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Abstract

Aberrant neural activities and 
dynamics of functional connectivity 
patterns in cognitive frailty using
FDG PET and resting state fMRI 

Seong A Shin

Department of Biomedical Sciences

The Graduate School 

Seoul National University

Cognitive frailty is a recently defined clinical condition characterized by 

concurrent appearance of physical frailty and mild cognitive impairments (MCI). 

Literature suggests common neuropathophysiological processes underlying 

physical and cognitive deficits, and physical dysfunction promotes cognitive 

decline, eventually leading to the emergence of Alzheimer’s disease dementia. It 

remains to be discovered how neural activities and brain network reconfigurations 

are altered in the presence of physical frailty in MCI. 

In the present study, [18F]FDG PET and resting state fMRI scans were 

examined in 21 MCI patients without physical frailty (robust group: mean age = 

74.7 ± 5.8 years) and 27 MCI with physical frailty (at-risk group: mean age = 75.5 

± 7.3 years). The first part of the study aimed to investigate changes in glucose 

metabolism and regional homogeneity in cognitive frailty. Regional cerebral 
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hypometabolism was observed in right frontal cortex, anterior cingulate, and 

bilateral superior parietal cortex in at-risk group, and the metabolic changes in left 

superior parietal cortex were associated with poorer performances in handgrip 

strength and executive function. Brain regional homogeneity was reduced in 

bilateral caudate, right medial and lateral frontal cortex, right superior temporal 

cortex, and cerebellum, and was increased in right precuneus and cerebellum. 

Decreased regional homogeneity in bilateral caudate and right superior temporal 

cortex showed correlations with weaker grip strength, slower gait speed, and lower 

physical activity, and the regional changes were also linked to cognitive 

performances in language and visuospatial function. The results demonstrated that 

the metabolic and functional alterations in cognitive frailty resembled Alzheimer's 

disease related pattern. 

The second part of the study aimed to explore alterations in dynamic 

functional connectivity states and the temporal properties. Dynamic functional 

connectivity was measured using a sliding-window approach, and certain 

connectivity configurations (states) were estimated using k-means clustering 

method. Four distinguishing patterns of functional connectivity were found during 

the resting state scan time in our MCI cohorts. The most frequently occurring state 

(State 1) displayed mostly within-network connections, and the less occurring 

states (States 2, 3 and 4) displayed stronger between-network connections in both 

positive and negative fashions. The alterations in the temporal properties of 

dynamic states such as the number of transition, fractional windows, and mean 

dwell time of states did not reach the significance level, however, at-risk group 

appeared to have less reoccurrence of within-network State 1 and more 

reoccurrences of between-network States 2 and 3. Reduced reoccurrence and 
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shorter dwell time of within-network State 1 were significantly correlated with 

weaker handgrip strength, and the abnormally reduced within-network State 1 may 

reflect reduced functional network segregation coupled with physical deficits. On 

the other hand, higher reoccurrence and longer dwell time of State 2, which was 

characterized by heightened default mode network within-connectivity and 

increased interactions between default mode network and sensorimotor networks 

were associated with poorer MMSE-K score. The overexpression of interactions 

between default mode and sensorimotor networks may interfere with network 

functional specializations, leading to poor cognitive function. Furthermore, the 

functional connectivity strengths between sensorimotor and cognitive networks and 

within cognitive control network were altered in at-risk individuals. 

The neuroimaging outcomes present that aberrant functional changes in 

frontal, temporal and parietal cortex may indicate advanced pathological process in 

the presence of physical frailty in MCI. The time-varying network reconfigurations 

indicating decreased functional segregation of brain networks may also serve as a 

potential biomarker in cognitive frailty.

Keywords: cognitive frailty, FDG PET, rs-fMRI, regional homogeneity, dynamic 

functional connectivity

Student Number: 2014-30671
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Chapter 1. Introduction

Frailty and cognition1.1

Frailty is an age-related process which manifests as a reduction in physiological 

reserve and vulnerability to stressors, leading to increased adverse health-related 

outcomes such as disability, hospitalization, and mortality. Literature documented 

that physical frailty is associated with accelerated cognitive decline, involving 

memory, perceptual speed, and visuospatial cognitive systems (Boyle, Buchman, 

Wilson, Leurgans, & Bennett, 2010; Ruan et al., 2015). In a study of more than 

750 community-based older persons from Rush Memory and Aging Project, for 

one-unit increase in frailty there was a 63 % increase in the risk of mild cognitive 

impairments (MCI) (Boyle et al., 2010). A prospective study by Gray et al. (2013)

showed that frailty increased the likelihood of developing all-cause dementia to 1.2 

times (to 1.08 times for Alzheimer's disease (AD)) in older adults over 65 years old. 

In Korean community-dwelling elderlies, it was found that age, a number of

chronic diseases, depression, falls, hospitalization, cognitive deficits, and disability 

in instrumental activity of daily living were clearly linked to frailty, and frail 

subjects had higher risks of cognitive deficits, disability, falls, and hospitalization 

(Shim et al., 2011). Furthermore, in a large database study containing a total of 

23,952 older individuals who aged over 65 years, over 40 % of the frailest group 

(15 % of the total) were diagnosed with dementia, while only 11 % were in the 

least frail group (60 % of the total) (Armstrong, Stolee, Hirdes, & Poss, 2010). 

Thereby, it is suggested that physical frailty and cognitive impairments may share 
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a common pathological mechanism, and they may be closely linked to higher risks 

of dementia (Ruan et al., 2015). 

Cognitive frailty is proposed as a clinical syndrome in elderly population, 

which is determined by the presence of physical frailty and potentially reversible 

cognitive impairments (Clinical Dementia Rating (CDR) = 0.5) (Panza et al., 2006). 

Physical phenotypes of cognitive frailty are defined in terms of five components: 

poor handgrip strength, slow gait speed, a low level of physical activity, 

unintentional weight loss, and exhaustion (Fried et al., 2001). The presence of three 

or more of the features defines an individual as frail, and one or two features define 

as pre-frail. A consensus has reached on the definition of cognitive frailty by the 

International Academy on Nutrition and Aging and the International Association of 

Gerontology and Geriatrics (Kelaiditi et al., 2013). As previously described, 

physical frailty and cognition have an obvious relationship, and a growing body of 

evidence supports that cognitive frailty may be a prelude to dementia (Buchman, 

Boyle, Wilson, Tang, & Bennett, 2007; Ruan et al., 2015; Wilkins, Roe, Morris, & 

Galvin, 2013). It is thought that among the frailty components, grip strength and 

gait speed are the most powerful predictors of subsequent diagnosis of cognitive 

decline and MCI (Robertson, Savva, & Kenny, 2013). It remains to discover neural

substrates of cognitive frailty and how frailty is related with dementia-related 

pathological processes. 

Several neuroimaging evidence described structural changes in the brain of 

individuals with physical frailty (Avila-Funes et al., 2017; Jung et al., 2014a; 

Newman et al., 2001). For example, a disruption of white matter integrity in corpus 

callosum, internal capsule, external capsule, and thalamic radiations were reported 

in physically frail individuals (Avila-Funes et al., 2017). Also, frail subjects 
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showed a higher number of white matter lesions and increased ventricular size 

(Jung et al., 2014b; Newman et al., 2001). In recent neuroimaging studies in 

healthy older adults, phenotypes of frailty, specifically handgrip strength and 

walking speed were found to be associated with sensorimotor functional 

connectivity networks as well as with gray matter volumes in prefrontal cortex, 

basal ganglia, superior parietal cortex, and cerebellum (Rosano, Aizenstein, 

Studenski, & Newman, 2007; Seidler et al., 2015; Yuan, Blumen, Verghese, & 

Holtzer, 2015). Furthermore, it has been recognized that AD pathology promotes 

muscle weakness, motor impairment and frailty even in individuals with dementia 

(Buchman, Schneider, Leurgans, & Bennett, 2008; Buchman et al., 2014; Maltais 

et al., 2019), and a recent work reported deposition of cerebral amyloid-β, which is 

a biomarker of AD in potential sarcopenia (Wennberg et al., 2017). In agreement 

with the finding, accumulation of cerebral amyloid-β has been found to be linked 

to the presence of weakened grip strength in cognitive frailty (Yoon, Lee, Shin, 

Kim, & Song, 2018). The overall implies that alterations in the brain occur in 

frailty, which may contribute to the cognitive deterioration. 

Up to the best of knowledge, no functional neuroimaging studies have yet 

been conducted in cognitive frailty. Understanding the underlying brain functional 

mechanisms may help untangle the relationships between physical and cognitive 

impairments in cognitive frailty. Thereby, prompt secondary intervention may 

achieve a better prognosis by targeting cognitively impaired patients with physical 

frailty for prevention of dementia. 

Purpose of the study1.2
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The objective of the first part of the study is to explore regional metabolic and 

functional activity of the brain in cognitive frailty using [18F]fluorodeoxy-D-

glucose (FDG) positron emission tomography (PET) and resting state functional 

magnetic resonance imaging (rs-fMRI) measurements. The relationships between 

abnormal cerebral activities and phenotypes of physical frailty as well as cognitive 

function will be investigated. 

In the second part of the study, dynamic changes of intrinsic functional

network connectivity of the brain in cognitive frailty during the resting state scan 

will be evaluated and how the temporal properties of functional connectivity 

patterns are related to physical and cognitive performances will be addressed. 
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Chapter 2. Methodological Background

Measurement of cerebral glucose metabolism using [18F]FDG PET2.1

PET is a conventionally used medical imaging technique in nuclear medicine to 

assess biochemical processes. A radiolabeled [18F]FDG is an analogue of glucose, 

and is taken up by activated cells in high demands of glucose for utilization. 

Thereby, the ligand uptake is indicative of the level of metabolic activity in the 

tissue. This underpins broad applications of [18F]FDG PET imaging in detection 

and diagnosis of neurodegenerative diseases and cancer in medicine. 

Metabolic pattern detected using [18F]FDG PET already plays a significant 

role as a biomarker for diagnosis of different types of dementia (Ishii, 2014). 

Studies have also shown promising results on the prediction of developing 

dementia in MCI using [18F]FDG PET. Chetelat et al. (2005) showed that 

[18F]FDG PET measurement accurately predicts global cognitive deterioration at 

pre-dementia stage of AD better than neuropsychological assessments. In MCI 

who convert to AD, hypometabolism in temporo-parietal and medial frontal cortex 

is commonly found in lines of evidence (Arnaiz et al., 2001; Chetelat et al., 2003), 

and the same pattern of hypometabolism is also evident in early AD and in non-

demented at-risk APOE-4 carriers (Haxby et al., 1990; Matsuda, 2001; Small et al., 

2000). 

In striking contrast, only a limited number of investigations about regional 

cerebral metabolic alterations in relation to physical performances have been 

conducted so far, most of them performed in physically normal older adults. In 

female older adults, low [18F]FDG uptake in frontal and parietal cortices including 
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sensorimotor areas, prefrontal cortex, and cingulate in individuals was found to be 

associated with high step variability or with slower maximum gait speed (Sakurai 

et al., 2014; Shimada et al., 2013). With further investigations of metabolic activity 

alterations in cognitive frailty, we may gain better understanding of neural 

mechanisms underlying the relationship between physical and neurocognitive 

functions and relate to the emergence of AD in patients with cognitive frailty. 

Measurements of brain functional activity and intrinsic network using rs-2.2

fMRI

2.2.1 Regional homogeneity using rs-fMRI

Rs-fMRI measures spontaneous neuronal activities in the brain, and offers means

to assess brain functions and related functional networks at rest, specifically by 

measuring low-frequency oscillations of the fMRI time-series (0.01 - 0.1 Hz) 

(Biswal, Yetkin, Haughton, & Hyde, 1995; Biswal, Van Kylen, & Hyde, 1997; van 

den Heuvel & Hulshoff Pol, 2010). 

One of data-driven methods in analyzing resting-state brain activity is a 

regional homogeneity (ReHo) method, which measures local synchronizations of a 

given voxel with those of its neighboring voxels in a temporal aspect (Zang, Jiang, 

Lu, He, & Tian, 2004). The method is based on the hypothesis that brain activities 

are likely to occur in a cluster of neighboring voxels rather than in a single voxel 

(Zang et al., 2004). Kendall's coefficient of concordance (KCC) is a widely 

employed measure of ReHo to represent the magnitude of functional coherence, 

and is assigned to each voxel, generating individual KCC maps (Kiviniemi et al., 

2009). KCC can be calculated by:
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where �� is the sum rank of the �th time point, �� is the mean of the �� 's, � is the 

number of time series within neighboring voxels, � is the number of ranks. ���

ranges from 0 to 1. The method has recently been used to characterize normal brain 

activity as well as pathological changes in many diseases (Shen et al., 2017; Wu et 

al., 2009; Yuan et al., 2016). 

