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Abstract

Study on structures of digraphs and graphs
in the aspect of their holes

Soogang Eoh
Department of Mathematics Education
The Graduate School

Seoul National University

This thesis aims at studying phylogeny graphs and graph completions in the
aspect of holes of graphs or digraphs. A hole of a graph is an induced cycle
of length at least four and a graph is chordal if it does not contain a hole.
Specifically, we determine whether the phylogeny graphs of acyclic digraphs
are chordal or not and find a way of chordalizing a graph without increasing
the size of maximum clique not so much. In this vein, the thesis is divided
into two parts.

In the first part, we completely characterize phylogeny graphs of (1,7)
digraphs and (i, 1) digraphs, respectively, for a positive integer i. Then, we
show that the phylogeny graph of a (2, j) digraph D is chordal if the under-
lying graph of D is chordal for any positive integer j. In addition, we extend
the existing theorems computing phylogeny numbers of connected graph with
a small number of triangles to results computing phylogeny numbers of con-
nected graphs with many triangles.

In the second part, we present a minimal chordal supergraph G* of a
graph G satisfying the inequality w(G*) —w(G) < i(G) for the non-chordality
index i(G) of G. Using the above chordal supergraph as a tool, we prove
that the family of graphs satisfying the NC property satisfies the Hadwiger
conjecture and the Erdés-Faber-Lovasz Conjecture, and the family of graphs

with bounded non-chordality indices is linearly x-bounded.
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Chapter 1
Introduction

This thesis aims at studying on structures of digraphs and graphs in the
aspect of their holes. We first study the digraphs whose phylogeny graphs
are chordal and phylogeny numbers of graphs in the aspect of the number of
triangles and diamonds. Then we study a way of finding a chordal completion
of a graph without increasing the size of maximum clique not so much.

Now we introduce the basic notions that will be used in the thesis.

1.1 Basic notions

Now we introduce basic notions in graph theory, which shall be frequently
used in this thesis. For undefined terms, readers may refer to [7].

A graph G is defined as an ordered pair (V, E) where V is a set and E
is a family of unordered pairs of elements in V. An element of V' and an
element of F are called a vertex and an edge of G, respectively. If e = {u, v}
is an edge, then we simply write it by uv for convenience when there is no
confusion. The set of vertices and the set of edges of a graph G are called
the vertex set and the edge set of G, respectively, and denoted by V(G) and
E(G), respectively.

Let G be a graph and e = uv be an edge of G. Then we say that e joins



(or connects) u and v, u and v are the end vertices (or ends) of e, and each
of u and v is incident to e. In addition, we write u ~¢ v and say that v and
v are adjacent in G.

Let G be a graph and uv be an edge of G. If u = v, then the edge uv is
called a loop. If u # v and there are more than one edge connecting u and v,
then uv is called a multiple edge or a parallel edge. We call a graph simple if
it does not have loops and no multiple edges.

Let G be a graph and u be a vertex of G. A vertex of G which is adjacent
to u is called a neighbor of u. The set of all neighbors of w is called the (open)
neighborhood of u and is denoted by Ng(u). The degree of the vertex u is
defined to be the number of edges incident to w and is denoted by dg(u) or
dege(u). A vertex with degree 0 is called an isolated vertex. For a positive
integer k, the set of k isolated vertices is denoted by Ir. When there is no
confusion, we sometimes omit the subscript GG in the notations defined above.

Two graphs GG and H are said to be isomorphic if there exist bijections
fv : V(G) — V(H) and fr : E(G) — E(H) such that for every edge
e € E(G), e connects vertices u and v in G if and only if fg(e) connects
vertices fy(u) and fy(v) in H. If G and H are isomorphic with bijections
fv and fg described above, then we write G = H and call (fv, fg) a graph
isomorphism from G to H.

Let G be a graph. A graph H is called a subgraph of G if V(H) C V(G)
and F(H) C E(G). If H is a subgraph G, then G is called a supergraph of H.
For a nonempty subset S of V(G), the subgraph of G induced by S, denoted
by G[S], is the simple graph defined by V(G[S]) = S and E(G][S]) = {uwv €
E(G) | u,v € S}. For a nonempty proper subset S of V(G), G — S denotes
the subgraph of G induced by V(G) \ S. For notational simplicity, we write
G — v instead of G — {v} for a vertex v of G. An induced subgraph of G is a
graph induced by a nonempty subset of V(G). We say that G is H-free if G
has no induced subgraph which is isomorphic to H.

An edge contraction is an operation which removes an edge from a graph



while simultaneously merging the two vertices that it previously joined. A
graph H is called a minor of the graph G if H can be formed from G by
deleting edges and vertices and by contracting edges. We say that G is H-
minor-free if G has no minor which is isomorphic to H.

Given a simple graph G, the complement G of G is defined to be a simple
graph obtained by reversing the adjacency of G, i.e., V(G) = V(G) and
E(G) = {w | w ¢ E(G)}.

A complete graph K, is a graph with n vertices in which every pair of
vertices are adjacent. A vertex subset S of V(G) is called a clique if the
induced subgraph G[S] is complete. We sometimes call a complete subgraph
a clique. The clique number of a graph G is defined to be the number of
vertices in a maximum clique and denoted by w(G).

For a clique K and an edge e of a graph G, we say that K covers e (or e
is covered by K) if and only if K contains the two end points of e. An edge
clique cover of a graph G is a collection of cliques that cover all the edges
of G. The edge clique cover number of a graph G, denoted by 6.(G), is the
smallest number of cliques in an edge clique cover of G.

A walk from a vertex v; to a vertex vy, is an alternating sequence

V1,€1,0V2,€2,...,Vk, €k, Ukt

of vertices and edges where each v; (i = 1,...,k+1) is a vertex of G and each
e; (j=1,...,k)is an edge of G joining v; and v;41. The length (W) of a walk
W is defined to be the number of edges belonging to it. If there exists a walk
starting from a vertex v to another vertex w, then we say that v and w are
connected by a walk. If any two vertices of a graph GG are connected by a walk,
then we say that G is connected. Otherwise, G is said to be disconnected. A
maximally connected subgraph of G is called a (connected) component of G.
It is easy to see that GG is connected if and only if G has only one connected

component.



A walk

V1,€1,V2,€2,...,Vk, €k, Ukt
is called a path if vy, ..., vy, are all distinct, and called a cycle if v1 = vy
and vy, ..., v, are all distinct. We denote a path on n vertices by P,, and a

cycle on n vertices by C,,. If no subgraph of G is a cycle, then G is called
acyclic. A connected acyclic graph is called a tree.

A digraph (or directed graph) D is defined as an ordered pair (V (D), A(D))
where V(D) is a set and A(D) is a family of ordered pairs of elements in
V(D). An element of V(D) and an element of A(D) are called a vertex and
an arc (or directed edge) of D, respectively. The subdigraphs and induced
subdigraphs of a digraph are similarly defined as the subgraphs and induced
subgraphs of a graph. If (u,v) € A(D), then we say that u and v are the tail
and the head of (u,v), respectively, so that the arc (u,v) goes from the tail
u to the head v.

Let D be a digraph and u be a vertex of D. A vertex v is called an out-
neighbor (resp. in-neighbor) of u if (u,v) (resp. (v,u)) is an arc in D. The set
of all out-neighbors (resp. in-neighbors) of w is called the out-neighborhood
(resp. in-neighborhood) of u in D and denoted by N} (u) (resp. Np,(u)). The
outdegree d},(u) is the number of arcs with tail u and the indegree dp(u) is
the number of arcs with head .

