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Abstract

Study on structures of digraphs and graphs

in the aspect of their holes

Soogang Eoh

Department of Mathematics Education

The Graduate School

Seoul National University

This thesis aims at studying phylogeny graphs and graph completions in the

aspect of holes of graphs or digraphs. A hole of a graph is an induced cycle

of length at least four and a graph is chordal if it does not contain a hole.

Specifically, we determine whether the phylogeny graphs of acyclic digraphs

are chordal or not and find a way of chordalizing a graph without increasing

the size of maximum clique not so much. In this vein, the thesis is divided

into two parts.

In the first part, we completely characterize phylogeny graphs of (1, i)

digraphs and (i, 1) digraphs, respectively, for a positive integer i. Then, we

show that the phylogeny graph of a (2, j) digraph D is chordal if the under-

lying graph of D is chordal for any positive integer j. In addition, we extend

the existing theorems computing phylogeny numbers of connected graph with

a small number of triangles to results computing phylogeny numbers of con-

nected graphs with many triangles.

In the second part, we present a minimal chordal supergraph G∗ of a

graph G satisfying the inequality ω(G∗)−ω(G) ≤ i(G) for the non-chordality

index i(G) of G. Using the above chordal supergraph as a tool, we prove

that the family of graphs satisfying the NC property satisfies the Hadwiger

conjecture and the Erdős-Faber-Lovász Conjecture, and the family of graphs

with bounded non-chordality indices is linearly χ-bounded.
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Chapter 1

Introduction

This thesis aims at studying on structures of digraphs and graphs in the

aspect of their holes. We first study the digraphs whose phylogeny graphs

are chordal and phylogeny numbers of graphs in the aspect of the number of

triangles and diamonds. Then we study a way of finding a chordal completion

of a graph without increasing the size of maximum clique not so much.

Now we introduce the basic notions that will be used in the thesis.

1.1 Basic notions

Now we introduce basic notions in graph theory, which shall be frequently

used in this thesis. For undefined terms, readers may refer to [7].

A graph G is defined as an ordered pair (V,E) where V is a set and E

is a family of unordered pairs of elements in V . An element of V and an

element of E are called a vertex and an edge of G, respectively. If e = {u, v}
is an edge, then we simply write it by uv for convenience when there is no

confusion. The set of vertices and the set of edges of a graph G are called

the vertex set and the edge set of G, respectively, and denoted by V (G) and

E(G), respectively.

Let G be a graph and e = uv be an edge of G. Then we say that e joins
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(or connects) u and v, u and v are the end vertices (or ends) of e, and each

of u and v is incident to e. In addition, we write u ∼G v and say that u and

v are adjacent in G.

Let G be a graph and uv be an edge of G. If u = v, then the edge uv is

called a loop. If u 6= v and there are more than one edge connecting u and v,

then uv is called a multiple edge or a parallel edge. We call a graph simple if

it does not have loops and no multiple edges.

Let G be a graph and u be a vertex of G. A vertex of G which is adjacent

to u is called a neighbor of u. The set of all neighbors of u is called the (open)

neighborhood of u and is denoted by NG(u). The degree of the vertex u is

defined to be the number of edges incident to u and is denoted by dG(u) or

degG(u). A vertex with degree 0 is called an isolated vertex. For a positive

integer k, the set of k isolated vertices is denoted by Ik. When there is no

confusion, we sometimes omit the subscript G in the notations defined above.

Two graphs G and H are said to be isomorphic if there exist bijections

fV : V (G) → V (H) and fE : E(G) → E(H) such that for every edge

e ∈ E(G), e connects vertices u and v in G if and only if fE(e) connects

vertices fV (u) and fV (v) in H. If G and H are isomorphic with bijections

fV and fE described above, then we write G ∼= H and call (fV , fE) a graph

isomorphism from G to H.

Let G be a graph. A graph H is called a subgraph of G if V (H) ⊂ V (G)

and E(H) ⊂ E(G). If H is a subgraph G, then G is called a supergraph of H.

For a nonempty subset S of V (G), the subgraph of G induced by S, denoted

by G[S], is the simple graph defined by V (G[S]) = S and E(G[S]) = {uv ∈
E(G) | u, v ∈ S}. For a nonempty proper subset S of V (G), G − S denotes

the subgraph of G induced by V (G) \ S. For notational simplicity, we write

G− v instead of G− {v} for a vertex v of G. An induced subgraph of G is a

graph induced by a nonempty subset of V (G). We say that G is H-free if G

has no induced subgraph which is isomorphic to H.

An edge contraction is an operation which removes an edge from a graph
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while simultaneously merging the two vertices that it previously joined. A

graph H is called a minor of the graph G if H can be formed from G by

deleting edges and vertices and by contracting edges. We say that G is H-

minor-free if G has no minor which is isomorphic to H.

Given a simple graph G, the complement G of G is defined to be a simple

graph obtained by reversing the adjacency of G, i.e., V (G) = V (G) and

E(G) = {uv | uv /∈ E(G)}.
A complete graph Kn is a graph with n vertices in which every pair of

vertices are adjacent. A vertex subset S of V (G) is called a clique if the

induced subgraph G[S] is complete. We sometimes call a complete subgraph

a clique. The clique number of a graph G is defined to be the number of

vertices in a maximum clique and denoted by ω(G).

For a clique K and an edge e of a graph G, we say that K covers e (or e

is covered by K) if and only if K contains the two end points of e. An edge

clique cover of a graph G is a collection of cliques that cover all the edges

of G. The edge clique cover number of a graph G, denoted by θe(G), is the

smallest number of cliques in an edge clique cover of G.

A walk from a vertex v1 to a vertex vk+1 is an alternating sequence

v1, e1, v2, e2, . . . , vk, ek, vk+1

of vertices and edges where each vi (i = 1, . . . , k+1) is a vertex of G and each

ej (j = 1, . . . , k) is an edge of G joining vi and vi+1. The length `(W ) of a walk

W is defined to be the number of edges belonging to it. If there exists a walk

starting from a vertex v to another vertex w, then we say that v and w are

connected by a walk. If any two vertices of a graph G are connected by a walk,

then we say that G is connected. Otherwise, G is said to be disconnected. A

maximally connected subgraph of G is called a (connected) component of G.

It is easy to see that G is connected if and only if G has only one connected

component.

3



A walk

v1, e1, v2, e2, . . . , vk, ek, vk+1

is called a path if v1, . . . , vk+1 are all distinct, and called a cycle if v1 = vk+1

and v1, . . . , vk are all distinct. We denote a path on n vertices by Pn, and a

cycle on n vertices by Cn. If no subgraph of G is a cycle, then G is called

acyclic. A connected acyclic graph is called a tree.

A digraph (or directed graph)D is defined as an ordered pair (V (D), A(D))

where V (D) is a set and A(D) is a family of ordered pairs of elements in

V (D). An element of V (D) and an element of A(D) are called a vertex and

an arc (or directed edge) of D, respectively. The subdigraphs and induced

subdigraphs of a digraph are similarly defined as the subgraphs and induced

subgraphs of a graph. If (u, v) ∈ A(D), then we say that u and v are the tail

and the head of (u, v), respectively, so that the arc (u, v) goes from the tail

u to the head v.

Let D be a digraph and u be a vertex of D. A vertex v is called an out-

neighbor (resp. in-neighbor) of u if (u, v) (resp. (v, u)) is an arc in D. The set

of all out-neighbors (resp. in-neighbors) of u is called the out-neighborhood

(resp. in-neighborhood) of u in D and denoted by N+
D (u) (resp. N−D (u)). The

outdegree d+D(u) is the number of arcs with tail u and the indegree d−D(u) is

the number of arcs with head u.

A directed walk from a vertex v1 to a vertex vk+1 is an alternating sequence

v1, a1, v2, a2, . . . , vk, ak, vk+1

of vertices and arcs where each vi (i = 1, . . . , k + 1) is a vertex and each aj

(j = 1, . . . , k) is an arc from vi to vi+1. The length `(W ) of a directed walk

W is defined to be the number of arcs belonging to it. A directed walk

v1, a1, v2, a2, . . . , vk, ak, vk+1

is called a directed path if v1, . . . , vk+1 are all distinct, and called a directed
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cycle if v1 = vk+1 and v1, . . . , vk are all distinct. If no subdigraph of D is a

directed cycle, then G is said to be acyclic.

Let G be a digraph. If we assign an orientation to each edges of G, then

the resulting digraph is called an orientation of G. An oriented graph is a

graph with an orientation. If an orientation D of G satisfies the property

that (u, v), (v, w) ∈ A(D) imply (u,w) ∈ A(D), then the orientation is said

to be transitive.

A hole of a graph is an induced cycle of length at least four. A graph

G is said to be chordal if every cycle in G of length greater than 3 has a

chord, namely, an edge joining two nonconsecutive vertices on the cycle, that

is, G does not contain a cycle of length at least 4 as an induced subgraph.

A graph H is called a chordal completion (or triangulation) of a graph G, if

H is a chordal spanning supergraph of G. See [28] for a survey on chordal

completion.

If two sets A and B have a nonempty intersection, then we say that A and

B overlap or intersect. A graph G is called the intersection graph of a family

F of sets if there exists a bijection φ : V (G) → F such that two vertices x

and y are adjacent in G if and only if φ(x)∩φ(y) 6= ∅. A graph G is called an

interval graph if we can assign to each vertex x of G a real interval J(x) so

that, whenever x 6= y, xy ∈ E(G) if and only if J(x) ∩ J(y) 6= ∅. Obviously,

an interval graph is an intersection graph of a set of open intervals (or a set

of closed intervals).

The notion of interval graph was introduced independently by G. Hajós [23]

and S. Benzer [4]. Since the introduction of an interval graph, it has been ex-

tensively studied due to its important role in various fields such as scheduling

theory, chemistry, biology, and genetics.

There are nice characterization for an interval graph.

The asteroidal triple (AT for short) is defined as a graph with the vertex

set {v1, v2, v3, v4, v5, v6} and the edge set {v1v2, v3v4, v5v6, v1v3, v3v5, v5v1} (see

Figure 1.1).
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v1

v2

v3v4 v5 v6

Figure 1.1: The asteroidal triple

Theorem 1.1.1 ([36]). A graph is an interval graph if and only if it is chordal

and AT-free.

Theorem 1.1.2 ([20]). A graph is an interval graph if and only if it is C4-free

and its complement has a transitive orientation.

It is immediately true by Theorem 1.1.1 that an interval graph is chordal.

In this thesis, all the graphs and digraphs are assumed to be finite and

simple unless otherwise stated.
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Mathematical Notation

N : The set of positive integers

Z≥0 : The set of nonnegative integers

Z : The set of integers

R : The set of real numbers

V (G) : The vertex set of a graph (or a digraph) G

E(G) : The edge set of a graph G

A(D) : The arc set of a digraph D

uv in G : The edge between a vertex u and a vertex v in a graph G

(u, v) in D : The arc from a vertex u to a vertex v in a digraph D

G[S] : The subgraph of a graphs G induced by a vertex subset S

G− S : The subgraph of a graph G induced by V (G) \ S
G− v : The subgraph of a graph G induced by V (G) \ {v}
G : The complement of a graph G

dG(u) : The degree of a vertex u in a graph G

d−D(u) : The indegree of a vertex u in a digraph D

d+D(u) : The outdegree of a vertex u in a digraph D

NG(u) : The neighborhood of a vertex u in a graph G

N−D (u) : The in-neighborhood of a vertex u in a digraph D

N+
D (u) : The out-neighborhood of a vertex u in a digraph D

θe(G) : The edge clique cover number of a graph G

Ik : The set of k isolated vertices

Kn : A complete graph of n vertices

Pn : A path of length n

Cn : A cycle of length n
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x1

x2x3

x4

x5 x6

D

x1

x2x3

x4

x5 x6

C(D)

Figure 1.2: A digraph D and its competition graph C(D)

1.2 Preliminaries

1.2.1 Phylogeny graphs

Let D be a digraph which represents a food web in an ecosystem which is

obtained by drawing an arc from a predator to a prey. The vertex set V (D)

represents the set of species in the ecosystem and an arc (x, y) ∈ A(D) means

that a species x preys on a species y. One important assumption in ecology

is that two species compete if they have a common prey. Hence the rivalry

between species in a food web, which is an important subject in ecology, can

be represented by the competition graph of D. The competition graph of a

digraph is defined as follows.

The competition graph of a digraph D, denoted by C(D), is defined as a

graph which has the same vertex set as D and has an edge xy between two

distinct vertices x and y if and only if, for some vertex z ∈ V (D), (x, z) and

(y, z) are arcs in D (see Figure 1.2 for an example). Cohen [10] introduced

the notion of competition graphs in the study on predator-prey concepts in

ecological food webs. Competition graphs also have applications in areas such

as modeling of complex economic systems, radio transmission, and coding.

For a summary of these applications, the reader may refer to [44] and [51].
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Cohen observed empirically that real-world competition graphs are usu-

ally interval graphs. Interval graphs have been widely studied and applied

in many different area such as developmental psychology, scheduling the-

ory, chemistry, biology, and genetics. Cohen’s observation had led to a great

deal of research on the structure of competition graphs and on the rela-

tionship between the structure of digraphs and their corresponding compe-

tition graphs. In the same vein, various variants of competition graphs have

been introduced and studied. For recent work related to competition graphs,

see [18, 31, 32, 37, 64].

There have been a large literature devoted to explaining Cohen’s ob-

servation and to studying the properties of competition graphs. There are

two different approaches in attempting to explain Cohen’s observation. The

first attempt is statistical, and develops models for randomly generated food

webs from which one can show that the corresponding competition graphs

are interval graphs. The second attempt is graph-theoretical. This involves

the analysis of the properties of competition graphs that arise from different

kinds of digraphs and attempts to characterize the acyclic digraphs whose

competition graphs are interval.

Stief [57] showed that there is no forbidden subgraph characterization of

acyclic digraphs whose competition graphs are interval. Unfortunately, this

means that it is not easy to study the structural properties of competition

graphs, which led researches to find another ways to explain Cohen’s obser-

vation.

Dutton and Brigham [15] characterized the competition graphs arising

from digraphs D which may have directed cycles and which also may have

loops. They showed that if |V (G)| = n, then G is a competition graph of a

digraph D (which may have loops) if and only if θe(G) ≤ n.

Roberts and Steif [50] obtain a similar characterization in the case that

there are no loops. They showed that G is a competition graph of a digraph

which has no loops if and only if there are cliques C1, C2, . . . , Cp which cover
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the edges of G and such that if Di = V (G)− Ci, then {D1, D2, . . . , Dp} has

a system of distinct representatives.

Roberts [45] observed that any graph G together with |E(G)| additional

isolated vertices is the competition graph of an acyclic digraph. Then he

defined the competition number of a graph G to be the smallest number k

such that G together with k isolated vertices is the competition graph of an

acyclic digraph, and denoted it by k(G). Acyclicity of a digraph is a natural

assumption as it represents a food web in an ecosystem from which this sub-

ject is originated. However, the requirement of being acyclic is not necessary

in general. In the literature, competition graphs of arbitrary digraphs are

also widely studied.

Computing the competition number of a graph is one of the important

problems in the field of competition graphs. Yet, computing the competition

number of a graph is usually not easy as Opsut has shown that computation of

the competition number in general is NP-hard in 1982. While an upper bound

M of the competition number of a graph G may be obtained by constructing

an acyclic digraph whose competition graph is G together with M isolated

vertices, getting a good lower bound is a very difficult task because there are

usually so many cases to consider. There has been much effort to compute

the competition numbers of graphs.

The notion of phylogeny graphs was introduced by Roberts and Sheng [46]

as a variant of competition graphs. (See also [26, 41, 47, 48, 49, 65] for study

on phylogeny graphs.) Given an acyclic digraph D, the underlying graph

of D, denoted by U(D), is the graph with vertex set V (D) and edge set

{xy | (x, y) ∈ A(D) or (y, x) ∈ A(D)}. The phylogeny graph of an acyclic

digraph D, denoted by P (D), is the graph with vertex set V (D) and edge

set E(U(D)) ∪ E(C(D)).

“Moral graphs”, having arisen from studying Bayesian networks, are the

same as phylogeny graphs. One of the best-known problems, in the context

of Bayesian networks, is related to the propagation of evidence. It consists
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v1

v2 v3

v4 v5

v6 v7

D

v1

v2 v3

v4 v5

v6 v7
U(D)

v1

v2 v3

v4 v5

v6 v7
C(D)

v1

v2
v3

v4
v5

v6 v7
P (D)

Figure 1.3: An acyclic digraph D, the underlying graph U(D) of D, the
competition graph C(D) of D, and the phylogeny graph P (D) of D.
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of the assignment of probabilities to the values of the rest of the variables,

once the values of some variables are known. Cooper [12] showed that this

problem is NP-hard. Most noteworthy algorithms for this problem are given

by Pearl [43], Shachter [55] and by Lauritzen and Spiegelhalter [33]. Those

algorithms include a step of triangulating a moral graph, that is, adding

edges to a moral graph to form a chordal graph.

As triangulations of moral graphs play an important role in algorithms

for propagation of evidence in a Bayesian network, studying chordality of the

phylogeny graphs of acyclic digraphs is meaningful. Yet, characterizing the

acyclic digraphs whose phylogeny graphs are chordal seems to be more diffi-

cult than characterizing the acyclic digraphs whose competition graphs are

interval. In this respect, hoping to provide insights for the further research,

Lee et al. [34] studied the phylogeny graphs of (2, 2) digraphs and gave suffi-

cient conditions and necessary conditions for (2, 2) digraphs having chordal

phylogeny graphs. An acyclic digraph each vertex of which has indegree at

most i and outdegree at most j is called an (i, j) digraph for some positive

integers i and j. Hefner et al. [27] characterized (2, 2) digraphs whose com-

petition graphs are interval. In the first section of Chapter 2, we extend their

work to study phylogeny graphs of (i, j) digraphs.

Any acyclic digraph D for which G is an induced subgraph of P (D) and

such that D has no arcs from vertices outside of G to vertices in G is called

a phylogeny digraph for G. The phylogeny number is defined analogously to

the competition number. The phylogeny number p(G) of G is the smallest r

so that G has a phylogeny digraph D with |V (D) \ V (G)| = r. A phylogeny

digraph D for a graph G for which |V (D)\V (G)| = p(G) is called an optimal

phylogeny digraph for G. Given an optimal phylogeny digraph D for a graph

G, we note that the digraph resulting from D by deleting the arcs outgoing

from a vertex in V (D) \ V (G) is still an optimal phylogeny digraph for G.

In this vein, we may assume that outdegree of any vertex in V (D) \ V (G) is

zero for any optimal phylogeny digraph for a graph G [47].
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Analogous to the competition number, the phylogeny number is closely

related to the number of triangles as we may see from the following results.

Theorem 1.2.1 ([47]). If G is a connected graph with no triangles, then

p(G) = |E(G)| − |V (G)|+ 1.

Given a graph G, we denote by G− the graph obtained from G by deleting

all the triangles edges of G where a triangle edge means an edge on a triangle.

Theorem 1.2.2 ([47]). Let G be a connected graph with exactly one triangle.

Then

p(G) =

|E(G)| − |V (G)| if G− has three components;

|E(G)| − |V (G)| − 1 if G− has one or two components.

Theorem 1.2.3 ([49]). Let G be a connected graph with exactly two triangles

which share one of their edges. Let x, u, v, y be the vertices for these two

triangles with the edge uv being their common edge. Then

p(G) =


|E(G)| − |V (G)| − 1 if G− has four components or

if G− has three components with Gx = Gy;

|E(G)| − |V (G)| − 2 otherwise.

Theorem 1.2.4 ([49]). Let G be a connected graph with exactly two triangles

that are edge-disjoint. Then

p(G) =



|E(G)| − |V (G)| − 1 if G− has five components;

|E(G)| − |V (G)| − 2 if G− has four components;

|E(G)| − |V (G)| − 2 if G− has three components, with each

component containing exactly two triangle

vertices, or with one component containing

a triangle of G;

|E(G)| − |V (G)| − 3 otherwise.
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As a matter of fact, Theorems 1.2.1-1.2.4 can be integrated into the fol-

lowing proposition. For a graph G containing at most two triangle,

|E(G)| − |V (G)| − 2t(G) + d(G) + 1 ≤ p(G) ≤ |E(G)| − |V (G)| − t(G) + 1

(1.2.1)

where t(G) and d(G) denote by the number of triangles and the number of

diamonds in G, respectively.

In the second section of Chapter 2, we extend the given inequalities in

Theorems 1.2.1, 1.2.2, 1.2.3, and 1.2.4 to graphs with many triangles.

1.2.2 Graph colorings and chordal completions

Graph coloring problems are one of the most important, well-known and

studied problems in graph theory. Graph coloring is a special case of graph

labeling and actively studied in graph theory. It is an assignment of labels

traditionally called “colors” to elements of a graph subject to certain con-

straints. A vertex coloring is a coloring the vertices of a graph. A vertex

coloring is proper if no two adjacent vertices are of same color. For a given

graph G, a function f : V (G)→ {1, 2, . . . , k} is called a proper k-coloring of

G if f(u) 6= f(v) for any adjacent vertices u and v. The chromatic number

χ(G) of a graph G is defined to be the least positive integer k such that

there exists a proper k-coloring of G. Similarly, an edge coloring assigns a

color to each edge. An edge coloring is proper if no two adjacent edges of the

same color. Other coloring problems can be transformed into a vertex color-

ing problems. For example, a face coloring of a plan graph is just a vertex

coloring of its dual graph.

The convention of using colors originates from coloring of a map. In the

middle of the nineteenth century, it was found that a map of England, with

all counties, can be painted using only four colors in such a way that counties

sharing a common border receive different colors. It became an interesting

problem for many mathematicians whether it is possible to color any possible
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political map using only four colors. Appel and Haken [1] solved the problem

in 1976 by using computer algorithm to check if the map can be four-colored

in all possible cases. In 1943, Hadwiger [22] formulated the Hadwiger conjec-

ture as follows.

Conjecture 1.2.5 ([22]). If G is a Kn-minor-free graph, then χ(G) ≤ n−1.

The Hadwiger conjecture is a far-reaching generalization of the four-color

problem that still remains unsolved. There are many other graph coloring

problems that have not been solved. (See [19], [29], [30], [39], and [40] for

more problems on graph colorings.)

Graphs colorings have many practical applications as well as theoretical

challenges. For example, vertex coloring of graphs can represent a mathe-

matical model of various resource assignments. One of such a problem is to

assign frequencies for stations of radio, or mobile phone network. Stations,

which are in broadcasting range (and so their signals would interfere with

each other) must be assigned different frequencies. To solve this problem, a

mathematical model of the connection network is constructed, where vertices

represent stations, and edges between them show conflicts (that is, pairs of

stations, which need to be given different frequencies). The model itself is a

graph with vertex coloring [19]. This application of vertex coloring has been

widely studied in many papers. The reader may refer to [60], [56], [42], and

[24].

Timetabling problems often involve restrictions in which pairs of activities

cannot be performed simultaneously. For example, in scheduling courses at

a school, two courses taught by the same individual cannot be scheduled

at the same time. If the courses to be scheduled are represented by the

vertices of a graph and every pair of courses that cannot be scheduled at

the same time are connected by an edge, then a (proper) vertex coloring of

this graph gives a feasible schedule of the courses. If the goal is to minimize

the number of time slots needed, then the problem is that of finding the

chromatic number of the graph (assuming each course take the same amount
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of time). An introduction to the timetabling problems can be found in the

work of de Werra [13]. Timetabling problems have been studied extensively

by many researchers including [11], [61], [35], and [14]. Schmidt and Ströhleim

[54] provide an annotated bibliography for the timetabling problem [40].