Functional studies using ReHo in cognitively impaired patients 

demonstrated aberrant spontaneous brain activity in regions including medial 

prefrontal cortex, posterior cingulate cortex, precuneus, temporal cortex, and 

inferior parietal lobule where are known to be primarily affected in MCI, and the 

altered ReHo was correlated with disease symptoms (Wang, Li, Yu, Huang, & Li, 

2016; Wang et al., 2015b; Zhang et al., 2012). Mounting evidence of aberrant 

functional activity using ReHo has also been reported in AD (Marchitelli et al., 

2018; Wang et al., 2017; Zhang et al., 2012). In contrast, no functional activation 

studies of ReHo have been applied to explore regional functional alterations in 

frailty. Since the rs-fMRI metrices are validated as potential biomarkers of 

neurodegenerative progresses (Albert et al., 2011), measurements of ReHo in older 

adults with cognitive frailty will provide insight to unravel the underlying neural 

mechanisms. 

2.2.2 Group independent component analysis

It is established that the brain works as an integrative network, which is composed 

of subnetworks of anatomically separated, but temporally highly coherent 

(functionally connected) brain regions at rest. Among several techniques to 
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identify whole-brain functional connectivity patterns, a group independent 

component analysis (ICA) is the most commonly used method, which is model-

free and shows a high level of consistency across many studies (van den Heuvel & 

Hulshoff Pol, 2010). The method searches for underlying sources (i.e. components)

from a mixed signal (i.e. rs-fMRI time series), that are maximally independent 

from each other and explain different resting-state functional networks of brain 

regions (Calhoun, Liu, & Adali, 2009; van den Heuvel & Hulshoff Pol, 2010). The 

resting state networks that are consistently reported in ICA-based imaging studies 

are: visual network, motor network, attention network, salience network, default 

mode network (Corbetta & Shulman, 2002; Raichle et al., 2001; Seeley et al., 2007; 

van den Heuvel & Hulshoff Pol, 2010).

A common way to apply ICA to make group inferences in fMRI analysis is 

a group ICA approach, which temporally concatenates individual fMRI data to 

extract common independent components for group comparisons (Calhoun, Adali, 

Pearlson, & Pekar, 2001; Calhoun et al., 2009) (Figure 1). The procedure is then 

followed by a back-reconstruction process that allows to generate subject-specific 

spatial maps and time courses of independent components (Calhoun et al., 2001; 

Calhoun et al., 2009). 
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Dynamic functional connectivity analysis2.3

Dynamic brain functional network analysis is a recent technique in rs-fMRI 

analysis, which explores temporal changes of resting-state brain network patterns 

during the scan time (Hutchison et al., 2013; Preti, Bolton, & Van De Ville, 2017).

In the light of the novelty of the approach, the dynamic methods can provide 

information about neural communication beyond what is offered by static 

functional network analysis. In clinical implications, differences in neurocognitive 

activities may be present even if the static functional connectivity (in which 

functional activity is correlated in overall) appears to have similar variabilities 

between groups. Indeed, the strength and directionality of functional connectivity 

have shown to vary at fast time scales and even within the same subject between 

scans with the same imaging condition (Allen et al., 2014; Chang & Glover, 2010; 

Hutchison et al., 2013). Thereby, dynamic functional connectivity is thought to 

represent mental activity and cognitive function of individuals (Calhoun, Miller, 

Pearlson, & Adali, 2014; Thompson et al., 2013), and the approach has been 

applied in a number of studies to explore functional network features in relevance 

to symptoms and malfunctions in diseases such as Parkinson’s disease, 

Schizophrenia, attention-deficit hyperactivity disorder, and dementias (Kaiser et al., 

2016; Kim et al., 2017; Sourty et al., 2016; Viviano, Raz, Yuan, & Damoiseaux, 

2017; Yu et al., 2015). 

In order to compute temporal evolution of functional connections between 

brain regions, a sliding window technique is frequently used. Using the technique, 

the functional connectivity between a set of time courses of functional networks

within a short segment (so called a window) of the scan time interval is calculated, 

and the same is repeated for subsequent segments until it spans the entire scan time
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(Figure 2 (A)). Following calculations of time-varying functional connectivity 

matrices, the matrices are sorted to identify clusters of network configurations.  

K-means clustering algorithm is a method to partition data into to a set of 

clusters while minimizing the within-cluster variance measured by the sum of 

least-squared distance (Lloyd, 1982). In the current study, the algorithm was 

applied to separate the dynamic functional connectivity matrices into a set of 

different clusters (states) (Figure 2 (B)). The occurrences and temporal features of 

observed functional connectivity states allow to examine the status of neural 

activity during the scan time, and they may also reflect functional roles in relations 

to cognition and disease symptoms (Allen et al., 2014; Kim et al., 2017). 

In this study, dynamic functional network will be assessed based on the 

fore-mentioned methods, group ICA and a sliding window analysis. Dynamic 

functional connectivity will be measured by capturing correlations between 

component time courses using a series of sliding windows. After estimating the 

dynamic functional connectivity, k-means clustering approach will be used to 

identify reoccurring functional connectivity patterns. 
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Chapter 3. Subjects and Methods

Participants3.1

3.1.1 Criteria of participants

Participants were recruited in Korean Brain Aging Study for Early Diagnosis and 

Prediction of Alzheimer's Disease (KBASE) study (Byun et al., 2017), where in 

MCI group included individuals who met the inclusion criteria of the NIA-AA 

guidelines (Albert et al., 2011). They had age of 55 - 90 years; memory complaint 

corroborated by self, an informant, or a clinician; objective memory impairment 

considering age, education, and gender; intact functional activities; no dementia. 

From the MCI group of KBASE study, fifty-nine subjects who were literate; aged 

65 years or older; had no medical history of neuropsychiatric or neurologic 

disorders including depression and dementia; had no hospital admission in the past 

12 months; were capable to walk at least 10-meters independently of the motility 

aid, were included in the current study. The participants underwent following 

cognitive and physical performance tests, and 11 were excluded due to low 

cognitive function (CDR greater than 1.0). 

The participants were recruited from Seoul Metropolitan Government-

Seoul National University Boramae Medical Center and two public centers for 

dementia prevention and management. The study protocol was approved by the 

Institutional Review Boards of Seoul National University Hospital (C-1401-027-

547) and Seoul Metropolitan Government-Seoul National University Boramae 

Medical Center (26-2015-60), and all the procedures were completed in 
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accordance with the guidance of Helsinki Declaration. All the participants or their 

legal representatives provided an informed consent form. 

3.1.2 Neuropsychological tests

Cognitive function of the participants was examined using a neuropsychological 

battery including the Korean version of the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD-K), Korean version of Mini-Mental State 

Examination (MMSE-K), CDR scales by a single rater for all subjects to minimize 

inter-rater bias. CERAD-K is comprised of five subtests derived from previously 

established tests: an executive domain of category verbal fluency test (24 points), a 

language domain of the Boston Naming Test (15 points), a memory domain of the 

Word List Learning test (30 points) with delayed recall (10 points) and recognition 

(10 points), and a visuospatial domain of the visual construction test (11 points). 

MMSE-K consists of orientation (10 points), short-term memory registration and 

recall (6 points), attention (5 points), naming (2 points), following verbal

commands (4 points), judgement (2 points), and copying a double pentagon (1 

point). CDR is made by interviewing a patient or a reliable informant such as a 

family member to characterize six cognitive domains: memory, orientation, 

judgement and problem solving, community affairs, home and hobbies, and 

personal care. The composite rating consists of five stages of dementia: 0 (no 

cognitive impairment), 0.5 (questionable), 1 (mild), 2 (moderate), and 3 (severe). 

3.1.3 Physical frailty definition

Physical frailty was defined according to Fried criteria (Fried et al., 2001), and five 

frailty components were assessed: weight loss, weakness, exhaustion, slowness, 
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and physical activity. Weight loss was defined if one self-reported having 

unintentional weight loss of more than 4.5 kg in the past 12 months or when body 

mass index (BMI) was less than 18.5 kg/m2. Weakness was defined as low 

handgrip strength considering the individual’s gender and BMI. Grip strength was 

measured using a hand-to-hand dynamometer, and it repeated for four times for 

each participant with a short break in between. The average handgrip strength was 

calculated and compared to the cutoff point used in the Cardiovascular Health 

Study (CHS) (Fried et al., 1991). For males with BMI of £ 24, 24.1 - 26, 26.1 - 28, 

and > 28 kg/m2, the cutoff points were £ 29, £ 30, £ 30, and £ 32 kg/m2, 

respectively. For females with BMI of £ 23, 23.1 - 26, 26.1 - 29, > 29 kg/m2, the 

cutoff points were £ 17, £ 17.3, £ 18, and £ 21 kg/m2, respectively. Exhaustion was 

defined based on the questions from the Center for Epidemiologic Studies 

Depression Scale (CES-D) (Orme, Reis, & Herz, 1986): “How often have you felt 

that everything you had done was useless in the last week?” and “How often have 

you felt that you were not in the mood to do things you had to do in the last week?”. 

The responses of “most of the time” and “often” were defined as the presence of 

exhaustion. Slowness was defined using the transit time a person takes to walk 4-

meter distance in a straight line. and the criteria for frailty were set considering the 

gender and height. For male subjects, those who were shorter than 173 cm and had 

a timed walk > 7 s and those who were taller than 173 cm and had a timed walk > 6

s were defined as frail. For female subjects, those who were shorter than 159 cm 

and had a timed walk > 7 s and those who were taller than 159 cm and had a timed 

walk > 6 s were classified as frail. The low physical activity was assessed using 

International Physical Activity Questionnaire (IPAQ) (Craig et al., 2003), and three 
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levels of physical activity (high, moderate and low) were proposed, and responses 

describing low physical activity were indicated as frailty. Low activity described 

individuals who neither spent 3 or more days of vigorous activity of at least 20 

minutes per day, 5 or more days of moderate intensity activity and/or walking of at 

least 30 minutes per day, or 5 or more days of any walking and moderate to 

vigorous activity achieving at least 600 MET-minutes/week (an index of metabolic 

energy expenditure). Participants were classified as frail when more than three 

criteria were met, pre-frail if one or two criteria were met, and robust if none of the 

criteria were met. Prefrail and frail individuals were grouped as at-risk group. Of 

48 total subjects, 21 were in robust group, and 27 were in at-risk group. At-risk 

group included 25 pre-frail individuals and 2 frail individuals. Table 1 summarizes 

the five frailty criteria and cut point for each component. 
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Table 1. A summary of Fried criteria for frailty

Criterion Frailty Status

Weight loss Frailty cut point:
Self reported unintentional weight loss > 4.5 kg in previous year
Or BMI < 18.5 kg/m2
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Frail: ³ 3 criteria present; pre-frail: 1 or 2 criteria present; robust: 0 criteria present
Adapted from Fried et al. (2001) and modified
(Abbreviations: BMI = body mass index, MET = metabolic equivalent task) 

Weakness Measured using hand-to-hand dynamometer, average of 4 
measures
Frailty cut point: (the lowest 20 % by gender & BMI)

Men
BMI
£ 24
24.1 - 26
26.1 - 28
> 28

Cutoff
£ 29
£ 30
£ 30
£ 32

Women
BMI
£ 23
23.1 - 26
26.1 - 29
> 29

Cutoff
£ 17
£ 17.3
£ 18
£ 21

Exhaustion Center for Epidemiologic Studies Depression Scale:
1. “How often have you felt that everything you had done 

was useless in the last week?”
2. “How often have you felt that you were not in the 

mood to do things you had to do in the last week?”
Frailty cut point: often, most of the time

Slowness Timed walk over 4-meter distance
Frailty cut point:

Men
Height
£ 173 cm
>173 cm

Cutoff
³ 7 seconds
> 6 seconds

Women
Height
£ 158 cm
> 158 cm

Cutoff
³ 7 seconds
> 6 seconds

Low physical activity By International Physical Activity Questionnaire, in past week, 
spent either:

· < 3 days of vigorous activity of at least 20 minutes/day
· < 5 days of moderate intensity activity or walking of at 

least 30 minutes/day
· < 5 days of any walking and moderate to vigorous 

activity achieving at least 60 MET-minutes/week
Frailty cut point: the lowest 20 %
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3.1.4 Acquisition of [18F]FDG PET and rs-fMR images

All participants underwent three-dimensional [18F]FDG PET and MR imaging in a 

3.0 Tesla Biograph mMR scanner on the same day (Siemens, Washington DC, 

USA). The participants fasted for at least 6 hours and rested in a waiting room for 

40 minutes prior to the scans after intravenous administration of 0.1 mCi/Kg of 

[18F]FDG PET radioligands. The PET data collected in list mode (5 minutes x 4 

frames) were processed for routine corrections such as uniformity, UTE-based 

attenuation, and decay corrections. Following inspecting the data for any 

significant head movements, they were reconstructed into a 20-minute summed 

image using iterative methods (6 iterations with 21 subsets). [18F]FDG PET images 

were acquired using the following imaging parameters: the number of slices, 127; 

matrix size, 344 mm x 344 mm; voxel size, 1.04 mm x 1.04 mm x 2.03 mm. The 

imaging acquisition parameters for rs-fMRI were: the number of total functional 

volume, 116; the number of slices, 45; matrix size, 128 mm x 128 mm; voxel size, 

1.88 mm x 1.88 mm; slice thickness, 3.0 mm; repetition time (TR), 3000 ms; echo 

time, 30 ms; flip angle, 90°. The images were acquired in a resting state condition

with dimmed light and subject's eyes closed. For the purposes of coregistration and 

accurate spatial normalization of [18F]FDG PET image and assessment of structural 

lesions in the subjects, structural T1 images were obtained in sagittal acquisition 

using the following scanning parameters: the number of slices, 208; matrix size, 

256 mm x 256 mm; voxel size, 0.98 mm x 0.98 mm x 1.0 mm; repetition time, 

1670 ms; echo time, 1.89 ms; inversion time, 900 ms, flip angle, 9°. 