A directed walk from a vertex v; to a vertex v is an alternating sequence

U1,01,V2,02,...,Vk,Qk, Vpt+1

of vertices and arcs where each v; (i =1,...,k+ 1) is a vertex and each a;
(j =1,...,k) is an arc from v; to v;y1. The length ¢(W) of a directed walk
W is defined to be the number of arcs belonging to it. A directed walk

V1,01,0V2,02,...,Vk, Ak, V41

is called a directed path if vy, ..., vk, are all distinct, and called a directed

4



cycle if vi = vgyq and vy, ..., v, are all distinct. If no subdigraph of D is a
directed cycle, then G is said to be acyclic.

Let G be a digraph. If we assign an orientation to each edges of G, then
the resulting digraph is called an orientation of G. An oriented graph is a
graph with an orientation. If an orientation D of G satisfies the property
that (u,v), (v,w) € A(D) imply (u,w) € A(D), then the orientation is said
to be transitive.

A hole of a graph is an induced cycle of length at least four. A graph
G is said to be chordal if every cycle in G of length greater than 3 has a
chord, namely, an edge joining two nonconsecutive vertices on the cycle, that
is, G does not contain a cycle of length at least 4 as an induced subgraph.
A graph H is called a chordal completion (or triangulation) of a graph G, if
H is a chordal spanning supergraph of G. See [2§] for a survey on chordal
completion.

If two sets A and B have a nonempty intersection, then we say that A and
B overlap or intersect. A graph G is called the intersection graph of a family
F of sets if there exists a bijection ¢ : V(G) — F such that two vertices x
and y are adjacent in G if and only if ¢(x) N p(y) # 0. A graph G is called an
interval graph if we can assign to each vertex = of G a real interval J(z) so
that, whenever x # y, zy € E(G) if and only if J(x) N J(y) # (). Obviously,
an interval graph is an intersection graph of a set of open intervals (or a set
of closed intervals).

The notion of interval graph was introduced independently by G. Hajés [23]
and S. Benzer [4]. Since the introduction of an interval graph, it has been ex-
tensively studied due to its important role in various fields such as scheduling
theory, chemistry, biology, and genetics.

There are nice characterization for an interval graph.

The asteroidal triple (AT for short) is defined as a graph with the vertex
set {v1, va, V3, U4, U5, Ug } and the edge set {vy vy, V304, V5V6, V103, U3V, V51 } (see

Figure .
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Figure 1.1: The asteroidal triple

Theorem 1.1.1 ([36]). A graph is an interval graph if and only if it is chordal
and AT-free.

Theorem 1.1.2 ([20]). A graph is an interval graph if and only if it is Cy-free
and its complement has a transitive orientation.

It is immediately true by Theorem that an interval graph is chordal.
In this thesis, all the graphs and digraphs are assumed to be finite and
simple unless otherwise stated.
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Mathematical Notation

N : The set of positive integers
ZL>q . The set of nonnegative integers
7 : The set of integers
R : The set of real numbers
V(G) : The vertex set of a graph (or a digraph) G
E(G) : The edge set of a graph G
A(D) : The arc set of a digraph D
wv in G : The edge between a vertex u and a vertex v in a graph G

(u,v) in D : The arc from a vertex u to a vertex v in a digraph D

G[S] : The subgraph of a graphs GG induced by a vertex subset S
G —S  : The subgraph of a graph G induced by V(G) \ S
G—w : The subgraph of a graph G induced by V(G) \ {v}
G : The complement of a graph G
dg(u) : The degree of a vertex u in a graph G
dp(u) : The indegree of a vertex u in a digraph D
dh(w) : The outdegree of a vertex u in a digraph D

(u)  : The neighborhood of a vertex u in a graph G
Np(u) @ The in-neighborhood of a vertex w in a digraph D
(u) : The out-neighborhood of a vertex u in a digraph D

0.(G) : The edge clique cover number of a graph G
1, : The set of k isolated vertices
K, . A complete graph of n vertices
P, : A path of length n
Ch . A cycle of length n



€3 D) €3 )

Xy T Xy T

X5 Ze X5 Ze

Figure 1.2: A digraph D and its competition graph C(D)
1.2 Preliminaries

1.2.1 Phylogeny graphs

Let D be a digraph which represents a food web in an ecosystem which is
obtained by drawing an arc from a predator to a prey. The vertex set V(D)
represents the set of species in the ecosystem and an arc (z,y) € A(D) means
that a species x preys on a species y. One important assumption in ecology
is that two species compete if they have a common prey. Hence the rivalry
between species in a food web, which is an important subject in ecology, can
be represented by the competition graph of D. The competition graph of a
digraph is defined as follows.

The competition graph of a digraph D, denoted by C(D), is defined as a
graph which has the same vertex set as D and has an edge xy between two
distinct vertices x and y if and only if, for some vertex z € V(D), (x, z) and
(y,z) are arcs in D (see Figure for an example). Cohen [I0] introduced
the notion of competition graphs in the study on predator-prey concepts in
ecological food webs. Competition graphs also have applications in areas such
as modeling of complex economic systems, radio transmission, and coding.

For a summary of these applications, the reader may refer to [44] and [51].



Cohen observed empirically that real-world competition graphs are usu-
ally interval graphs. Interval graphs have been widely studied and applied
in many different area such as developmental psychology, scheduling the-
ory, chemistry, biology, and genetics. Cohen’s observation had led to a great
deal of research on the structure of competition graphs and on the rela-
tionship between the structure of digraphs and their corresponding compe-
tition graphs. In the same vein, various variants of competition graphs have
been introduced and studied. For recent work related to competition graphs,
see [18| 31}, B2}, 37, 64].

There have been a large literature devoted to explaining Cohen’s ob-
servation and to studying the properties of competition graphs. There are
two different approaches in attempting to explain Cohen’s observation. The
first attempt is statistical, and develops models for randomly generated food
webs from which one can show that the corresponding competition graphs
are interval graphs. The second attempt is graph-theoretical. This involves
the analysis of the properties of competition graphs that arise from different
kinds of digraphs and attempts to characterize the acyclic digraphs whose
competition graphs are interval.

Stief [57] showed that there is no forbidden subgraph characterization of
acyclic digraphs whose competition graphs are interval. Unfortunately, this
means that it is not easy to study the structural properties of competition
graphs, which led researches to find another ways to explain Cohen’s obser-
vation.

Dutton and Brigham [I5] characterized the competition graphs arising
from digraphs D which may have directed cycles and which also may have
loops. They showed that if |V (G)| = n, then G is a competition graph of a
digraph D (which may have loops) if and only if 0.(G) < n.

Roberts and Steif [50] obtain a similar characterization in the case that
there are no loops. They showed that G is a competition graph of a digraph

which has no loops if and only if there are cliques C, Cy, ..., C, which cover



the edges of G and such that if D; = V(G) — C;, then {D;, Ds, ..., D,} has
a system of distinct representatives.

Roberts [45] observed that any graph G together with |E(G)| additional
isolated vertices is the competition graph of an acyclic digraph. Then he
defined the competition number of a graph G to be the smallest number k
such that G together with k isolated vertices is the competition graph of an
acyclic digraph, and denoted it by k(G). Acyclicity of a digraph is a natural
assumption as it represents a food web in an ecosystem from which this sub-
ject is originated. However, the requirement of being acyclic is not necessary
in general. In the literature, competition graphs of arbitrary digraphs are
also widely studied.