Applications of graph coloring have also led to interesting generalizations

of the graph coloring problem. Vising [59] and Erdős, Rubin, and Taylor [17]

independently introduced the notion of list coloring to generalize that of

ordinary graph coloring. Let G be a graph and C be a set of colors. A list for

G is a mapping L : V (G)→ P(C) which assigns a set of colors to each vertex

where P(C) denotes the power set of C. If |L(x)| ≥ k for all x ∈ V (G), then

L is called a k-list. A proper coloring f : V (G)→ C is called an L-coloring of

G if f(x) ∈ L(x) for any x ∈ V (G). The list-chromatic number of G, denoted

by χl(G), is the smallest k such that G admits an L-coloring for every k-list

L for G. A graph G is said to be k-choosable if χl(G) ≤ k. List colorings are

important in the channel assignment problem when acceptable channels are

specified. Brown et al. [8] and Mahadev and Roberts [38] have studied this

class of coloring problem.

Dvořák and Postle [16] introduced the notion of DP-coloring, which is a

generalization of list coloring. Let G be a graph and L be a list for G. The

auxiliary graph for G and L, denoted by H(G,L), is the graph with the vertex

set {(v, c) | v ∈ V (G), c ∈ L(v)} and the edge set {{(v, c), (v′, c′)} | either c =

c′ and vv′ ∈ E(G) or v = v′}. By construction, for every distinct vertices v

and v′ of G, the set of edges of H(G,L) joining {(v, c) | c ∈ L(v)} and

{(v′, c′) | c′ ∈ L(v′)} is empty if vv′ 6∈ E(G) and forms a matching (possibly

empty) if vv′ ∈ E(G). Based on these properties of H(G,L), Dvořák and

Postle introduced the notion of DP-coloring. We follow the slightly modified

version used by Bernshteyn et al. [5].

Definition 1.2.6. Let G be a graph. A cover of G is a pair (L,H), where L

is a list for G and H is a graph with vertex set
⋃
v∈V (G){(v, c) | v ∈ V (G), c ∈

L(v)}, satisfying the following conditions.
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1. For each v ∈ V (G), H[{v} × L(v)] is a complete graph.

2. For each uv ∈ E(G), the edges between {u} × L(u) and {v} × L(v)

form a matching (possibly empty).

3. For each distinct u, v ∈ V (G) with uv /∈ E(G), no edges of H connect

{u} × L(u) and {v} × L(v).

We note that the auxiliary graph for the graph G and the list L in Defi-

nition 1.2.6 is a special type of H.

Definition 1.2.7. Suppose G is a graph and (L,H) is a cover of G. An

(L,H)-coloring of G is an independent set I ⊂ V (H) of size |V (G)|. In this

context, we refer to the vertices of H as the colors. A graph G is said to be

(L,H)-colorable if it admits an (L,H)-coloring.

Definition 1.2.8. The DP-chromatic number, denoted by χDP (G), is the

minimum k such that G is (L,H)-colorable for each choice of (L,H) with

|L(v)| ≥ k for all v ∈ V (G).

It is well-known that, for a graph G,

χ(G) ≤ χl(G) ≤ χDP (G) (1.2.2)

where χl(G) and χDP (G) are the list-chromatic number and the DP-chromatic

number of G, respectively.

For a given graph, we may obtain a chordal completion by adding edges.

Many different chordal completions exist for a given graph in general. Most

of the related graph problems that arise from practical applications seek to

minimize various graph parameters of a chordal completion. For example,

the minimum triangulation problem, also referred to as the minimum fill-

in problem, asks to find a chordal completion with the smallest number of

edges, and it has applications in sparse matrix computations [53], database

management [58], [3], knowledge based systems [33], and computer vision [9].
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The treewidth problem asks to find a chordal completion where the size of

the largest clique is minimized, and many NP-complete problems are solvable

in polynomial time when they are restricted to graphs of bounded treewidth

[6] and [52]. Unfortunately, the minimum triangulation and the treewidth

problems are NP-hard [2] and [63].

For a positive integer k, a graph G is k-degenerate if any subgraph of G

contains a vertex having at most k neighbors in it. Dvořák and Postle [16]

observed that if a graph G is k-degenerate, then χDP (G) ≤ k + 1. It is easy

to check that every chordal graph G is (ω(G)− 1)-degenerate and so

ω(G) ≤ χ(G) ≤ χl(G) ≤ χDP (G) ≤ ω(G).

Therefore,

(§) for a chordal graph G, χ(G) = χl(G) = χDP (G) = ω(G).

The observation (§) directed our attention to the idea that, for a chordal

completion G∗ of a graph G, the chromatic number of G is bounded above

by the clique number of G∗.

By (1.2.2), an upper bound of χDP (G) (resp. χl(G)) is an upper bound

of χl(G) (resp. χ(G)). In this vein, it is interesting to check whether or not

χDP (G) ≤ k (resp. χl(G) ≤ k) when χl(G) ≤ k (resp. χ(G) ≤ k) for a

positive integer k.

In the Chapter 3, we introduce the notion of non-chordality index i(G)

of a graph G and present a minimal chordal completion G∗ of a graph G

satisfying the inequality ω(G∗) − ω(G) ≤ i(G). Using the above chordal

completion as a tool, we prove that the family of graphs with non-chordality

indices at most one satisfies the Hadwiger conjecture and the Erdős-Faber-

Lovász Conjecture, and the family of graphs with bounded non-chordality

indices is a linearly χ-bounded class.
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Chapter 2

Phylogeny graphs

In this chapter, we first study the digraphs whose phylogeny graphs are

chordal. Then we study phylogeny numbers of graphs in the aspect of the

number of triangles and diamonds.

2.1 Chordal phylogeny graphs

Lee et al. [34] studied the phylogeny graphs of (2, 2) digraphs and gave suffi-

cient conditions and necessary conditions for (2, 2) digraphs having chordal

phylogeny graphs.

In this section, we extend their work. First we completely characterize

the phylogeny graphs of (1, j) digraphs and those of (i, 1) digraphs (Theo-

rem 2.1.1 and 2.1.8). Then we study the phylogeny graphs of (2, j) digraphs.

We show that the phylogeny graph of any (2, j) digraph whose underly-

ing graph is chordal is chordal (Theorem 2.1.16). Finally, we show that the

phylogeny graph of any (2, 2) digraph whose underlying graph is chordal is

chordal and planar (Theorem 2.1.27).
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2.1.1 (1, j) phylogeny graphs and (i, 1) phylogeny graphs

In this section, we characterize the (1, j) phylogeny graphs and the (i, 1)

phylogeny graphs.

A component of a digraph D is the subdigraph of D induced by the vertex

of a component of its underlying graph. Given an acyclic digraph D, it is easy

to check that D′ is a component of D if and only if P (D′) is a component of

P (D). Thus,

(?) it is sufficient to consider only weakly connected digraphs (whose under-

lying graphs are connected) in studying phylogeny graphs of digraphs.

First we take care of (1, j) phylogeny graphs.

A vertex of degree one is called a pendant vertex.

Given a graph G and a vertex v of G, we denote the set of neighbors of v

in G by NG(v). We call NG(v)∪{v} the closed neighborhood of v and denote

it by NG[v]. We call ∆(G) := max{|NG(v)| | v ∈ V (G)} the maximum degree

of G.

Theorem 2.1.1. For a positive integer j, a graph is a (1, j) phylogeny graph

if and only if it is a forest with the maximum degree at most j + 1.

Proof. By (?), it suffices to show that, for a positive integer j, a connected

graph is a (1, j) phylogeny graph if and only if it is a tree with the maximum

degree at most j + 1. To show the “only if” part, suppose that a connected

graph G is a (1, j) phylogeny graph for some positive integer j. Then there is

a (1, j) digraph D such that P (D) is isomorphic to G. Since every vertex of

D has indegree at most one, P (D) = U(D). Since P (D) is connected, U(D)

is connected. Moreover, since D is a (1, j) digraph, U(D) has the maximum

degree at most j + 1. If U(D) contained a cycle C, then there would exist a

vertex on C of indegree at least two by the acyclicity of D. Therefore U(D)

does not contain a cycle, and so U(D) is tree.

Now we show the “if” part. If T is a tree with one or two vertices, then

it is obviously a (1, 1) phylogeny graph. We take a tree T with at least three
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vertices and let j = ∆(T )−1. Then there exist pendant vertices. We take one

of them and denote it by u. We regard T as a rooted tree with the root u and

define an oriented tree
−→
T , which is acyclic, with V (

−→
T ) = V (T ) as follows. We

take an edge xy in T . Then dT (u, x) = dT (u, y)+1 or dT (u, y) = dT (u, x)+1.

If the former, (y, x) ∈ A(
−→
T ) and if the latter, (x, y) ∈ A(

−→
T ). By definition,

U(
−→
T ) = T . Moreover, u has indegree zero and outdegree one, and each

vertex in
−→
T except u has indegree one in

−→
T . Then, since the degree of each

vertex in T is at most j + 1, the outdegree of each vertex in
−→
T is at most j.

Therefore
−→
T is a (1, j) digraph. Since each vertex in

−→
T has indegree at most

one, P (
−→
T ) = U(

−→
T ) = T .

If P (D) is triangle-free for an acyclic digraph D, then the indegree of each

vertex is at most one in D, for otherwise, the vertex with indegree at least two

form a triangle with two in-neighbors in P (D). Thus, the following corollary

immediately follows from Theorem 2.1.1.

Corollary 2.1.2. For any positive integers i and j, if an (i, j) phylogeny

graph is triangle-free, then it is a forest with the maximum degree at most

j + 1.

Given a digraph D with n vertices, a one-to-one correspondence f :

V (D) → [n] is called an acyclic labeling of D if f(u) > f(v) for any arc

(u, v) in D. It is well-known that D is acyclic if and only if there is an acyclic

labeling of D.

Given a digraph D and a vertex v of D, we call N−D (v) ∪ {v} the closed

in-neighborhood of v and denote it by N−D [v].

Given a graph G, a vertex v of G is called a simplicial vertex if NG[v]

forms a clique in G.

Now we consider phylogeny graphs of (i, 1) digraphs.

Lemma 2.1.3. Let D be a nontrivial weakly connected (i, 1) digraph for some

positive integer i and f be an acyclic labeling of D. Then every maximal clique
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in P (D) is in the form of the closed in-neighborhood of the vertex with the

least f -value among the vertices in the maximal clique.

Proof. Let X be a maximal clique in P (D) and x be the vertex having the

least f -value among the vertices in X. Suppose X 6⊂ N−D [x]. Then there is a

vertex y ∈ X such that (y, x) /∈ A(D). Since x has the least f -value among

the vertices in X, (x, y) /∈ A(D). Yet, since x and y are adjacent in P (D),

they have a common out-neighbor, say z, in D. By the hypothesis that D is

an (i, 1) digraph, z is the only out-neighbor of x and y. Since x has the least

f -value among the vertices in X, z /∈ X. Since N−D [z] forms a clique in P (D),

X 6⊂ N−D [z] by the maximality of X. That is, there exists a vertex w in X but

not in N−D [z]. Then w 6= z. Since z is the unique out-neighbor of x and y in

D, (x,w) /∈ A(D) and (y, w) /∈ A(D). Furthermore, since w /∈ N−D [z], neither

w and x nor w and y have a common out-neighbor in D. However, w, x, and

y belong to X, so (w, x) and (w, y) are arcs in D, which is a contradiction to

the hypothesis that D is a (i, 1) digraph. Hence X ⊂ N−D [x]. Since N−D [x] is

a clique in P (D), X = N−D [x] by the maximality of X.

Lemma 2.1.4. Given a nontrivial weakly connected (i, 1) digraph D for a

positive integer i, the set of all the maximal cliques in P (D) is exactly the

set

{N−D [u] | u ∈ V (D) and d−D(u) ≥ 1}.

Proof. Let f be an acyclic labeling of D. Take a maximal clique Y in P (D).

By Lemma 2.1.3, Y = N−D [y] for the vertex y having the least f -value among

the vertices in Y . Since D is nontrivial and weakly connected, |Y | ≥ 2 and

so y has an in-neighbor in D, i.e. d−D(y) ≥ 1.

To prove a containment in the other direction, take a vertex u of indegree

at least one in D. Let v be an in-neighbor of u in D. Suppose, to the contrary,

N−D [u] is not maximal. Then there is a maximal clique X properly containing

N−D [u]. By Lemma 2.1.3, X = N−D [x] for the vertex x with the least f -value

among the vertices in X. Since N−D [u] is properly contained in N−D [x], u 6= x.
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In addition, since N−D [u] is included in N−D [x], v is also an in-neighbor of x in

D. Thus the outdegree of v is at least two, which contradicts the fact that

D is an (i, 1) digraph. Therefore N−D [u] forms a maximal clique in P (D) and

this completes the proof.

A diamond is a graph obtained from K4 by deleting an edge. A graph is

called diamond-free if it does not contain a diamond as an induced subgraph.

Lemma 2.1.5. The phylogeny graph of a weakly connected (i, 1) digraph for

a positive integer i is diamond-free and chordal.

Proof. Let D be a weakly connected (i, 1) digraph for a positive integer i.

We prove the lemma statement by induction on |V (D)|. If |V (D)| = 1 or

2, then the statement is trivially true. Suppose that |V (D)| = n + 1 and

the lemma statement is true for any weakly connected (i, 1) digraph with n

vertices (n ≥ 2). Since D is acyclic, there is a vertex u of indegree zero in

D. Since D is a weakly connected (i, 1) digraph, d+D(u) = 1. Thus there is a

unique out-neighbor v of u in D. Then, as u has indegree of zero in D, we

may conclude that, for a vertex w in D, u is adjacent to w in P (D) if and

only if w = v or w is an in-neighbor of v in D, i.e.

NP (D)[u] = N−D [v]. (2.1.1)

Since the indegree and the outdegree of u are zero and one, respectively,

D−u is weakly connected. Obviously D−u is an (i, 1) digraph. Thus, by the

induction hypothesis, P (D−u) is diamond-free and chordal. Take two vertices

x and y in V (D) \ {u}. Since u has indegree zero, u cannot be a common

out-neighbor of x and y. Therefore, x and y are adjacent in P (D)− u if and

only if (x, y) ∈ A(D) or (y, x) ∈ A(D) or they have a common out-neighbor

other than u in D if and only if x and y are adjacent in P (D − u). Thus we

have shown that P (D)− u = P (D − u). By (2.1.1), u is simplicial in P (D),

so P (D) is chordal. Now it remains to show that P (D) is diamond-free.
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Suppose that P (D) has a diamond. Then, since P (D)−u is diamond-free,

every diamond of P (D) contains u and a vertex which is not adjacent to u in

P (D). Let z be a vertex on a diamond which is not adjacent to u in P (D).

Then z is not contained in N−D [v] \ {u} and is adjacent to two vertices y1

and y2 in N−D [v] \ {u} by (2.1.1). Since P (D)− u = P (D − u), z is adjacent

to y1 and y2 in P (D − u). Moreover, u is not a pendant vertex, so v has an

in-neighbor distinct from u in D. Then v has indegree at least one in D− u,

so N−D−u[v] is a maximal clique in P (D − u) by Lemma 2.1.4. Obviously

N−D−u[v] = N−D [v] \ {u}, so N−D [v] \ {u} is a maximal clique in P (D − u).

Then, since z belongs to P (D−u) and is not contained in N−D [v]\{u}, there

exist a vertex w in N−D−u[v] which is not adjacent to z in P (D − u). Then

the subgraph induced by z, w, y1, and y2 is a diamond in P (D − u) and we

have reached a contradiction.

Lemma 2.1.6. Let D be an (i, 1) digraph for a positive integer i and f be

an acyclic labeling of D. Suppose that non-disjoint vertex sets X and Y form

distinct maximal cliques in P (D), respectively. Then X and Y have exactly

one common vertex, namely v, and

f(v) = min{f(w) | w ∈ X} or min{f(w) | w ∈ Y }

whereas

f(v) > min{f(w) | w ∈ X ∪ Y }.

Proof. By (?), we may assume that U(D) is connected. By Lemma 2.1.5,

P (D) is diamond-free, so |X ∩ Y | ≤ 1. Then, by the hypothesis that X and

Y are non-disjoint vertex sets, |X∩Y | = 1. Let v be the vertex common to X

and Y . Since X and Y form maximal cliques, X = N−D [x] and Y = N−D [y] for

the vertices x and y with the smallest f -values among the vertices in X and

the vertices in Y , respectively, by Lemma 2.1.3. Since X and Y are distinct,

x 6= y. If v /∈ {x, y}, then x and y are two distinct out-neighbors of v, which

is impossible. Thus v ∈ {x, y}. Without loss of generality, we may assume
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v = x. Since x and y have the the smallest f -values among the vertices in X

and the vertices in Y , respectively, v has the least f -value among the vertices

in X but not among the vertices in Y , and the lemma statement is true.

We shall completely characterize the (i, 1) phylogeny graphs in terms of

“clique graph” which was introduced by Hamelink [25].

Definition 2.1.7. The clique graph of a graph G, denoted by K(G), is a

simple graph such that

• every vertex of K(G) represents a maximal clique of G;

• two vertices of K(G) are adjacent when they share at least one vertex

in common in G.

Theorem 2.1.8. For some positive integer i, a graph G is an (i, 1) phylogeny

graph if and only if it is a diamond-free chordal graph with ω(G) ≤ i+ 1 and

its clique graph is a forest.

Proof. By (?), it is sufficient to show that a connected graph G is an (i, 1)

phylogeny graph for some positive integer i if and only if it is a diamond-free

chordal graph with ω(G) ≤ i+ 1 and its clique graph is a tree. To show the

“only if” part, suppose that a connected graph G is an (i, 1) phylogeny graph

for some positive integer i. Then G = P (D) for some weakly connected (i, 1)

digraph D. By Lemma 2.1.3, ω(G) ≤ i + 1. In addition, by Lemma 2.1.5,

P (D) is diamond-free and chordal. Now we show that the clique graph K(G)

is a tree. As the clique graph of a connected graph is connected, it is sufficient

to show that K(G) is acyclic. Suppose, to the contrary, that K(G) contains

a cycle C := X1X2 · · ·XrX1 for an integer r ≥ 3 and maximal cliques X1,

. . ., Xr of G. Let f be an acyclic labeling of D. We denote by xi the vertex

which has the least f -value in Xi for each i = 1, 2, . . ., r. By Lemma 2.1.6,

X1 ∩ X2 = {x1} or X1 ∩ X2 = {x2}. Without loss of generality, we may

assume that X1 ∩X2 = {x2} so that f(x1) < f(x2). By Lemma 2.1.6 again,
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X2 ∩ X3 = {x2} or X2 ∩ X3 = {x3}. Suppose that X2 ∩ X3 = {x2}. Then

f(x3) < f(x2) and x2 ∈ X1∩X3. By Lemma 2.1.6, X1∩X3 = {x2}, and either

f(x2) = f(x1) or f(x2) = f(x3), which contradicts the fact that f(x1) <

f(x2) and f(x3) < f(x2). Thus X2 ∩ X3 = {x3}. Continuing in this way,

we may show that Xi ∩ Xi+1 = {xi+1} for each i ∈ {1, 2, . . . , r − 1} and

Xr ∩ X1 = {x1}. By Lemma 2.1.3, Xi = N−D [xi] for each i ∈ {1, 2, . . . , r}.
Therefore (x1, xr) ∈ A(D) and (xi+1, xi) ∈ A(D) for each i ∈ {1, 2, . . . , r−1}.
Thus x1 → xr → · · · → x2 → x1 is a directed cycle in D and we reach a

contradiction to the acyclicity of D. Hence K(G) does not contain a cycle

and so the “only if” part is true.

To show the “if” part, suppose that a connected graph G is diamond-free

and chordal with ω(G) ≤ i + 1 and that K(G) is a tree for some positive

integer i. If G is a complete graph, then it has at most i + 1 vertices and is

obviously an (i, 1) phylogeny graph. Thus we may assume that G is not a

complete graph. Then K(G) is not a trivial tree.

We show by induction on |V (G)| that G is an (i, 1) phylogeny graph.

Since G is connected and not complete, |V (G)| ≥ 3. If |V (G)| = 3, then

G is a path of length two and, by Theorem 2.1.1, a (1, 1) phylogeny graph.

Assume that a connected non-complete graph is an (i, 1) phylogeny graph if

it is a diamond-free chordal graph with less than n vertices and the cliques

of size at most i + 1 and its clique graph is a tree for n ≥ 4. Suppose that

|V (G)| = n. Since K(G) is not a trivial tree, it contains a pendant vertex.

Let X be a pendant vertex and Y be the neighbor of X in K(G). Then

|X ∩ Y | ≥ 1. Since G is a connected graph with at least four vertices, by the

maximality of X and Y , 2 ≤ |X| and 2 ≤ |Y |. By Lemma 2.1.6, X∩Y = {u}
for some vertex u. Since |X| ≥ 2, there exists a vertex v in X \ {u}. Since

K(G) does not contain a triangle, X and Y are the only maximal cliques

that contain u in G and so

(†) G− v does not have a maximal clique containing u other than X \ {v}
(not necessarily maximal) and Y .
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Furthermore, since X is a pendant vertex in K(G), every vertex in X \ {u}
is a simplicial vertex in G and therefore v is a simplicial vertex of G. Then

the closed neighborhood of v in G is X. Moreover, it is obvious that G− v is

a connected diamond-free chordal graph with ω(G−v) ≤ i+1 and K(G−v)

is a tree. Therefore, by the induction hypothesis, G− v is an (i, 1) phylogeny

graph. Thus there is an (i, 1) digraph D∗ such that P (D∗) = G − v. Let f ∗

be an acyclic labeling of D∗.

Case 1. The vertex u has the least f ∗-value in Y . Then, by Lemma 2.1.3,

Y = N−D∗ [u]. Consider the case in which u has no out-neighbor in D∗. Then,

by Lemma 2.1.6, X \ {v} = {u}. Adding the vertex v and the arc (u, v) to

D∗ results in an (i, 1) digraph whose phylogeny graph is G. Now consider

the case in which u has an out-neighbor w in D∗. Then f ∗(w) < f ∗(u)

and d−D∗(w) ≥ 1. Since d−D∗(w) ≥ 1, N−D∗ [w] forms a maximal clique by

Lemma 2.1.4. Since f ∗(w) < f ∗(u) and f ∗(u) is the minimum in Y , N−D∗ [w]

is distinct from Y . Since N−D∗ [w] contains u, N−D∗ [w] = X \ {v} by (†). Since

|X| ≤ i + 1, |X \ {v}| ≤ i and so d−D∗(w) ≤ i − 1. Adding the vertex v and

the arc (v, w) to D∗ results in an (i, 1) digraph whose phylogeny graph is G.

Case 2. The vertex u does not have the least f ∗-value in Y . Then u has

the least f ∗-value in X \ {v} by Lemma 2.1.6. Thus, if u has no in-neighbor

in D∗, then X \ {v} = {u}, and so adding the vertex v and the arc (v, u)

to D∗ results in an (i, 1) digraph whose phylogeny graph is G. Now consider

the case in which u has an in-neighbor w in D∗. Then d−D∗(u) ≥ 1, so N−D∗ [u]

forms a maximal clique by Lemma 2.1.4. By Lemma 2.1.3, u has the least

f ∗-value in N−D∗ [u]. Since u does not have the least f ∗-value in Y , N−D∗ [u] is

distinct from Y . Since N−D∗ [u] contains u, N−D∗ [u] = X \ {v} by (†). Since

|X| ≤ i+ 1, |X \{v}| ≤ i and so d−D∗(u) ≤ i−1. Adding the vertex v and the

arc (v, u) to D∗ results in an (i, 1) digraph whose phylogeny graph is G.