3.1.5 Statistical analysis
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Statistical analyses were performed using SPSS 13.0 (IBM Corporation, Chicago, 

IL) for demographic and clinical variables of subjects. The variables were 

compared between the groups using chi-square test for categorical variables 

(gender distribution and frailty phenotypes) and independent sample t-test for 

continuous variables (age, years of education, BMI, MMSE-K, and CERAD-K 

scores). The variables were considered significantly different between groups if p-

value < 0.05. 

[18F]FDG PET image analysis3.2

3.2.1 Preprocessing steps of [18F]FDG PET

The image preprocessing steps were performed using SPM 12 (Statistical 

Parametric Mapping) software implemented on Matlab 2018b (Mathworks, 

http://www.mathworks.com). Static PET images were coregistered to individual 

structural T1 image, and spatially normalized to a standard Montreal Neurological 

Institute (MNI) space. The images were then smoothed with a Gaussian filter of 8-

mm full-width-at-half-maximum (FWHM) for group comparisons. Figure 3

illustrates the preprocessing steps for [18F]FDG PET images.
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3.2.2 Statistical analysis

Brain glucose metabolism measured using [18F]FDG PET images were compared 

between the groups in a voxel-wise manner using two-sample t-test with age, 

gender, and years of education added as covariates. The results were considered 

statistically significant if uncorrected p-value < 0.005 and cluster size > 20 

contiguous voxels. 

A stepwise multiple regression analysis was employed to identify brain 

regions with abnormal metabolism changes relevant to frailty phenotypes and 

cognitive performances. 

Resting state functional MRI analysis3.3

3.3.1 Preprocessing steps of rs-fMRI

Functional MRI data were preprocessed using DPARSFA (Data Processing 

Assistant for Resting-State fMRI, advanced version 4.3) and SPM 12. First of all, 

the first five volumes were discarded to ensure magnetization equilibrium. The 

functional data were then corrected for slice timing differences using the middle 

volume as a reference, and spatially realigned to the middle slice using a least-

squares approach and six parameter rigid body spatial transformations. The 

realigned functional images were spatially normalized to MNI space using EPI 

template, and then the images were smoothed with a Gaussian kernel of 6-mm-

FWHM. Of the total forty-eight subjects, two were excluded from further analyses 

due to head movements greater than 2.0 mm and 2.0 degrees in any dimension 

during the scans. In Figure 4, the preprocessing procedures for rs-fMRI data are 

summarized.
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3.3.2 Calculations of regional homogeneity 

The calculations of ReHo maps were performed using DPARSF and SPM 12. The 

preprocessed rs-fMRI images prior to smoothing from Section 3.3.1 were 

processed by regressing out six motion parameters and averaged time courses of 

white matter and cerebrospinal fluids, and applying temporal band-pass filtering at 

0.01 - 0.1 Hz. To generate individual ReHo maps, KCC for every voxel with its 

neighboring 26 voxels was calculated in a voxel-wise manner.

3.3.3 Statistical analysis

The individual ReHo maps were compared between the groups using a two-sample 

t-test, and the results were thresholded at uncorrected p < 0.005 and cluster size > 

10 voxels. Age, gender, and years of education were entered as covariates of no 

interest. The results were further examined for correlations between functional 

activity abnormalities and physical and cognitive performances using stepwise 

multiple regression analysis.

Functional connectivity analysis using rs-fMRI3.4

3.4.1 Group independent component analysis

Prior to group independent component analysis (ICA), the preprocessed rs-fMRI 

images were normalized by Fisher’s z-transformations. The rs-fMRI data were 

decomposed into networks using a group-level spatial ICA using GIFT toolbox 

(version 3.01, http://icatb.sourceforge.net). The data were decomposed into a set of 

spatially independent components (IC, IC = 50) using a higher-order ICA approach 

to promote anatomical and functional parcellations, as has been implemented in 

previous functional network studies (Allen et al., 2014; Kim et al., 2017; Kiviniemi 
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et al., 2009). In a subject-specific data reduction step, 75 principal components 

were retained using principal component analysis, and in the group level data 

reduction, the concatenated subject data were decomposed into 50 components 

using the expectation maximization algorithm. The reliability of Infomax ICA 

algorithm was evaluated by iterating the estimations 20 times using ICASSO 

implemented in GIFT. To generate subject-specific spatial maps and time courses 

for each IC, the group IC’s were back-reconstructed using GICA back 

reconstruction method. 

Of the 50 IC’s, 31 components were identified as meaningful brain 

functional networks based on the following criteria: (a) the peak activations are 

located in gray matter, (b) low spatial overlaps are observed with physiological, 

motion, or imaging artefacts, (c) the time courses are dominated by low-frequency 

fluctuations (Allen et al., 2014). The selected 31 components were further 

categorized into seven functional networks: basal ganglia (BG), auditory (AUD), 

somatomotor (SM), visual (VIS), cognitive control (CC), default mode (DM), and 

cerebellar (CB) networks.

Finally, the component time courses underwent additional processing steps 

to remove noises: detrending, despiking, low-pass filtering with a cutoff of 0.15 Hz, 

and regression of the six realignment parameters. 

3.4.2 Dynamic functional network connectivity analysis

Temporal dynamic functional network analysis was performed using dFNC 

toolbox (version 1.0a) in GIFT, using a sliding window approach and k-means 

clustering algorithm. In a sliding window approach, the time series was segmented 

into 15-TR (45 s) long windows convolved with a Gaussian (s = 2 TRs), and the 
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window was slid in steps of 1-TR along the scan, resulting in 96 consecutive 

windows. Thereby, time-varying changes of functional connectivity patterns of 31 

independent components during the length of scan at rest were examined. The 

covariance matrix between the components was estimated from the regularized 

precision matrix (inverse covariance matrix). In order to promote sparsity in the 

estimation of the matrix, an L1 penalty was imposed in the graphical LASSO 

method (Friedman, 2007), and the L1 regularization was repeated 100 times. The 

dynamic functional connectivity matrices were converted by Fisher’s z-transforms

to normalize the variance for further analysis. The functional connectivity matrices 

were also residualized with confounding factors (age, gender, and years of 

education).

Functional connectivity patterns which reoccur during the resting state

scan were assessed using k-means clustering algorithm applied to the 96 windowed 

covariance matrices. For the high-dimensional data, L1 distance (city block

distance/Manhattan distance) function was used to measure the similarity between 

each functional connectivity matrix and the cluster centroid. Prior to clustering, the 

data were subsampled to reduce the redundancy between consequent windows 

which show a high autocorrelation with a short time step of 1 TR, and to minimize 

computational loads. The clustering algorithm was applied with 500 iterations with 

random initializations of cluster centroid positions. In order to determine the 

optimal number of clusters (k), the elbow criterion of the cluster validity index was 

employed, which studies the percentage of variance over a range of the number of 

clusters and chooses the optimal number so that adding another does not improve

the within-cluster sum of square much better. The optimal k (will be referred to 

states from this point) found in the current work was four. The individual 
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functional connectivity matrices were divided into the four states based on the 

similarity with the cluster centroids. A state transition vector which represents 

individual’s dynamic changes of functional connectivity state status and 

characterizes temporal properties of the state was obtained. The variables to 

characterize the temporal properties of dynamic functional connectivity states were: 

the number of state transitions, fractional windows, and mean dwell time. The 

number of transitions represents how many times an individual changed from one 

state to another during the scan time, and a higher number of transitions reflects 

more dynamic changes (or less stability) of network connectivity over time. The 

fractional window is the proportion of time spent in each state during the scan. The 

mean dwell time measures the average of time lengths (in units of windows) an 

individual stayed in one state without changing to another once entered the state. 

3.4.3 Reproducibility analyses of dynamic functional connectivity states

First of all, additional exploratory analyses were performed by applying the 

clustering algorithm for a range of k from 2 to 8 to confirm the robustness of the 

functional connectivity patterns and relative reoccurrences of the states regarding 

different values of k. The clustering algorithm was repeated 500 times for each k

value. In addition to that, reproducibility of clusters was also established by 

repeating the clustering procedure to 200 bootstrap resampled datasets. Each 

bootstrap resampled dataset consisted of 46 randomly sampled subjects' data with 

replacement, and the clustering analysis was conducted for each dataset with 500 

iterations. For cluster centroids found for each bootstrap dataset, the similarity was 

measured by calculating a city block distance from the cluster centroids for original 
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data, and the cluster centroids were assigned to the state index with the closest 

distance. The centroids with assigned state indices were also visually inspected. 

3.4.4 Graph theory-based topological analysis: network efficiency

A topological graph theory analysis was applied to explore variability in dynamic 

functional organizations using GRETNA software (A Graph Theoretical Network 

Analysis Toolbox version 2.0, http://www.nitrc.org/projects/gretna). In order to 

remove confounding effects of spurious correlations in the matrices, a sparsity 

threshold was firstly defined. The sparsity threshold is the ratio of the number of 

actual edges divided by the maximum possible number of edges in a network, and 

a range of the sparsity threshold from 0.1 to 0.4 in increments by 0.01 was applied

to the 96 dynamic functional connectivity matrices. The matrices were then 

binarized by assigning 1 to edges greater than the threshold and 0 otherwise. Only 

positive relationships were considered in the analysis. Two topological variables, 

global efficiency and local efficiency were calculated to analyze efficiency of 

information transfer in a network at each sparsity threshold. Global efficiency

(�����) of a network � with number � of nodes is calculated by:  

�����(�) = 	
1

�(� − 1)
�

1

���
���∈�

where ��� is the shortest path length between nodes � and �. Local efficiency (����) 

can be calculated by: 

����(�) = 	
1

�
������(��)

�∈�
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Global efficiency represents the efficiency of parallel information transfer in the 

whole brain network, and local efficiency measures the efficiency of information 

transfer among the direct neighbors of a given node. 

3.4.5 Statistical analysis

Group differences in the temporal properties of dynamic functional connectivity 

were examined using non-parametric Mann-Whitney U test, and a statistical 

threshold of p < 0.05 was applied. The relationships between the variables of 

dynamic functional connectivity state analysis with frailty measures (handgrip 

strength, average timed walk, and IPAQ physical activity level) as well as with 

cognitive data were explored using a stepwise multiple regression analysis, after 

controlling for age, gender, and years of education. Furthermore, the functional 

connectivity strengths in each state were compared between robust and at-risk 

groups using two-sample t-test (uncorrected p-value < 0.001). The functional 

connectivity strengths with group differences were assessed for relationships with 

physical and cognitive performances using a general linear model. The same p-

value threshold of 0.05 was applied for statistical significance.