Computing the competition number of a graph is one of the important
problems in the field of competition graphs. Yet, computing the competition
number of a graph is usually not easy as Opsut has shown that computation of
the competition number in general is NP-hard in 1982. While an upper bound
M of the competition number of a graph G may be obtained by constructing
an acyclic digraph whose competition graph is G together with M isolated
vertices, getting a good lower bound is a very difficult task because there are
usually so many cases to consider. There has been much effort to compute
the competition numbers of graphs.

The notion of phylogeny graphs was introduced by Roberts and Sheng [46]
as a variant of competition graphs. (See also [20], 4T, 47, [48], [49] [65] for study
on phylogeny graphs.) Given an acyclic digraph D, the underlying graph
of D, denoted by U(D), is the graph with vertex set V(D) and edge set
{zy | (z,y) € A(D) or (y,x) € A(D)}. The phylogeny graph of an acyclic
digraph D, denoted by P(D), is the graph with vertex set V(D) and edge
set E(U(D))U E(C(D)).

“Moral graphs”, having arisen from studying Bayesian networks, are the
same as phylogeny graphs. One of the best-known problems, in the context

of Bayesian networks, is related to the propagation of evidence. It consists
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Figure 1.3: An acyclic digraph D, the underlying graph U(D) of D, the
competition graph C(D) of D, and the phylogeny graph P(D) of D.



of the assignment of probabilities to the values of the rest of the variables,
once the values of some variables are known. Cooper [12] showed that this
problem is NP-hard. Most noteworthy algorithms for this problem are given
by Pearl [43], Shachter [55] and by Lauritzen and Spiegelhalter [33]. Those
algorithms include a step of triangulating a moral graph, that is, adding
edges to a moral graph to form a chordal graph.

As triangulations of moral graphs play an important role in algorithms
for propagation of evidence in a Bayesian network, studying chordality of the
phylogeny graphs of acyclic digraphs is meaningful. Yet, characterizing the
acyclic digraphs whose phylogeny graphs are chordal seems to be more diffi-
cult than characterizing the acyclic digraphs whose competition graphs are
interval. In this respect, hoping to provide insights for the further research,
Lee et al. [34] studied the phylogeny graphs of (2,2) digraphs and gave suffi-
cient conditions and necessary conditions for (2,2) digraphs having chordal
phylogeny graphs. An acyclic digraph each vertex of which has indegree at
most i and outdegree at most j is called an (i, 7) digraph for some positive
integers i and j. Hefner et al. [27] characterized (2,2) digraphs whose com-
petition graphs are interval. In the first section of Chapter 2, we extend their
work to study phylogeny graphs of (7, j) digraphs.

Any acyclic digraph D for which G is an induced subgraph of P(D) and
such that D has no arcs from vertices outside of G to vertices in G is called
a phylogeny digraph for GG. The phylogeny number is defined analogously to
the competition number. The phylogeny number p(G) of G is the smallest r
so that G has a phylogeny digraph D with |V (D) \ V(G)| = r. A phylogeny
digraph D for a graph G for which |V (D)\V(G)| = p(G) is called an optimal
phylogeny digraph for G. Given an optimal phylogeny digraph D for a graph
G, we note that the digraph resulting from D by deleting the arcs outgoing
from a vertex in V(D) \ V(G) is still an optimal phylogeny digraph for G.
In this vein, we may assume that outdegree of any vertex in V(D) \ V(G) is

zero for any optimal phylogeny digraph for a graph G [47].
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Analogous to the competition number, the phylogeny number is closely
related to the number of triangles as we may see from the following results.
Theorem 1.2.1 ([47]). If G is a connected graph with no triangles, then

p(G) = [E(G)] = [V(G)| + 1,

Given a graph GG, we denote by G~ the graph obtained from G by deleting
all the triangles edges of G where a triangle edge means an edge on a triangle.
Theorem 1.2.2 ([47]). Let G be a connected graph with exactly one triangle.
Then

|E(G)| - |V(G)| if G~ has three components;

|[E(G)|—|V(G)|—=1 if G~ has one or two components.
Theorem 1.2.3 ([49]). Let G be a connected graph with exactly two triangles

which share one of their edges. Let x, u, v, y be the vertices for these two

triangles with the edge uv being their common edge. Then

|E(G)|—|V(G)| —1 if G= has four components or
p(G) = if G~ has three components with G = Gy;

|E(G)| = |V(G)| —2 otherwise.
Theorem 1.2.4 ([49]). Let G be a connected graph with exactly two triangles
that are edge-disjoint. Then

(\E(G)] —|V(G)| =1 if G~ has five components;

|E(G)| = |V(G)|—2 if G~ has four components;

|E(G)| = |V(G)| =2 if G~ has three components, with each
p(G) = component containing exactly two triangle
vertices, or with one component containing
a triangle of G;

k|E(G)| —|V(G)|—3 otherwise.

13



As a matter of fact, Theorems [1.2.1 can be integrated into the fol-

lowing proposition. For a graph GG containing at most two triangle,

[E(G)| = V(G)] = 2((G) +d(G) +1 < p(G) < |E(G)] - [V(G)] - H(G) +1
(1.2.1)
where ¢(G) and d(G) denote by the number of triangles and the number of
diamonds in G, respectively.
In the second section of Chapter 2, we extend the given inequalities in
Theorems [1.2.1} [1.2.2] [1.2.3] and [1.2.4] to graphs with many triangles.

1.2.2 Graph colorings and chordal completions

Graph coloring problems are one of the most important, well-known and
studied problems in graph theory. Graph coloring is a special case of graph
labeling and actively studied in graph theory. It is an assignment of labels
traditionally called “colors” to elements of a graph subject to certain con-
straints. A wertexr coloring is a coloring the vertices of a graph. A vertex
coloring is proper if no two adjacent vertices are of same color. For a given
graph G, a function f: V(G) — {1,2,...,k} is called a proper k-coloring of
G if f(u) # f(v) for any adjacent vertices u and v. The chromatic number
X(G) of a graph G is defined to be the least positive integer k such that
there exists a proper k-coloring of G. Similarly, an edge coloring assigns a
color to each edge. An edge coloring is proper if no two adjacent edges of the
same color. Other coloring problems can be transformed into a vertex color-
ing problems. For example, a face coloring of a plan graph is just a vertex
coloring of its dual graph.

The convention of using colors originates from coloring of a map. In the
middle of the nineteenth century, it was found that a map of England, with
all counties, can be painted using only four colors in such a way that counties
sharing a common border receive different colors. It became an interesting

problem for many mathematicians whether it is possible to color any possible
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political map using only four colors. Appel and Haken [I] solved the problem
in 1976 by using computer algorithm to check if the map can be four-colored
in all possible cases. In 1943, Hadwiger [22] formulated the Hadwiger conjec-

ture as follows.
Conjecture 1.2.5 ([22]). If G is a K,,-minor-free graph, then x(G) < n—1.

The Hadwiger conjecture is a far-reaching generalization of the four-color
problem that still remains unsolved. There are many other graph coloring
problems that have not been solved. (See [19], [29], [30], [39], and [40] for
more problems on graph colorings.)

Graphs colorings have many practical applications as well as theoretical
challenges. For example, vertex coloring of graphs can represent a mathe-
matical model of various resource assignments. One of such a problem is to
assign frequencies for stations of radio, or mobile phone network. Stations,
which are in broadcasting range (and so their signals would interfere with
each other) must be assigned different frequencies. To solve this problem, a
mathematical model of the connection network is constructed, where vertices
represent stations, and edges between them show conflicts (that is, pairs of
stations, which need to be given different frequencies). The model itself is a
graph with vertex coloring [19]. This application of vertex coloring has been
widely studied in many papers. The reader may refer to [60], [56], [42], and
[24].