The union of two graphs G and H is the graph having its vertex set

V (G) ∪ V (H) and edge set E(G) ∪ E(H). If V (G) ∩ V (H) = ∅, we refer to

their union as a disjoint union.
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Proposition 2.1.9. For a graph G, the following statements are equivalent.

(i) G is a (1, j) phylogeny graph and an (i, 1) phylogeny graph for some

positive integers i and j;

(ii) G is a disjoint union of paths;

(iii) G is a (1, 1) phylogeny graph.

Proof. By Theorems 2.1.1 and 2.1.8, it is immediately true that (ii) is equiv-

alent (iii). Obviously, (iii) implies (i). Now we show that (i) implies (ii). By

Theorem 2.1.1, G is a forest. If G has a vertex of degree at least three, then

K(G) contains a triangle as each edge in G is a maximal clique, which con-

tradicts Theorem 2.1.8. Therefore each vertex in G has degree at most two

and so G is a disjoint union of paths.

Remark 2.1.10. Theorems 2.1.1 and 2.1.8 tell us that an (i, j) phylogeny

graph for positive integers i and j with i = 1 or j = 1 is diamond-free and

chordal.

2.1.2 (2, j) phylogeny graphs

In this section, we focus on phylogeny graphs of (2, j) digraphs for a positive

integer j. We thought that it is worth studying them in the context that a

child has two biological parents in most species.

For an acyclic digraph D, an edge is called a cared edge in P (D) if the

edge belongs to the competition graph C(D) but not to the U(D). For a

cared edge xy ∈ P (D), there is a common out-neighbor v of x and y and it is

said that xy is taken care of by v or that v takes care of xy. A vertex in D is

called a caring vertex if an edge of P (D) is taken care of by the vertex [34].

For example, the edges v2v3, v2v6, v2v7, v4v5, and v5v6 of P (D) in Fig-

ure 1.3 are cared edges and the vertices v1, v4, v4, v3, and v7 are vertices

taking care of v2v3, v2v6, v2v7, v4v5, and v5v6, respectively.
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Proposition 2.1.11. Suppose that the phylogeny graph of a (2, j) digraph D

contains a hole H for a positive integer j. Then no vertex on H takes care

of an edge on H.

Proof. Suppose, to the contrary, that there exists a vertex v on H which

takes care of an edge xy on H. Then {x, y, v} forms a triangle in P (D), so

yv or vx is a chord of H in P (D) and we reach a contradiction.

Given a (2, j) digraphD, suppose that P (D) has a holeH and e1, e2, . . . , et

are the cared edges on H. Let w1, w2, . . . , wt be vertices taking care of

e1, e2, . . . , et, respectively. Since the indegree of wi is at most two in D for

i = 1, . . . , t, w1, w2, . . . , wt are distinct. We let W = {w1, w2, . . . , wt} and call

W a set extending H by extending the notion introduced in Lee et al. [34].

By Proposition 2.1.11,

W ⊂ V (D) \ V (H). (2.1.2)

Therefore we may obtain a cycle in U(D) from H by replacing each edge ei

with a path of length two from one end of ei to the other end of ei with the

interior vertex wi. We call such a cycle the cycle obtained from H by W . Let

L be the subgraph of U(D) induced by V (H) ∪W . We call L the subgraph

of U(D) obtained from H by W . These notions extend the ones introduced

in Lee et al. [34].

Lee et al. [34] showed that, for a (2, 2) digraph D such that the holes of

P (D) are mutually vertex-disjoint and no hole in U(D) has length 4 or 6,

the number of holes in U(D) is greater than or equal to the number of holes

in P (D).

Theorem 2.1.12 ([34]). Let H be a hole of the phylogeny graph P (D) of a

(2, 2) digraph D. Then there is a hole φ(H) in the underlying graph U(D) of

D such that

• φ(H) equals H if H is a hole in U(D);

• φ(H) is a hole in U(D) only containing vertices in the subgraph obtained

from H by a set extending H otherwise.
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Moreover, if the holes of P (D) are mutually vertex-disjoint and no hole in

U(D) has length 4 or 6, then there exists an injective map from the set of

holes in P (D) to the set of holes in U(D).

We shall devote the first part of this section to extending the above the-

orem given in [34]. To do so, we need the following lemmas.

Lemma 2.1.13. Given a graph G and a cycle C of G with length at least

four, suppose that a section Q of C forms an induced path of G and contains

a path P with length at least two none of whose internal vertices is incident

to a chord of C in G. Then P can be extended to a hole H in G so that

V (P ) ( V (H) ⊂ V (C) and H contains a vertex on C not on Q.

Proof. Let vi and vj be the origin and the terminal of P . Since P is an

induced path of length at least two, vi and vj are nonadjacent. Now we take

a shortest (vj, vi)-path P ′ with some vertices on the (vi, vj)-section of C other

than P . Since vi and vj are nonadjacent, P ′ has length at least two. Therefore

PP ′ is a cycle of length at least four. By the hypothesis, none of the internal

vertices of P is incident to a chord of C. In addition, P and P ′ are induced

paths, so H := PP ′ is actually a hole in G. Note that V (H) ⊂ V (C). If every

vertex on H were on Q, then Q would have a chord as V (H) ⊂ V (Q), which

is impossible. Therefore H contains a vertex on C not on Q.

Lemma 2.1.14. Let D be a (2, j) digraph and f be an acyclic labeling of

D for a positive integer j. In addition, let H be a hole of P (D), W be a set

extending H, and w be a vertex with the least f -value in V (H) ∪W . Then

w ∈ W . Moreover, there is a hole φ(H) in U(D) such that w ∈ V (φ(H)) and

V (φ(H)) ⊂ V (H) ∪W .

Proof. Let H = u1u2 · · ·ulu1 for an integer l ≥ 4. To reach a contradiction,

we suppose that w ∈ V (H). Without loss of generality, we may assume that

w = u1. Suppose that u1u2 and u1ul are edges of U(D). Then, since u1 has the

least f -value in V (H), (u2, u1) ∈ A(D) and (ul, u1) ∈ A(D) and so {u1, u2, ul}
forms a triangle in P (D), which is a contradiction to the supposition that H is
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a hole in P (D). Therefore u1u2 or u1ul is a cared edge in P (D). Without loss

of generality, we may assume u1u2 is a cared edge in P (D). Then u1 and u2

have a common out-neighbor, say v, in W , which implies that f(v) < f(u1).

Thus we have reached a contradiction and so w ∈ W .

Now we show that the “moreover” part of the lemma statement is true.

Let C be the cycle in U(D) obtained fromH byW . Without loss of generality,

we may assume that u1ul is taken care of by w. Then (u1, w) ∈ A(D) and

(ul, w) ∈ A(D).

Suppose, to the contrary, that C has a chord which is incident to w in

U(D). Let xw be a chord of C in U(D). Then x /∈ {u1, ul}. Moreover, since

w has the least f -value in V (H)∪W , (w, x) /∈ A(D). Then u1, ul, and x are

in-neighbors of w in D, which contradicts the hypothesis that D is a (2, j)

digraph. Hence there is no chord of C which is incident to w in U(D). Since

u1ul is a cared edge in P (D), u1wul is an induced path in U(D). By applying

Lemma 2.1.13 for P = Q = u1wul, we may conclude that “moreover” part

of the lemma statement is true.

Now we are ready to extend Theorem 2.1.12 to not only make it valid for

(2, j) digraphs but also strengthen it.

Theorem 2.1.15. For a positive integer j, let H be a hole of the phylogeny

graph P (D) of a (2, j) digraph D. Then there is a hole in U(D) which only

contains vertices in the subgraph of U(D) obtained from H by a set extending

H. Moreover, if P (D) has a hole and the holes of P (D) are mutually edge-

disjoint, then there exists an injective map from the set of holes in P (D) to

the set of holes in U(D).

Proof. The first part of this theorem is immediately true by Lemma 2.1.14.

To show the second part of the theorem statement, we assume that P (D)

has a hole and the holes in P (D) are mutually edge-disjoint. Let f be an

acyclic labeling of D, {H1, . . . , Hl} be the set of holes in P (D), and Wi be a
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set extending Hi for each i = 1, . . . , l. Let wi be the vertex with the least f -

value in V (Hi)∪Wi for each i = 1, . . . , l. Then, by Lemma 2.1.14, wi ∈ Wi and

there exists a hole φ(Hi) such that wi ∈ V (φ(Hi)) and V (φ(Hi)) ⊂ V (Hi)∪Wi

for each i = 1, . . . , l. At this point, we may regard φ as a map from the set

of the holes in P (D) to the set of holes in U(D).

In the following, we show that φ is injective. Suppose, to the contrary,

that φ(Hj) = φ(Hk) for some j and k satisfying 1 ≤ j < k ≤ l. Since wi is

the vertex with the least f -value in V (Hi)∪Wi and V (φ(Hi)) ⊂ V (Hi)∪Wi,

wi has the least f -value in V (φ(Hi)) for each i ∈ {j, k}. Then, since φ(Hj) =

φ(Hk), wj = wk and so wj ∈ Wj ∩ Wk. Thus wj has two in-neighbors on

Hj and two in-neighbors on Hk in D. Then, by the hypothesis that Hj and

Hk are edge-disjoint, wj has at least three distinct in-neighbors in D, which

violates the indegree restriction on D. Hence φ(Hj) 6= φ(Hk) for any j and

k satisfying 1 ≤ j < k ≤ l and we have shown that φ is injective.

The underlying graph of an (i, j) digraph D being chordal does not guar-

antee that the phylogeny graph of D is chordal. For example, the underlying

graph of the (3, 2) digraph given in Figure 1.3 is chordal whereas its phy-

logeny graph has a hole v2v3v5v6v2. However, if i ≤ 2 or j = 1, then it does

guarantee by the above theorem together with Theorems 2.1.1 and 2.1.8. As

a matter of fact, we have shown the following theorem.

Theorem 2.1.16. Let D∗i,j be the set of (i, j) digraphs whose underlying

graphs are chordal for positive integers i and j. Then the phylogeny graph of

D is chordal for any D ∈ D∗i,j if and only if i ≤ 2 or j = 1.

By Theorem 2.1.16, the phylogeny graph of a (2, j) digraph D is chordal

if the underlying graph of D is chordal for any positive integer j. By the way,

if j = 2, then the underlying graph being chordal guarantees not only P (D)

being chordal but also P (D) being planar, which will be to be shown later in

this section. By the way, Lee et al. [34] showed that a (2, 2) phylogeny graph

is K5-free.
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Theorem 2.1.17 ([34]). For any (2, 2) digraph D, the phylogeny graph of

D is K5-free.

We shall extend this theorem in two aspects. On one hand, we find a

sharp upper bound for the clique number of (2, j) phylogeny graph for any

positive integer j. On the other hand, we show that the phylogeny graph

P (D) of a (2, 2) digraph D is planar if the underlying graph of D is chordal

by showing that P (D) is K5-minor-free and K3,3-minor-free.

Lemma 2.1.18. For a positive integer j, every (2, j) phylogeny graph is

(j + 2)-degenerate.

Proof. Let D be a (2, j) digraph for a positive integer j and f be an acyclic

labeling of D. We take a subgraph H of P (D) and the vertex u which has

the least f -value in V (H). Then the out-neighbors of u in D cannot be in

V (H). Thus an edge incident to u in H is either a cared edge or the edge in

U(D) corresponding to an arc incoming toward u in D. Since u has at most

j out-neighbors and each of the out-neighbors has at most one in-neighbor

other than u in D, there are at most j cared edges which are incident to u in

H. Moreover, since u has at most two in-neighbors in D, there are at most

two edges incident to u in H which correspond to arcs incoming toward u in

D. Thus u has degree at most j + 2 in H. Since H was arbitrarily chosen,

P (D) is (j + 2)-degenerate.

The following theorem gives a sharp upper bound for the clique number

of (2, j) phylogeny graph for any positive integer j to extend the Theo-

rem 2.1.17.

Theorem 2.1.19. Let D be a (2, j) digraph for a positive integer j. Then

ω(P (D)) ≤

j + 2 if j ≤ 2;

j + 3 otherwise;

and the inequalities are tight.
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Figure 2.1: A (2, 1) digraph and (2, 2) digraph whose phylogeny graphs con-
tain K3 and K4, respectively.

Proof. It is known that if a graph G is k-degenerate, then ω(G) ≤ k + 1.

Thus, by Lemma 2.1.18, ω(P (D)) ≤ j + 3. By Theorems 2.1.8 and 2.1.17,

ω(P (D)) ≤ j + 2 if j ≤ 2.

The inequality is tight for j ≤ 2 by the digraphs given in Figure 2.1.

To show that the inequality is tight for j ≥ 3, we construct a (2, j) digraph

in the following way. We start with an empty digraph D0 with vertex set

{v1, . . . vj+3}. We add to D0 the vertices a1,2, . . . , a1,j+1 and the arcs (v1, a1,i),

(vi, a1,i) for i = 2, . . ., j + 1 and arcs (vj+2, v1), (vj+3, v1) to obtain a digraph

D1. Then D1 is a (2, j)-digraph with every vertex except v1 having outdegree

at most one and

E1 := {vj+2vj+3} ∪ {v1vi | i = 2, . . . , j + 3}

is an edge set of P (D1). We add to D1 the vertices a2,3, . . . , a2,j−1, a2,j+1, a2,j+2

and the arcs (v2, a2,i), (vi, a2,i) for each i ∈ [j + 2] \ {1, 2, j} and arcs (vj, v2),

(vj+3, v2) to obtain a digraph D2. Then D2 is a (2, j)-digraph with every

vertex except v1 and v2 having outdegree at most two and

E2 := E1 ∪ {vjvj+3} ∪ {v2vi | i = 3, . . . , j + 3}

is an edge set of P (D2).

For each ` ∈ [j − 1] \ {1, 2}, we add to D`−1 the vertices a`,`+1, . . . , a`,j+1

and the arcs (v`, a`,i), (vi, a`,i) for i = ` + 1, . . ., j + 1 and arcs (vj+2, v`),
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(vj+3, v`) to obtain a digraph D`. Then, for each ` ∈ [j − 1] \ {1, 2} is a

(2, j)-digraph with every vertex except v1, . . ., and vl having outdegree at

most ` and

E` := E`−1 ∪ {v`vi | i = `+ 1, . . . , j + 3}

is an edge set of P (D`). Therefore vi is adjacent to each of v1, . . ., vj+3 except

itself for i = 1, . . ., j−1. Now we add to Dj−1 the arcs (vj+3, vj+1), (vj+2, vj),

and (vj+1, vj) to obtain a (2, j) digraph Dj. Clearly, vj, . . ., vj+3 are mutually

adjacent in P (Dj) (recall that the edges vj+2vj+3 and vjvj+3 are contained

in E1 and E2, respectively). Thus v1, . . ., vj+3 form a clique of size j + 3 in

P (Dj).

From Theorems 2.1.1 and 2.1.8, we know that the clique number of a (1, j)

phylogeny graph is at most two and the clique number of an (i, 1) phylogeny

graph is at most i+ 1 for any positive integers i and j.

In the rest of this section, we shall show that the phylogeny graph P (D)

of a (2, 2) digraph D is planar if the underlying graph of D is chordal.

The following lemma is a known fact.

Lemma 2.1.20. The class of chordal graphs is closed under contraction.

We denote by G · e the graph obtained by contracting a graph G by an

edge e in G.

Lemma 2.1.21. For a graph G and two adjacent vertices u and v in G, let

K be a clique with at least three vertices in G · uv. If z is the vertex in K

obtained by identifying u and v, then one of the following is true:

• K \ {z} ⊂ NG(u);

• K \ {z} ⊂ NG(v);

• the subgraph of G induced by (K \ {z}) ∪ {u, v} contains a hole in G.
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Proof. Suppose that K \ {z} 6⊂ NG(u) and K \ {z} 6⊂ NG(v). Then there is

a vertex w and x in K \ {z} such that w is not adjacent to u and x is not

adjacent to v. Since K is a clique in G · uv, w and x are adjacent to v and u,

respectively, in G, and so uxwvu is a hole in G.

Lemma 2.1.22. A chordal graph G is Kω(G)+1-minor-free.

Proof. Denote ω(G) by ω for simplicity’s sake. Suppose, to the contrary, that

G contains Kω+1 as a minor. Then, since Kω+1 is complete, G contains an

induced subgraph H such that Kω+1 is obtained from H by only contraction.

Moreover, we may regard H as an induced subgraph of G for which the

smallest number of contractions are required to obtain Kω+1. Then, since G

is chordal, H is also chordal. Clearly H is Kω+1-free, so at least one edge

of H is contracted to obtain Kω+1. Let uv be the last edge contracted to

obtain Kω+1 from H. Let L be the second last graph obtained in the series

of contractions to obtain Kω+1 from H, that is, L · uv = Kω+1. Then, by

Lemma 2.1.21, V (L)\{u, v} ⊂ NL(u) or V (L)\{u, v} ⊂ NL(v) or L contains

a hole. If V (L) \ {u, v} ⊂ NL(u) or V (L) \ {u, v} ⊂ NL(v), then L − v

or L − u is isomorphic to Kω+1, which contradicts the choice of H. Thus

V (L) \ {u, v} 6⊂ NL(u) and V (L) \ {u, v} 6⊂ NL(v), and so L contains a hole.

However, since H is chordal, by Lemma 2.1.20, L is chordal and we reach a

contradiction.

Theorem 2.1.23. For a positive integer j and a (2, j) digraph, if its under-

lying graph is chordal, then its phylogeny graph is Kj+3-minor-free if j ≤ 2

and Kj+4-minor-free if j ≥ 3.

Proof. Let D be a (2, j) digraph for a positive integer j whose underlying

graph is chordal. Then, by Theorem 2.1.16, P (D) is chordal. Moreover,

ω(P (D)) ≤

j + 2, if j ≤ 2

j + 3, otherwise.
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Figure 2.2: A (2, 2) digraph D whose phylogeny graph contains K5 as a minor.

by Theorem 2.1.19. Thus P (D) is Kj+3-free (resp. Kj+4-free) if j ≤ 2 (resp.

j ≥ 3). By Lemma 2.1.22, P (D) is Kj+3-minor-free (resp. Kj+4-minor-free)

if j ≤ 2 (resp. j ≥ 3).

The above theorem is false for a (2, j) digraph whose underlying graph is

non-chordal (see Figure 2.2).

Corollary 2.1.24. If the underlying graph of a (2, 2) digraph is chordal, then

its phylogeny graph is K5-minor-free.

In the following, we show that the phylogeny graph of (2, 2) digraph whose

underlying graph is chordal is K3,3-minor-free.

The join of two graphs G1 and G2 is denoted by G1 ∨ G2 and has the

vertex set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2) ∪ {xy | x ∈
G1 and y ∈ G2}. Let In denote a set of n isolated vertices in a graph for a

positive integer n.

Lemma 2.1.25. For any (2, 2) digraphs, if its underlying graph is chordal,

then its phylogeny graph is K3 ∨ I3-minor-free.
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Proof. Let G be the phylogeny graph of a (2, 2) digraph D whose underlying

graph is chordal. Then, by Theorem 2.1.16 and Corollary 2.1.24, G is chordal

and K5-minor-free.

Suppose, to the contrary, that K3 ∨ I3 is a minor of G. Then G contains

a subgraph H such that either H = K3 ∨ I3 or K3 ∨ I3 is obtained from H

by using edge deletions or contractions. Let f be an acyclic labeling of D.

Suppose that H = K3 ∨ I3. If H is not an induced subgraph of G, then

two vertices of I3 are adjacent in G, and so K5 is a subgraph of G, which is

impossible. Thus H is an induced subgraph of G. We denote the vertices of

K3 in H by x1, x2, x3 and the vertices of I3 in H by y1, y2, y3. We may assume

that f(x1) < f(x2) < f(x3) and f(y1) < f(y2) < f(y3).

If f(x1) < f(y1), then the outdegree of x1 in the subdigraph DH of D

induced by V (H) is zero, which implies dH(x1) ≤ 4 (recall that D is a (2, 2)

digraph), a contradiction. Thus

f(y1) < f(x1) < f(x2) < f(x3) and f(y1) < f(y2) < f(y3). (2.1.3)

If x3 has two in-neighbors in DH , then they must be y2 and y3, which implies

their being adjacent in G, a contradiction. Therefore x3 has at most one in-

neighbor in DH . Since D is a (2, 2) digraph and dH(x3) = 5, x3 has exactly

one in-neighbor and two out-neighbors in DH , and two cared edges in H are

incident to x3. The in-neighbor of x3 in DH is y2 or y3 by (2.1.3).

Let y be the in-neighbor of x3 in DH . Then y ∈ {y2, y3} and f(y) > f(x3).

Thus, by (2.1.3), none of x1, x2, and y1 is an in-neighbor of y in DH . Since

D is a (2, 2) digraph, y has at most one out-neighbor other than x3 in DH .

Then, since dH(y) = 3, by (2.1.3), one of x2y and x1y is a cared edge in G

taken care of by x1 or x2. Since f(x1) < f(x2), x2y is a cared edge in G taken

care of by x1.

Let v be a vertex joined to x3 by a cared edge in H. Then x3 and v have

a common out-neighbor in D. Since x3 has all of its two out-neighbors in

DH , the common out-neighbors of x3 and v should be in H. Since there are
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two cared edges incident to x3 in H, the two out-neighbors of x3 take care of

those two cared edges incident to x3. Since y1 has the least f -value among

the vertices in H, y1 cannot be none of the other ends of two cared edges

incident to x3 in G. Hence y1 must be one of the two out-neighbors of x3 in

DH which takes care of a cared edge incident to x3. Since {y1, y2, y3} is an

independent set in G, neither y2 nor y3 can be an in-neighbor of y1 in DH .

Thus x1 or x2 is the vertex joined to x3 which is taken care of by y1 in DH .

If x1 is an in-neighbor of y1 in DH , then x1y1x3yx1 is a hole in U(D) since

{y, y1} ⊂ I3 and x1x3 is a cared edge in G which is not an edge in U(D).

Thus x2 is an in-neighbor of y1 in DH . In the following, we shall claim that

x1x2y1x3yx1 is a hole in U(D) to reach a contradiction. Since {y, y1} ⊂ I3,

y and y1 are not adjacent in U(D). Since x2x3 is a cared edge in G, x2 and

x3 are not adjacent in U(D). If x1x3 is an edge of U(D), then there is an

arc (x3, x1) since f(x1) < f(x3), which contradicts the indegree condition

on x1. Therefore x1 and x3 are not adjacent in U(D). By applying a similar

argument, we may show that neither x1 and y1 nor y and x2 are adjacent in

U(D).

Thus H 6= K3 ∨ I3 and so K3 ∨ I3 is obtained from H by using edge

deletions or contractions. Then, K3 ∨ I3 may be obtained from the subgraph

of G induced by V (H) by using edge deletions or contractions, so we may

assume that H as an induced subgraph of G. Then H is chordal. If an edge

deletion was required to obtain K3 ∨ I3 from H, then it would mean that

G contains K5 as a minor, which is impossible. Thus, we may assume that

K3 ∨ I3 is obtained from H by only contractions.