For graph theory-based network analysis, the area under curve (AUC)

within the defined sparsity threshold range was calculated for each network 

measure, which provides a scalar for analyses that do not depend on selection of a 

single specific threshold.  The variability of global and local efficiency across the 

resting scan was assessed by calculating the interquartile range of AUC changes, 

and compared between groups. A correlation analysis was also performed to test 

whether physical performances affect the variability of network efficiencies.
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Chapter 4. Results

Demographic and clinical characteristics of robust and at-risk groups4.1

There were no significant differences in age, gender distribution, years of 

education, BMI, MMSE-K, and CERAD-K scores between at-risk and robust 

groups, except for executive function (verbal fluency). The group differences in 

frailty criteria were evident in the presence of exhaustion, low physical activity, 

and weakness (p = 0.014, < 0.001, and < 0.001, respectively, using chi-square test). 

Detailed information on demographic features and physical and cognitive 

performances of subjects is summarized in Table 2.
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Table 2. Demographic features and physical cognitive performances of subjects

Robust (n = 21) At-risk (n = 27) p-value

Age 74.7 (5.8) 75.5 (7.3) 0.681

Gender ratio, male % 38 % 26 % 0.531†

Years of education 9.3 (4.2) 9.7 (4.3) 0.760

Body mass index 25.3 (2.6) 24.7(4.0) 0.527

MMSE-K 24.5 (2.3) 24.0 (2.2) 0.436

CERAD-K total score 59.4 (10.8) 56.6 (9.6) 0.355

Memory 24.2 (5.9) 25.4 (5.6) 0.503

Construction 10.1 (1.4) 9.3 (1.4) 0.053

Executive function 14.9 (4.7) 12.1 (4.3) 0.036*

Language 10.1 (2.4) 9.9 (2.5) 0.816

Frailty criteria, n

Weight loss 0 4 0.121†

Exhaustion 0 7 0.014†*

Low physical activity
(mean (std))

0
(2416.5 (1468.4))

11
(1430.7 (1290.8))

0.001†*

Weakness
(mean (std) unit)

0
(27.2 (7.2) kg)

13
(21.2 (3.7) kg)

< 0.001†*

Slowness
(mean (std) unit)

0
(4.5 (0.7) s)

4
(5.9 (4.0) s)

0.121†

Values are means (standard deviations)
† Using chi-square test (Otherwise, p-values are calculated using independent sample t-test)
* Significant at p-value < 0.05
(Abbreviations: MMSE-K = Korean version of Mini-Mental State Examination, CERAD-K = 
Korean version of the Consortium to Establish a Registry for Alzheimer's Disease, std = standard 
deviation)
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Glucose metabolism using [18F]FDG PET4.2

4.2.1 Group comparison in glucose metabolism

In at-risk group, glucose metabolism decreased in bilateral superior parietal lobule, 

right frontal cortex and anterior cingulate cortex in comparison to robust group

(Figure 5, Table 3). No increases in glucose metabolism were observed. 
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Figure 5. Changes in glucose metabolism in at-risk group compared 
to robust group. Cool color indicates decreased glucose metabolism

in at-risk group. (Abbreviations: L = left, R = right)
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Table 3. Brain regions with changes in glucose metabolism in at-risk group

Brain region k T-value x y z

Robust < At-risk None

Robust > At-risk Superior parietal lobule, L 65 3.51 -22 -66 38

Middle frontal cortex, R 27 3.47 30 20 44

Superior parietal lobule, R 42 3.46 30 -66 38

Middle frontal cortex, R 62 3.45 28 54 10

Anterior cingulate, R 22 2.92 2 46 10
The coordinates are the peak activation in Montreal Neurological Institute space from two-
sample t-test for comparison of brain glucose metabolism between groups at uncorrected p-value 
< 0.005 and cluster extent size (k) > 20 voxels. (Abbreviations: L = left, R = right)



35

4.2.2 Relationships between cerebral glucose metabolism and physical and 

cognitive performances

A step-wise multiple regression analysis showed that hypometabolism in left 

superior parietal cortex was significantly associated with weaker handgrip strength 

(standardized β = 0.314, p = 0.036) and poorer performance in executive function 

(β = 0.289, p = 0.043). Interaction effects between frailty and cognitive data on the 

regional metabolic change were not significant. The results are summarized in 

Table 4, and Figure 6 displays partial correlations between the regional metabolic 

activity and physical and cognitive performance. 
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Table 4. Multiple regression analysis results for physical and cognitive performances 
associated with regional glucose metabolism changes

Adj. R2 β p VIF

Superior parietal cortex, L
Physical 
performance

Single 
(enter)

Grip strength * 0.101 0.347 0.016

Timed walk 0.006 -0.165 0.268

Physical activity -0.018 -0.062 0.680

Weight loss -0.011 -0.105 0.480

Exhaustion 0.004 -0.160 0.277

Multiple 
(stepwise)

Grip strength * 0.120 0.374 0.011 1.000

Timed walk -0.050 0.740 1.140

Physical activity -0.160 0.277 1.086

Weight loss -0.083 0.559 1.000

Exhaustion -0.093 0.520 1.048

Cognitive 
performance

Single 
(enter)

Memory -0.004 -0.131 0.374

Visuospatial 0.042 0.251 0.086

Executive * 0.100 0.345 0.016

Language -0.021 -0.034 0.817

MMSE-K -0.009 -0.110 0.457

Multiple 
(stepwise)

Executive * 0.100 0.345 0.016 1.000

Memory -0.235 0.101 1.070

Visuospatial 0.256 0.064 1.000

Language -0.166 0.262 1.121

MMSE-K -0.243 0.096 1.111

Physical & 
Cognitive 
performances

Multiple 
(stepwise)

Grip strength * 0.154 0.314 0.036 1.165

Executive * 0.289 0.043 1.065

Strength x Executive -0.044 0.760 1.153

Asterisks indicate significant results at p-value < 0.05. (Abbreviations: L = left, Adj. R2 = adjusted 
R2, VIF = variance inflation factor)
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Resting-state functional activity using regional homogeneity 4.3

4.3.1 Group comparison in regional homogeneity

As shown in Figure 7 and Table 5, reductions in ReHo were observed in bilateral 

caudate, right superior temporal cortex, left cerebellum, right fusiform gyrus, and 

right frontal cortex in at-risk group. On the other hand, abnormal increases in 

ReHo were found in left cerebellum and right precuneus. 
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Table 5. Brain regions with changes in regional homogeneity in at-risk group 

Brain region k T-value x y z

Robust < At-risk Cerebellum, L 28 4.01 -9 -60 -39

Precuneus, R 10 3.18 6 -54 54

Robust > At-risk Caudate, L 46 4.45 -12 0 12

Caudate, R 3.59 6 3 9

Cerebellum, L 39 3.92 -33 -66 -21

Cerebellum, L 3.62 -24 -66 -21

Cerebellum, L 3.02 -42 -69 -24

Fusiform cortex, R 16 3.86 33 -57 -18

Superior temporal cortex, R 20 3.56 63 3 -6

Superior frontal cortex, R 29 3.37 18 57 24

Superior frontal cortex, R 3.16 9 54 30

Superior frontal cortex, L 3.06 0 48 21

Middle frontal cortex, R 20 3.36 42 30 36

The coordinates are the peak activation in Montreal Neurological Institute space from two-sample 
t-test for comparison of brain regional homogeneity between groups at uncorrected p-value < 
0.005 and cluster extent size (k) > 10 voxels. (Abbreviations: L = left, R = right)
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4.3.2 Relationships between regional homogeneity and physical and cognitive 

performances

A multiple regression analysis showed that reduced ReHo in bilateral caudate was 

significantly associated with weaker handgrip strength (β = 0.387, p = 0.007), 

longer timed walk (β = -0.312, p = 0.021), and poorer performance in language (β 

= 0.280, p = 0.036). ReHo in right superior temporal cortex decreased with weaker 

handgrip strength (β = 0.310, p = 0.029), lower level of physical activity (β = 0.274, 

p = 0.047), and poorer visuospatial function (β = 0.341, p = 0.009). On the other 

hand, increasing ReHo in right precuneus was associated with weaker handgrip 

strength (β = -0.324, p = 0.025) and memory function (β = 0.308, p = 0.032). No 

significant interactions between physical and cognitive data with main effects were 

observed. Table 6 summarizes the results of stepwise multiple regression analysis, 

and Figure 8 shows partial correlation plots between ReHo and physical/cognitive 

performances.
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Table 6. Multiple regression analysis results for physical and cognitive performances 
associated with regional homogeneity changes

Adj. R2 β p VIF

Caudate, Bilateral
Physical 
performance

Single 
(enter)

Grip strength * 0.233 0.500 < 0.001

Timed walk * 0.196 -0.463 0.001

Physical activity * 0.071 0.302 0.041

Weight loss -0.022 0.023 0.878

Exhaustion -0.022 -0.025 0.869

Multiple 
(stepwise)

Grip strength * 0.319 0.393 0.005 1.137

Timed walk * -0.326 0.018 1.137

Physical activity 0.118 0.371 1.098

Weight loss 0.065 0.610 1.022

Exhaustion 0.117 0.367 1.054

Cognitive 
performance

Single 
(enter)

Memory -0.019 0.062 0.681

Visuospatial 0.019 0.202 0.177

Executive * 0.065 0.292 0.049

Language * 0.096 0.340 0.021

MMSE-K -0.016 0.082 0.589

Multiple 
(stepwise)

Language * 0.096 0.340 0.021 1.000

Memory -0.031 0.834 1.078

Visuospatial 0.164 0.254 1.014

Executive 0.203 0.177 1.117

MMSE-K 0.044 0.761 1.013

Physical & 
Cognitive 
performances

Multiple 
(stepwise)

Grip strength * 0.362 0.387 0.007 1.267

Timed walk * -0.312 0.021 1.166

Language * 0.280 0.036 1.145

Strength x Language 0.014 0.925 1.462

Speed x 
Language

-0.058 0.675 1.310

Superior temporal cortex, R
Physical 
performance

Single 
(enter)

Grip strength * 0.160 0.423 0.003

Timed walk 0.005 -0.166 0.276

Physical activity * 0.145 0.405 0.005

Weight loss -0.020 0.053 0.725

Exhaustion -0.012 -0.102 0.501

Multiple 
(stepwise)

Grip strength * 0.228 0.333 0.020 1.090

Physical activity * 0.305 0.033 1.090

Timed walk 0.004 0.979 1.145

Weight loss 0.044 0.746 1.000

Exhaustion -0.009 0.945 1.046

Cognitive 
performance

Single 
(enter)

Memory 0.003 0.158 0.294

Visuospatial * 0.152 0.414 0.004
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Executive -0.007 0.125 0.406

Language -0.001 0.145 0.337

MMSE-K -0.019 0.058 0.701

Multiple 
(stepwise)

Visuospatial * 0.152 0.414 0.004 1.000

Memory 0.056 0.698 1.070

Executive 0.137 0.322 1.001

Language 0.097 0.488 1.014

MMSE-K -0.040 0.778 1.057

Physical & 
Cognitive 
performances

Multiple 
(stepwise)

Grip strength * 0.324 0.31 0.029 1.249

Physical activity * 0.274 0.047 1.196

Visuospatial * 0.341 0.009 1.041

Strength x 
Visuospatial

0.145 0.285 1.187

Activity x
Visuospatial

-0.025 0.852 1.172

Precuneus, R

Physical 
performance

Single 
(enter)

Grip strength * 0.125 -0.380 0.009

Timed walk -0.001 0.149 0.328

Physical activity * 0.092 -0.335 0.023

Weight loss -0.017 0.075 0.621

Exhaustion -0.006 0.130 0.390

Multiple 
(stepwise)

Grip strength * 0.123 -0.378 0.011 1.000

Timed walk 0.021 0.893 1.137

Physical activity -0.232 0.116 1.090

Weight loss 0.081 0.574 1.000

Exhaustion 0.052 0.721 1.045

Cognitive 
performance

Single 
(enter)

Memory * 0.067 0.297 0.045

Visuospatial -0.020 -0.051 0.734

Executive -0.001 0.145 0.336

Language 0.038 0.195 0.195

MMSE-K -0.019 0.061 0.687

Multiple 
(stepwise)

Memory * 0.067 0.297 0.045 1.000

Visuospatial -0.136 0.367 0.935

Executive 0.056 0.718 0.897

Language 0.124 0.413 0.928

MMSE-K -0.123 0.471 0.739

Physical & 
Cognitive 
performances

Multiple 
(stepwise)

Grip strength * 0.186 -0.324 0.025 1.075

Memory * 0.308 0.032 1.061

Strength x Memory -0.154 0.284 1.119

Asterisks indicate significant results at p-value < 0.05. (Abbreviations: R = right, MMSE-K = 
Korean version of Mini-Mental State Examination, Adj. R2 = adjusted R2, VIF = variance 
inflation factor)
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Dynamic functional connectivity of brain networks4.4

4.4.1 Functional connectivity networks 

Figure 9 displays spatial maps of independent components identified using group 

ICA and classified into seven functional networks. BG network consists of IC 30, 

and AUD network consists of IC 33. SM network consists of ICs 2, 3, 4, 6, 29, 32, 

and 39, and VIS consists of ICs 1, 5, 9, 27, 40, 49, and 50. CC network included 

ICs 12, 19, 28, 35, and 45, and DM network included ICs 8, 10, 16, 17, 18, 34, and 

38. CB network included ICs 11, 14, 26. Details on brain region name, T-value and 

coordinates of peak activation, and size of clusters obtained by using one-sample t-

test for each component are listed in Table 7 (family-wise error corrected p < 0.01, 

cluster size > 100 contiguous voxels). 