Timetabling problems often involve restrictions in which pairs of activities
cannot be performed simultaneously. For example, in scheduling courses at
a school, two courses taught by the same individual cannot be scheduled
at the same time. If the courses to be scheduled are represented by the
vertices of a graph and every pair of courses that cannot be scheduled at
the same time are connected by an edge, then a (proper) vertex coloring of
this graph gives a feasible schedule of the courses. If the goal is to minimize
the number of time slots needed, then the problem is that of finding the

chromatic number of the graph (assuming each course take the same amount
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of time). An introduction to the timetabling problems can be found in the
work of de Werra [I3]. Timetabling problems have been studied extensively
by many researchers including [I1], [61], [35], and [I4]. Schmidt and Strohleim
[54] provide an annotated bibliography for the timetabling problem [40].

Applications of graph coloring have also led to interesting generalizations
of the graph coloring problem. Vising [59] and Erdés, Rubin, and Taylor [17]
independently introduced the notion of list coloring to generalize that of
ordinary graph coloring. Let G be a graph and C' be a set of colors. A [ist for
G is a mapping L : V(G) — P(C) which assigns a set of colors to each vertex
where P(C) denotes the power set of C. If |L(z)| > k for all z € V(G), then
L is called a k-list. A proper coloring f : V(G) — C'is called an L-coloring of
G if f(x) € L(x) for any x € V(G). The list-chromatic number of G, denoted
by xi(G), is the smallest k such that G admits an L-coloring for every k-list
L for G. A graph G is said to be k-choosable if x;(G) < k. List colorings are
important in the channel assignment problem when acceptable channels are
specified. Brown et al. [8] and Mahadev and Roberts [38] have studied this
class of coloring problem.

Dvotdk and Postle [16] introduced the notion of DP-coloring, which is a
generalization of list coloring. Let G be a graph and L be a list for G. The
auziliary graph for G and L, denoted by H (G, L), is the graph with the vertex
set {(v,¢) | v € V(G),c € L(v)} and the edge set {{(v, c), (v/,¢)} | either ¢ =
¢ and vv' € E(G) or v = v'}. By construction, for every distinct vertices v
and v’ of G, the set of edges of H(G, L) joining {(v,c) | ¢ € L(v)} and
{(v',d) | ¢ € L(v')} is empty if vv' ¢ E(G) and forms a matching (possibly
empty) if vv' € E(G). Based on these properties of H(G, L), Dvorak and
Postle introduced the notion of DP-coloring. We follow the slightly modified

version used by Bernshteyn et al. [5].

Definition 1.2.6. Let G be a graph. A cover of G is a pair (L, H), where L
is a list for G’ and H is a graph with vertex set {J,cy ) {(v,c) | v € V(G),c €
L(v)}, satisfying the following conditions.
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1. For each v € V(G), H[{v} x L(v)] is a complete graph.

2. For each uwv € E(G), the edges between {u} x L(u) and {v} x L(v)
form a matching (possibly empty).

3. For each distinct u,v € V(G) with uv ¢ E(G), no edges of H connect
{u} x L(u) and {v} x L(v).

We note that the auxiliary graph for the graph G and the list L in Defi-
nition [1.2.6] is a special type of H.

Definition 1.2.7. Suppose G is a graph and (L, H) is a cover of G. An
(L, H)-coloring of G is an independent set I C V(H) of size |V (G)|. In this
context, we refer to the vertices of H as the colors. A graph G is said to be
(L, H)-colorable if it admits an (L, H)-coloring.

Definition 1.2.8. The DP-chromatic number, denoted by xpp(G), is the
minimum k such that G is (L, H)-colorable for each choice of (L, H) with
|L(v)| >k for all v € V(G).

It is well-known that, for a graph G,

X(G) < xi(G) < xpp(G) (1.2.2)

where x;(G) and x pp(G) are the list-chromatic number and the DP-chromatic
number of G, respectively.

For a given graph, we may obtain a chordal completion by adding edges.
Many different chordal completions exist for a given graph in general. Most
of the related graph problems that arise from practical applications seek to
minimize various graph parameters of a chordal completion. For example,
the minimum triangulation problem, also referred to as the minimum fill-
in problem, asks to find a chordal completion with the smallest number of
edges, and it has applications in sparse matrix computations [53], database

management [58], [3], knowledge based systems [33], and computer vision [9].
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The treewidth problem asks to find a chordal completion where the size of
the largest clique is minimized, and many NP-complete problems are solvable
in polynomial time when they are restricted to graphs of bounded treewidth
[6] and [52]. Unfortunately, the minimum triangulation and the treewidth
problems are NP-hard [2] and [63].

For a positive integer k, a graph G is k-degenerate if any subgraph of G
contains a vertex having at most k neighbors in it. Dvofdk and Postle [16]
observed that if a graph G is k-degenerate, then xpp(G) < k + 1. It is easy
to check that every chordal graph G is (w(G) — 1)-degenerate and so

w(G) < x(G) < xi(G) < xpp(G) Sw(G).

Therefore,
(§) for a chordal graph G, x(G) = xi(G) = xpp(G) = w(G).

The observation (§) directed our attention to the idea that, for a chordal
completion G* of a graph G, the chromatic number of GG is bounded above
by the clique number of G*.

By (1.2.2), an upper bound of xpp(G) (resp. x;(G)) is an upper bound
of xi(G) (resp. x(G)). In this vein, it is interesting to check whether or not
\or(G) < K (resp. xa(G) < k) when xi(G) < k (resp. X(G) < k) for a
positive integer k.

In the Chapter 3, we introduce the notion of non-chordality index i(G)
of a graph G and present a minimal chordal completion G* of a graph G
satisfying the inequality w(G*) — w(G) < i(G). Using the above chordal
completion as a tool, we prove that the family of graphs with non-chordality
indices at most one satisfies the Hadwiger conjecture and the Erdés-Faber-
Lovasz Conjecture, and the family of graphs with bounded non-chordality

indices is a linearly y-bounded class.
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Chapter 2
Phylogeny graphs

In this chapter, we first study the digraphs whose phylogeny graphs are
chordal. Then we study phylogeny numbers of graphs in the aspect of the

number of triangles and diamonds.

2.1 Chordal phylogeny graphs

Lee et al. [34] studied the phylogeny graphs of (2,2) digraphs and gave suffi-
cient conditions and necessary conditions for (2,2) digraphs having chordal
phylogeny graphs.

In this section, we extend their work. First we completely characterize

the phylogeny graphs of (1,7) digraphs and those of (i,1) digraphs (Theo-

rem [2.1.1) and [2.1.8)). Then we study the phylogeny graphs of (2, j) digraphs.

We show that the phylogeny graph of any (2,j) digraph whose underly-
ing graph is chordal is chordal (Theorem [2.1.16)). Finally, we show that the
phylogeny graph of any (2,2) digraph whose underlying graph is chordal is

chordal and planar (Theorem [2.1.27)).
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2.1.1 (1,j) phylogeny graphs and (i, 1) phylogeny graphs

In this section, we characterize the (1,7) phylogeny graphs and the (i, 1)
phylogeny graphs.

A component of a digraph D is the subdigraph of D induced by the vertex
of a component of its underlying graph. Given an acyclic digraph D, it is easy
to check that D’ is a component of D if and only if P(D’) is a component of
P(D). Thus,

(%) it is sufficient to consider only weakly connected digraphs (whose under-

lying graphs are connected) in studying phylogeny graphs of digraphs.

First we take care of (1, ;) phylogeny graphs.

A vertex of degree one is called a pendant vertex.