Let H∗ be a graph obtained from H by applying the smallest number

of contractions to contain K3 ∨ I3 as a subgraph. Since H is chordal, H∗ is

chordal by Lemma 2.1.20.

Let x1, x2, x3 be the vertices of K3 and y1, y2, y3 be the vertices of I3 for

K3 ∨ I3 contained in H∗. Let H ′ be the graph to which the last contraction

is applied in the process of obtaining H∗ and e = uv be the edge contracted
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lastly. Then H ′ is chordal by Lemma 2.1.20. By the choice of H∗, u and v

are identified to become a vertex in {x1, x2, x3, y1, y2, y3}.
Case 1. The vertices u and v are identified to become one of y1, y2,

y3. Without loss of generality, we may assume that u and v are identi-

fied to become the vertex y3. By Lemma 2.1.21, {x1, x2, x3} ⊂ NH′(u) or

{x1, x2, x3} ⊂ NH′(v) or {x1, x2, x3, u, v} contains a hole in H ′. Since H ′ is

chordal, {x1, x2, x3} ⊂ NH′(u) or {x1, x2, x3} ⊂ NH′(v). Then

{x1, x2, x3, y1, y2, u} or {x1, x2, x3, y1, y2, v}

forms K3 ∨ I3 in H ′, which contradicts the choice of H∗.

Case 2. The vertices u and v are identified to become one of x1, x2, x3.

Then each of y1, y2, y3 is adjacent to one of u, v in H ′. Without loss of

generality, we may assume that u and v are identified to become the vertex

x3. By Lemma 2.1.21, {x1, x2} ⊂ NH′(u) or {x1, x2} ⊂ NH′(v) or {x1, x2, u, v}
contains a hole in H ′. Since H ′ is chordal, {x1, x2} ⊂ NH′(u) or {x1, x2} ⊂
NH′(v). Without loss of generality, we may assume that {x1, x2} ⊂ NH′(u).

If u is adjacent to each of y1, y2, y3, then {x1, x2, u, y1, y2, y3} forms K3 ∨ I3
in H ′, a contradiction to the choice of H∗. Thus u is not adjacent to one

of y1, y2, y3 in H ′. Without loss of generality, we may assume that u is not

adjacent to y3 in H ′. Then v is adjacent to y3 in H ′. If v is not adjacent to

one of x1 and x2, then x1y3vux1 or x2y3vux2 is a hole in H ′ and we reach a

contradiction. Thus v is adjacent to x1 and x2. If one of y1, y2 is adjacent

to both of u and v, then x1, x2, u, and v together with it form K5 in H ′,

a contradiction. Therefore {NH′(u) ∩ {y1, y2, y3}, NH′(v) ∩ {y1, y2, y3}} is a

partition of {y1, y2, y3}. Thus |NH′(u)∩{y1, y2, y3}|+ |NH′(v)∩{y1, y2, y3}| =
3. Without loss of generality, we may assume that |NH′(u)∩{y1, y2, y3}| = 1.

Then {x1, x2, v, y1, y2, y3, u} \ (NH′(u)∩ {y1, y2, y3}) forms K3 ∨ I3 in H ′ and

we reach a contradiction.

Theorem 2.1.26. For any (2, 2) digraph D, if the underlying graph of D is
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chordal, then the phylogeny graph of D is K3,3-minor-free.

Proof. Suppose, to the contrary, that K3,3 is a minor of P (D). Then K3,3 is

obtained from P (D) by edge deletions or vertex deletions or contractions.

Let (X, Y ) be a bipartition of K3,3. Among the edge deletions, the vertex

deletions, and the contractions to obtain K3,3 from P (D), we only take all

the vertex deletions and all the contractions and apply them in the same order

as the order in which vertex deletions and contractions applied to obtain K3,3

from P (D). Let H∗ be a graph obtained from P (D) in this way. Then H∗

contains K3,3 as a spanning subgraph. In addition, since P (D) is chordal,

H∗ is chordal by Lemma 2.1.20 (it is clear that the chordality is preserved

under vertex deletions). If there is a pair of nonadjacent vertices in H∗ in

each of X and Y , then those four vertices form a hole in H∗ and we reach a

contradiction. Thus X or Y forms a clique in H∗ and so H∗ contains K3 ∨ I3
as a spanning subgraph. Then K3 ∨ I3 is a minor of P (D), which contradicts

Lemma 2.1.25. Hence P (D) is K3,3-minor-free.

Theorem 2.1.27. For any (2, 2) digraphs, if its underlying graph is chordal,

then its phylogeny graph is chordal and planar.

Proof. Let D be a (2, 2) digraph whose underlying graph is chordal. Then,

by Theorem 2.1.16, P (D) is chordal. Furthermore, by Corollary 2.1.24 and

Theorem 2.1.26, P (D) is planar.

Corollary 2.1.28. A chordal graph one of whose orientations is a (2, 2)

digraph is planar.

Proof. Let G be a chordal graph one of whose orientations, namely D, is a

(2, 2) digraph. Then U(D) is G which is chordal. Thus, by Theorem 2.1.27,

P (D) is planar. Since U(D) is a subgraph of P (D), U(D) is planar.
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2.2 The phylogeny number and the triangles

and the diamonds of a graph

In this section, we deal with acyclic digraphs and their phylogeny graphs in

the aspect of their holes, and phylogeny numbers of graphs.

We extend the given inequalities in Theorems 1.2.1, 1.2.2, 1.2.3, and 1.2.4

to graphs with many triangles (Theorem 2.2.12). In the process of doing so,

we derive Theorem 2.2.2 which plays a key role in deducing various meaning

results including Theorem 2.2.13 that answers a question given by Wu et

al. [62] (Theorem 2.2.13). They showed that the difference between the phy-

logeny number and the competition number of a graph can be any integer

greater than or equal to −1 and asked whether or not the same is true when

limited to only connected graphs. We answer their question.

We begin with the following lemma.

Given a digraph D and two vertex sets U and V of D, we denote by

[U, V ]D the set of arcs in D having a tail in U and a head in V .

Lemma 2.2.1. Let D be an acyclic digraph, G be an induced subgraph of

P (D), and H be a subgraph of G satisfying the following:

(i) any maximal clique of H is also a maximal clique in G;

(ii) any maximal clique of G belonging to H and any maximal clique of G

not belonging to H share at most one vertex.

In addition, we let D∗ be the digraph with the vertex set

V (D∗) = V (H) ∪ (V (D) \ V (G))

and the arc set

A(D∗) =
⋃
v∈X

[N−D [v] ∩ V (H), {v}]
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where

X ={v ∈ V (H) ∪ (V (D) \ V (G)) | N−D [v] ∩ V (H) is a clique of size

at least two in H}.

Then P (D∗) contains H as an induced subgraph.

Proof. If H is an empty graph, then the statement is trivially true. Now

suppose that H has an edge. Let C be the set of all maximal cliques of

H. We first show that H is a subgraph of P (D∗). By definition, V (H) ⊂
V (D∗) = V (P (D∗)). Take an edge e := uv in H. Then {u, v} ⊂ K for some

K ∈ C. By the condition (i), K is a maximal clique of G. Moreover, one of

the following is true: either (u, v) ∈ A(D) or (v, u) ∈ A(D); (u,w) ∈ A(D)

and (v, w) ∈ A(D) for some w ∈ V (D).

Case 1. Either (u, v) ∈ A(D) or (v, u) ∈ A(D). Without loss of generality,

we may assume (u, v) ∈ A(D). Then |N−D [v]∩V (H)| ≥ 2. Suppose that there

is no clique in C including N−D [v] ∩ V (H). Since N−D [v] ∩ V (H) is a clique

of G, there is a maximal clique L of G containing N−D [v] ∩ V (H). By the

assumption, L does not belong to H. Then {u, v} ⊂ K∩L, which contradicts

the condition (ii) given in the lemma statement. Therefore there is a maximal

clique in C containing N−D [v] ∩ V (H). Thus N−D [v] ∩ V (H) is a clique in H

and so v ∈ X. Hence, by the definition of D∗, (u, v) ∈ A(D∗), which implies

that e is an edge of P (D∗).

Case 2. (u,w) ∈ A(D) and (v, w) ∈ A(D) for some w ∈ V (D). Suppose

that w /∈ V (H). Then {u, v, w} be a clique in P (D) while {u, v, w} is not

a clique in H. Thus, by the condition (ii), w does not belong to G. Hence

w ∈ V (H) ∪ (V (D) \ V (G)). Since N−D [w] ∩ V (H) forms a clique in G, there

is a maximal clique Y in G including N−D [w] ∩ V (H), so {u, v} ⊂ Y . Since

{u, v} ⊂ Y ∩K and K ∈ C, by the hypothesis (ii), Y ∈ C. If w ∈ V (G)\V (H),

{u, v, w} forms a clique in G but not in H, which contradicts to the condition

(ii) since {u, v} ⊂ K. Therefore w ∈ V (H) ∪ (V (D) \ V (G)) and so w ∈ X.
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By the definition of D∗, (u,w) ∈ A(D∗) and (v, w) ∈ A(D∗). Therefore e is

an edge of P (D∗). Thus we have shown that H is a subgraph of P (D∗).

To show that H is an induced subgraph of P (D∗), we take two vertices

u and v in H which are adjacent in P (D∗). Then either (u, v) ∈ A(D∗) or

(v, u) ∈ A(D∗), or there is a vertex w ∈ V (D∗) such that (u,w) ∈ A(D∗)

and (v, w) ∈ A(D∗). We first assume that (u, v) ∈ A(D∗). Then v ∈ X and

u ∈ N−D [v] ∩ V (H). By the definition of X, N−D [v] ∩ V (H) is a clique in

H. Since v was taken from H, {u, v} ⊂ N−D [v] ∩ V (H) and so u and v are

adjacent in H. By a similar argument, we may show that if (v, u) ∈ A(D∗),

then u and v are adjacent in H. Finally we assume that there is a vertex

w ∈ V (D∗) such that (u,w) ∈ A(D∗) and (v, w) ∈ A(D∗). Then w ∈ X, so

N−D [w] ∩ V (H) is a clique in H. Since {u, v} ⊂ N−D [w] ∩ V (H), u and v are

adjacent in H. Hence H is an induced subgraph of P (D∗).

Theorem 2.2.2. Let G be a graph and G1, G2, . . ., Gk be subgraphs of G

satisfying that

(i) E(G1), E(G2), . . ., E(Gk) are mutually disjoint;

(ii) any maximal clique of Gi is also a maximal clique in G for each i =

1, . . . , k;

(iii) any maximal clique of G belonging to Gi and any maximal clique of G

not belonging to Gi share at most one vertex for each i = 1, . . . , k.

Then p(G) ≥
∑k

i=1 p(Gi).

Proof. By the definition of phylogeny number, there is an acyclic digraph

D such that p(G) = |V (D) \ V (G)| and P (D) contains G as an induced

subgraph. For each i = 1, . . . , k, let Di be a digraph with the vertex set

V (Di) = V (Gi) ∪ (V (D) \ V (G))
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and the arc set

A(Di) =
⋃
v∈Xi

[
N−D [v] ∩ V (Gi), {v}

]
D

where

Xi ={v ∈ V (Gi) ∪ (V (D) \ V (G)) | N−D [v] ∩ V (Gi) is a clique of size

at least two in Gi}.

Then, by conditions (i) and (ii), we may apply Lemma 2.2.1 to conclude that

P (Di) contains Gi as an induced subgraph. Since Di is a subdigraph of D

which is acyclic, Di is acyclic for each i = 1, . . ., k. Now, from Di, we delete

the vertices in V (Di) \ V (Gi) which have at most one in-neighbor in V (Gi)

and denote the resulting digraph by D∗i for each i = 1, . . ., k. Then

|N−D∗i (w) ∩ V (Gi)| ≥ 2 (2.2.1)

for each vertex w ∈ V (D∗i ) \ V (Gi) and each i = 1, . . ., k. It is easy to check

that D∗i is acyclic and P (D∗i ) contains Gi as an induced subgraph. Thus

p(Gi) ≤ |V (D∗i ) \ V (Gi)| for each i = 1, . . . , k.

Now we show that V (D∗1) \ V (G1), . . ., V (D∗k) \ V (Gk) are mutually dis-

joint. Suppose, to the contrary, that there are i and j with 1 ≤ i < j ≤ k

such that (V (D∗i ) \ V (Gi)) ∩ (V (D∗j ) \ V (Gj)) 6= ∅. Then there is a vertex

x ∈ (V (D∗i ) \ V (Gi)) ∩ (V (D∗j ) \ V (Gj)). By (2.2.1),

|N−D∗i (x) ∩ V (Gi)| ≥ 2 and |N−D∗j (x) ∩ V (Gj)| ≥ 2. (2.2.2)

Since D∗i and D∗j are subdigraphs of D and Gi and Gj are subgraphs of G,

(N−D∗i (x) ∩ V (Gi)) ∪ (N−D∗j (x) ∩ V (Gj)) ⊂ N−D (x) ∩ V (G). (2.2.3)

Obviously, N−D∗i (x) ∩ V (Gi) and N−D∗j (x) ∩ V (Gj) form cliques in Gi and Gj,

respectively. Then, since E(Gi) and E(Gj) are disjoint by the condition,
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N−D∗j (x) ∩ V (Gj) is not a clique of Gi. Thus N−D (x) ∩ V (G) is a clique in G

which is not contained in Gi by (2.2.3). In addition, there exist a maximal

clique K of Gi containing N−D∗i (x) ∩ V (Gi). By the condition (ii), K is a

maximal clique of G. By (2.2.3),

(N−D (x)∩V (G))∩K ⊃ (N−D (x)∩V (G))∩(N−D∗i (x)∩V (Gi)) = N−D∗i (x)∩V (Gi),

and, by (2.2.2), we reach a contradiction to the condition (iii). Thus V (D∗1)\
V (G1), . . ., V (D∗k) \ V (Gk) are mutually disjoint and so

k∑
i=1

p(Gi) ≤
k∑
i=1

|V (D∗i )\V (Gi)| = |
k⋃
i=1

(V (D∗i )\V (Gi))| ≤ |
k⋃
i=1

(V (Di)\V (Gi))|.

We note that
⋃k
i=1 (V (Di) \ V (Gi)) = V (D) \ V (G). Hence

k∑
i=1

p(Gi) ≤ |V (D) \ V (G)| = p(G).

Corollary 2.2.3. Let G be a graph and H be a triangle-free subgraph of G

such that any maximal clique in H is a maximal clique in G. Then p(G) ≥
p(H).

Proof. It is obvious that H satisfies the conditions (i) and (ii) in Theo-

rem 2.2.2. Since H is triangle-free, any maximal clique of H consists of a

vertex or two adjacent vertices. Furthermore, since any maximal clique of

H is a maximal clique of G, any maximal clique of G not belonging to H

shares at most one vertex with a maximal clique of H. Thus p(G) ≥ p(H)

by Theorem 2.2.2.

It is not easy to give a good lower bound for the phylogeny number

of a graph. Corollary 2.2.3 is useful in a sense that there is a formula for
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G D

Figure 2.3: A graph G whose phylogeny number can be computed by Corol-
lary 2.2.3.

computing the phylogeny number of a triangle-free graph (see Theorem 1.2.1

and Lemma 2.2.4). For an example, we take the graph G given in Figure 2.3.

Then the induced cycle of length 4 in G satisfies the condition for being H in

Corollary 2.2.3. Thus p(G) ≥ 1 by Theorem 1.2.1 and Corollary 2.2.3. The

acyclic digraph D given in Figure 2.3 is a phylogeny digraph for G satisfying

|V (D) \ V (G)| = 1. Hence p(G) ≤ 1 and so p(G) = 1.

Lemma 2.2.4 ([47]). Given a graph G, let G1, G2, . . ., Gm be the connected

components of G and let Di be an optimal phylogeny digraph for Gi for each

i = 1, 2, . . ., m. Then D = D1 ∪ D2 ∪ · · · ∪ Dm is an optimal phylogeny

digraph for G and p(G) = p(G1) + p(G2) + · · ·+ p(Gm).

The inequality given in Theorem 2.2.2 may be strict if the number k

of subgraphs satisfying the condition (i), (ii), and (iii) is at least two. By

Theorem 1.2.1, p(G) = 2 for a graph G given in Figure 2.4. Yet, p(G1) +

p(G2) < 2 for any two subgraphs G1 and G2 of G satisfying the conditions

(i), (ii), and (iii) in Theorem 2.2.2. To show it by contradiction, suppose

that p(G1) + p(G2) = 2 for some two subgraphs G1 and G2 of G satisfying

the conditions (i), (ii), and (iii) in Theorem 2.2.2. Then one of the following
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G

Figure 2.4: A graph G with p(G) = 2. Yet, p(G1) + p(G2) < 2 for any two
subgraphs G1 and G2 of G satisfying the conditions (i), (ii), and (iii) in
Theorem 2.2.2.

is true: p(G1) = 2 and p(G2) = 0; p(G1) = 1 and p(G2) = 1; p(G1) = 0

and p(G2) = 2. A proper subgraph H of G contains at most one cycle, and,

by Theorem 1.2.1 and Lemma 2.2.4, p(H) = 1 if H contains a cycle and

p(H) = 0 otherwise. Therefore, if p(G1) = 2 and p(G2) = 0, then G1 = G

and contradicts (i) or (ii) in Theorem 2.2.2. Similarly, the third case cannot

happen. Now suppose that p(G1) = 1 and p(G2) = 1. Then each of G1

and G2 contains a cycle by the above observation, which contradicts (i) of

Theorem 2.2.2.

In this vein, it is interesting to find properties of a graph G for which

p(G) =
∑k

i=1 p(Gk) for k ≥ 2 and subgraphs G1, . . ., Gk of G satisfying the

conditions (i), (ii), and (iii) in Theorem 2.2.2. To do so, we need the following

lemma.

A graph G is separable by a vertex w into two subgraphs G1 and G2 if

V (G1)∪V (G2) = V (G), E(G1)∪E(G2) = E(G), and V (G1)∩V (G2) = {w}.
Lemma 2.2.5 ([49]). Let G be a graph separable by a vertex w into two

graphs G1 and G2. If at least one of G1 and G2 has an optimal phylogeny

digraph with no incoming arcs towards w, then p(G) = p(G1) + p(G2).

Theorem 2.2.6. Let G be a graph and G1, G2, . . ., Gk be connected subgraphs

of G satisfying that
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(i) {E(G1), E(G2), . . . , E(Gk)} is a partition of E(G);

(ii) every cycle of G belongs to Gi for some i ∈ {1, . . . , k};

(iii) at least k − 1 of G1, . . ., Gk are vertex transitive.

Then p(G) =
∑k

i=1 p(Gi).

Proof. We show p(G) =
∑k

i=1 p(Gi) by complete induction on k. If k = 1,

then G = G1 and so the inequality trivially holds. Suppose that k ≥ 2 and

the equality holds for any l subgraphs of G satisfying conditions (i), (ii), and

(iii) for each l ≤ k − 1. Without loss of generality, we may assume that G1

is not vertex transitive, if any. Since G is connected, G1 must share a vertex

with Gi for some i ∈ {2, . . . , k} by the condition (i). We may assume that

i = 2.

Suppose that |V (G1) ∩ V (G2)| ≥ 2. Then we take two vertices w1, w2 ∈
V (G1) ∩ V (G2) the distance between which is the smallest in G1. Let W1

and W2 be a shortest (w1, w2)-path in G1 and a shortest (w2, w1)-path in G2,

respectively. Then the length of W1 is the distance between w1 and w2 in

G1. Suppose that W1 and W2 have a common vertex w∗ other than w1 and

w2. Then w∗ ∈ V (G1) ∩ V (G2). In addition, the (w1, w
∗)-section of W1 is a

path shorter than W1 in G1, so the distance between w1 and w∗ is smaller

than the distance between w1 and w2 in G1, which contradicts the choice of

w1 and w2. Therefore W1 and W2 are internally vertex-disjoint and so W1W2

is a cycle in G. Then, by the condition (ii), Gr contains the cycle W1W2 for

some r ∈ [k]. By the condition (i), W1W2 belongs to neither G1 nor G2, so

r 6= 1, 2. Yet, G1 and Gr share an edge, which contradicts the condition (i).

Therefore |V (G1) ∩ V (G2)| = 1.

Let w ∈ V (G1)∩V (G2). Then G is separable by w into two subgraphs G1

and G2. Let D2 be an optimal phylogeny digraph for G2. Since D2 is acyclic,

D2 has a vertex v of indegree zero. If v /∈ V (G2), P (D2 − v) contains G2

as an induced subgraph, which contradicts the choice of D2 to be optimal.

Thus v ∈ V (G2). Since G2 is vertex transitive, we may regard v as w. Thus,
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by Lemma 2.2.5, p(G∗) = p(G1) + p(G2) where G∗ is the union of G1 and

G2. It is easy to check that the subgraphs G∗, G3, . . ., Gk of G satisfy the

conditions (i), (ii), and (iii). Hence, by the induction hypothesis,

p(G) = p(G∗) +
k∑
i=3

p(Gi) =
k∑
i=1

p(Gi)

and so p(G) =
∑k

i=1 p(Gi).

Corollary 2.2.7. Let G be a graph and K be a clique of G that is a block

in G and contains exactly one cut-vertex of G. Then G and the graph GK

obtained by deleting the vertices in K except the cut-vertex have the same

phylogeny number.

Proof. Let G1, . . ., Gω be the components of G for a positive integer ω. We

may assume that G1 contains K. Let H1 be the graph obtained from G1 by

deleting the vertices in K except the cut-vertex. Obviously, H1 and K satisfy

the conditions (i), (ii), and (iii) of Theorem 2.2.6 as connected subgraphs of

G1. Thus, by the theorem, p(G1) = p(H1)+p(K). Since the phylogeny number

of a complete graph is zero, p(K) = 0 and so p(G1) = p(H1). Therefore

p(G) = p(G1) + · · · p(Gω) = p(H1) + · · · + p(Gω) by Lemma 2.2.4. We note

that replacing G1 with H1 among the components of G results in GK . Thus

the right hand side of the second equality above equals p(GK) by Lemma 2.2.4

and this completes the proof.

Corollary 2.2.8. Let G be a graph with a pendant vertex v. Then p(G) =

p(G− v).

Now we are ready to extend the inequalities given in (1.2.1) to graphs

with many triangles. To do so, we need the following lemmas.

Lemma 2.2.9 ([47]). For any graph G, p(G) ≥ θe(G)− |V (G)|+ 1.

Lemma 2.2.10. Let G be a graph and xy be an edge of G which is not an

edge of any triangle in G. If a phylogeny digraph D for G contains the arc

(x, y), then x is the only in-neighbor of y in D which belongs to V (G).
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Proof. Suppose, to the contrary, that z ∈ V (G)\{x} is an in-neighbor of y in

D. Then {x, y, z} forms a triangle in P (D). Since G is an induced subgraph

of P (D) and {x, y, z} ⊂ V (G), {x, y, z} forms a triangle in G and we reach

a contradiction.

Lemma 2.2.11. Let G be a graph and xy be an edge of G which is not an

edge of any triangle in G and D be a phylogeny digraph for G. If z is a

common out-neighbor of x and y in D, then z does not belong to G and x

and y are the only in-neighbors of z in D that belong to G.

Proof. Suppose that z is a common out-neighbor of x and y in D. If z belongs

to G, then {x, y, z} forms a triangle in G and we reach a contradiction.

