 연구를 위해서는 우안에 돼지 각막을 전층이식 받은
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34 마리의 영장류를 분석했다. 이 중 5 마리는 GTKOm 돼지 각막을

이식 받았고, 29 마리는 야생형 SNU 미니돼지 각막을 이식 받았다.

34 마리의 영장류를 거부반응군(전체 또는 늦은)과 생존군 두 그룹으로

분류했다. 이식편이 6 개월 이내에 거부반응을 보인 모든 개체를 전체

거부반응군으로 정의했고, 이식편의 거부반응이 4 주에서 6 개월사이에

발생한 개체를 늦은 거부반응군으로 정의했다. 이식 후 2 주이내에 모든

영장류의 이종 이식편은 거부 반응을 보이지 않았고, 2 주째의 거부반응

예측 바이오마커 분석을 위해서, 전체 거부반응군(n = 16) 또는 늦은

거부반응군(n = 12)을 생존군(n = 18)과 비교했다. 4 주째의 바이오마커

분석에서는 4 주 이내에 거부 반응을 보인 4 마리의 영장류는

제외하였고, 늦은거부반응군(n = 12)을 생존군(n = 18)과 비교했다. 예측

바이오마커 발굴을 위해서 작동 및 기억 T 세포, 항 αGal 항체, 항

non-αGal 항체, 공여자 특이 항체, 보체(C3a) 수치를 분석했다.

결과: GTKOm 돼지 각막의 장기 유효성 연구에서 CD20 군은 이식편의

장기 생존을 보였고(>375, >187, >187, >83 일), 이는 대조군보다(165, 

91, 72, 55, 37 일)보다 길었다(P = 0.008). 거부반응이 온 시점에 활성

B 세포는 CD20 군이 대조군보다 낮았다(P = 0.043). 거부반응 시점에

대조군의 방수 C3a 농도가 술 전보다 증가했고(P = 0.043), 비슷한

시기의 CD20 군보다 높았다(P = 0.014). 4 주째와 거부반응이 온 시점의

항-non-αGal IgG 도 대조군에서만 수술 전보다 증가했다(P = 0.013). 
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예측 바이오 마커 연구에서 2 주째의 CD8+IFNγ+ 세포와 4 주째의

방수 C3a 는 거부반응군에서 유의하게 증가했다. 수신자 조작 특성 곡선

하의 넓이는 4 주째 방수의 C3a 의 값은 0.847, 2 주째 CD8+IFNγ+

세포의 값은 0.715 이었다. 이는 방수의 C3a 는 우수한, CD8+IFNγ+

세포는 허용가능한 판별력을 가짐을 의미한다.

결론: 항-CD20 항체를 포함한 면역억제제 조합을 사용하여야 GTKOm 

돼지 각막의 전층 이식편의 장기 생존이 가능함을 확인했다. 이는 돼지-

영장류 이종각막이식에서 αGal 을 발현하지 않는 돼지 각막을

사용하여도 B 세포와 보체 활성을 억제하는 것이 이식편의 장기 생존에

중요함을 시사한다. 또한 2 주째의 CD8+IFNγ+ 세포와 4 주째

방수의 C3a 는 돼지-영장류 전층 각막 이식에서 거부 반응을 예측하는

신뢰할만한 바이오마커로 향후 이종각막 임상시험에서 거부 반응을

예측하는 기준으로 사용될 수 있을 것이다.

주요어: 항-CD20 항체; 바이오마커; 거부반응; 각막; 이종이식; α1,3-

galactosyltransferase gene knockout 형질전환 미니돼지; 영장류   

학 번: 2017-31825 
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* 본 졸업 논문의 일부는 현재 Xenotransplantation (Yoon CH, Choi SH, 

Lee HJ, Kang HJ, Kim MK. Predictive biomarkers for graft rejection 

in pig-to-non-human primate corneal xenotransplantation. 

Xenotransplantation. 2019 Apr 14:e12515.)에 출판 완료된 내용을

포함하고 있습니다.
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