Given a graph GG and a vertex v of GG, we denote the set of neighbors of v
in G by Ng(v). We call Ng(v) U {v} the closed neighborhood of v and denote
it by Nglv]. We call A(G) := max{|Ng(v)| | v € V(G)} the mazimum degree
of G.

Theorem 2.1.1. For a positive integer j, a graph is a (1, j) phylogeny graph

if and only if it is a forest with the maximum degree at most j + 1.

Proof. By (%), it suffices to show that, for a positive integer j, a connected
graph is a (1, j) phylogeny graph if and only if it is a tree with the maximum
degree at most j + 1. To show the “only if” part, suppose that a connected
graph G is a (1, j) phylogeny graph for some positive integer j. Then there is
a (1, 7) digraph D such that P(D) is isomorphic to G. Since every vertex of
D has indegree at most one, P(D) = U(D). Since P(D) is connected, U(D)
is connected. Moreover, since D is a (1, 7) digraph, U(D) has the maximum
degree at most j + 1. If U(D) contained a cycle C, then there would exist a
vertex on C' of indegree at least two by the acyclicity of D. Therefore U(D)
does not contain a cycle, and so U(D) is tree.

Now we show the “if” part. If T is a tree with one or two vertices, then

it is obviously a (1, 1) phylogeny graph. We take a tree T with at least three
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vertices and let j = A(T') — 1. Then there exist pendant vertices. We take one
of them and denote it by u. We regard 7" as a rooted tree with the root u and
define an oriented tree ?, which is acyclic, with V(?) = V(T) as follows. We
take an edge xy in T'. Then dr(u, ) = dr(u,y)+1 or dr(u,y) = dr(u, )+ 1.
If the former, (y,z) € A(?) and if the latter, (x,y) € A(?) By definition,
U(T) = T. Moreover, u has indegree zero and outdegree one, and each
vertex in ? except v has indegree one in ? Then, since the degree of each
vertex in 7' is at most j + 1, the outdegree of each vertex in ? is at most j.
Therefore T is a (1, 7) digraph. Since each vertex in T has indegree at most
one, P(T) =U(T) =T. O

If P(D) is triangle-free for an acyclic digraph D, then the indegree of each
vertex is at most one in D, for otherwise, the vertex with indegree at least two
form a triangle with two in-neighbors in P(D). Thus, the following corollary

immediately follows from Theorem [2.1.1]

Corollary 2.1.2. For any positive integers i and j, if an (i,7) phylogeny
graph is triangle-free, then it is a forest with the maximum degree at most
J+1

Given a digraph D with n vertices, a one-to-one correspondence f :
V(D) — [n] is called an acyclic labeling of D if f(u) > f(v) for any arc
(u,v) in D. It is well-known that D is acyclic if and only if there is an acyclic
labeling of D.

Given a digraph D and a vertex v of D, we call N, (v) U{v} the closed
in-neighborhood of v and denote it by Np[v].

Given a graph G, a vertex v of G is called a simplicial verter if Ng|v]
forms a clique in G.

Now we consider phylogeny graphs of (i, 1) digraphs.

Lemma 2.1.3. Let D be a nontrivial weakly connected (i, 1) digraph for some

positive integeri and f be an acyclic labeling of D. Then every mazimal clique
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in P(D) is in the form of the closed in-neighborhood of the vertex with the

least f-value among the vertices in the maximal clique.

Proof. Let X be a maximal clique in P(D) and z be the vertex having the
least f-value among the vertices in X. Suppose X ¢ N[z]. Then there is a
vertex y € X such that (y,x) ¢ A(D). Since x has the least f-value among
the vertices in X, (z,y) ¢ A(D). Yet, since z and y are adjacent in P(D),
they have a common out-neighbor, say z, in D. By the hypothesis that D is
an (7, 1) digraph, z is the only out-neighbor of x and y. Since = has the least
f-value among the vertices in X, z ¢ X. Since N, [z] forms a clique in P(D),
X ¢ Np|z] by the maximality of X. That is, there exists a vertex w in X but
not in N, [z]. Then w # z. Since z is the unique out-neighbor of z and y in
D, (z,w) ¢ A(D) and (y,w) ¢ A(D). Furthermore, since w ¢ N |z], neither
w and x nor w and y have a common out-neighbor in D. However, w, x, and
y belong to X, so (w,z) and (w,y) are arcs in D, which is a contradiction to
the hypothesis that D is a (i,1) digraph. Hence X C N [z]. Since Nj[z] is
a clique in P(D), X = N [z] by the maximality of X. ]

Lemma 2.1.4. Given a nontrivial weakly connected (i,1) digraph D for a
positive integer i, the set of all the mazximal cliques in P(D) is exactly the

set

{Npu] | uwe V(D) and dy(u) > 1}.

Proof. Let f be an acyclic labeling of D. Take a maximal clique Y in P(D).
By Lemma m, Y = Nj[y] for the vertex y having the least f-value among
the vertices in Y. Since D is nontrivial and weakly connected, |Y| > 2 and
so y has an in-neighbor in D, i.e. d(y) > 1.

To prove a containment in the other direction, take a vertex u of indegree
at least one in D. Let v be an in-neighbor of u in D. Suppose, to the contrary,
Np[u] is not maximal. Then there is a maximal clique X properly containing
Np[u]. By Lemma , X = Npz] for the vertex x with the least f-value

among the vertices in X. Since N, [u] is properly contained in N [z], u # .
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In addition, since N [u] is included in N, [z], v is also an in-neighbor of z in
D. Thus the outdegree of v is at least two, which contradicts the fact that
D is an (i, 1) digraph. Therefore N [u] forms a maximal clique in P(D) and
this completes the proof. O]

A diamond is a graph obtained from K, by deleting an edge. A graph is

called diamond-free if it does not contain a diamond as an induced subgraph.

Lemma 2.1.5. The phylogeny graph of a weakly connected (i,1) digraph for

a positive integer 1 is diamond-free and chordal.

Proof. Let D be a weakly connected (i, 1) digraph for a positive integer i.
We prove the lemma statement by induction on [V (D). If [V(D)| = 1 or
2, then the statement is trivially true. Suppose that |V (D)| = n + 1 and
the lemma statement is true for any weakly connected (7, 1) digraph with n
vertices (n > 2). Since D is acyclic, there is a vertex u of indegree zero in
D. Since D is a weakly connected (i,1) digraph, dj;(u) = 1. Thus there is a
unique out-neighbor v of v in D. Then, as u has indegree of zero in D, we
may conclude that, for a vertex w in D, u is adjacent to w in P(D) if and

only if w = v or w is an in-neighbor of v in D, i.e.
Nppy[u] = Np[v]. (2.1.1)