Figure 10 displays the averaged static functional connectivity matrix 

between independent components of the functional networks across the subjects. 

Positive within-network functional connectivity is observed, while weak or even 

negative connectivity is observed between two different functional networks, as 

previously observed (Allen et al., 2014).
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Table 7. Brain regions of independent components (IC) of intrinsic connectivity networks

Brain region k T-value x y z

Basal ganglia (BG) network

IC 30 Putamen, L 196 13.41 -24 3 3

Putamen, R 273 12.31 21 6 -3

Auditory (AUD) network

IC 33 Superior temporal gyrus, R 1025 19.11 63 -21 3

Superior temporal gyrus, R 15.22 57 -18 9

Superior temporal gyrus, R 14.95 60 -33 9

Superior temporal gyrus, L 745 13.22 -60 -18 3

Superior temporal gyrus, L 12.37 -48 -24 3

Superior temporal gyrus, L 11.71 -60 -30 9

Somatomotor (SM) network

IC 02 Postcentral gyrus, L 606 25.46 -57 -9 24

Postcentral gyrus, L 21.57 -57 -6 33

Postcentral gyrus, L 8.47 -57 -9 48

Postcentral gyrus, R 743 22.65 54 -6 27

Precentral gyrus, R 20.29 54 -9 39

Postcentral gyrus, R 19.96 63 -3 33

IC 03 Precentral gyrus, R 1302 21.36 42 -21 60

Postcentral gyrus, R 21.10 42 -33 63

Precentral gyrus, R 21.01 33 -15 69

IC 04 Postcentral gyrus, L 1643 19.02 -45 -33 57

Precentral gyrus, L 17.62 -39 -18 60

Postcentral gyrus, L 16.62 -36 -36 48

IC 06 Paracentral lobule, L 2027 20.41 0 -18 63

Paracentral lobule, L 18.87 -3 -33 60

Paracentral lobule, R 18.19 9 -36 69

IC 29 Superior parietal gyrus, R 2545 18.55 30 -60 57

Superior parietal gyrus, L 18.28 -18 -63 60

Superior parietal gyrus, L 17.97 -21 -72 54

IC 32 Supramarginal gyrus, R 980 17.57 63 -33 39

Supramarginal gyrus, R 17.49 63 -24 36

Supramarginal gyrus, R 15.04 60 -24 24

Supramarginal gyrus, L 365 13.32 -63 -27 33

Inferior parietal gyrus, L 9.40 -48 -42 54

Inferior parietal gyrus, L 8.08 -42 -42 45

Middle frontal gyrus, R 203 12.11 42 42 21

Inferior frontal gyrus (triangular), R 9.89 48 39 6

Middle frontal gyrus, R 6.78 33 51 27

Inferior frontal gyrus (opercular), R 232 10.63 54 12 9

Inferior frontal gyrus (opercular), R 10.56 48 12 15
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Inferior frontal gyrus (opercular), R 9.79 60 15 30

IC 39 Supplementary motor area, L 1090 15.11 -9 -9 51

Supplementary motor area, R 11.86 3 -12 60

Middle cingulate, R 11.74 15 -9 45

Visual (VIS) network

IC 01 Middle occipital gyrus, L 2265 30.77 -24 -93 -3

Middle occipital gyrus, L 26.31 -21 -102 0

Calcarine gyrus, R 25.99 21 -99 0

IC 05 Superior occipital gyrus, R 1964 21.90 21 -90 24

Cuneus, R 21.26 6 -90 24

Cuneus, R 20.80 12 -87 42

IC 09 Calcarine gyrus, L 2600 23.86 -15 -66 6

Calcarine gyrus, L 20.68 -3 -72 18

Calcarine gyrus, L 20.35 -9 -66 15

IC 27 Middle occipital gyrus, L 1245 17.10 -33 -90 24

Middle occipital gyrus, L 15.66 -24 -93 30

Middle occipital gyrus, L 14.88 -39 -90 12

IC 40 Middle occipital gyrus, R 840 21.90 42 -78 33

Middle temporal gyrus, R 13.96 54 -60 21

Middle temporal gyrus, R 7.37 57 -48 6

Middle occipital gyrus, L 375 18.15 -33 -78 36

Angular gyrus, L 9.62 -54 -69 24

Precuneus, R 200 10.57 6 -66 57

Superior parietal gyrus, R 9.60 15 -75 54

Precuneus, L 9.36 -6 -69 57

IC 49 Middle temporal gyrus, R 1040 23.05 54 -66 9

Middle temporal gyrus, R 22.29 54 -72 3

Inferior temporal gyrus, R 15.63 51 -72 -9

Middle occipital gyrus, L 556 18.82 -45 -78 3

Inferior occipital gyrus, L 14.02 -45 -78 -9

Middle occipital gyrus, L 10.66 -36 -93 0

IC 50 Lingual gyrus, R 815 15.02 24 -57 -9

Fusiform gyrus, R 14.48 27 -72 -6

Fusiform gyrus, R 14.31 30 -57 -15

Fusiform gyrus, L 397 13.45 -30 -69 -12

Fusiform gyrus, L 9.83 -36 -63 -18

Lingual gyrus, L 9.70 -21 -66 -12

Cognitive control (CC) network

IC 12 Middle frontal gyrus, L 865 17.94 -36 48 15

Superior frontal gyrus, L 14.25 -27 60 12

Middle frontal gyrus, L 13.60 -36 42 30

Middle frontal gyrus, R 785 14.67 39 39 33

Superior frontal gyrus, R 13.60 33 57 15
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Middle frontal gyrus, R 13.44 42 51 12

IC 19 Superior frontal gyrus, L 756 16.58 -36 57 0

Inferior frontal gyrus (triangular), L 15.88 -48 39 -3

Inferior frontal gyrus (triangular), L 13.80 -39 36 0

Inferior frontal gyrus (orbital), R 303 10.24 45 45 -12

Orbitofrontal gyrus (anterior), R 9.93 39 51 -15

Inferior frontal gyrus (triangular), R 9.90 48 39 -3

IC 28 Supplementary motor area, L 1518 19.92 -12 15 66

Superior frontal gyrus, R 13.78 18 21 63

Superior frontal gyrus, L 13.76 -24 21 60

IC 35 Supramarginal gyrus, L 531 22.38 -57 -51 30

Middle temporal gyrus, L 8.05 -54 -66 18

Inferior parietal gyrus, L 6.96 -42 -60 51

Supramarginal gyrus, R 424 16.63 60 -48 36

Angular gyrus, R 15.24 60 -54 27

Supramarginal gyrus, R 12.34 54 -42 27

IC 45 Inferior frontal gyrus (triangular), R 860 16.71 48 21 27

Inferior frontal gyrus (triangular), R 15.98 42 18 21

Inferior frontal gyrus (opercular), R 15.63 54 21 33

Inferior frontal gyrus (triangular), L 381 12.83 -48 21 27

Inferior frontal gyrus (opercular), L 10.71 -45 12 27

Inferior frontal gyrus (triangular), L 10.24 -51 33 18

Default mode (DM) network

IC 08 Angular gyrus, L 1176 25.50 -42 -69 45

Inferior parietal gyrus, L 22.96 -42 -60 51

Inferior parietal gyrus, L 18.93 -45 -57 42

Inferior frontal gyrus (triangular), L 208 12.63 -45 48 3

Middle frontal gyrus, L 9.15 -39 45 -6

Superior frontal gyrus, L 8.38 -18 57 6

Middle frontal gyrus, L 515 12.58 -27 24 57

Middle frontal gyrus, L 11.91 -36 24 51

Middle frontal gyrus, L 10.68 -48 24 36

Angular gyrus, R 188 12.24 48 -69 42

Inferior parietal gyrus, R 8.35 48 -51 51

Middle temporal gyrus, L 237 11.99 -60 -42 -12

Inferior temporal gyrus, L 8.46 -54 -54 -12

Inferior temporal gyrus, L 8.28 -63 -24 -18

IC 10 Superior frontal gyrus (medial), L 2036 24.57 -3 48 24

Superior frontal gyrus (medial), L 22.97 3 51 30

Superior frontal gyrus (medial), R 20.87 6 51 18

IC 16 Precuneus, L 1691 26.31 -3 -66 36

Posterior cingulate, L 20.12 -3 -51 30

Precuneus, L 17.89 -12 -63 30
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Angular gyrus, L 185 10.89 -45 -66 36

Angular gyrus, L 10.31 -39 -75 42

IC 17 Angular gyrus, R 971 25.89 42 -66 51

Inferior parietal gyrus, R 25.52 48 -57 48

Inferior parietal gyrus, R 23.32 54 -57 42

Middle frontal gyrus, R 340 13.06 42 48 -3

Superior frontal gyrus, R 12.30 30 54 -6

Middle frontal gyrus, R 11.39 33 54 3

Middle frontal gyrus, R 303 12.12 36 21 45

Middle frontal gyrus, R 11.80 39 18 54

Middle frontal gyrus, R 11.21 39 30 42

Inferior temporal gyrus, R 137 9.42 60 -54 -12

Inferior temporal gyrus, R 8.84 63 -42 -12

Middle temporal gyrus, R 8.17 66 -30 -15

IC 18 Superior frontal gyrus, L 1743 14.56 -15 36 51

Superior frontal gyrus, R 13.15 18 36 48

Middle frontal gyrus, L 13.14 -21 24 48

IC 34 Middle temporal gyrus, L 861 15.02 -54 -39 0

Middle temporal gyrus, L 11.92 -63 -30 -6

Middle temporal gyrus, L 11.27 -54 -63 18

IC 38 Inferior temporal gyrus, R 994 14.48 51 -18 -21

Inferior temporal gyrus, R 11.83 57 0 -27

Inferior temporal gyrus, R 11.44 57 -24 -24

Cerebellar (CB) network

IC 11 Vermis 1320 22.71 3 -57 -27

Cerebellum, R 16.34 21 -54 -30

Cerebellum, R 15.53 9 -60 -21

IC 14 Cerebellum, R 1496 16.42 33 -84 -39

Cerebellum, R 14.95 33 -63 -39

Cerebellum, R 14.52 15 -84 -42

IC 26 Cerebellum, L 1309 13.00 -18 -81 -39

Cerebellum, L 12.83 -36 -66 -39

Cerebellum, L 12.61 -30 -81 -39

The coordinates are the peak activation in Montreal Neurological Institute space from one-
sample t-test of independent component spatial maps of all subjects at family-wise error 
corrected p-value < 0.01 and cluster extent size (k) > 100 voxels. (Abbreviations: IC = 
independent component, L = left, R = right)
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Figure 10. Averaged static functional connectivity matrix between independent 

components grouped into seven functional networks. The left and bottom of the matrix 

shows the index number of independent components. Warm color indicates positive 

functional connectivity, and cool color indicates negative functional connectivity. 

(Abbreviations: BG = basal ganglia, AUD = auditory, SM = somatomotor, VIS = visual, 

CC = cognitive control, DM = default mode, CB = cerebellar) 
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4.4.2 Dynamic functional connectivity states

Four functional connectivity state patterns were identified using k-means clustering 

analysis and elbow method (Figure 11). Figure 12 displays cluster centroids of 

each functional connectivity state, which are the median of the functional 

connectivity matrices assigned to the state. State 1 accounts for 43 % of all 

windows and resembles the pattern of the static functional connectivity matrix. It 

exhibits mostly sparse and positive functional connectivity within networks. State 

2 is the second most frequent state, which shows stronger functional connectivity 

(both positive and negative) between networks than State 1. The degree of 

functional connectivity strengths within- and between-networks of State 2 appears

to lie intermediate between those of State 1 and State 3. Positive functional 

connectivity between sensorimotor networks including AUD, SM, and VIS 

networks and positive DM network connectivity are notably observed. State 3 

shows strong positive functional connectivity between SM, AUD, and VIS

networks, and strong negative functional connectivity between SM, CC, and DM 

networks. Cerebellar functional connectivity is also heightened. State 4 is the least 

frequently reoccurring, and it is distinguished from the other states by a differential 

pattern of reduced functional connectivity of sensorimotor networks. SM network 

shows asynchronous activations with sensory networks as well as with CB network. 