Therefore z does not belong to G. If there is an in-neighbor w of z in D

which belongs to V (G) \ {x, y}, then {x, y, w} forms a triangle in G and we

reach a contradiction.

Theorem 2.2.12. Let G be a connected K4-free graph with mutually edge-

disjoint diamonds. Then

|E(G)| − |V (G)| − 2t(G) + d(G) + 1 ≤ p(G) ≤ |E(G)| − |V (G)| − t(G) + 1

where t(G) and d(G) denote the number of triangles and the number of di-

amonds in G, respectively. Especially, the first inequality becomes equality if

G− is connected and the second inequality becomes equality if G− has exactly

2t(G)− d(G) + 1 components.

Proof. It is easy to check that

θe(G) = |E(G)| − 2(t(G)− 2d(G))− 3d(G) = |E(G)| − 2t(G) + d(G).

By Lemma 2.2.9, |E(G)| − |V (G)| − 2t(G) + d(G) + 1 ≤ p(G). Now we show

p(G) ≤ |E(G)|− |V (G)|− t(G)+1 by induction on t(G). By Theorems 1.2.1,

1.2.2, 1.2.3, and 1.2.4, the inequalities hold for graphs having at most two

triangles. Thus we may assume that G contains at least three triangles.
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Case 1. There is no diamond in G. We take a triangle uvwu in G. Then

E(G− uv) = E(G) \ {uv}, V (G− uv) = V (G) and t(G− uv) = t(G)− 1. In

addition, it is easy to check that G−uv is connected, K4-free, and diamond-

free. Therefore, by the induction hypothesis,

p(G− uv) ≤ |E(G− uv)| − |V (G− uv)| − t(G− uv) + 1

= (|E(G)| − 1)− |V (G)| − (t(G)− 1) + 1

= |E(G)| − |V (G)| − t(G) + 1. (2.2.4)

Let D∗ be an optimal phylogeny digraph for G− uv. Then, since uw and vw

are edges of G− uv, one of the following is true: uw or vw is a cared edge of

P (D∗); none of uw and vw is a cared edge of P (D∗).

Subcase 1-1. uw or vw is a cared edge of P (D∗). Then u and w or v

and w have a common out-neighbor in D∗. Without loss of generality, we

may assume that u and w have a common out-neighbor z in D∗. Since G

is diamond-free and K4-free, uw is not an edge of any triangle in G − uv.

Therefore z ∈ V (D∗) \ V (G) and z has exactly two in-neighbors u and w

which belong to V (G − uv) by Lemma 2.2.11. Now we add an arc (v, z) to

D∗ and denote the resulting digraph by D. Then D is an acyclic digraph

satisfying that V (D) \ V (G) = V (D∗) \ V (G− uv) and P (D) contains G as

an induced subgraph.

Subcase 1-2. None of uw and vw is a cared edge of P (D∗). Then one of

(u,w) and (w, u) and one of (v, w) and (w, v) belong to A(D∗). Since D∗

is acyclic, we take an acyclic labeling ` of D∗. If w has the least `-value

among u, v, and w, then (u,w) ∈ A(D∗) and (v, w) ∈ A(D∗), and so uv

is an edge of G − uv, which is a contradiction. Thus u or v has the least

`-value among u, v, and w. Without loss of generality, we may assume that

u has the least `-value among u, v, and w. Then (w, u) ∈ A(D∗). Since

uw is not an edge of any triangle of G − uv, w is the only in-neighbor of

u in D∗ that belongs to V (G − uv) by Lemma 2.2.10. Now we add an arc
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(v, u) to D∗ to obtain an acyclic digraph D. Then it is easy to check that

V (D) \ V (G) = V (D∗) \ V (G − uv) and P (D) contains G as an induced

subgraph.

Since D∗ is an optimal phylogeny digraph of G−uv, |V (D∗)\V (G−uv)| =
p(G− uv). Then, since V (D) \ V (G) = V (D∗) \ V (G− uv) in each subcase,

|V (D)\V (G)| = p(G−uv). Therefore, by (2.2.4), |V (D)\V (G)| ≤ |E(G)|−
|V (G)|−t(G)+1 in each subcase and hence p(G) ≤ |E(G)|−|V (G)|−t(G)+1.

Case 2. There is a diamond in G. Let y and w be nonadjacent vertices

and {x, y, z, w} be a vertex set which forms a diamond Λ in G. Now let

G∗ = G − {xz, yz, wz} and D∗ be an optimal phylogeny digraph for G∗.

Then G∗ is still K4-free graph and its diamonds are mutually edge-disjoint.

Suppose that there exists an edge of Λ on a triangle T distinct from the

triangles xyzx and xwzx. Since G is K4-free, T and xyzx or T and xwzx

form a diamond. However, the resulting diamond shares an edge with Λ and

we reach a contradiction. Therefore none of edges on Λ is on a triangle in

G∗. Thus

|E(G∗)| = |E(G)|−3, |V (G∗)| = |V (G)|, and t(G∗) = t(G)−2. (2.2.5)

Furthermore, by Lemma 2.2.10,

(‡) u is the only in-neighbor of v that belongs to V (G) if (u, v) ∈ A(D∗)

for (u, v) ∈ {(x, y), (y, x), (x,w), (w, x)}.

In addition, by Lemma 2.2.11, if xy (resp. xw) is a cared edge in P (D∗), then

([) a caring vertex of xy (resp. xw) belongs to V (D∗)\V (G∗) (consequently

V (D∗) \ V (G)) and x and y (resp. x and w) are the only in-neighbors

in D∗ of the caring vertex that belong to V (G).

Subcase 2-1. G∗ is disconnected. Then it has exactly two components G1

and G2 which contains z. Obviously Gi is connected and K4-free, and the

diamonds in Gi are mutually edge-disjoint for each i = 1, 2. Thus, by the
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induction hypothesis, p(G1) ≤ |E(G1)| − |V (G1)| − t(G1) + 1 and p(G2) ≤
|E(G2)| − |V (G2)| − t(G2) + 1. Then

p(G∗) = p(G1) + p(G2)

≤ (|E(G1)| − |V (G1)| − t(G1) + 1) + (|E(G2)| − |V (G2)| − t(G2) + 1)

= |E(G∗)| − |V (G∗)| − t(G∗) + 2

= (|E(G)| − 3)− |V (G)| − (t(G)− 2) + 2

= |E(G)| − |V (G)| − t(G) + 1. (2.2.6)

by (2.2.5) and Lemma 2.2.4.

Suppose that both of xy and xw are cared edges of P (D∗). Then x and y

(resp. x and w) have a common out-neighbor a (resp. b) in D∗. Now we add

arcs (z, a) and (z, b) to D∗ to obtain a digraph D.

Suppose that either xy or xw is cared edge of P (D∗). Without loss of

generality, we may assume that xy is a cared edge of P (D∗). Then xw is

not a cared edge of P (D∗), and so either (x,w) ∈ A(D∗) or (w, x) ∈ A(D∗).

Since xy is a cared edge, x and y have a common out-neighbor c in D∗.

We construct a digraph D from D∗ by adding the arcs (z, c), and (z, w) if

(x,w) ∈ A(D∗); (z, x) if (w, x) ∈ A(D∗).

Now suppose that none of xy and xw is a cared edge of P (D∗). Then either

(x, y) ∈ A(D∗) or (y, x) ∈ A(D∗), and either (x,w) ∈ A(D∗) or (w, x) ∈
A(D∗). Since y and w are not adjacent in G∗, (y, x) /∈ A(D∗) or (w, x) /∈
A(D∗). We add the arcs to D∗ as follows: (z, x) and (z, w) if (y, x) ∈ A(D∗)

and (x,w) ∈ A(D∗); (z, y) and (z, x) if (x, y) ∈ A(D∗) and (w, x) ∈ A(D∗);

(z, y) and (z, w) if (x, y) ∈ A(D∗) and (x,w) ∈ A(D∗); Let D be the resulting

digraph.

We have constructed a digraphD fromD∗ in each of the three cases above.

By (‡) and ([), P (D) contains G as an induced subgraph in each case. By ([),

the outdegree of a caring vertex is zero in D∗ (we recall that we assumed that

the outdegree of any vertex belonging to only optimal phylogeny digraph is
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zero). Moreover, since G1 and G2 are the components of G∗, there is no arc

between a vertex in G1 and a vertex in G2 in D∗. Therefore D is acyclic in

each case. Furthermore, D∗ is an optimal phylogeny digraph for G∗ and the

added arcs have tails in V (G). Thus we may conclude that D is a phylogeny

digraph for G.

Since we did not add any new vertex to construct D from D∗, V (D) \
V (G) = V (D∗)\V (G∗). SinceD∗ was chosen as an optimal phylogeny digraph

for G∗, p(G∗) = |V (D∗) \ V (G∗)|. Thus

p(G) ≤ |V (D)\V (G)| = |V (D∗)\V (G∗)| = p(G∗) ≤ |E(G)|−|V (G)|−t(G)+1

by (2.2.6).

Subcase 2-2. G∗ is connected. Clearly G∗ is K4-free and its diamonds are

mutually edge-disjoint. Thus, by the induction hypothesis,

p(G∗) ≤ |E(G∗)| − |V (G∗)| − t(G∗) + 1

= (|E(G)| − 3)− |V (G)| − (t(G)− 2) + 1

= |E(G)| − |V (G)| − t(G) (2.2.7)

where the first equality holds by (2.2.5).

Suppose that one of xy and xw is a cared edges of P (D∗). Without loss

of generality, we may assume that xy is a cared edge of P (D∗). Then x and

y have a common out-neighbor a in D∗. We construct a digraph D from D∗

by adding the vertex b and the arcs (z, a), (z, b), (x, b), and (w, b).

Now suppose that none of xy and xw is cared edge of P (D∗). Then either

(x, y) ∈ A(D∗) or (y, x) ∈ A(D∗), and either (x,w) ∈ A(D∗) or (w, x) ∈
A(D∗). Since y and w are not adjacent in G∗, (y, x) /∈ A(D∗) or (w, x) /∈
A(D∗). We construct a digraph D from D∗ as follows: V (D) = V (D∗)∪ {c};
we alter the arcs incoming toward to z in D∗ so that they go toward to c

in D and add an arc (z, c); add arcs (z, x) and (z, w) if (y, x) ∈ A(D∗) and

(x,w) ∈ A(D∗); (z, y) and (z, x) if (x, y) ∈ A(D∗) and (w, x) ∈ A(D∗); (z, y)
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and (z, w) if (x, y) ∈ A(D∗) and (x,w) ∈ A(D∗), i.e.

A(D) =


A(D′) ∪ {(z, c), (z, x), (z, w)} if (y, x), (x,w) ∈ A(D∗)

A(D′) ∪ {(z, c), (z, x), (z, y)} if (x, y), (w, x) ∈ A(D∗)

A(D′) ∪ {(z, c), (z, y), (z, w)} if (x, y), (x,w) ∈ A(D∗)

where D′ is the digraph with V (D′) = V (D∗) ∪ {c} and

A(D′) = (A(D∗) \ {(u, z) ∈ A(D∗) | u ∈ V (D∗)})

∪ {(u, c) | u ∈ V (D∗) and (u, z) ∈ A(D∗)}.

We have constructed a digraph D from D∗ in each of the two cases above.

By (‡) and ([), P (D) contains G as an induced subgraph in each case. By

([), the outdegree of a caring vertex is zero in D∗. Therefore adding arcs

(z, a), (z, b), (x, b), and (w, b) to D∗ does not create a directed cycle in the

first case. Since z has indegree zero in the second case, adding arcs with z as

a tail does not create a directed cycle. Therefore D is acyclic in each case.

Furthermore, D∗ is an optimal phylogeny digraph for G∗ and the added arcs

have tails in V (G). Thus we may conclude that D is a phylogeny digraph for

G.

Since we added exactly one vertex to construct D from D∗, |V (D) \
V (G)| = |V (D∗) \ V (G∗)|+ 1. Since D∗ was chosen as an optimal phylogeny

digraph for G∗, p(G∗) = |V (D∗) \ V (G∗)|. Thus

p(G) ≤ |V (D) \ V (G)| = |V (D∗) \ V (G∗)|+ 1

= p(G∗) + 1 ≤ |E(G)| − |V (G)| − t(G) + 1

where the last inequality holds by (2.2.7).

Now we prove the “especially” part. Clearly V (G−) = V (G). Since the
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diamonds in G are mutually edge-disjoint,

|E(G−)| = |E(G)|−3(t(G)−2d(G))−5d(G) = |E(G)|−3t(G)+d(G). (2.2.8)

Suppose that G− is connected. Since G− is triangle-free,

p(G−) = |E(G−)| − |V (G−)|+ 1

by Theorem 1.2.1. Substituting |V (G−)| = |V (G)| and |E(G−)| given in

(2.2.8) into the above equality results in

p(G−) = |E(G)| − |V (G)| − 3t(G) + d(G) + 1. (2.2.9)

Let D− be an optimal phylogeny digraph for G−. Now we add t(G) vertices

to D− and arcs in such a way that each added vertex takes care of only the

edges on a triangle and two triangle edges on distinct triangles are taken

care of by distinct added vertices. Obviously the resulting digraph D is a

phylogeny digraph for G and so

p(G) ≤ |V (D) \ V (G)| = |V (D−) \ V (G−)|+ t(G)

= p(G−) + t(G) ≤ |E(G)| − |V (G)| − 2t(G) + d(G) + 1

where the last inequality holds by (2.2.9). Consequently, we have shown that

p(G) = |E(G)| − |V (G)| − 2t(G) + d(G) + 1 if G− is connected.

Now suppose that G− has exactly r := 2t(G)− d(G) + 1 components H1,

. . ., Hr. For each component Hi of G−, p(Hi) = |E(Hi)| − |V (Hi)| + 1 by

Theorem 1.2.1. By Lemma 2.2.4,

p(G−) =
r∑
i=1

p(Hi) =
r∑
i=1

(|E(Hi)| − |V (Hi)|+ 1).
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Since |V (G−)| =
∑r

i=1 |V (Hi)| and |E(G−)| =
∑r

i=1 |E(Hi)|,

p(G−) = |E(G−)| − |V (G−)|+ r

or

p(G−) = |E(G−)| − |V (G−)|+ 2t(G)− d(G) + 1.

By (2.2.8),

p(G−) = |E(G)| − |V (G)| − t(G) + 1. (2.2.10)

We denote by L the graph obtained from G by attaching a new pendant

vertex to each vertex of G. It is easy to see that the graph obtained from G−

by attaching a new pendant vertex to each vertex of G− is L−. Now

p(G) = p(L) and p(G−) = p(L−) (2.2.11)

by Corollary 2.2.8. Moreover, a maximal clique of L− is an edge which is

an edge of G− or a newly added edge incident to a pendant vertex. By

the definition of G−, each edge in G− maximal clique of G. Therefore a

maximal clique of L− is a maximal clique of L. Thus p(L) ≥ p(L−) by by

Corollary 2.2.3. Then p(G) ≥ p(G−) by (2.2.11). Therefore p(G)) ≥ |E(G)|−
|V (G)| − t(G) + 1 by (2.2.10). Accordingly, we have shown that p(G) =

|E(G)|−|V (G)|−t(G)+1 if G− has exactly 2t(G)−d(G)+1 components.

The graphs G1 and G2 given in Figure 2.5 are examples for G−1 is con-

nected and G−2 has 2t(G2) − d(G2) + 1 components, which implies that the

lower bound and the upper bound both in Theorem 2.2.12 are achievable.

Wu et al. [62] showed that the difference between the phylogeny number

and the competition number of a graph can be any integer greater than or

equal to −1 and asked about the difference for a connected graph. We answer

their question as follows.

The Cartesian product of two graphs G1 and G2 is denoted by G1 × G2

and has the vertex set V (G1)×V (G2) and has an edge (u1, u2)(v1, v2) if and
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G1 G2

Figure 2.5: The graphs G1 and G2 showing that the lower bound and the
upper bound given in Theorem 2.2.12, respectively, are sharp.

only if either u1 = v1 and u2v2 is an edge of G2 or u2 = v2 and u1v1 is an

edge of G1.

Theorem 2.2.13. For any nonnegative integer l, there is a connected graph

G satisfying p(G)− k(G) + 1 = l.

Proof. Let G0 = K2. Clearly p(G0)−k(G0)+1 = 0. For each positive integer

l, let Gl be the graph obtained by identifying a vertex on a complete graph

Kl+2 and a vertex on a Cartesian product of Pl+1 and P2 denoted by Pl+1×P2

(See Figure 2.6). We call the identified vertex in Gl vl.

Fix a positive integer l. Obviously Pl+1 × P2 is triangle-free and so the

competition number is |E(Pl+1 × P2)| − |V (Pl+1 × P2)| + 2 = l + 1 by a

well-known theorem that k(G) = |E(G)| − |V (G)|+ 2 for a connected graph

G. Then there is an acyclic digraph D′l whose competition graph is Pl+1×P2

with newly added isolated vertices b1,l, b2,l, . . . , bl+1,l.

Now we define a digraph Dl as follows. We let

V (Dl) = V (D′l) ∪ {al} and A(Dl) = A(D′l) ∪ {(vl, al)} ∪
l+1⋃
i=1

{(bi,l, al)}.

Then it is easy to check that Dl is acyclic and the competition graph of Dl

is isomorphic to Gl with one isolated vertex. Thus k(Gl) ≤ 1. It is known

that the competition number of a connected graph is at least one. Since Gl
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G1 G2

Figure 2.6: The graphs G1 and G2 defined in the proof of Theorem 2.2.13.

is connected, k(Gl) ≥ 1 and so k(Gl) = 1.

It is easy to see that Kl+2 and Pl+1 × P2 satisfy (i) and (ii) of Theo-

rem 2.2.6 as subgraphs of Gl. Obviously Kl+2 is vertex transitive. Thus, by

Theorem 2.2.6, p(Gl) = p(Kl+2) + p(Pl+1 × P2). It is known that the phy-

logeny number of a chordal graph is zero, so p(Kl+2) = 0. By Theorem 1.2.1,

p(Pl+1 × P2) = l. Therefore p(Gl) = l. Hence p(Gl)− k(Gl) + 1 = l for each

positive integer l.
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Chapter 3

A new minimal chordal

completion

We need the following notions.

A class of graphs is said to be hereditary if it is closed under isomorphism

and induced subgraphs.

We say that a hole H contains a vertex v (resp. an edge e) if v (resp. e)

is a vertex (resp. an edge) on H. We denote the set of holes in a graph G by

H(G) and the set of holes in G containing u by H(G, u).

A nonempty subset X of V (G) is called a hole cover of G provided that

every hole in G contains at least one vertex of X. Note that, if G has no hole,

that is, G is a chordal graph, then any nonempty vertex set is a hole cover

of G.

For a vertex u of a graph G, we say that u satisfies the non-consecutive

property (NC property for short) if any hole in H(G, u) and any hole not in

H(G, u) do not share consecutive edges. A vertex subset C of G is said to

satisfy the NC property in G if every vertex in C satisfies the NC property

and every hole in G contains at most one vertex in C. We say that a graph

satisfies the NC property if it has a hole cover satisfying the NC property. It

is easy to see that
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H1 H2 H3

u w x

v

Figure 3.1: A graph G not satisfying the NC property

(\) If a hole cover C of G satisfies the NC property in G, then a nonempty

set C \ A is a hole cover satisfying the NC property in G − A for any

proper subset A of V (G) not including C.

Then it is immediately true that the family of graphs satisfying the NC

property is hereditary. See Figure 3.1 for a graph not satisfying the NC

property. To see why, suppose to the contrary that there exists a hole cover

C of G satisfying the NC property. To cover the hole H2, C must contain a

vertex on H2. Suppose that a vertex in V (H1)∩V (H2) is contained in C. Since

C is a hole cover satisfying the NC property, a vertex in V (H3)\V (H2) must be

contained in C to cover H3. Then, however, those two vertices are on the hole

of length 8 surrounding H2 and H3, which contradicts the assumption that

C satisfies the NC property. Even if a vertex in V (H2) ∩ V (H3) is contained

in C, we may reach a contradiction by applying a similar argument to the

holes H1 and H2. Therefore we may conclude that there is no hole cover of

G satisfying the NC property.

Let G be a graph with a hole H. For a vertex u on H, we locally chordalize

the hole H by u in the following manner: we join u and each vertex on H

nonadjacent to u.

In this chapter, we present a chordal completion of a graph G which is

efficient in the following sense: Only edges joining two vertices on holes of G
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are added to obtain our chordal completion (Theorem 3.3.8). Furthermore,

we show that any minimal chordal completion of a graph can be obtained by

joining two vertices on holes of G by edges (Proposition 3.3.12). As a matter

of fact, for a nonnegative integer k, we give a sufficient condition for a graph G

which has a chordal completion G∗ satisfying the inequality ω(G∗)−ω(G) ≤ k

(Theorem 3.3.8). This is a strong point of our chordal completion which

differentiate it from other chordal completions. For example, it is shown that

a graph G has treewidth at most k if and only if it has a chordal completion

G∗ satisfying ω(G∗) ≤ k + 1. Yet, this characterization gives no information

on ω(G), accordingly no significant information on ω(G∗)− ω(G).

For a graph G and a vertex u satisfying the NC property, locally chordal-

izing all the holes in H(G, u) does not create any new hole (Theorem 3.1.5).

Based on this observation, we found that, a hole cover C of a graph G can

be partitioned into C1, . . . , Ck for some positive integer k so that

(i) Ci is a hole cover of the graph Gi satisfying the NC property,

(ii) G∗i is chordal,

where G0 = G∗0 = G − C, Gi is the graph defined by V (Gi) = V (G∗i−1) ∪ Ci
and

E(Gi) = E(G∗i−1) ∪ E

(
G−

k⋃
j=i+1

Cj

)
,

and G∗i is a chordal completion of Gi obtained by applying local chordaliza-

tions recursively by the vertices in Ci for each i = 1, . . ., k (Theorem 3.3.1).

Our chordal completion is G∗k obtained for a hole cover with the smallest

number k of partitions in Theorem 3.3.1. The smallest number k is called

the non-chordality index of G and denoted by i(G) (see Definition 3.3.3).

Then we obtain sharp upper bounds for the chromatic number, the list

chromatic number, and the DP chromatic number of a graph in terms of

non-chordality index and prove that the family of graphs with bounded non-

chordality indices satisfies the Hadwiger conjecture and the Erdős-Faber-
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Lovász Conjecture (Theorems 3.1.1, 3.3.6, 3.3.11, and 3.2.2). Other than

obtaining sharp upper bounds for chromatic numbers, we prove that the

family of graphs with bounded non-chordality is a linearly χ-bounded class

(Theorem 3.4.1).

3.1 Graphs with the NC property

In this section, we devote ourselves to proving the following theorem.

Theorem 3.1.1. Let G be a graph with the NC property. Then χDP (G) ≤
ω(G) + 1. If G is Kn-minor-free, then χDP (G) ≤ n− 1.

As a corollary of Theorem 3.1.1, we can prove a special case of Four Color

Theorem.

Corollary 3.1.2. For a planar graph G with the NC property, χDP (G) ≤ 4.

Given a graph G and nonempty vertex sets S1 and S2, we denote the set

of edges joining vertices of S1 and vertices of S2 by [S1, S2]. For simplicity,

we use [v, S] instead of [{v}, S] for a vertex v and a nonempty vertex set S

of a graph G.