Since the indegree and the outdegree of u are zero and one, respectively,
D —u is weakly connected. Obviously D —w is an (i, 1) digraph. Thus, by the
induction hypothesis, P(D—u) is diamond-free and chordal. Take two vertices
x and y in V(D) \ {u}. Since u has indegree zero, u cannot be a common
out-neighbor of = and y. Therefore, z and y are adjacent in P(D) — u if and
only if (z,y) € A(D) or (y,z) € A(D) or they have a common out-neighbor
other than w in D if and only if z and y are adjacent in P(D — u). Thus we
have shown that P(D) — u = P(D — u). By ([2.1.1)), u is simplicial in P(D),
so P(D) is chordal. Now it remains to show that P(D) is diamond-free.
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Suppose that P(D) has a diamond. Then, since P(D)—u is diamond-free,
every diamond of P(D) contains u and a vertex which is not adjacent to u in
P(D). Let z be a vertex on a diamond which is not adjacent to u in P(D).
Then z is not contained in N,[v] \ {u} and is adjacent to two vertices y;
and y» in Np[v] \ {u} by [2.11)). Since P(D) — u = P(D — u), z is adjacent
to y; and yo in P(D — u). Moreover, u is not a pendant vertex, so v has an
in-neighbor distinct from w in D. Then v has indegree at least one in D — u,
so Np_,[v] is a maximal clique in P(D — u) by Lemma . Obviously
Np_. vl = Np[v] \ {u}, so Ny[v] \ {u} is a maximal clique in P(D — u).
Then, since z belongs to P(D —u) and is not contained in N [v]\ {u}, there
exist a vertex w in Np,_ [v] which is not adjacent to z in P(D — u). Then
the subgraph induced by z, w, 31, and ys is a diamond in P(D — u) and we

have reached a contradiction. O

Lemma 2.1.6. Let D be an (i,1) digraph for a positive integer i and f be
an acyclic labeling of D. Suppose that non-disjoint vertex sets X andY form
distinct mazimal cliques in P(D), respectively. Then X and Y have exactly

one common vertex, namely v, and
f() =min{f(w) | w € X} or min{f(w) |we Y}

whereas

f(v) > min{f(w) | we XUY}.

Proof. By (%), we may assume that U(D) is connected. By Lemma [2.1.5]
P(D) is diamond-free, so | X NY| < 1. Then, by the hypothesis that X and
Y are non-disjoint vertex sets, | X NY| = 1. Let v be the vertex common to X
and Y. Since X and Y form maximal cliques, X = Nj[z] and Y = N [y] for
the vertices x and y with the smallest f-values among the vertices in X and
the vertices in Y, respectively, by Lemma [2.1.3] Since X and Y are distinct,
x#y. If v ¢ {x,y}, then z and y are two distinct out-neighbors of v, which

is impossible. Thus v € {x,y}. Without loss of generality, we may assume
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v = x. Since x and y have the the smallest f-values among the vertices in X
and the vertices in Y, respectively, v has the least f-value among the vertices

in X but not among the vertices in Y, and the lemma statement is true. [J

We shall completely characterize the (i, 1) phylogeny graphs in terms of
“clique graph” which was introduced by Hamelink [25].

Definition 2.1.7. The clique graph of a graph G, denoted by K(G), is a
simple graph such that

e every vertex of K(G) represents a maximal clique of G;

e two vertices of K(G) are adjacent when they share at least one vertex

in common in G.

Theorem 2.1.8. For some positive integer i, a graph G is an (i, 1) phylogeny
graph if and only if it is a diamond-free chordal graph with w(G) <i+1 and

its clique graph is a forest.

Proof. By (%), it is sufficient to show that a connected graph G is an (i, 1)
phylogeny graph for some positive integer ¢ if and only if it is a diamond-free
chordal graph with w(G) < i+ 1 and its clique graph is a tree. To show the
“only if” part, suppose that a connected graph G is an (i, 1) phylogeny graph
for some positive integer i. Then G = P(D) for some weakly connected (i, 1)
digraph D. By Lemma [2.1.3) w(G) < ¢ + 1. In addition, by Lemma [2.1.5]
P(D) is diamond-free and chordal. Now we show that the clique graph K(G)
is a tree. As the clique graph of a connected graph is connected, it is sufficient
to show that K(G) is acyclic. Suppose, to the contrary, that K(G) contains
a cycle C' = X1 X5--- X, X, for an integer » > 3 and maximal cliques X,
..., X, of G. Let f be an acyclic labeling of D. We denote by x; the vertex
which has the least f-value in X; for each i =1, 2, ..., r. By Lemma [2.1.6]
X1 N Xy = {1} or X3 N Xy = {x2}. Without loss of generality, we may
assume that X; N Xy = {x2} so that f(z1) < f(z2). By Lemma again,
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Xy N X3 = {x2} or Xo N X3 = {x3}. Suppose that Xy N X3 = {x2}. Then
f(z3) < f(x2) and 22 € X;NX;. By Lemmal2.1.6] X1NX;5 = {z,}, and either
f(z2) = f(z1) or f(x2) = f(x3), which contradicts the fact that f(z;) <
f(z2) and f(z3) < f(z2). Thus Xy N X3 = {x3}. Continuing in this way,
we may show that X; N X;11 = {x;41} for each i € {1,2,...,r — 1} and
X, N X; = {z}. By Lemma2.1.3] X; = Np[z;] for each i € {1,2,...,7}.
Therefore (21, z,) € A(D) and (z;41,2;) € A(D) foreachi € {1,2,...,r—1}.
Thus ;1 — x, — -+ — x5 — 1z is a directed cycle in D and we reach a
contradiction to the acyclicity of D. Hence K(G) does not contain a cycle
and so the “only if” part is true.

To show the “if” part, suppose that a connected graph G is diamond-free
and chordal with w(G) < i+ 1 and that K(G) is a tree for some positive
integer . If G is a complete graph, then it has at most ¢ + 1 vertices and is
obviously an (i,1) phylogeny graph. Thus we may assume that G is not a
complete graph. Then K (G) is not a trivial tree.

We show by induction on |V(G)| that G is an (i,1) phylogeny graph.
Since G is connected and not complete, |V (G)| > 3. If |V(G)| = 3, then
G is a path of length two and, by Theorem [2.1.1] a (1,1) phylogeny graph.
Assume that a connected non-complete graph is an (i, 1) phylogeny graph if
it is a diamond-free chordal graph with less than n vertices and the cliques
of size at most ¢ + 1 and its clique graph is a tree for n > 4. Suppose that
|V(G)| = n. Since K(G) is not a trivial tree, it contains a pendant vertex.
Let X be a pendant vertex and Y be the neighbor of X in K(G). Then
| X' NY| > 1. Since G is a connected graph with at least four vertices, by the
maximality of X and Y, 2 < |X] and 2 < |[V]. By Lemma[2.1.6, X NY = {u}
for some vertex u. Since |X| > 2, there exists a vertex v in X \ {u}. Since
K (G) does not contain a triangle, X and Y are the only maximal cliques

that contain v in G and so

(t) G — v does not have a maximal clique containing u other than X \ {v}

(not necessarily maximal) and Y.
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Furthermore, since X is a pendant vertex in K(G), every vertex in X \ {u}
is a simplicial vertex in G' and therefore v is a simplicial vertex of GG. Then
the closed neighborhood of v in G is X. Moreover, it is obvious that G — v is
a connected diamond-free chordal graph with w(G —v) <i+1 and K(G —v)
is a tree. Therefore, by the induction hypothesis, G — v is an (i, 1) phylogeny
graph. Thus there is an (i, 1) digraph D* such that P(D*) = G — v. Let f*
be an acyclic labeling of D*.

Case 1. The vertex u has the least f*-value in Y. Then, by Lemma [2.1.3]
Y = Np.[u]. Consider the case in which u has no out-neighbor in D*. Then,
by Lemma [2.1.6] X \ {v} = {u}. Adding the vertex v and the arc (u,v) to
D* results in an (7,1) digraph whose phylogeny graph is G. Now consider
the case in which u has an out-neighbor w in D*. Then f*(w) < f*(u)
and dp.(w) > 1. Since dp.(w) > 1, Np.[w] forms a maximal clique by
Lemma [2.1.4] Since f*(w) < f*(u) and f*(u) is the minimum in Y, Np. [w]
is distinct from Y. Since Np.[w] contains u, Np.[w] = X \ {v} by (}). Since
| X| <i+1, | X \{v} <iandsody(w)<i— 1. Adding the vertex v and
the arc (v, w) to D* results in an (¢, 1) digraph whose phylogeny graph is G.