Strong within-network couplings of CB network and more disintegrated couplings 

of DM network are also evident. Group-specific centroids of the states were 

calculated by averaging subject-specific centroids for subjects with finite 

correlations for each group (Figure 13). Similar patterns and frequencies of 

dynamic functional connectivity states were evident for each group. 
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Figure 11. Elbow plot for k-means clustering method. Dispersion ratio is the 
ratio of the sum of within-cluster distance to the sum of between-cluster 

distance, at each k value. The optimal number of clusters indicated by elbow 
point in the plot is determined to be four. 
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4.4.3 Validation results of dynamic functional connectivity states

Reproducibility analyses confirmed the robustness of the k-means clustering 

analysis results. The results demonstrated that the functional connectivity patterns 

and relative reoccurrences of the states persisted for different numbers of k (Figure 

14). Furthermore, the additional cluster centroids observed when using a higher 

value of k, resembled the patterns of centroids at k = 4, which supports the optimal 

value of k used in the current results. For bootstrap samples, the occurrences of 

dynamic functional connectivity states were similar with the original data. The 

number of occurrences of State 1 and State 2 for original data lied well within the 

95 % confidence intervals of the average number of occurrences for bootstrap 

samples (Table 8, Figure 15). The functional connectivity patterns of states for 

bootstrap datasets highly resembled the pattern for original dataset (Figure 16).
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Figure 14. Cluster centroids for a range of k. The number of occurrences and percentages 
are displayed above the cluster centroid. The rectangle highlights the optimal number of 

clusters which are used in the further analysis.
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Table 8. Occurrences of dynamic functional connectivity states for original and bootstrap 
resampled datasets 

Original dataset Bootstrap resampled datasets

Total number 
of occurrences

Occurrences 
in %

Total number of 
occurrences (95 % C.I.)

Occurrences 
in %

State 1 1890 42.8 1903 (1846 – 1960) 43.1

State 2 1204 27.3 1112 (1045 – 1178) 25.2

State 3 774 17.5 690 (647 – 734) 15.6

State 4 548 12.4 710 (670 – 750) 16.1

(Abbreviations: C.I. = confidence interval)
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Figure 15. Occurrences of dynamic functional connectivity states for original (left) and 
bootstrap resampled (right) datasets.
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4.4.4 Temporal properties of dynamic functional connectivity states

Table 9 and Figure 17 summarize the temporal properties of the functional 

connectivity states. The number of state transitions was 3.65 (± 2.81) and 3.77 (±

2.64) in robust group and at-risk group, respectively, and the group difference 

failed to reach a statistical significance. The fractional windows of State 1 and 

State 3 are 13 % lower and 11 % higher in at-risk group than in robust group, 

however, the changes in fractional windows in at-risk group were not statistically 

significant. Similarly, the mean dwell time of State 1 in at-risk group is shorter 

(mean: 18.84 ± 24.92 windows) compared to robust group (mean: 31.4 ± 33.99 

windows), whereas the mean dwell time of State 3 is relatively longer in at-risk 

group (mean: 14.61 ± 25.06 windows) than in robust group (mean: 6.66 ± 6.58 

windows). Nevertheless, the group difference in the mean dwell time did not reach 

the statistical significance.

In addition to the temporal properties of the connectivity states, the 

occurrence of states as a function of time was examined (Figure 18). It is evident 

that State 1 appears throughout the scan time in a large number of subjects in each 

group. The expression of State 1 changes with the changes in the expression of 

State 2 and State 3, meaning that the expression of State 2 and State 3 increases 

when State 1 is expressed less. In robust group, the number of occurrences of State 

2 slowly drops as the scan progress, whereas it remains relatively high until the end 

of the scan time in at-risk group. One striking feature in the occurrence of states in 

at-risk group is that State 3 is expressed in a relatively large number of subjects, 

and it persists throughout the scan time. State 4 is increasingly more frequently 

appearing over time similarly in both groups. 
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Table 9. Temporal properties of dynamic functional connectivity states

Robust (n = 20) At-risk (n = 26) p-value¶

Number of transitions 3.65 (2.81) 3.77 (2.64) 0.881

Fractional windows State 1 0.50 (0.36) 0.37 (0.43) 0.218

State 2 0.25 (0.34) 0.29 (0.35) 0.774

State 3 0.11 (0.15) 0.22 (0.29) 0.355

State 4 0.13 (0.30) 0.12 (0.24) 0.804

Mean dwell time State 1 31.35 (33.99) 18.84 (24.92) 0.444

State 2 12.01 (20.07) 14.47 (21.32) 0.720

State 3 6.66 (33.99) 14.61 (25.06) 0.411

State 4 8.35 (21.90) 7.08 (19.24) 0.782

Values are means (standard deviations)
¶ Using chi-square test
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Figure 17. Box plots of (A) number of transitions, (B) fractional windows, and (C) mean 
dwell time of dynamic functional connectivity states in robust and at-risk group. 

Whiskers show 10 - 90 percentiles, and (+) sign shows a mean.
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Figure 18. Occurrences of dynamic functional connectivity states as a function of time.
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4.4.5 Relationships between dynamic functional connectivity measures and 

physical and cognitive performances

As displayed in Table 10 and Figure 19, multiple regression analyses revealed that 

the reductions in the fractional windows and mean dwell time of State 1 correlated 

with decreasing handgrip strength (β = 0.395 and 0.450, p = 0.007 and 0.001, 

respectively), meaning that individuals with muscle weakness were less likely to 

enter and stay long in State 1. The fractional windows of State 2 negatively 

correlated with MMSE-K (β = -0.393, p = 0.008), reflecting that patients with 

higher reoccurrence of State 2 during resting state display poorer MMSE-K scores. 

Increasing mean dwell time in State 2 also correlated with lower MMSE-K score 

(β = -0.469, p = 0.001).
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Table 10. Multiple regression analysis results for physical and cognitive performances 
associated with temporal properties of dynamic functional connectivity states

Adj. R2 β p VIF

State 1 fractional windows
Physical 
performance

Single 
(enter)

Grip strength * 0.139 0.397 0.006

Timed walk 0.010 -0.181 0.235

Physical activity * 0.101 0.318 0.031

Weight loss -0.022 0.020 0.894

Exhaustion -0.010 -0.112 0.460

Multiple 
(stepwise)

Grip strength 0.137 0.395 0.007 1.000

Timed walk -0.050 0.744 1.137

Physical activity 0.206 0.162 1.090

Weight loss 0.015 0.914 1.000

Exhaustion -0.030 0.839 1.045

Cognitive 
performance

Single 
(enter)

Memory 0.030 0.227 0.130

Visuospatial -0.017 0.072 0.635

Executive 0.020 0.205 0.172

Language -0.014 0.092 0.554

MMSE-K 0.024 0.214 0.152

Multiple 
(stepwise)

none

State 1 mean dwell time
Physical 
performance

Single 
(enter)

Grip strength * 0.168 0.432 0.003

Timed walk 0.021 -0.209 0.168

Physical activity * 0.090 0.332 0.024

Weight loss -0.023 0.002 0.988

Exhaustion -0.001 -0.147 0.329

Multiple 
(stepwise)

Grip strength 0.166 0.430 0.003 1.000

Timed walk -0.068 0.648 1.137

Physical activity 0.216 0.135 1.090

Weight loss -0.004 0.975 1.000

Exhaustion -0.059 0.678 1.045

Cognitive 
performance

Single 
(enter)

Memory 0.055 0.276 0.064

Visuospatial 0.030 0.228 0.128

Executive -0.005 0.131 0.385

Language 0.037 0.241 0.107

MMSE-K 0.008 0.175 0.246

Multiple 
(stepwise)

none

State 2 fractional windows

Physical 
performance

Single 
(enter)

Grip strength 0.014 -0.189 0.207

Timed walk -0.013 0.099 0.520

Physical activity -0.017 -0.077 0.610

Weight loss -0.017 -0.078 0.608
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Exhaustion -0.015 -0.088 0.559

Multiple 
(stepwise)

none

Cognitive 
performance

Single 
(enter)

Memory 0.047 -0.261 0.079

Visuospatial 0.025 -0.217 0.147

Executive 0.043 -0.254 0.089

Language -0.014 -0.094 0.536

MMSE-K * 0.166 -0.430 0.003

Multiple 
(stepwise)

MMSE-K * 0.166 -0.430 0.003 1.000

Memory -0.057 0.726 1.354

Visuospatial -0.124 0.383 1.057

Executive -0.129 0.375 1.116

Language -0.046 0.741 1.013

State 2 mean dwell time

Physical 
performance

Single 
(enter)

Grip strength -0.003 -0.141 0.352

Timed walk 0.008 0.174 0.253

Physical activity -0.021 -0.035 0.816

Weight loss -0.023 0.001 0.992

Exhaustion -0.015 -0.086 0.568

Multiple 
(stepwise)

none

Cognitive 
performance

Single 
(enter)

Memory -0.003 -0.140 0.355

Visuospatial 0.008 -0.173 0.250

Executive 0.062 -0.287 0.053

Language 0.014 -0.189 0.209

MMSE-K * 0.211 -0.478 0.001

Multiple 
(stepwise)

MMSE-K * 0.211 -0.478 0.001 1.000

Memory 0.142 0.363 1.354

Visuospatial -0.065 0.638 1.057

Executive -0.149 0.293 1.116

Language -0.137 0.310 1.013

Asterisks indicate significant results at p-value < 0.05. (Abbreviations: MMSE-K = Korean 
version of Mini-Mental State Examination, Adj. R2 = adjusted R2, VIF = variance inflation factor)
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Figure 19. Plots of significant correlations between temporal properties of dynamic 
functional connectivity states and physical (above) and cognitive (below) performances. 

(Abbreviations: MMSE-K = Korean version of Mini-Mental State Examination)
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4.4.6 Functional connectivity strengths in states

The functional connectivity strengths between independent network components 

for each state were compared between robust and at-risk groups, and the results in 

Figure 20 shows that the functional connectivity strengths between sensorimotor 

networks and cognitive networks were altered in at-risk group. In State 2, the 

functional connectivity between SM and CC networks was decreased, while 

functional connectivity the between VIS and DM networks was enhanced in at-risk 

group compared to robust group. Within CC network, the functional connection 

was also abnormally elevated in State 3 in at-risk group. 

Relationships between functional connectivity strength changes between 

the network components with frailty phenotype measures and cognitive functions 

were also explored. However, the functional connectivity changes did not show 

any significant associations. 
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Figure 20. Changes in functional connectivity strengths between independent components 
in State 2 and State 3. Warm color indicates increased functional connectivity strength in 

at-risk group compared to robust group, and cool color indicates decreased functional 
connectivity strength. (Abbreviations: BG = basal ganglia, AUD = auditory, SM = 

somatomotor, VIS = visual, CC = cognitive control, DM = default mode, CB = cerebellar)
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4.4.7 Dynamic changes of global and local network efficiency

The variability of network efficiency metrices over time was obtained by 

calculating interquartile range of the AUC values for each subject (Figure 21). 

Both global and local efficiency did not reach the statistical significance in group 

differences of the variability (Figure 22), although the variability in global 

efficiency had a tendency to be higher in at-risk group (p = 0.093, Mann-Whitney 

U test). 



73

0 20 40 60 80
0.08

0.10

0.12

0.14

0.16

0.18

0.20

Windows

A
U

C

Global efficiency Robust

At-risk

0 20 40 60 80
0.14

0.16

0.18

0.20

0.22

0.24

0.26

Windows

A
U

C

Local efficiency Robust

At-risk

Figure 21. Dynamic changes in global efficiency (above) and local efficiency 
(below) of brain networks during the scan time. Black line indicates changes in 

robust group, and red line indicates changes in at-risk group. (Abbreviations: AUC = 
area under curve)
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Chapter 5. Discussion

Metabolic and functional abnormalities in cognitive frailty5.1

The first part of the study was to explore alterations in metabolic and functional 

activities in patients with MCI with and without physical frailty. [18F]FDG PET 

results showed that glucose metabolism was reduced in bilateral superior parietal 

cortex, right middle frontal cortex, and anterior cingulate in at-risk group. The 

reduced glucose metabolism in left superior parietal cortex was associated with 

weaker handgrip strength as well as with poorer performance in executive function. 