Lemma 3.1.3. Given a graph G, suppose that there exist a hole H, an in-

duced path P , and two nonadjacent vertices u and v on H not on P satisfying

the properties that

(i) v is nonadjacent to any vertex on P in G;

(ii) there exist an internal vertex on a (u, v)-section of H and an internal

vertex on the other (u, v)-section of H such that each of them is adjacent

to a vertex on P .

Then there is a hole not containing u but containing two consecutive edges

on H incident to v and containing a vertex on P but not on H.
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Proof. Let P = z1z2 · · · zr (r ≥ 1). By the hypothesis that u and v are not on

P , zi 6= u, v for each i = 1, . . . , r. Since u and v are nonconsecutive vertices

on H, we may give a sequence of H as follows:

H = vx1x2 · · ·xpuyqyq−1 · · · y1v (p, q ≥ 1).

For notational convenience, we let Sx = {x1, . . . , xp} and Sy = {y1, . . . , yq}.
Let α = min{i ∈ {1, . . . , p} | [xi, V (P )] 6= ∅} and β = min{j ∈ {1, . . . , q} |
[yj, V (P )] 6= ∅}. By the property (ii), [Sx, V (P )] 6= ∅ and [Sy, V (P )] 6= ∅ and

so α and β exist. Among the vertices on P which are adjacent to xα and

among the vertices on P which are adjacent to yβ, we take zγ and zδ from

them, respectively, with the smallest distance on P . Let P ∗ be the (zγ, zδ)-

section of P . Then C := vx1x2 · · · xαP ∗yβyβ−1 · · · y1v is a cycle not containing

u. We also note that C contains x1v and y1v, which are consecutive edges on

H incident to v. It is easy to check that C has length at least four. No two

vertices in V (C)\V (P ∗) or in V (P ∗) can form a chord of C since the vertices

in V (C) \ V (P ∗) are on the hole H and P ∗ is an induced path. Moreover, a

vertex in V (C) \ V (P ∗) and a vertex in V (P ∗) cannot form a chord of C by

the choice of α, β, zγ, and zδ. Therefore we can conclude that C is a hole in

G. Since u is not on C, C is distinct from H. We note that C and H both are

holes and the vertices on C other than the ones on P ∗ lie on H. Therefore

there must be a vertex on P ∗ not on H. Since P ∗ is a section of P , C contains

a vertex on P but not on H.

Let G be a graph with a hole H. For a vertex u on H, we recall that

locally chordalizing the hole H by u means the following procedure: we join

u and each vertex on H nonadjacent to u. We call an edge added in the

process of a local chordalization of a hole a newly added edge.

Remark 3.1.4. Note that, for a graph G, locally chordalizing the holes

in H(G, u) by a vertex u will destroy all the holes in H(G, u). That is, if

H ∈ H(G, u), then H /∈ H(G∗, u) where G∗ is the graph resulting from the
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local chordalization by u.

Theorem 3.1.5. Let G be a graph and u be a vertex of G satisfying the

NC property. Then locally chordalizing all the holes in H(G, u) by u does not

create any new hole.

Proof. Let G∗ be the graph obtained by locally chordalizing all the holes in

H(G, u) by u. Suppose to the contrary that G∗ has a hole, say H∗, not in G.

Obviously H∗ contains u and at least one newly added edge. Then, since u

is adjacent to exactly two vertices on H∗, H∗ contains one newly added edge

or two newly added edges.

Let uv be a newly added edge and

H∗ = uu1u2 · · ·upvu (p ≥ 2).

Next, we define a cycle C by considering two cases.

Case 1. H∗ contains uv as the only newly added edge. By the definition

of local chordalization, there exists a hole H1 in H(G, u) containing v on

which u and v are not consecutive. Then u is adjacent to all the vertices

on H1 in G∗. However, u is not adjacent to uk (k = 2, . . . , p) in G∗, so we

can conclude that uk (k = 2, . . . , p) is not on H1. If u1 is on H1, then u1 is

adjacent to u in H1. Thus, if u1 is on H1, then uu1u2 · · ·upP is a cycle in G

for the (v, u)-section, denoted by P , of H1 not containing u1.

If u1 is not on H1 and u1 is not adjacent to any vertex on one of the

(v, u)-sections of H1 except u, then we denote such a section by P ′.

Now we define the cycle C as follows:

C =


uu1u2 · · ·upP if u1 is on H1;

uu1u2 · · ·upP ′
if u1 is not on H1 and u1 is not adja-

cent to any vertex on one of the (v, u)-

sections of H1 except u.
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See (a) and (b) of Figure 3.2 for an illustration.

Case 2. H∗ contains another newly added edge uw. Then u1 = w. Assume

that there is a hole H2 in G which contains u, v, w. Then no two of u, v, w

are consecutive on H2. Let Q be the (v, w)-section of H2 containing u. Since

u is adjacent to all the vertices on H2 but is not adjacent to ui in G∗, we may

conclude that ui is not on H2 for each i = 2, . . . , p. Therefore wu2u3 · · ·upQ
is a cycle in G. Now we let

C = wu2u3 · · ·upQ.

See Figure 3.2(c) for an illustration.

It is obvious that the cycle C defined in each case has length at least

four and Pu1, P
′u1, and Q are induced paths of G including u and the two

vertices right next to u on C. Moreover, u is not adjacent to any vertex on C

except the two vertices right next to u, and the two vertices right next to u

on C are not adjacent in G. Thus, by Lemma 2.1.13, the path U composed

of u and the two vertices right next to it can be extended to a hole H in G so

that V (U) ( V (H) ⊂ V (C) and H contains a vertex among u2, u3, . . . , up.

Then u is adjacent to ui for some i ∈ {2, 3, . . . , p} in G∗ by the definition of

local chordalization, which contradicts the choice of H∗.

Now it remains to consider the following cases:

(i) the edge uv is the only newly added edge contained in H∗, u1 is not on

H1, and there is a vertex on each (u, v)-section of H1 which is adjacent

to u1 in G;

(ii) a newly added edge uw other than uv exists in H∗ and there is no hole

in G which contains all of u, v, and w.

We assume the case (i). The hypothesis of Lemma 3.1.3 is satisfied by

H1 for H, u1 for P , u, and v. Therefore there exists a hole not containing u

but containing consecutive edges on H1 incident to v. This contradicts the
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hypothesis that u satisfies the NC property. Therefore the case (i) cannot

happen.

Now we assume the case (ii). Since v and w are not consecutive vertices

on H∗, w is not adjacent to v in G. Since uv and uw are newly added edges,

there exist a hole H3 containing u and v, and a hole H4 containing u and

w in G. By the case (ii) assumption, w is not on H3 and v is not on H4.

Let H3 = vx1x2 · · ·xquyryr−1 · · · y1v and H4 = wz1z2 · · · zsuwtwt−1 · · ·w1w

(q, r, s, t ≥ 1). See Figure 3.2(d) for an illustration. Since u is adjacent to

all the vertices on H3 (resp. H4) and is not adjacent to ui in G∗, we may

conclude that ui is not on H3 (resp. H4) for each i = 2, . . . , p. For notational

convenience, we let Sx = {x1, . . . , xq}, Sy = {y1, . . . , yr}, Sz = {z1, . . . , zs},
and Sw = {w1, . . . , wt}.

Suppose that, in G, [w, Sx] 6= ∅ and [w, Sy] 6= ∅. We apply Lemma 3.1.3

with H3 for H, w for P , u, and v to reach a contradiction as before. There-

fore [w, Sx] = ∅ or [w, Sy] = ∅. Without loss of generality, we may assume

[w, Sx] = ∅. In addition, w is not adjacent to v in G. Thus [w, Sx ∪ {v}] = ∅.
Suppose that [Sx ∪ {v}, Sz] 6= ∅ and [Sx ∪ {v}, Sw] 6= ∅. Then we apply

Lemma 3.1.3 with H4 for H, vx1x2 · · ·xq for P , u, and w for v to reach a

contradiction as before. Therefore [Sx ∪ {v}, Sz] = ∅ or [Sx ∪ {v}, Sw] = ∅.
Without loss of generality, we may assume [Sx ∪ {v}, Sz] = ∅. Then [Sx ∪
{v}, Sz ∪ {w}] = ∅.

Now we consider the sequence Q := vx1x2 · · ·xquzszs−1 · · · z1w. As being

sections of H3 and H4, respectively, the two subsequences vx1x2 · · ·xqu and

uzszs−1 · · · z1w of Q are induced paths in G. In addition, since [Sx∪{v}, Sz ∪
{w}] = ∅, Q is an induced path in G. Consider the cycle C := Qu2u3 · · ·upv.

Since u is on H3, H4, and H∗, u is not incident to any chord of C in G. Then

we apply Lemma 2.1.13 with C, Q, and xquzs for P to reach a contradiction

as before.

Corollary 3.1.6. Suppose that a graph G has a hole cover C = {u1, . . . , uk}
satisfying the NC property and that G0 = G and, for i = 1, . . . , k, Gi is the
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Figure 3.2: The cycle C defined in the proof of Theorem 3.1.5. The gray
colored edges represent the newly edges on the hole H∗ in G∗ and w in (c)
and (d) turns out to be u1.

graph obtained by locally chordalizing the holes in H(Gi−1, ui) by ui. Then Gk

is chordal. Moreover, the resulting chordal graph is independent of the order

of u1, . . . , uk by which the local chordalizations are performed.

Proof. By induction on the size k of a hole cover satisfying the NC property.

If k = 1, then Gk is chordal by Theorem 3.1.5. Suppose that the statement

is true for any graph with a hole cover with size k − 1 satisfying the NC

property. Now we locally chordalize the holes in H(G, u1) by u1 to obtain

G1. By Theorem 3.1.5, C \ {u1} is a hole cover of G1. By (\), C \ {u1} still

satisfies the NC property in G1. Therefore, by the induction hypothesis, Gk

is chordal.

It is sufficient to show the uniqueness for the case k = 2. Let G′ and G′′
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be the graphs obtained by locally chordalizing the holes in H(G, u2) by u2

and the holes in H(G′, u1) by u1, respectively.

Since C satisfies the NC property, no hole in G contains two vertices

in C. Therefore, by Theorem 3.1.5, H(G, u1) = H(G′, u1) and H(G1, u2) =

H(G, u2), which implies G2 = G′′.

Let G be a graph with a hole cover C satisfying the NC property. Corol-

lary 3.1.6 says that a chordal graph can be obtained by applying local chordal-

izations recursively by the vertices in C and the resulting chordal graph is

the same no matter which order of the vertices is taken. The uniqueness of

the resulting chordal graph allows us to denote it by a notation, say Ĝ(C).
In the rest of this paper, we derive some noteworthy theorems by utilizing

Ĝ(C) for graphs G having hole covers C satisfying the NC property.

Lemma 3.1.7. Let G be a graph with a hole cover C satisfying the NC

property. Suppose that vertices u and w in C are adjacent in G. Then any

newly added edge incident to u and any newly added edge incident to w are

not adjacent in Ĝ(C).

Proof. Suppose to the contrary that there exist a newly added edge incident

to u and a newly added edge incident to w which are adjacent in Ĝ(C).
Let uv and wv be such edges for some v ∈ V (G). Then, by the definition

of local chordalization, neither uv nor wv is an edge in G and there exist

Hu ∈ H(G, u) and Hw ∈ H(G,w) sharing the vertex v.

To reach a contradiction, suppose that there exist an internal vertex on

a (u, v)-section of Hu and an internal vertex on the other (u, v)-section of

Hu each of which is adjacent to w. Then, by Lemma 3.1.3 with P = w,

there is a hole in G not containing u but containing two consecutive edges

on Hu incident to v, which contradicts the hypothesis that C satisfies the

NC property. Therefore there exists one of the (u, v)-sections of Hu such that

w is not adjacent to any internal vertex on it. Let Q be such a section. By

symmetry, we may conclude that there exists one of the (v, w)-sections of
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Hw such that u is not adjacent to any internal vertex on it. Let R be such a

section.

Let W be the concatenation of Q and R at v. Then W is a (u,w)-walk in

G−uw. Now W contains a (u,w)-path S as an induced subgraph in G−uw.

By the previous argument, the vertex immediately following u on S cannot

be on R while the vertex immediately preceding w on S cannot be on Q.

Therefore we may conclude that the length of S is at least three. Thus S

and the edge uw form a hole in G. However, this hole contains both u and

w, which is impossible as C satisfies the NC property.

Theorem 3.1.8. Let G be a graph with a hole cover C satisfying the NC

property. Suppose that a vertex set K forms a clique in Ĝ(C) but not in G.

Then there exists a vertex u ∈ K ∩ C such that K \ {u} is a clique in G.

Proof. Since K is a clique in Ĝ(C) but is not a clique in G, K ∩ C 6= ∅.
Suppose that K ∩ C is not a clique in G. Then there exist two vertices x

and y in K ∩ C such that xy /∈ E(G). This implies that there exists a hole

in G containing both x and y, which is impossible by the hypothesis that C
satisfies the NC property. Therefore K ∩ C is a clique in G. However, K is

not a clique in G, so there exist vertices u ∈ K ∩ C and v ∈ K \ C such that

uv is a newly added edge. We claim that every newly added edge whose end

vertices belong to K is incident with u by contradiction. Suppose that there

exists a newly added edge zw such that {z, w} ⊂ K \ {u}. By the definition

of Ĝ(C), we may assume z ∈ C and w /∈ C. Since K ∩ C is a clique in G,

zu ∈ E(G). Then Lemma 3.1.7 implies that v 6= w, and uw and zv are edges

in G. If vw is a newly added edge, then either v or w belongs to C, which is

not the case. Therefore vw ∈ E(G). Then the cycle uzvwu is obviously a hole

in G containing u and z, which contradicts the hypothesis that C satisfies

the NC property. Thus we have shown that every newly added edge in K is

incident with u. Hence K \ {u} is a clique in G.

Corollary 3.1.9. Let G be a graph with a hole cover C satisfying the NC
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property. Then ω(Ĝ(C)) ≤ ω(G) + 1. Furthermore the equality holds if and

only if

(†) There exists a vertex u ∈ C such that the set
 ⋃
H∈H(G,u)

V (H)

 ∪NG(u)

 \ {u}
contains a maximum clique K of G.

Proof. By Theorem 3.1.8, ω(Ĝ(C)) ≤ ω(G) + 1. Furthermore, by the same

theorem, ω(Ĝ(C)) = ω(G) + 1 if and only if there is a clique K in Ĝ(C) of

size ω(G) + 1 and there is a vertex u ∈ K ∩ C such that K \ {u} forms a

clique in G, which is equivalent to (†).

Theorem 3.1.10. Let G be a graph with a hole cover C satisfying the NC

property. Then every clique of Ĝ(C) is a minor of G.

Proof. Let K be a clique in Ĝ(C) of size n. If K is a clique in G, then we

are done. Suppose that K is not a clique in G. By Theorem 3.1.8, there

exists a vertex u ∈ K ∩ C such that K \ {u} is a clique in G. Therefore

|V (H) ∩ (K \ {u})| ≤ 2 for every H ∈ H(G, u). Furthermore, every newly

added edge whose end vertices are in K is incident with u.

Let uv1, . . . , uvl be the newly added edges whose end vertices are in K

and X = {v1, . . . , vl}. Take a vertex vi ∈ X. Then there exists H ∈ H(G, u)

containing vi. Since uvi is a newly added edge, u and vi are not consecutive

on H. Then each of the (u, vi)-sections of H contains at least one internal

vertex. In addition, V (H)∩X ⊂ V (H)∩(K \{u}). Since we have shown that

|V (H)∩(K \{u})| ≤ 2, |V (H)∩X| ≤ 2. Since vi ∈ V (H)∩X, V (H) contains

at most one vertex in X other than vi. Thus one of the (u, vi)-sections of H

does not contain any vertex in K as an internal vertex. Let Pi be such a

section. In G, we contract the edges on P1 except the edge incident to v1 to

obtain the edge e1 joining u and v1. Then P2 is transformed to a (u, v2)-walk
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W2 in the graph G1 resulting from the contractions and still does not contain

any vertex in K other than u and v2 by the way of contractions and by the

choice of Pi. In G1, we contract the edges on W2 except the edge incident

to v2 to obtain the graph G2 and the edge e2 joining u and v2 in G2. We

may repeat this process until we obtain the graph Gl from Gl−1 and the edge

el joining u and vl in Gl. Now, Gl contains the vertices of K and the edges

uv1, . . . , uvl so that K is clique of size n in Gl.

Now we have the following corollary.

Corollary 3.1.11. Let G be a graph with a hole cover C satisfying the NC

property. If G is Kn-minor-free, then Ĝ(C) is Kn-free.

Now we are ready to give a proof of Theorem 3.1.1.

A proof of Theorem 3.1.1. Since Ĝ(C) is a chordal completion,

χDP (G) ≤ χDP (Ĝ(C)) = ω(Ĝ(C)).

By Corollary 3.1.9, ω(Ĝ(C)) ≤ ω(G) + 1, so χDP (G) ≤ ω(G) + 1. Moreover,

by Corollary 3.1.11, if G is Kn-minor-free, then ω(Ĝ(C)) ≤ n − 1 and so

χDP (G) ≤ n− 1. 2

3.2 The Erdős-Faber-Lovász Conjecture

The following is one of the versions equivalent to the conjecture given by

Erdős, Faber, and Lovász in 1972.

Conjecture 3.2.1. If G is the union of k edge-disjoint copies of Kk for a

positive integer k, then χ(G) = k.

In this section, we show that the above conjecture is true for the graphs

satisfying the NC property by deriving the following theorem.
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Theorem 3.2.2. If a graph G satisfying the NC property is the union of k

edge-disjoint copies of Kk for a positive integer k, then χDP (G) = k.

We start by showing the following lemmas.

Lemma 3.2.3. Let G be a graph and L be a maximal clique of G. Suppose

that every vertex in G− L is a simplicial vertex in G. Then G is chordal.

Proof. It suffices to prove the lemma when G is connected. Suppose to the

contrary that G has a hole H. Since L is complete and H is a hole in G,

|V (H) ∩ L| ≤ 2. Then V (H) \ L forms an induced path in G and, by the

hypothesis that any vertex in G−L is a simplicial vertex in G, |V (H) \L| ≤
2. Since H is a hole, 4 ≤ |V (H)| = |V (H) ∩ L| + |V (H) \ L| ≤ 4 and

so |V (H) ∩ L| = 2 and |V (H) \ L| = 2. Since V (H) \ L := {u, v} and

V (H) ∩ L := {x, y} are cliques in G, uv and xy are edges in G. Since H is a

hole, u cannot be a simplicial vertex in G and we reach a contradiction.

Lemma 3.2.4. Let G be a union of k edge-disjoint copies of Kk and L be

the set of those k copies of Kk for a positive integer k. Then ω(G) = k.

Furthermore, if a maximal clique of G with size k does not belong to L, then

G is chordal.

Proof. Since G contains Kk, ω(G) ≥ k. We prove that any maximal clique

of G not belonging to L has size at most k to show ω(G) ≤ k. Let L be a

maximal clique of G with size l which does not belong to L. For each vertex

u in L, let nu be the minimum number of cliques in L needed to cover the

edges in the edge cut [u, L\{u}]. Since each edge of G is covered by a unique

maximal clique in L, nu is the number of cliques in L which share an edge

with L. Since L is a maximal clique of G and does not belong to L, the edges

on L are covered by at least two cliques in L and so nu ≥ 2 for each u ∈ L.

Now let u∗ be a vertex in L with the minimum p := nu∗ . By the observation

that nu ≥ 2 for each u ∈ L, p ≥ 2. Let L1, . . . , Lp be the cliques in L which
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cover the edges in [u∗, L \ {u∗}]. Let li = |L ∩ Li| − 1 for each i = 1, . . . , p.

Without loss of generality, we may assume

l1 ≥ l2 ≥ · · · ≥ lp ≥ 1. (3.2.1)

Suppose that there exist distinct vertices u1 and u2 in L ∩ Li for some i ∈
{1, . . . , p} such that an edge in [u1, L \ Li] and an edge in [u2, L \ Li] are

covered by the same clique K in L. Then K 6= Li. However, since K is a

clique, u1u2 is covered by K, a contradiction to the hypothesis. Therefore

(]) two edges in [L ∩ Li, L \ Li] are covered by distinct cliques in L for

i = 1, . . . , p unless they have a common end in L ∩ Li.

Since L1, . . . , Lp are mutually edge-disjoint,

l =

∣∣∣∣∣L ∩
p⋃
i=1

Li

∣∣∣∣∣ =

∣∣∣∣∣
(

p⋃
i=1

(L ∩ Li) \ {u∗}

)
∪ {u∗}

∣∣∣∣∣
=

p∑
i=1

|(L ∩ Li) \ {u∗}|+ 1 =

p∑
i=1

li + 1. (3.2.2)

Since p ≥ 2, L1 and L2 exist. Each edge in [(L ∩ L1) \ {u∗}, (L ∩ L2) \ {u∗}]
is covered by exactly one clique in L by the hypothesis. Since any edge

in [(L ∩ L1) \ {u∗}, (L ∩ L2) \ {u∗}] is not incident to u∗, any clique in L
covering an edge in [(L ∩ L1) \ {u∗}, (L ∩ L2) \ {u∗}] cannot be Li for any

i = 1, . . . , p. Therefore we need at least p+ l1l2 cliques in L to cover the edges

in [u∗, L \ {u∗}] ∪ [(L ∩ L1) \ {u∗}, (L ∩ L2) \ {u∗}] and so

p+ l1l2 ≤ |L| = k. (3.2.3)

For each vertex u in L ∩ L1, nu ≥ p and so there are at least p cliques in L
needed to cover the edges in [u, L\{u}]. By (]), we need at least p+ l1(p−1)

distinct cliques in L to cover the edges in [u∗, L\{u∗}]∪[(L∩L1)\{u∗}, L\L1]

and so
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p+ l1(p− 1) ≤ k. (3.2.4)

If l2 ≥ p, then

l =

p∑
i=1

li + 1 (by (3.2.2))

≤ l1p+ 1 (by (3.2.1))

< l1l2 + p (by the case assumption and the fact that p ≥ 2)

≤ k. (by (3.2.3))

Therefore we have shown that l < k if l2 ≥ p and so the “furthermore” part

is vacuously true.

Now assume l2 ≤ p− 1. Then

l =

p∑
i=1

li + 1 (by (3.2.2))

≤ (p− 1)l1 + l2 + 1 (by (3.2.1))

≤ (p− 1)l1 + p (by the assumption that l2 ≤ p− 1)

≤ k (by (3.2.4))

To show the “furthermore” part, suppose l = k. Then each of the three

inequalities above becomes the equality. Now, if p = 2, then l2 = 1 and

l = l1 + l2 + 1 = l1 + 2 = k, which implies l1 = k − 2. If p ≥ 3, then, by

(3.2.1), l1 = · · · = lp = p− 1 and k = p2 − p+ 1.

Case 1. p = 2. Let L∩L1 = {u∗, u1, u2, . . . , uk−2} and L∩L2 = {u∗, v}. Since

ui and v belong to L, uiv is an edge in G for each i = 1, . . . , k− 2. Since L is

an edge clique cover of G, there is a clique in L covering the edge uiv for each

i = 1, . . . , k−2. By (]), no clique in L contains ui, uj, v for 1 ≤ i < j ≤ k−2.