Case 2. The vertex u does not have the least f*-value in Y. Then u has
the least f*-value in X \ {v} by Lemma [2.1.6] Thus, if u has no in-neighbor
in D*, then X \ {v} = {u}, and so adding the vertex v and the arc (v, u)
to D* results in an (7, 1) digraph whose phylogeny graph is G. Now consider
the case in which u has an in-neighbor w in D*. Then dp.(u) > 1, so Np.[u]
forms a maximal clique by Lemma By Lemma [2.1.3] u has the least
f*-value in N, [u]. Since u does not have the least f*-value in Y, Np.[u] is
distinct from Y. Since Np.[u] contains u, Np.[u] = X \ {v} by (f). Since
| X| <i+1, |X\{v}| <iandsodp.(u) <i—1. Adding the vertex v and the
arc (v,u) to D* results in an (¢, 1) digraph whose phylogeny graph is G. [

The wunion of two graphs G and H is the graph having its vertex set
V(G)UV(H) and edge set E(G)U E(H). If V(G)NV(H) = ), we refer to

their union as a disjoint union.
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Proposition 2.1.9. For a graph G, the following statements are equivalent.

(i) G is a (1,7) phylogeny graph and an (i,1) phylogeny graph for some

positive integers © and j;
(i) G is a disjoint union of paths;

(i1i) G is a (1,1) phylogeny graph.

Proof. By Theorems[2.1.1]and [2.1.8] it is immediately true that (ii) is equiv-

alent (iii). Obviously, (iii) implies (i). Now we show that (i) implies (ii). By
Theorem [2.1.1, G is a forest. If G has a vertex of degree at least three, then
K(G) contains a triangle as each edge in G is a maximal clique, which con-
tradicts Theorem [2.1.8] Therefore each vertex in G' has degree at most two

and so G is a disjoint union of paths. m

Remark 2.1.10. Theorems [2.1.1{ and [2.1.8 tell us that an (4, 7) phylogeny
graph for positive integers ¢ and j with ¢ = 1 or j = 1 is diamond-free and
chordal.

2.1.2 (2,j) phylogeny graphs

In this section, we focus on phylogeny graphs of (2, j) digraphs for a positive
integer j. We thought that it is worth studying them in the context that a
child has two biological parents in most species.

For an acyclic digraph D, an edge is called a cared edge in P(D) if the
edge belongs to the competition graph C'(D) but not to the U(D). For a
cared edge zy € P(D), there is a common out-neighbor v of x and y and it is
said that xy is taken care of by v or that v takes care of xy. A vertex in D is
called a caring vertex if an edge of P(D) is taken care of by the vertex [34].

For example, the edges vous, voug, vov7, V405, and vsvg of P(D) in Fig-
ure [1.3| are cared edges and the vertices vy, vy, v4, v3, and v; are vertices

taking care of vous, v9vg, VoV7, V45, and vsvg, respectively.
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Proposition 2.1.11. Suppose that the phylogeny graph of a (2,7) digraph D
contains a hole H for a positive integer j. Then no vertex on H takes care

of an edge on H.

Proof. Suppose, to the contrary, that there exists a vertex v on H which
takes care of an edge zy on H. Then {z,y,v} forms a triangle in P(D), so

yv or vz is a chord of H in P(D) and we reach a contradiction. ]

Given a (2, j) digraph D, suppose that P(D) has ahole H and ey, ea, ..., ¢

are the cared edges on H. Let wy,ws,...,w; be vertices taking care of
€1, 69, ...,6, respectively. Since the indegree of w; is at most two in D for
i=1,...,t, wy,wy, ..., w are distinct. We let W = {wy, ws, ..., w;} and call

W a set extending H by extending the notion introduced in Lee et al. [34].

By Proposition [2.1.11],
W cCcV(D)\V(H). (2.1.2)

Therefore we may obtain a cycle in U(D) from H by replacing each edge e;
with a path of length two from one end of e; to the other end of e; with the
interior vertex w;. We call such a cycle the cycle obtained from H by W. Let
L be the subgraph of U(D) induced by V(H) U W. We call L the subgraph
of U(D) obtained from H by W. These notions extend the ones introduced
in Lee et al. [34].

Lee et al. [34] showed that, for a (2,2) digraph D such that the holes of
P(D) are mutually vertex-disjoint and no hole in U(D) has length 4 or 6,
the number of holes in U(D) is greater than or equal to the number of holes
in P(D).

Theorem 2.1.12 ([34]). Let H be a hole of the phylogeny graph P(D) of a
(2,2) digraph D. Then there is a hole ¢(H) in the underlying graph U(D) of
D such that

o ¢(H) equals H if H is a hole in U(D);

e ¢(H) is a hole in U(D) only containing vertices in the subgraph obtained

from H by a set extending H otherwise.
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Moreover, if the holes of P(D) are mutually vertex-disjoint and no hole in
U(D) has length 4 or 6, then there exists an injective map from the set of
holes in P(D) to the set of holes in U(D).

We shall devote the first part of this section to extending the above the-
orem given in [34]. To do so, we need the following lemmas.
Lemma 2.1.13. Given a graph G and a cycle C of G with length at least
four, suppose that a section (Q of C' forms an induced path of G and contains
a path P with length at least two none of whose internal vertices is incident
to a chord of C' in G. Then P can be extended to a hole H in G so that
V(P)C V(H)CV(C) and H contains a vertex on C' not on Q.

Proof. Let v; and v; be the origin and the terminal of P. Since P is an
induced path of length at least two, v; and v; are nonadjacent. Now we take
a shortest (vj, v;)-path P’ with some vertices on the (v;, v;)-section of C' other
than P. Since v; and v; are nonadjacent, P’ has length at least two. Therefore
PP’ is a cycle of length at least four. By the hypothesis, none of the internal
vertices of P is incident to a chord of C. In addition, P and P’ are induced
paths, so H := PP’ is actually a hole in G. Note that V(H) C V(C). If every
vertex on H were on ), then Q would have a chord as V(H) C V(Q), which

is impossible. Therefore H contains a vertex on C' not on Q. n

Lemma 2.1.14. Let D be a (2,j) digraph and f be an acyclic labeling of
D for a positive integer j. In addition, let H be a hole of P(D), W be a set
extending H, and w be a vertexr with the least f-value in V(H)UW. Then
w € W. Moreover, there is a hole p(H) in U(D) such that w € V(¢(H)) and
V(p(H)) CV(H)UW.

Proof. Let H = ujus - - - wyuy for an integer [ > 4. To reach a contradiction,
we suppose that w € V/(H). Without loss of generality, we may assume that
w = uy. Suppose that ujuy and uju,; are edges of U(D). Then, since u; has the
least f-valuein V(H), (uz,u1) € A(D) and (u,u;) € A(D) and so {uy, ug, u; }

forms a triangle in P(D), which is a contradiction to the supposition that H is
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a hole in P(D). Therefore ujus or uju; is a cared edge in P(D). Without loss
of generality, we may assume wujus is a cared edge in P(D). Then u; and us
have a common out-neighbor, say v, in W, which implies that f(v) < f(uy).
Thus we have reached a contradiction and so w € W.

Now we show that the “moreover” part of the lemma statement is true.
Let C be the cycle in U(D) obtained from H by W. Without loss of generality,
we may assume that wju; is taken care of by w. Then (u;,w) € A(D) and
(u, w) € A(D).