Regional synchronizations of functional activity measured by ReHo indicated 

reductions in bilateral caudate, right superior temporal cortex, right superior frontal 

cortex, and left cerebellum in at-risk group compared to robust group. Increased 

ReHo was also found in right precuneus and left cerebellum. The reduced ReHo in 

caudate was correlated with weaker handgrip strength and slowing of gait speed 

and also with language dysfunction. The reduction of ReHo in right superior 

temporal cortex was correlated with weakening of handgrip strength and a low 

level of physical activity, and it was also associated with a poorer performance in 

visuospatial function. Abnormally increased ReHo in right precuneus in at-risk 

group was associated with weak handgrip strength and memory function. 

Our neuroimaging study demonstrated hypometabolism in parietal cortex, 

frontal cortex, and cingulate in patients with cognitive frailty, which is known as

the hallmark of AD.  The pattern of cortical metabolic changes in parieto-temporal, 

frontal, and cingulate areas has been useful to predict the conversion to AD in early 

stages and to distinguish AD from other neurodegenerative diseases (Mosconi, 
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2005). Despite no distinguishing cognitive impairments in at-risk individuals 

compared to robust group, our results indicate the expression of AD-related 

metabolic pattern in the presence of physical frailty. The metabolic abnormality in 

superior parietal cortex observed in at-risk individuals was clearly associated with 

physical disturbances as well as with cognitive dysfunctions. Posterior parietal 

cortex is known to be primarily involved in visuospatial attention, visually guided 

motor planning, and spatial representations in visuospatial tasks (Ghanavati, 

Salehinejad, Nejati, & Nitsche, 2019; Gurd et al., 2002; Kimberg, Aguirre, & 

D'Esposito, 2000; Sohn, Ursu, Anderson, Stenger, & Carter, 2000). Beyond 

visuospatial processing, the region is also implicated in working memory which 

underlies verbal fluency tasks (Gurd et al., 2002; Koenigs, Barbey, Postle, & 

Grafman, 2009; Sohn et al., 2000). Thereby, our results indicate that when 

accompanying physical weakness in MCI, the parietal cortex is significantly 

affected, and it may lead to exacerbation of cognitive decline in executive 

functions. Although no correlations between hypometabolism in frontal regions 

and anterior cingulate with physical performances in MCI were observed, the 

findings still signify that frontal and cingulate regions which are the core regions of 

high-order cognitive functions are considerably compromised in at-risk individuals, 

and it can be speculated that hypometabolism in frontal and anterior cingulate 

regions that are implicated in various cognitive functioning may lead to the 

emergence of related cognitive deficits at a faster rate in cognitive frailty. 

Local synchronizations were noticeably decreased in caudate, right 

superior temporal cortex, and right frontal cortex in at-risk group. The functional 

changes in caudate was associated with handgrip weakness, slowness as well as 

with language dysfunction. Similar to our results, Chen et al. (2015) reported gray 
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matter atrophy in bilateral caudate in associations with physical weakness in older 

adults. Caudate controls the initiation and execution of voluntary motor activity, 

and its abnormal functional activity may be related to physical impairments that 

involve voluntary movements such as hand-gripping and walking. The functional 

activity of the region was also associated with performance in language. According 

to literature, caudate plays a role as a center for language control and participates 

to regulate articulation and comprehension of words and speech (Crinion et al., 

2006). Furthermore, the region is functionally and anatomically connected with 

frontal areas, which implies that the structure is important for cognitive processes 

during language tasks, and damage to this area gives rise to language processing 

deficits (Gil Robles, Gatignol, Capelle, Mitchell, & Duffau, 2005; Gronholm, Roll, 

Horne, Sundgren, & Lindgren, 2016; Hillis et al., 2004). Abnormal functional 

activity in superior temporal cortex was evident in at-risk group and was linked to 

weak handgrip strength and low physical activity. Even though it is yet unsettled, 

the role of superior temporal cortex has been suggested in execution and 

observation of action (Kilintari, Raos, & Savaki, 2014), which helps explain our 

findings. The temporal region, which corresponds to Brodmann area 38 is one of 

the earliest regions affected in AD pathogenesis (Arnold, Hyman, Flory, Damasio, 

& Van Hoesen, 1991; Ding, Van Hoesen, Cassell, & Poremba, 2009), and is part of 

functional circuits involved in many higher brain functions such as memory, visual 

processing and language (Ardila, Bernal, & Rosselli, 2014; Ding et al., 2009). In 

line with this, the functional changes in superior temporal cortex has been 

associated with performance in visuospatial tests in our cohorts. Interestingly, right 

precuneus was abnormally highly synchronized in at-risk group, and positively 

correlated with memory function. As described above, the posterior cortex is 
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closely linked to various cognitive processes including memory (Cavanna & 

Trimble, 2006), and the elevation of functional synchronization in precuneus may 

reflect initial compensatory response prior to significant memory dysfunction in 

MCI. In short, we observed that in cognitive frailty, the metabolic and functional 

activity in several brain regions including parietal cortex, temporal cortex, and 

caudate, where are the regions that are primarily affected in early stages of AD, 

were significantly reduced, and the alterations were also relevant to cognitive 

decline. 

Several neuroimaging studies have been conducted to investigate brain 

structural changes in associations with frailty components, and the results agreed 

that brain volume or integrity reductions are found in phenotypes of frailty 

(Camicioli, Moore, Sexton, Howieson, & Kaye, 1999; Rosano et al., 2010). For 

example, frail subjects showed increased ventricular size and increased white 

matter abnormalities (Newman et al., 2001; Rosano et al., 2005), and diffuse brain 

atrophy was associated with slowing of gait speed (Carmelli et al., 2000; Rosano et 

al., 2010). Gray matter volume reductions in dorsolateral prefrontal regions, basal 

ganglia, superior posterior parietal cortex, and cerebellum were also reported in 

association with slow gait speed (Rosano et al., 2007). Consistent to the previous 

findings, we also observed hypometabolism in bilateral superior parietal cortex, 

and functional alterations in caudate and superior temporal cortex, which were 

linked to physical impairments in cognitive frailty. Furthermore, the regional 

changes were also associated with cognitive functions including executive, 

visuospatial, and language functions. 

As described previously, frailty and dementia are thought to share common 

neuropathological mechanisms, and it has been established that frailty is directly 



79

influenced by AD pathology which leads to cognitive impairments (Buchman et al., 

2008; Panza et al., 2011; Robertson et al., 2013; Schneider et al., 2006). In frailty 

without dementia, neurofibrillary tangles affected gait disturbances and eventually 

lead to development of dementia of AD. Moreover, a growing body of 

neuroimaging evidence revealed that amyloid-β accumulation in brain was 

associated with increasing frailty in older adults (Maltais et al., 2019; Yoon et al., 

2018). In line with this, our findings support that significant functional 

abnormalities in brain regions that are specifically affected in AD dementia. Along 

with AD pathology, several other risk factors such as cardiovascular factors and 

aging-related biological parameters that are known to contribute to the 

development of frailty and dementia may also play a crucial role in the relationship 

between frailty and cognitive impairments (Langlois et al., 2012; Panza et al., 2018; 

Patrick, Gaskovski, & Rexroth, 2002; Ruan et al., 2015).

To sum up, our findings revealed that parietal, temporal and frontal cortex 

are mainly affected by handgrip strength, gait speed, and physical activity, and are 

closely linked to cognitive deteriorations in MCI. 

Alterations of dynamic functional connectivity states in cognitive frailty5.2

The second part of the study was to investigate alterations in dynamic functional 

connectivity patterns in MCI with and without physical frailty. The current study 

indicated that four functional connectivity patterns were identified in patients with 

MCI, and the temporal features of the connectivity states showed relationships with 

phenotypes of physical frailty as well as with cognitive function. The most 

frequently reoccurring State 1 displayed within-network connections with 

relatively weak between-network connections, while less frequently reoccurring 
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State 2 and State 3 exhibited stronger inter- and intra-connected networks in both 

positive and negative fashions. Despite no significant group differences found in 

the temporal properties of the states, it was detected that weaker handgrip strength 

was significantly correlated with the less reoccurrence and shorter mean dwell time 

of within-network State 1. On the other hand, the expression and mean dwell time 

of State 2 were elevated as MMSE-K score declined in MCI. 

Our observations confirmed that resting state networks are vulnerable in 

pathological conditions as well as in normal aging. Formerly, there has been 

consistent evidence that the functional connectivity within brain network systems 

is compromised, paralleled by a relative increase in between-network interactions 

in healthy aging and in neurodegenerative diseases (Chan, Park, Savalia, Petersen, 

& Wig, 2014; Elman et al., 2016; Kim et al., 2017). The weaker within-network 

functional connectivity is interpreted as a decline of functional segregation or 

functional specificity with which neural networks mediate specialized processing 

roles (Chan et al., 2014; Sporns, 2013). Meanwhile, between-network interactions 

increase with continual aging, which may be perceived as adaptive responses to 

age-related alterations and beneficial effects to an individual. Rather, the 

abnormally increased interactions across distinct systems blur the functional 

specificity and diminish within-network communications, leading to negative 

outcomes on cognitive function (Chan et al., 2014). Comparatively, in at-risk 

individuals the expression of within-network State 1 was dropped by 13 %, while 

the expression of between-network State 2 and State 3 was risen by approximately 

the same amount. Furthermore, the reduced functional segregation was correlated 

with physical weakness and cognitive decline. Our results clearly characterize the 
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trend reported in aging processes and are suggestive of accelerated changes in MCI 

with physical frailty. 

Intensive studies have demonstrated that within neural networks are 

pathologically disconnected in MCI and dementia (Andrews-Hanna et al., 2007; 

Chen et al., 2017; Seeley, Crawford, Zhou, Miller, & Greicius, 2009), and the 

disruption of large-scale neural networks was clearly associated with cognitive 

dysfunction across a range of domains. Previous dynamic functional connectivity 

studies revealed reduced dwell time in hypo-connected state in association with 

MCI in Parkinson's disease patients, implying that the temporal properties of 

functional networks mirror cognitive performance (Diez-Cirarda et al., 2018). Also, 

the clinical motor symptom severity of Parkinson's disease was also correlated with 

the alteration in dynamic functional connectivity states (Kim et al., 2017). 

In State 1, positive functional connections mainly can be identified within 

distinct functional networks including SM and VIS networks. Similar patterns of 

functional connectivity were consistently evident across many functional network 

studies (Diez-Cirarda et al., 2018; Kim et al., 2017; Schumacher et al., 2019; Wang 

et al., 2015a). As stated above, in our study, the altered functional connectivity 

state of sensory-motor networks was closely linked to physical weakness. 

Previously, a study in cognitively normal older adults evaluated resting state 

connectivity in cortical motor regions and found stronger connectivity with greater 

grip strength (Seidler et al., 2015). The recruitment and activation of motor-related 

regions within the network are crucial for the performance during the motor task, 

and the functional connectivity even at rest is known to be highly predictive of 

brain activations during the task performance (Langan et al., 2010). Taken together, 
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the altered temporal features of State 1 observed in our study may underlie the 

physical impairments in MCI with frailty. 

State 2 can be characterized by stronger connectivity within DM network 

and anti-correlated couplings between DM and sensory networks, and its 

expression was accompanied with poor cognitive function measured by MMSE-K. 

There is a general consensus that DM network is implicated in higher-order 

cognitive functions and self-referential processing and is highly activated during 

resting state in counter-phase with other functional networks (Greicius, Krasnow, 

Reiss, & Menon, 2003). The anti-correlated interactions between DM and 

sensorimotor networks are essential for effective cognitive processing, and 

intensive functional studies have proved disruptions of DM network in MCI and 

AD (Christopher et al., 2015; Greicius, Srivastava, Reiss, & Menon, 2004; Sorg et 

al., 2007; Wang et al., 2015a; Zhu, Majumdar, Korolev, Berger, & Bozoki, 2013). 

In the current results, the overexpression of interactions between DM and 

sensorimotor networks may interfere with network functional specializations, 

which lead to lower MMSE-K score in MCI.