Therefore, by relabelling the cliques in L if necessary, we may assume Li+2

is a clique covering uiv for each i = 1, . . . , k− 2. Then (L1 ∩L2)∩L = {u∗},
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(L1 ∩ Li) ∩ L = {ui−2} for i = 3, . . . , k, and (Li ∩ Lj) ∩ L = {v} for 2 ≤ i <

j ≤ k. Therefore Li and Lj share exactly one vertex in L for distinct i, j in

{1, . . . , k}
Case 2. p ≥ 3. Then l1 = · · · = lp = p − 1 and k = p2 − p + 1. Let

L∩L1 = {u∗, v1, . . . , vp−1} and L∩L2 = {u∗, w1, . . . , wp−1}. Since L is a clique

in G, vi and wj are adjacent in G and the edge viwj must be covered by a

clique in the edge clique cover L for any i, j ∈ {1, . . . , p−1}. Let Ki,j ∈ L be

a clique which covers the edge viwj for i, j ∈ {1, . . . , p−1} and let K = {Ki,j |
i, j ∈ {1, . . . , p − 1}}. Suppose Ki,j = Lt for some i, j ∈ {1, . . . , p − 1} and

t ∈ {1, . . . , p}. Then the edges u∗wj ∈ [L∩L1, L\L1] and viwj ∈ [L∩L1, L\L1]

are covered by Ki,j, which is impossible by (]). Therefore Ki,j cannot be any

of L1, . . . , Lp. By (]), Ki,j 6= Ki′,j′ if (i, j) 6= (i′, j′). Therefore |K| = (p− 1)2

and

|{L1, . . . , Lp} ∪ K| = p+ (p− 1)2 = p2 − p+ 1.

Since |L| = k = p2 − p+ 1, L = {L1, . . . , Lp} ∪ K.

To apply Lemma 3.2.3, we first claim that M ∩ N ⊂ L for any distinct

cliques M,N ∈ L. Take two distinct cliques M and N in L. If M and N

belong to {L1, . . . , Lp}, then M ∩N = {u∗} ⊂ L. Suppose that one of M and

N is in {L1, . . . , Lp} and the other is in K. Without loss of generality, we may

assume M = Lt := {u∗, x1, . . . , xp−1} and N = Ki,j for some t ∈ {1, . . . , p}
and i, j ∈ {1, . . . , p−1}. By the hypothesis that the cliques in L are mutually

edge-disjoint,

Lt ∩Ki,j =

{vi} if t = 1

{wj} if t = 2.

Therefore M ∩N = Lt ∩Ki,j ⊂ L for t = 1, 2. Assume 3 ≤ t ≤ p. Note that

E1t := [{v1, . . . , vp−1}, {x1, . . . , xp−1}] ⊂ [L ∩ L1, L \ L1] ∩ [L ∩ Lt, L \ Lt].
(3.2.5)

Suppose that an edge vrxs is covered by La for some a ∈ {1, . . . , p}. Then
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the edges u∗xs and u∗vr are covered by La. However, u∗ and vr belong to

L ∩ L1, {u∗xs, vrxs} ∈ [L ∩ L1, L \ L1], and we reach a contradiction to

(]). Therefore each edge in E1t should be covered by a clique in K. Since

K ⊂ L, it follows from (]) that each clique in K covers at most one edge in

E1t ⊂ [L ∩ L1, L \ L1] ∩ [L ∩ Lt, L \ Lt]. Since |K| = (p − 1)2 = |E1t|, each

clique in K covers exactly one edge in E1t. Therefore Ki,j covers vrxs for some

r, s ∈ {1, . . . , p−1}. Thus Lt∩Ki,j contains the vertex xs. By the hypothesis

that the cliques in L are mutually edge-disjoint, Lt∩Ki,j = {xs} ⊂ L. Hence

M ∩ N ⊂ L for M = Lt and N = Ki,j. Finally we suppose that M and N

belong to K. Then M = Ki,j and N = Ki′,j′ for some i, i′, j, j′ ∈ {1, . . . , p−1}
with (i, j) 6= (i′, j′). If i = i′, then M ∩ N = {vi} ⊂ L by the hypothesis.

Suppose i 6= i′. Take a vertex y ∈ L \L1. Since L is a clique and {vi, vi′ , y} ⊂
L, viy and vi′y are edges of G and should be covered by cliques in L. We note

that Lb covers u∗y if Lb covers viy or vi′y for any b ∈ {1, . . . , p}. Therefore,

by the hypothesis that the cliques in L are mutually edge-disjoint, viy and

vi′y are covered by cliques in K. Let Kc,d be a clique in K covering viy. Then

vc, vi, y belong to Kc,d. Since Kc,d is a clique, vc and y are adjacent. Then vcy

and viy belong to [L∩L1, L\L1] and are covered by Kc,d. Thus, by (]), vi = vc

and so i = c. Similarly, vi′y is covered by Ki′,d′ for some d′ ∈ {1, . . . , p− 1}.
By the hypothesis on L, Ki,d and Ki′,d′ are the unique cliques in L covering

viy and vi′y, respectively. As Ki,d and Ki′,d′ are uniquely determined by y,

we may denote Ki,d and Ki′,d′ by A(y) and B(y), respectively. Now we define

a function F : L \ L1 → {(Ki,q, Ki′,q′) | 1 ≤ q, q′ ≤ p − 1} by F (y) =

(A(y), B(y)) for y ∈ L \ L1. Then F is well-defined. By the hypothesis on L
again, A(y) ∩ B(y) = {y} for each y ∈ L \ L1 and so F is injective. Since

the domain and the codomain of F have the same cardinality (p− 1)2, F is

bijective. Since M and N belong to K, (M,N) is contained in the codomain

of F and so there exists a vertex z ∈ L \ L1 such that F (z) = (M,N). Then

M = A(z) and N = B(z), so M ∩ N = A(z) ∩ B(z) = {z} ⊂ L. Hence we

have shown that M ∩N ⊂ L for any distinct cliques M and N in L.
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In both cases, we have shown that M ∩N ⊂ L for any distinct cliques M

and N in L. Now we will show that every vertex in G−L is simplicial in G.

Take a vertex v in G− L. Suppose to the contrary that v is not a simplicial

vertex in G. Then v has two neighbors z1 and z2 which are nonadjacent

in G. Since L is an edge clique cover of G, L contains a clique covering

vz1 and a clique covering vz2. Since z1 and z2 are nonadjacent, these two

cliques are distinct. However, they share a vertex v which is not in L. This

contradicts our claim that the intersection of any two cliques in L is a subset

of L. Therefore every vertex in G − L is a simplicial vertex in G. Thus, by

Lemma 3.2.3, G is chordal.

A proof of Theorem 3.2.2. Let G be a graph satisfying the NC property

which is the union of k edge-disjoint copies L1, . . . , Lk of Kk. Obviously

χDP (G) ≥ k. By Lemma 3.2.4, ω(G) = k. Let L = {L1, . . . , Lk}. Then L is

an edge clique cover consisting of cliques of size k.

Fix i ∈ {1, . . . , k}. Then |Li ∩ Lj| ≤ 1 for any j ∈ {1, . . . , k} \ {i}.
Since Li has k vertices, Li has a vertex v not contained in Lj for any j ∈
{1, . . . , k} \ {i}. Then v is a simplicial vertex of G. Since i is arbitrarily

chosen, Li has a simplicial vertex for any i = 1, . . . , k.

If G is chordal, then χDP (G) = ω(G) = k by (§). Now we suppose that G

is non-chordal. Then, by the “furthermore part” of Lemma 3.2.4, any clique

not belonging to L has size less than k. Since Li has a simplicial vertex

of G, we may take a simplicial vertex from Li and denote it by vi for each

i = 1, . . . , k. LetG′ = G−{v1, . . . , vk}. ThenG′ still satisfies the NC property.

Since any clique not belonging to L has size less than k, ω(G′) = k − 1. Let

C be a hole cover of G′ satisfying the NC property. Then Ĝ′(C) is chordal

by definition and, by Corollary 3.1.9, ω(Ĝ′(C)) ≤ ω(G′) + 1 = k. Let G∗

be the graph obtained from Ĝ′(C) by adding the vertices v1, . . . , vk and the

edges which were incident to v1, . . . , vk in G. Then G is a spanning subgraph

of G∗. Since v1, . . . , vk are simplicial vertices of G, they are still simplicial

vertices of G∗. Therefore, the fact that Ĝ′(C) is chordal implies that G∗ is

79



chordal. Moreover, we note that exactly k− 1 edges are added for vi for each

i = 1, . . . , k to obtain G∗ from Ĝ′(C). Then, since ω(Ĝ′(C)) ≤ k,

k ≤ χDP (G) ≤ χDP (G∗) = ω(G∗) ≤ k

and so χDP (G) = k. 2

3.3 A minimal chordal completion of a graph

3.3.1 Non-chordality indices of graphs

Given a graph G, we apply a sequence of local chordalizations to obtain a

chordal completion G∗ of G as follows: Let C = {v1, . . . , vl} be a hole cover

of G and G0 = G∗0 = G − C. By the definition of hole cover, G∗0 is chordal.

Let G1 be the graph with

V (G1) = V (G∗0) ∪ {v1} and E(G1) = E(G∗0) ∪ E

(
G−

l⋃
j=2

{vj}

)
.

Obviously {v1} is a hole cover of G1 satisfying the NC property. By Corol-

lary 3.1.6, we obtain the chordal graph G∗1 = Ĝ1({v1}). Let G2 be the graph

with

V (G2) = V (G∗1) ∪ {v2} and E(G2) = E(G∗1) ∪ E

(
G−

l⋃
j=3

{vj}

)
.

Again, {v2} is a hole cover of G2 satisfying the NC property. Let G∗2 =

Ĝ2({v2}) and we repeat this process until we obtain the chordal graph G∗l =

Ĝl({vl}) as a desired graph G∗. Then G∗l is a chordal completion of G. We

note that if G is chordal, then G = G∗l . Now we have shown the following

theorem.

In the rest of this chapter, for the notation
⋃q
j=p Sj of a finite union of
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sets, we assume that it refers to an empty set if p > q.

Theorem 3.3.1. Let G be a graph with a hole cover C. Then C can be

partitioned into C1, . . . , Ck for some positive integer k so that

(i) Ci is a hole cover of the graph Gi satisfying the NC property,

(ii) G∗i is chordal,

where G0 = G∗0 = G− C; Gi is the graph defined by V (Gi) = V (G∗i−1) ∪ Ci,

E(Gi) = E(G∗i−1) ∪ E

(
G−

k⋃
j=i+1

Cj

)
,

and G∗i = Ĝi(Ci) for each i = 1, . . . , k.

Let G be a graph with a hole cover C. We call an ordered partition (C1, . . . , Ck)
of a hole cover C satisfying the conditions (i) and (ii) in Theorem 3.3.1 a local

chordalization partition of C. Then the graphs Gi, G
∗
i are uniquely determined

by the given local chordalization partition C̃ := (C1, . . . , Ck) of C. We call the

process of obtaining Gi and G∗i the chordalization chain corresponding to C̃.
Especially, we write the process of obtaining Gi from G∗i−1 as G∗i−1 <Ci Gi

(in the context that G∗i−1 is a proper subgraph of Gi, we use “strictly less”

notation) for i = 1, . . . , k. Then the chordalization chain corresponding to C̃
may be represented as

G0 = G∗0 <C1 G1 ≤ G∗1 <C2 G2 ≤ G∗2 < · · · <Ck Gk ≤ G∗k.

We note that G∗k is a chordal completion of G. By the way, the last chordal

completion in the chordalization chain corresponding to C̃ is a minimal chordal

spanning supergraph of G.

Proposition 3.3.2. Let G be a graph, C̃ = (C1, . . . , C`) be a local chordal-

ization partition of a hole cover C of G, and G∗ be the last graph in the
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chordalization chain corresponding to C̃. Then G∗ is a minimal chordal com-

pletion of G.

Proof. Let H be a graph that is a spanning supergraph of G and a proper

subgraph of G∗. Then E(G∗)\E(H) 6= ∅. By definition, each edge of E(G∗)\
E(H) is incident to one of vertices in C. Let s be the smallest index such

that some vertices in Cs are incident to edges in E(G∗) \ E(H). Now let B

be the set of edges in E(G∗) \ E(H) which are incident to vertices in Cs.
By the definition of local chordalization, G∗s − B is not chordal. Thus there

exists a hole C in G∗s − B. By the choice of s, the edges in E(G∗) \ E(G∗s)

are incident to vertices in
⋃`
j=s+1 Cj. By definition, (

⋃`
j=s+1 Cj)∩ V (G∗s) = ∅.

Since V (G∗s) = V (G∗s − B), the edges in E(G∗) \ E(G∗s) cannot be chords of

C. Since E(H) ⊂ E(G∗), the edges in E(H) \E(G∗s) cannot be chords of C.

Therefore C is a hole in H and so H is not chordal. Hence we have shown

that G∗ is a minimal chordal completion of G.

Now we are ready to introduce a parameter of a graph which measures the

number of steps of adding new edges to reach one of its chordal completion.

Definition 3.3.3. The non-chordality index of a graph G, denoted by i(G),

is defined as follows: If G is chordal, i(G) = 0. If G is not chordal, then i(G)

is defined to be the smallest k over all the hole covers of G in Theorem 3.3.1.

Remark 3.3.4. A graph G satisfies the NC property if and only if G satisfies

i(G) ≤ 1.

Example 3.3.5. We consider the graph G given in Figure 3.1. Since G does

not satisfy the NC property, i(G) ≥ 2 by Remark 3.3.4. It is easy to check

that C = {u, v, w, x} is a hole cover of G. See Figure 3.3 for an illustration.

Since G∗2 is a chordal completion of G, i(G) ≤ 2. Thus i(G) = 2.

In this section, we prove the following statement.

Theorem 3.3.6. For any graph G, χDP (G) ≤ ω(G) + i(G). Especially, if G

is non-chordal and Kn-minor-free, then χDP (G) ≤ n− 2 + i(G).
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G0 = G∗0
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G∗1
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Figure 3.3: A chordalization chain G0 = G∗0 <{u,v,w} G1 ≤ G∗1 <{x} G2 ≤ G∗2
for a local chordalization partition C̃ = ({u, v, w}, {x}) of G
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In order to do that, we show the following theorem first.

Theorem 3.3.7. Let G be a graph, C̃ = (C1, . . . , C`) be a local chordalization

partition of a hole cover C of G, and G∗ be the last graph in the chordalization

chain corresponding to C̃. If a vertex set K of G forms a clique in G∗, then

there exists a subset C∗ of K ∩ C such that K \ C∗ is a clique in G and

|C∗ ∩ Ci| ≤ 1 for each i = 1, . . . , `.

Proof. Let

G0 = G∗0 <C1 G1 ≤ G∗1 <C2 G2 ≤ G∗2 < · · · <C` G` ≤ G∗` = G∗

be the chordalization chain corresponding to C̃ for graphs Gi and chordal

graphs G∗i . Then Ci is a hole cover of the graph Gi satisfying the NC property

for each i = 1, . . ., `. For each i = 0, 1, . . . , `, we add the vertices in
⋃`
j=i+1 Cj

to G∗i and then restore the edges in G to obtain Hi, that is, Hi is the spanning

supergraph of G with the edge set E(G) ∪ E(G∗i ). Then, by the definitions

of Gi and G∗i , H` = G∗` and, for each i = 0, . . . , `− 1,

Hi −
⋃̀
j=i+1

Cj = G∗i , Hi −
⋃̀
j=i+2

Cj = Gi+1,

and, since G∗i+1 = Ĝi+1(Ci+1),

Hi+1 −
⋃̀
j=i+2

Cj =

̂(
Hi −

⋃̀
j=i+2

Cj

)
(Ci+1). (3.3.1)

We claim that if L is a clique in Hi+1 but is not a clique in Hi, then L\{u} is

a clique in Hi for some vertex u ∈ L∩Ci+1 for each i = 0, 1, . . . , `−1. Suppose

L is a clique in Hi+1 but not a clique in Hi for some i ∈ {0, 1, . . . , `−1}. Then

L∗ := L \
⋃`
j=i+2 Cj is a clique in Hi+1 −

⋃`
j=i+2 Cj. Since two vertices joined

by an edge in Hi+1 but not in Hi belong to V (G∗i+1) = V (G) \
⋃`
j=i+2 Cj,
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L∗ is not a clique in Hi −
⋃`
j=i+2 Cj. We note that (3.3.1) holds and Ci+1

is a hole cover of Gi+1 = Hi −
⋃`
j=i+2 Cj satisfying the NC property. Thus,

by Theorem 3.1.8, there exists a vertex u in L∗ ∩ Ci+1 such that L∗ \ {u} is

a clique in Hi −
⋃`
j=i+2 Cj. For the same reason why L∗ is not a clique in

Hi −
⋃`
j=i+2 Cj, L \ {u} is still a clique in Hi.

Now we take a clique L0 := K in H`. For i = 0, . . . , `− 1, we sequentially

obtain a clique Li+1 in H`−i−1 in the following way. If Li is a clique in H`−i−1,

then we let Li+1 = Li. If Li is not a clique in H`−i−1, then, by the claim which

has been proven above, there exists a vertex u ∈ Li ∩ C`−i such that Li \ {u}
is a clique in H`−i−1 and we let Li+1 = Li \{u}. Let C∗ = K \L`. Then K \C∗

equals L` and so is a clique as L` is a clique in H0 = G. Moreover, since at

most one vertex in C`−i was deleted to obtain Li+1 from Li, we have C∗ ⊂ C
and |C∗ ∩ Ci| ≤ 1 for each i = 1, . . . , `, which completes the proof.

Theorem 3.3.8. Let G be a graph, C̃ = (C1, . . . , Ci(G)) be a local chordal-

ization partition of a hole cover C of G, and G∗ be the last graph in the

chordalization chain corresponding to C̃. Then, for an induced subgraph H of

G, ω(H∗) ≤ ω(H) + i(G) where H∗ is the subgraph of G∗ induced by V (H).

Especially, if G is non-chordal and Kn-minor-free, then ω(G∗) ≤ n−2+i(G).

Proof. If G is chordal, then the first part of the statement is immediately

true as we may take G as G∗ and the second statement is vacuously true.

Thus we may assume G is non-chordal. Then ` := i(G) ≥ 1. Let

G0 = G∗0 <C1 G1 ≤ G∗1 <C2 G2 ≤ G∗2 < · · · <C` G` ≤ G∗` = G∗.

be the chordalization chain corresponding to C̃. Clearly H∗ is a chordal com-

pletion of H. Let K be a maximum clique of H∗. Then K is a clique in G∗.

By Theorem 3.3.7, there exists a subset C∗ of K ∩ C such that K \ C∗ is a
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clique in G and |C∗ ∩ Ci| ≤ 1 for each i = 1, . . . , `. Then

|C∗| =

∣∣∣∣∣C∗ ∩ ⋃̀
j=1

Cj

∣∣∣∣∣ ≤ ∑̀
j=1

|C∗ ∩ Cj| ≤ `.

Now we note that K \ C∗ is a clique in G, K ⊂ V (H), and H is an induced

subgraph of G. Thus K\C∗ is a clique in H and so |K\C∗| ≤ ω(H). Therefore

ω(H∗) = |K| ≤ |K \ C∗|+ |C∗| ≤ ω(H) + ` and so the first statement is true.

To show the “especially” part, assume that G is Kn-minor-free. Let Z be

the graph with the vertex set V (G) and the edge set E(G) ∪ E(G∗1). Then⋃`
j=2 Cj is a hole cover of Z and (C2, . . . , C`) is a local chordalization partition

of
⋃`
j=2 Cj. By the definition of non-chordality index, i(Z) ≤ `− 1. Let

Z0 = Z∗0 <C2 Z1 ≤ Z∗1 <C3 Z2 ≤ Z∗2 < · · · <C` Z`−1 ≤ Z∗`−1

be the chordalization chain corresponding to (C2, . . . , C`). By the way, Z0 =

Z∗0 = G∗1, Zi = Gi+1 and Z∗i = G∗i+1 for i = 1, . . . , ` − 1. To reach a contra-

diction, suppose that Z has a clique L of size n. Then L∗ := L \
⋃`
j=2 Cj is

a clique in G∗1. By the definition of Z, the edges in L but not in L∗ belong

to G. Since C1 is a hole cover of G1 satisfying the NC property, by Theo-

rem 3.1.10, L∗ is a minor of G1 as G∗1 = Ĝ1(C1). As G1 is a subgraph of G

and the edges in L but not in L∗ belong to G, we may conclude that L is a

minor of G with size n, which is a contradiction. Therefore Z is Kn-free and

so ω(Z) ≤ n−1. Take a maximum clique K of G∗. If K is a clique of Z, then

ω(G∗) = |K| ≤ ω(Z) ≤ n − 1 ≤ n − 2 + i(G) and so the inequality holds.

Suppose that K is not a clique of Z. By Theorem 3.3.7, there exists a subset

C∗∗ of K ∩
(⋃`

j=2 Cj
)

such that K \ C∗∗ is a clique in Z and |C∗∗ ∩Ci| ≤ 1 for

each i = 2, . . . , `. Then

|C∗∗| =

∣∣∣∣∣C∗∗ ∩ ⋃̀
j=2

Cj

∣∣∣∣∣ ≤ ∑̀
j=2

|C∗∗ ∩ Cj| ≤ `− 1.
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Thus

n− 1 ≥ ω(Z) ≥ |K \ C∗∗| ≥ |K| − |C∗∗| ≥ ω(G∗)− (`− 1)

and the “especially” part is true.

A proof of Theorem 3.3.6. Take a graph G and let G∗ be a chordal comple-

tion ofG given in Theorem 3.3.8. Then, sinceG∗ is chordal, χDP (G∗) = ω(G∗)

by (§). Thus, by Theorem 3.3.8,

χDP (G) ≤ χDP (G∗) = ω(G∗) ≤ ω(G) + i(G)

and, if G is non-chordal and Kn-minor-free, then the right hand side of the

second inequality above may be replaced with n− 2 + i(G). 2

By (1.2.2), Theorem 3.3.6 gives χl(G) ≤ ω(G) + i(G) for a graph G and

χl(G) ≤ n−2+ i(G) if G is non-chordal and Kn-minor-free. Actually, the in-

equality χl(G) ≤ ω(G)+i(G) is sharp and accordingly so is the first inequality

given in Theorem 3.3.6. To show it, we need the following proposition.

Given a graph G, we denote the independence number and the vertex

cover number of G by α(G) and β(G), respectively. It is well known that

α(G) + β(G) = |V (G)|.

Proposition 3.3.9. Every graph G is β(G)-degenerate.

Proof. Take a graph G. Let I be an independent set of G with size α(G).

Take a subgraph H of G. Suppose V (H)∩I 6= ∅. Then, as I is an independent

set of G, V (H)∩ I is an independent set of H. Thus any vertex in V (H)∩ I
has degree at most |V (H) \ I| ≤ |V (G) \ I| = β(G). If V (H) ∩ I = ∅, then

|V (H)| ≤ |V (G) \ I| = β(G), and so any vertex of H has degree at most

β(G)− 1. Hence G is β(G)-degenerate.

We recall that if a graph G is k-degenerate, then χDP (G) ≤ k+1, from which

the corollary below is immediately true. As a matter of fact, the corollary
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enhances the known inequality χ(G) ≤ β(G) + 1 for a graph G.

Corollary 3.3.10. For a graph G, χDP (G) ≤ β(G) + 1.

Consider a complete graph Kn with n ≥ 2. Then α(Kn) = 1, β(Kn) =

|V (Kn)|−1, and χ(Kn) = χl(Kn) = χDP (Kn) = |V (Kn)| = β(Kn)+1. Hence

the upper bound for χDP (Kn) in Corollary 3.3.10 is sharp.

For a complete graph Kn with n ≥ 2, the inequality given in Corol-

lary 3.3.10 is sharp even for χ(Kn) and χl(Kn) as we have seen above. Yet,

it is not necessarily in that way as it is known that β(C4) = 2, χ(C4) =

χl(C4) = 2 < β(C4) + 1, and χDP (C4) = 3 = β(C4) + 1.

Now we are ready to present the following theorem, which implies that the

inequality χl(G) ≤ ω(G) + i(G) is sharp (and so χDP (G) ≤ ω(G) + i(G) is

sharp).

Theorem 3.3.11. For a positive integer s and a nonnegative integer t, there

is a graph G with χ(G) = ω(G) = s+ 1, i(G) = t, and χl(G) = s+ t+ 1.

Proof. If t = 0, then we let G = Ks+1. Suppose t ≥ 1. We may represent t

as the sum of s nonnegative integers, that is, t =
∑s

i=1mi for nonnegative

integers m1,m2, . . . ,ms. Let G be a graph isomorphic to K1+m1,1+m2,...,1+ms,m

where m = (s+ t)(s+t). Let V1, V2, . . ., Vs, and Vs+1 be the partite sets of G

with |Vi| = mi + 1 for i = 1, . . ., s and |Vs+1| = m. Now we take a vertex vi

from Vi for i = 1, . . ., s. Then C :=
⋃s
i=1 (Vi \ {vi}) is a hole cover of G with

size
∑s

i=1mi = t. Let C1, C2, . . . , Ct be all the singleton subsets of C. Then it

is easy to check that (C1, C2, . . . , Ct) is a local chordalization partition of C.
Thus i(G) ≤ t.

On the other hand, it is obvious that ω(G) = s+ 1. Then, as it is easy to

check that a complete multipartite graph is perfect,

χ(G) = ω(G) = s+ 1.
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Since |Vs+1| = m and |V (G) \ Vs+1| =
∑s

i=1(1 +mi) = s+ t,

χDP (G) ≤ s+ t+ 1 (3.3.2)

by Corollary 3.3.10. In addition,
⋃s
i=1 Vi and Vs+1 form two disjoint vertex sets

ofG with sizes s+t and (s+t)(s+t), respectively, soG containsKs+t,(s+t)s+t as a

subgraph. Then, from the observation made by Gravier [21] that χl(Kk,kk) >

k for any positive integer k, we obtain

χl(G) ≥ s+ t+ 1. (3.3.3)

Thus, by (1.2.2), (3.3.2), and (3.3.3), s+ t+ 1 ≤ χl(G) = χDP (G) ≤ s+ t+ 1

and so χl(G) = s+ t+ 1. Since ω(G) = s+ 1, i(G) ≥ t by Theorem 3.3.6. As

we have shown that i(G) ≤ t, we complete the proof.

It is worthy of attention that Theorem 3.3.11 guarantees the existence of

a graph G with i(G) = t for any nonnegative integer t.

We recall that ω(G) ≤ χ(G) ≤ χl(G) ≤ χDP (G) for a graph G and that

the gaps between ω(G) and χ(G), between χ(G) and χl(G), and between

χl(G) and χDP (G) can be arbitrarily large. Yet, Theorem 3.3.6 tells us that

the sum of those gaps cannot exceed i(G). Especially, if G satisfies the NC

property, then those gaps cannot exceed one and at most one of them can be

one.

3.3.2 Making a local chordalization really local

In this section, we devote ourselves to convincing readers that the “local” in

our terminology “local chordalization” makes a sense.

Let G be a non-chordal graph and Ω(G) =
⋃
H∈H(G) V (H). We define a
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relation ∼G on Ω(G) so that, for u, v ∈ Ω(G),

u ∼G v ⇔ either u and v are on the same hole or there exists a sequence

H1, . . . , Ht of distinct holes in H(G) such that u ∈ H1, v ∈ Ht,

and Hi and Hi+1 share a vertex for each i = 1, . . . , t− 1.

It is easy to see that ∼G is an equivalence relation and that, for each hole in

G, the vertices on the hole belong to the same equivalence class.

Proposition 3.3.12. Let G be a non-chordal graph, H be a hole in G, and

S be the equivalence class under ∼G containing V (H). If adding a chord of

H to G yields a new hole H∗, then V (H∗) ⊂ S.

Proof. Since H is a hole, there are two nonadjacent vertices u and v on H.

Suppose that adding the edge joining u and v to G creates a new hole H∗.

Obviously uv is a chord of H in G+ uv. Let x be a vertex in H∗ other than

u and v. It suffices to show x ∈ S to complete the proof. If x is on H, then

we are done. Thus we may assume that x is not on H.

Case 1. x is adjacent to an internal vertex of each of the two (u, v)-sections

of H. Since u, v, and x are on the hole H∗ with u and v consecutive on H∗,

x is nonadjacent to one of u and v in G+ uv. Without loss of generality, we

may assume that x is nonadjacent to v in G+uv. Obviously x is nonadjacent

to v in G. By applying Lemma 3.1.3 for P = {x}, there exists a hole in G

containing x and v. Therefore x ∼G v. Since v ∈ S, x ∈ S.

Case 2. One of the two (u, v)-sections of H has no internal vertex that is

adjacent to x. Let R be such a (u, v)-section. Then none of x and its neighbors

on H∗ is an internal vertex on R. While traversing along the (x, v)-section

(resp. (x, u)-section) of H∗ not containing u (resp. v), let y (resp. z) be the

first vertex at which we meet R. Let Q1 be the (y, z)-section of H∗ containing

x, Q2 be the (y, z)-section of R, and Q = Q1Q2. By the choices of y and z, Q

is an induced cycle of G containing x and a vertex on H. Since two neighbors
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of x on H∗ are nonadjacent in G, Q is a hole in G. Since Q contains x and

a vertex on H, x ∈ S.

Remark 3.3.13. Let G be a non-chordal graph and Ω(G)/∼G be the set

of equivalence classes under ∼G. Take an equivalence class S ∈ Ω(G)/∼G, a

hole H with V (H) ⊂ S, and vertices u and v on H which are not consecutive.

Proposition 3.3.12 implies that the equivalence classes in Ω(G)/∼G except S

are still equivalence classes under ∼G+uv, and if there are other equivalence

classes under ∼G+uv, they are disjoint subsets of S. Therefore Ω(G + uv) ⊂
Ω(G).

Remark 3.3.14. Let G be a non-chordal graph and ` = i(G). By the def-

inition of i(G), there exist a hole cover C of G and a local chordalization

partition C̃ = (C1, . . . , C`) of C. Let

G0 = G∗0 <C1 G1 ≤ G∗1 <C2 G2 ≤ G∗2 < · · · <C` G` ≤ G∗` =: G∗ (3.3.4)

be the chordalization chain corresponding to C̃. Let H be the subgraph of G

induced by Ω(G). Then, by the definition of induced subgraph, all the holes

in H are contained in G. By the definition of Ω(G), all the holes in G are

contained in H. Therefore H(G) = H(H), Ω(G) = Ω(H), and C is a hole

cover of H. Thus the equivalence classes under ∼G are the equivalence classes

under ∼H . We recall that

G0 = G∗0 = G− C; (3.3.5)

V (Gi) = V (G∗i−1) ∪ Ci, E(Gi) = E(G∗i−1) ∪ E

(
G−

⋃̀
j=i+1

Cj

)
; (3.3.6)

G∗i = Ĝi(Ci).

for each i = 1, . . . , `. Let H0 = H∗0 = H −C. Since H is an induced subgraph

of G, H0 is an induced subgraph of G0 by (3.3.5). Furthermore, G0, G
∗
0, H0,

and H∗0 are chordal and so H(G∗0) = H(G0) = H(H0) = H(H∗0 ) = ∅ and
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Ω(G∗0) = Ω(G0) = Ω(H0) = Ω(H∗0 ) = ∅. Let H1 be the graph defined by

V (H1) = V (H∗0 ) ∪ C1 and

E(H1) = E(H∗0 ) ∪ E

(
H −

⋃̀
j=2

Cj

)
.

Since H and H∗0 are induced subgraphs of G and G∗0, respectively, H1 is

an induced subgraph of G1 and H(H1) ⊂ H(G1) by (3.3.6). Take a hole

Ω1 in G1. Since G1 is an induced subgraph of G, V (Ω1) ⊂ Ω(G) \
⋃`
i=2 Ci.

Since Ω(G) = V (H) and V (H) \
⋃`
i=2 Ci = V (H1), V (Ω1) ⊂ V (H1). Since

H1 is an induced subgraph of G, Ω1 is a hole in H1. Thus we have shown

that H(H1) = H(G1). Hence, since C1 is a hole cover of G1 satisfying the

NC property, it is a hole cover of H1 satisfying the NC property and so we

obtain Ĥ1(C1) =: H∗1 . Since H(H1) = H(G1) and H1 is an induced subgraph

of G1, H
∗
1 is an induced subgraph of G∗1. Let H2 be the graph defined by

V (H2) = V (H∗1 ) ∪ C2 and

E(H2) = E(H∗1 ) ∪ E

(
H −

⋃̀
j=3

Cj

)
.

Then Ω(G) \
⋃`
i=3 Ci = V (H2). Since H and H∗1 are induced subgraphs of G

and G∗1, respectively, H2 is an induced subgraph of G2 and H(H2) ⊂ H(G2)

by (3.3.6). Take a hole Ω2 in G2. Since G∗1 is chordal, Ω2 must contain a

vertex v in C2. By the way, since C2 is a hole cover of G2 satisfying the NC

property, Ω2 contains exactly one vertex in C2 and so v is the only vertex on

Ω2 that is contained in C2.
Since G is non-chordal, there exist a hole in G. The chain given in (3.3.4)

is the shortest, one of the holes in G must be in G1. Thus there exists an edge

in E(G∗1) \E(G1). Take an edge e in E(G∗1) \E(G1). Then there is a hole in

G such that e is its chord in G+ e. By Proposition 3.3.12, Ω(G+ e) ⊂ Ω(G).

If E(G∗1) \ E(G1) = {e}, then, by Proposition 3.3.12, V (Ω2) ⊂ Ω(G2) ⊂
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Ω(G+e) ⊂ Ω(G) and so V (Ω2) ⊂ Ω(G). Suppose that E(G∗1)\(E(G1)∪{e}) 6=
∅ and take an edge e′ in E(G∗1) \ (E(G1)∪ {e}). Then there is a hole C in G

such that e′ is its chord in G + e′. Now there is a hole in G + e such that e′

is its chord in G ∪ {e, e′}. For, if C is a hole in G+ e, then it is such a hole.

Otherwise, by the definition of local chordalization, e is a chord of C and e′

is a chord of a hole from C + e.

By applying Proposition 3.3.12 for G+ e and an edge e′, Ω(G∪{e, e′}) ⊂
Ω(G). We may repeat this argument to conclude that Ω(G∪(E(G∗1)\E(G1))) ⊂
Ω(G). Since G2 is an induced subgraph of G ∪ (E(G∗1) \ E(G1)) and Ω2 is a

hole in G2,

V (Ω2) ⊂ Ω(G2) ⊂ Ω(G ∪ (E(G∗1) \ E(G1))) ⊂ Ω(G),

and so V (Ω2) ⊂ Ω(G). Therefore we have shown that V (Ω2) ⊂ Ω(G) whether

or not E(G∗1) \ (E(G1)∪ {e}) 6= ∅. Thus the vertices on Ω2 belong to Ω(G) \⋃`
i=3 Ci. Since Ω(G) \

⋃`
i=3 Ci = V (H2) and H2 is an induced subgraph of G2,

Ω2 is a hole in H2 and so H(G2) ⊂ H(H2). Thus H(G2) = H(H2). Hence,

since C2 is a hole cover of G2 satisfying the NC property, it is a hole cover

of H2 satisfying the NC property and so we obtain Ĥ2(C2) =: H∗2 . We may

repeat this process to obtain H3, H
∗
3 , . . . , H`, H

∗
` such that

V (Hi) = V (H∗i−1) ∪ Ci, E(Hi) = E(H∗i−1) ∪ E

(
H −

⋃̀
j=i+1

Cj

)
,

H∗i = Ĥi(Ci),

and H(Gi) = H(Hi) for i = 3, . . . , `. Noting that H(G) = H(H) and G∗`
(resp. H∗` ) is a chordal completion of G (resp. H), we may conclude that

i(H) ≤ ` = i(G).

To show that i(G) ≤ i(H), we need to introduce the chordalization chain

corresponding to a local chordalization partition C̃ ′ of a hole cover C ′ of

H terminating at H∗i(H). By mimicking the previous argument constructing
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v

G1

Kn

G2

Figure 3.4: Ω(G1) = Ω(G2), so i(G1) = i(G2) by the argument given in
Remark 3.3.14.

the chordalization chain corresponding to C̃ for H, we may construct the

chordalization chain corresponding to C̃ ′ for G to conclude i(G) ≤ i(H).

Thus i(G) = i(H) and it is sufficient to apply local chordalization process to

the induced subgraph H of G, which is a local structure, to obtain a desired

chordal completion of G. In this vein, we may claim that the “local” in our

terminology “local chordalization” is meaningful in another respect.

Example 3.3.15. The graph G2 in Figure 3.4 is obtained from G1 by re-

placing the vertex v of G1 by the complete graph Kn. Then Ω(G1) = Ω(G2).

By the argument given in Remark 3.3.14, i(G1) = i(G2). Yet, the treewidths

of G1 and G2 are 2 and n− 1, respectively.

By the argument given in Remark 3.3.13, the following proposition is

true.

Proposition 3.3.16. For a non-chordal graph G,

i(G) = max{i(G[S1]), . . . , i(G[Sr])}

where S1, . . . , Sr are the equivalence classes under ∼G.
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Proof. Let G be a graph and C̃ = (C1, . . . , Ci(G)) be a local chordalization

partition of a hole cover C of G. Then, for each j = 1, . . . , i(G), C ∩ Sj is

a hole cover of G[Sj]. In addition, by the argument given in Remark 3.3.13,

a subset of {C1 ∩ Sj, . . . , Ci(G) ∩ Sj} forms a local chordalization partition

of C ∩ Sj. Thus i(G[Sj]) ≤ i(G) for each j = 1, . . . , i(G) and so i(G) ≥
max{i(G[S1]), . . . , i(G[Sr])}.

Now let C̃j = (Cj1, . . . , C
j
i(G[Sj ])

) be a local chordalization partition of a

hole cover Cj of G[Sj] for each j = 1, . . . , r. Clearly
⋃r
j=1 Cj is a hole cover

of G. In addition, by the argument given in Remark 3.3.13,

(
r⋃
j=1

Cj1,
r⋃
j=1

Cj2, . . . ,
r⋃
j=1

Cjmax{i(G[S1]),...,i(G[Sr])})

is a local chordalization partition of
⋃r
j=1 Cj where Cj

p = ∅ for any j = 1, . . . , r

and any p, i(G[Sj]) < p ≤ max{i(G[S1]), . . . , i(G[Sr])}. Hence

max{i(G[S1]), . . . , i(G[Sr])} ≥ i(G).

The join, denoted by G1∨G2, of two graphs G1 and G2 is the graph with

the vertex set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2) ∪ {uv | u ∈
V (G1) and v ∈ V (G2)}. We denote by Im an empty graph with m vertices.

Theorem 3.3.17. Suppose that a non-chordal graph G does not contain

Im∨Kn for positive integers m ≥ n as a subgraph and ω(G[Ω(G)])+i(G) ≤ m.

Then there is a chordal completion G∗ of G with ω(G∗) < m+ n.

Proof. Since G is non-chordal, i(G) ≥ 1. Let H be the subgraph of G induced

by Ω(G). By the argument in Remark 3.3.14, i(G) = i(H). Let H∗ be the

subgraph of G∗ induced by Ω(G) where G∗ is a chordal completion of G

obtained in Remark 3.3.14. Then H∗ is a chordal completion of H.
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Suppose to the contrary that ω(G∗) ≥ m + n. Then there is a clique K

of size m + n in G∗. Clearly K ∩ Ω(G) forms a clique in G∗. Since H∗ is an

induced subgraph of G∗, K ∩Ω(G) forms a clique in H∗. By Theorem 3.3.8,

|K ∩ Ω(G)| ≤ ω(H) + i(G). By the hypothesis, |K ∩ Ω(G)| ≤ m. Since

|K| = m + n, |K \ Ω(G)| ≥ n. By the definition of local chordalization

and Remark 3.3.13, the end vertices of each of the edges newly added to

obtain G∗ belong to Ω(G), so K \ Ω(G) still forms a clique in G and each

vertex in K ∩Ω(G) is adjacent to each vertex in K \Ω(G) in G. By moving

m − |K ∩ Ω(G)| vertices in K \ Ω(G) into K ∩ Ω(G) if |K ∩ Ω(G)| < m,

we may claim that G contains Im ∨Kn as a subgraph. This contradicts the

hypothesis, so we conclude that ω(G∗) < m+ n.

The following corollary is an immediate consequence of Theorem 3.3.17.

Corollary 3.3.18. Suppose a graph G does not contain Im ∨Kn for positive

integers m ≥ n as a subgraph and ω(G[Ω(G)]) + i(G) ≤ m. Then χDP (G) <

m+ n.

Remark 3.3.19. Since K2,4 is non-chordal and has a hole cover which is

a singleton, i(K2,4) = 1. Then, by Theorem 3.3.6, χDP (K2,4) ≤ 3. Yet,

χDP (K2,4) ≤ 5 by Corollary 3.3.18. Thus, for χDP (K2,4), Theorem 3.3.6 gives

a better upper bound than Corollary 3.3.18.

On the other hand, for a certain graph G, Corollary 3.3.18 gives a better

upper bound of χDP (G) than Theorem 3.3.6. To see why, consider the graph

G given in Figure 3.5. If G contained a subgraph isomorphic to I8∨K4, then

G would have at least four vertices with degree at least 11, which does not

happen in G as the two vertices common to K6 and K11 are the only vertices

with degree at least 11. Hence G does not contain I8 ∨K4 as a subgraph.

It is easy to check that ω(G) = 11 and ω(G[Ω(G)]) = 5. The graph

G[Ω(G)] is represented by using bold edges in Figure 3.5 and happens to be

the graph given in Figure 3.3. Therefore i(G) = 2. Then Theorem 3.3.6 gives
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rise to χDP (G) ≤ 11 + 2 while Corollary 3.3.18 gives rise to χDP (G) ≤ 11.

Furthermore, since ω(G) = 11, χDP (G) is actually equal to 11.

K6

K11

Figure 3.5: A graph G which shows that Theorem 3.3.17 may be regarded as
an improvement of Theorem 3.3.8. The vertices enclosed by a dotted ellipse
form a clique.

3.4 New χ-bounded classes

A class F of graphs is said to be χ-bounded if there exists a function f :

N → R such that for every graph G ∈ F and every induced subgraph H of

G, χ(H) ≤ f(ω(H)).

We may extend the notion of χ-boundedness as follows. A class F of

graphs is said to be χl-bounded (resp. χDP -bounded) if there exists a function

f : N→ R such that for every graph G ∈ F and every induced subgraph H

of G, χl(H) ≤ f(ω(H)) (resp. χDP (H) ≤ f(ω(H)).

A graph G is called perfect graph if χ(H) = ω(H) for every induced

subgraph H of G.
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We may also extend the notion of perfect graph as follows. We say that a

graph G is list-perfect (resp. DP-perfect) if χl(H) = ω(H) (resp. χDP (H) =

ω(H)) for every induced subgraph H of G.

We denote the class of perfect graphs, the class of list-perfect graphs, and

the class of DP-perfect graphs by P , Pl, and PDP , respectively.

By (1.2.2), a χDP -bounded graph class is χl-bounded and a χl-bounded

graph class is χ-bounded. In the proof of Theorem 3.3.11, we have shown

that for any positive integer s and any nonnegative integer t, there exist a

complete multipartite graph G with ω(G) = s+1 and χl(G) = s+t+1, which

implies that the class of complete multipartite graphs is not χl-bounded. Any

complete multipartite graph is, however, perfect, which implies that the class

of complete multipartite graphs is χ-bounded. Accordingly, a χ-bounded class

is not necessarily χl-bounded. Furthermore, PDP ⊂ Pl ⊂ P by (1.2.2). Yet,

PDP ( Pl ( P as K2,4 is perfect but not list-perfect and C4 is list-perfect

but not DP-perfect.

Note that ω(Cn) = 2 and χDP (Cn) = 3 for even integer n ≥ 4. Thus no

graph in PDP contains a hole of even length. Since a graph containing a hole

of odd length is not perfect, no graph in PDP contains a hole of odd length.

Therefore PDP is included in the class of chordal graphs. Thus, by (§), PDP
is the class of chordal graphs.

Now we present new χ-bounded classes.

Theorem 3.4.1. A family of graphs the non-chordality index of each of which

does not exceed k for some nonnegative integer k is linearly χDP -bounded.

Proof. Take a family F of graphs the non-chordality index of each of which

does not exceed k for a nonnegative integer k. Let f : N → R be a function

defined by f(x) = x + k. Take a graph G in F . Then i(G) ≤ k. Let H

be an induced subgraph of G. By the first part of Theorem 3.3.8, there

exists a chordal completion H∗ of H such that ω(H∗) ≤ ω(H) + i(G). Thus

χDP (H) ≤ χDP (H∗) = ω(H∗) ≤ ω(H)+i(G) ≤ f(ω(H)). Hence the theorem

is true.
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By Remark 3.3.4, the following corollary is immediately true.

Corollary 3.4.2. The class of graphs with the NC property is χDP -bounded.
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국문초록

이논문에서는유향그래프와그래프의홀의관점에서계통발생그래프와그래

프의 삼각화에 대하여 연구한다. 길이 4 이상인 유도된 싸이클을 홀이라 하고

홀이 없는 그래프를 삼각화된 그래프라 한다. 구체적으로, 싸이클을 갖지 않

는 유향그래프의 계통발생 그래프가 삼각화된 그래프인지 판정하고, 주어진

그래프를 삼각화하여 클릭수가 크게 차이 나지 않는 그래프를 만드는 방법을

찾고자 한다. 이 논문은 연구 내용에 따라 두 부분으로 나뉜다.

먼저 (1, i) 유향그래프와 (i, 1) 유향그래프의 계통발생 그래프를 완전하게

특징화하고, (2, j) 유향그래프 D의 모든 유향변에서 방향을 제거한 그래프가

삼각화된 그래프이면, D의 계통발생 그래프 역시 삼각화된 그래프임을 보

였다. 또한 적은 수의 삼각형을 갖는 연결된 그래프의 계통발생수를 계산한

정리를 확장하여 많은 수의 삼각형을 포함한 연결된 그래프의 계통발생수를

계산하였다.

다른한편그래프 G의비삼각화지수 i(G)에대하여 ω(G∗)−ω(G) ≤ i(G)

를 만족하는 G의 삼각화된 그래프 G∗가 존재함을 보였다. 그리고 이를 도

구로 이용하여 NC property를 만족하는 그래프가 Hadwiger 추측과 Erdős-

Faber-Lovász추측을만족함을증명하고,비삼각화지수가유계인그래프들이

linearly χ-bounded임을 증명하였다.

주요어휘: 홀, 삼각화된 그래프, 계통발생 그래프, 계통발생수, 비삼각화 지수,

채색수
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