Analyses of functional connectivity strength changes between network 

components displayed that functional connectivity between SM and CC was 

weakened in at-risk group. On the other hand, the connectivity between VIS and 

DM network was heightened. Generally, sensorimotor networks which receive 

external signals convey the signals to attention or cognitive control system to 

interpret the information and induce appropriate responses (Wang et al., 2015a). 

The alterations of functional connectivity between sensorimotor and cognitive 

networks may reflect disrupted communications that are normally required for 

effective cognitive processing of sensorimotor signals. Over decades, sensorimotor 
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network has been thought to remain relatively stable in MCI and AD (Li et al., 

2002; Wang et al., 2012; Wang et al., 2015a), however, recent work demonstrated 

dysfunctional interactions of sensorimotor networks involving motor and visual 

systems (Albers et al., 2015; Cai et al., 2017; Wang et al., 2015a). Hyper-

connectivity within CC network has also been observed in at-risk group, and it may 

represent a network reconfiguration to compensate, for the reduced functional 

segregation reported beforehand, to preserve daily abilities that are relatively intact 

in early stages of MCI. Accordingly, basal functional hyperactivity is often 

observed at the initiation of AD-related pathological processes in MCI, which 

protects against the disease and provides the capacity to withstand deposition of 

AD pathology and to maintain normal cognitive functioning (Cohen et al., 2009; 

Joo, Lim, & Lee, 2016). 

The graph theory-based analyses showed that temporal variations in global 

and local efficiency of functional networks were not significantly different between 

at-risk and robust groups. A higher variability in network efficiency represents 

inefficient and unstable information transfer between and within brain networks. 

Although the breakdown of network functional segregation was apparent in 

association with physical weakness, the network efficiencies were not significantly 

compromised, possibly due to the compensatory network reconfigurations 

observed.

There has been an extensive debate regarding the functional significance 

and the reliability of dynamic functional connectivity analysis. It still remains to be 

discovered what dynamic intrinsic network represents in regards with cognitive

functioning. The dynamic revolutions of brain networks may to some extent mirror 

instant cognitive activities, but also reflect intrinsic physiological properties to 
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some other extent. However, a simultaneous fMRI and electroencephalography 

study by Chang, Liu, Chen, Liu, and Duyn (2013) has demonstrated an electrical 

origin of time-varying functional connectivity, and several lines of evidence also 

determined temporal changes in functional connectivity in relation to behavior (Jia, 

Hu, & Deshpande, 2014; Kucyi, Hove, Esterman, Hutchison, & Valera, 2017; 

Thompson et al., 2013). Furthermore, it has been proved that dynamic states were

affected by pathological conditions (Damaraju et al., 2014; Kim et al., 2017; 

Rashid, Damaraju, Pearlson, & Calhoun, 2014).

Overall, abnormal dynamic functional network patterns which reflect 

reduced functional segregation of brain networks in associations with physical and 

cognitive deficits were found. Also, functional reconfigurations of sensorimotor 

and cognitive networks were found in cognitive frailty.  

Conclusion and limitations of the study5.3

The current study demonstrated metabolic and functional abnormalities in brain 

regions, where are implicated in various cognitive processes including executive, 

visuospatial, and language functions, in associations with physical frailty in MCI. 

Abnormal temporal functional network patterns were also coupled with physical 

weakness and poorer cognitive function, which provide new insights into the role 

of dynamic functional connectivity as a potential neuroimaging biomarker in MCI 

with frailty. 

In the present study, among physical frailty measures, grip strength was a 

strong indicator of neural activity changes and network reconfigurations observed 

in cognitive frailty patients. It has been shown that the muscle strength was 

substantially associated with the risk of cognitive deficits and development of AD, 
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and thus, it suggests that assessment of muscle strength may be of diagnostic utility 

to identify individuals at risk of cognitive decline (Boyle, Buchman, Wilson, 

Leurgans, & Bennett, 2009; Boyle et al., 2010). Although the underlying basis of 

the association between cognitive impairments and muscle strength is uncertain, it 

can be speculated that the underlying aging or disease processes which cause 

mitochondrial dysfunction result in the loss of muscle strength and muscle-

generated energy production (Boyle et al., 2009). This may consequently affect the 

brain and cognitive functioning. There has been a great consensus that physical 

exercise improves cognition and wellbeing by reinforcing brain plasticity 

(Colcombe & Kramer, 2003; Fernandes, Arida, & Gomez-Pinilla, 2017; Mandolesi 

et al., 2018). In fact, there is evidence that exercise induces biochemical and 

structural changes in the brain, and such changes are reflected on cognitive 

functioning (Fernandes et al., 2017; Mandolesi et al., 2018). In this regard, aerobic 

exercise was associated with enhanced functional and structural integrity in brain 

regions that are affected in aging process, such as frontal and temporal cortices, 

and in regions that are collaborated in motor function (Adlard, Perreau, & Cotman, 

2005; Colcombe & Kramer, 2003; Colcombe et al., 2006; Colcombe et al., 2004; 

Erickson et al., 2009; Pereira et al., 2007; Voss et al., 2010), and it was associated 

with improvements in cognitive abilities coordinated by those affected regions 

(Colcombe & Kramer, 2003; Colcombe et al., 2004; Pereira et al., 2007). Although 

the neurobiological mechanisms of cognitive improvements following physical 

exercise, literature demonstrated that physical exercise facilitates the release of 

neurotrophic factors and increases blood flow and glucose metabolism, which 

benefits the brain functioning (Hotting, Schickert, Kaiser, Roder, & Schmidt-

Kassow, 2016; Mandolesi et al., 2017). It is likely that physical exercise promotes 
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blood circulation and synaptic plasticity in the neural circuits implicated in 

cognitive processes (Erickson, Gildengers, & Butters, 2013; Mandolesi et al., 2018; 

Voss et al., 2010). Also, improved physical function may permit to gain cognitive 

and brain reserves in cases of normal ageing and neurodegenerative diseases 

(Chang et al., 2010; Loprinzi, Frith, Edwards, Sng, & Ashpole, 2018; Mandolesi et 

al., 2018). 

There are a few limitations that need to be considered for the current study 

results. First of all, at-risk group included mostly pre-frail individuals who may be 

at a transitional/intermediate phase to frailty, which may have hampered clear 

observations of characteristics of neural activity changes. This may have led to a

low statistical power in the neuroimaging results. Secondly, all the findings are 

based on cross-sectional data, and cannot be interpreted as causal. Stemming from 

this point, our at-risk cohort may include those whose physical impairment 

occurred following cognitive decline. For example, physical dysfunction is often 

reported in patients with cognitive impairments due to obstacles in daily activities 

and impaired motor learning originating from cognitive dysfunction (Ruan et al., 

2015). In such cases, the pathological mechanisms may be different from the others 

with the other way around. Furthermore, the influences of AD-related genetic 

factors (such as APOE-4 gene) and cardiovascular risk factors on functional 

alterations in cognitive frailty need to be taken into consideration in larger samples.

Moreover, the criteria of frailty included categorical variables (the presence of 

weight loss, the presence of exhaustion) which limited the explorations of 

associations of those variables with the metabolic and functional activities and with 

the dynamic properties of functional network connectivity. Additional continuous 

measurements to examine the weight loss and exhaustion may provide a more 



87

complete view of the pathophysiological mechanisms of cognitive frailty. Finally, 

the parameters of rs-fMRI acquisition can be problematic when it comes to 

dynamic functional connectivity analysis. The temporal resolution (i.e. repetition 

time) and length of data acquisition should be improved for a better reliability of 

the results that mirror the dynamics of fluctuations. Also, a priori specification of 

analysis parameters such as the length of window and the number of states can be 

another problematic aspect of the dynamic approach employed in the current study. 
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국문 초록

인지 노쇠에서 FDG PET 과 휴지상태

fMRI 를 이용한 뇌 신경 활동과

기능적 연결성 패턴의 동적 변화 연구

신성아

의과학과 전공

서울대학교 대학원

인지 노쇠는 신체적 노쇠와 경도 인지 장애가 동시에 존재하는 것이

특징적인 최근 정의된 임상적 질환이다. 기존 연구에 의하면 신체적 노쇠와

인지 기능 저하는 공통적인 신경 병리적 기전을 가지는 것으로 알려져 있다.

또한, 신체적 기능 장애는 인지 기능 감소를 촉진하고, 나아가

알츠하이머병 치매 발병까지 연결된다. 신체적 노쇠를 보이는 경도 인지

장애 환자에서의 신경 활동 변화와 동적 뇌 네트워크 재구성 변화에 대한

연구는 아직까지 보고된 바가 없으며, 본 연구 결과를 통하여 뇌 영상

데이터가 인지 노쇠의 중요한 바이오마커의 역할을 할 것으로 기대된다.
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본 연구에서는 [18F]FDG PET 과 rs-fMRI 뇌 영상 검사를 총

48 명의 경도 인지 기능 장애 환자 (신체적 노쇠가 없는 대조군: 21 명,

평균 연령 = 74.7 ± 5.8 세; 신체적 노쇠가 있는 위험군: 27 명, 평균 연령 = 

75.5 ± 7.3 세)를 대상으로 진행하였다. 본 연구의 첫번째 부분에서는

위험군에서의 뇌 영역의 포도당 대사의 변화와 regional homogeneity 를

이용한 뇌 활동 변화를 조사하였다. 위험군에서는 우측 전두피질,

전대상피질, 양측 상두정소엽에서 뇌 대사 감소가 나타났고,

상두정소엽에서의 대사 변화와 악력, 집행 기능과 양의 상관 관계를 보였다.

뇌 영역의 regional homogeneity 변화는 양측 꼬리핵, 우측 내측과 가측

전두피질, 우측 상측두피질, 소뇌에서 감소하는 것으로 보였고, 꼬리핵과

상측두피질에서의 regional homogeneity 감소는 악력, 보행 속도, 신체

활동 감소 수치와 높은 상관성을 보였다. 또한, 언어 및 시공간 기능의 인지

수행 능력과 높은 상관 관계를 보이는 것을 관찰하였다.

본 연구의 두번째 부분은 위험군에서의 뇌 네트워크의 동적 기능적

연결성과 특징 변화를 살펴보았다. 동적 기능적 연결 분석은 sliding-

window 방법과 k-means clustering 방법을 사용하여 뇌 네트워크 연결

구성 상태 (State)를 추정하였다. 휴지기 상태의 영상 촬영 시간 동안 총

4 개의 기능적 연결성 패턴이 발견되었고, 가장 자주 발생하는 State 1 은

주로 뇌 네트워크 내부 연결성을 보이고, 네트워크 간의 연결성은 약한

것이 특징으로 나타났다. 그 다음으로 자주 나타난 State 2, 3, 4 는

네트워크 간의 양과 음의 연결성 모두 강하게 나타났다. State 의 전환 수,

fractional windows, mean dwell time 과 같은 시간적 속성의 그룹 비교

결과는 유의한 수준에 도달하지 못했지만, 위험군에서 State1 의 재발현이

감소되고 State 2, State 3 의 발현 증가가 나타나는 것으로 확인되었다.
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State 1 의 속성 (fractional windows, mean dwell time)이 악력 및 신체

활동량과 양의 상관 관계를 나타냈고, 반면에, 디폴트 모드 네트워크 기능

연결성 증가가 특징적이었던 State 2 의 발현 증가 및 dwell time 증가는

낮은 MMSE-K 점수 저하와 상관이 있는 것을 관찰하였다. 네트워크

변화는 노화현상에서 관측되는 네트워크 기능적 분리 (functional 

segregation)의 감소를 나타내는 것으로 생각되며, 신체적 기능 저하가

이러한 현상을 촉진하는 것으로 보여진다. 뿐만 아니라, 위험군에서

감각운동 네트워크와 인지 기능 네트워크 간의 기능적 연결성과 인지 조절

네트워크 내부 연결성 세기에도 변화가 나타나는 것을 발견하였다.

결론으로는, 뇌 영상 분석 결과에서 인지 노쇠 위험군 환자에서

전두엽, 측두엽 그리고 두정엽에서 기능적 활동 변화가 나타나는 것을

관찰하였고, 이는 신체적 노쇠가 존재할 경우 병리학적 과정이 가속화되는

것으로 추정된다. 뇌 네트워크의 동적 기능적 연결성 분석을 통해 악력

감소와 함께 네트워크 기능적 분리 감소 현상이 두드러지는 것을

확인하였으며, 따라서, 뇌 영상 데이터가 인지 노쇠의 생체 표지자 역할을

할 수 있는 것으로 기대된다.

주요어: 인지 노쇠, FDG PET, rs-fMRI, regional homogeneity, 동적

기능적 연결성

학번: 2014-30671
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