Suppose, to the contrary, that C' has a chord which is incident to w in
U(D). Let zw be a chord of C'in U(D). Then x ¢ {uy,u;}. Moreover, since
w has the least f-value in V(H)UW, (w,z) ¢ A(D). Then uy, u;, and z are
in-neighbors of w in D, which contradicts the hypothesis that D is a (2, j)
digraph. Hence there is no chord of C' which is incident to w in U(D). Since
uyuy is a cared edge in P(D), uywu is an induced path in U (D). By applying
Lemma for P = Q = wywu;, we may conclude that “moreover” part

of the lemma statement is true. O

Now we are ready to extend Theorem [2.1.12| to not only make it valid for
(2, 7) digraphs but also strengthen it.

Theorem 2.1.15. For a positive integer j, let H be a hole of the phylogeny
graph P(D) of a (2,7) digraph D. Then there is a hole in U(D) which only
contains vertices in the subgraph of U(D) obtained from H by a set extending
H. Moreover, if P(D) has a hole and the holes of P(D) are mutually edge-
disjoint, then there exists an injective map from the set of holes in P(D) to
the set of holes in U(D).

Proof. The first part of this theorem is immediately true by Lemma [2.1.14]
To show the second part of the theorem statement, we assume that P(D)

has a hole and the holes in P(D) are mutually edge-disjoint. Let f be an
acyclic labeling of D, {H;, ..., H;} be the set of holes in P(D), and W; be a
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set extending H; for each i = 1,...,[. Let w; be the vertex with the least f-
value in V (H;)UW; foreachi = 1,... . Then, by Lemma w; € W; and
there exists a hole ¢(H;) such that w; € V(¢(H;)) and V (¢(H;)) C V(H;)UW;
for each ¢ = 1,...,[. At this point, we may regard ¢ as a map from the set
of the holes in P(D) to the set of holes in U(D).

In the following, we show that ¢ is injective. Suppose, to the contrary,
that ¢(H;) = ¢(Hy,) for some j and k satisfying 1 < j < k < [. Since wj is
the vertex with the least f-value in V(H;)UW; and V(¢(H;)) C V(H;) UW,,
w; has the least f-value in V(¢(H;)) for each ¢ € {j, k}. Then, since ¢(H;) =
¢(Hy), w; = wi and so w; € W; N W,,. Thus w; has two in-neighbors on
H; and two in-neighbors on Hj, in D. Then, by the hypothesis that H; and
Hj, are edge-disjoint, w; has at least three distinct in-neighbors in D, which
violates the indegree restriction on D. Hence ¢(H;) # ¢(Hy) for any j and
k satisfying 1 < j < k <[ and we have shown that ¢ is injective. O

The underlying graph of an (i, j) digraph D being chordal does not guar-
antee that the phylogeny graph of D is chordal. For example, the underlying
graph of the (3,2) digraph given in Figure is chordal whereas its phy-

logeny graph has a hole vovsvsvgve. However, if ¢+ < 2 or j = 1, then it does

guarantee by the above theorem together with Theorems [2.1.1]and [2.1.8] As

a matter of fact, we have shown the following theorem.

Theorem 2.1.16. Let D;; be the set of (i,7) digraphs whose underlying
graphs are chordal for positive integers i and j. Then the phylogeny graph of
D is chordal for any D € D}, if and only if i <2 or j = 1.

By Theorem [2.1.16} the phylogeny graph of a (2, j) digraph D is chordal
if the underlying graph of D is chordal for any positive integer j. By the way,
if j = 2, then the underlying graph being chordal guarantees not only P(D)
being chordal but also P(D) being planar, which will be to be shown later in
this section. By the way, Lee et al. [34] showed that a (2,2) phylogeny graph

is Kx-free.
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Theorem 2.1.17 ([34]). For any (2,2) digraph D, the phylogeny graph of
D s K5-free.

We shall extend this theorem in two aspects. On one hand, we find a
sharp upper bound for the clique number of (2, 7) phylogeny graph for any
positive integer j. On the other hand, we show that the phylogeny graph
P(D) of a (2,2) digraph D is planar if the underlying graph of D is chordal
by showing that P(D) is Kjs-minor-free and K3 3-minor-free.

Lemma 2.1.18. For a positive integer j, every (2,7) phylogeny graph is
(7 + 2)-degenerate.

Proof. Let D be a (2,7) digraph for a positive integer j and f be an acyclic
labeling of D. We take a subgraph H of P(D) and the vertex u which has
the least f-value in V(H). Then the out-neighbors of w in D cannot be in
V(H). Thus an edge incident to u in H is either a cared edge or the edge in
U(D) corresponding to an arc incoming toward w in D. Since u has at most
j out-neighbors and each of the out-neighbors has at most one in-neighbor
other than w in D, there are at most j cared edges which are incident to u in
H. Moreover, since u has at most two in-neighbors in D, there are at most
two edges incident to u in H which correspond to arcs incoming toward u in
D. Thus u has degree at most 7 + 2 in H. Since H was arbitrarily chosen,
P(D) is (j + 2)-degenerate. O

The following theorem gives a sharp upper bound for the clique number

of (2,7) phylogeny graph for any positive integer j to extend the Theo-
rem 2117

Theorem 2.1.19. Let D be a (2,7) digraph for a positive integer j. Then

W(P(D)) < J+2 ifj <2

J+3 otherwise;

and the inequalities are tight.
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U2 U2 U3

V4 V4 Vs
Figure 2.1: A (2,1) digraph and (2, 2) digraph whose phylogeny graphs con-
tain K3 and K, respectively.

Proof. 1t is known that if a graph G is k-degenerate, then w(G) < k + 1.
Thus, by Lemma 2.1.18] w(P(D)) < j + 3. By Theorems [2.1.§ and [2.1.17]
w(P(D)) <j+2ifj <2

The inequality is tight for 7 < 2 by the digraphs given in Figure [2.1]

To show that the inequality is tight for j > 3, we construct a (2, j) digraph
in the following way. We start with an empty digraph Dy with vertex set
{v1,...vj13}. We add to Dy the vertices a; 9, . .., a1 41 and the arcs (v, ay,),
(viya1,) fori =2, ..., 741 and arcs (vj42,v1), (vj+3,v1) to obtain a digraph
Dy. Then Dy is a (2, j)-digraph with every vertex except v; having outdegree

at most one and
E, = {Uj+27jj+3} U {Ulvi | 1= 27 <o 7j + 3}

is an edge set of P(D;). We add to D; the vertices ag s, . .., a2 -1, a2, j+1, A2 j+2
and the arcs (vq, as;), (vs, ag;) for each i € [j+2]\ {1,2, 7} and arcs (v;, v2),
(vj43,v2) to obtain a digraph D,. Then D, is a (2, j)-digraph with every

vertex except v; and vy having outdegree at most two and
EQ = E1 U {UjUj+3} U {UQUZ‘ | 1= 3, e ,j + 3}

is an edge set of P(Ds).
For each ¢ € [j — 1]\ {1,2}, we add to D,_; the vertices ages1, ..., 0 +1

and the arcs (vg, ar;), (vi,ar;) for i = €+ 1, ..., 7+ 1 and arcs (vji2,v0),
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(vj13,ve) to obtain a digraph D,. Then, for each ¢ € [j — 1]\ {1,2} is a
(2, 7)-digraph with every vertex except vy, ..., and v; having outdegree at
most ¢ and

Ey:=E 1 U{vw; |i=0+1,...,7+3}

is an edge set of P(Dy). Therefore v; is adjacent to each of vy, ..., vj4+3 except
itself fori =1, ..., j—1. Now we add to D;_; the arcs (vj13,vj+1), (Vj12,v;),
and (v;4+1,v;) to obtain a (2, j) digraph D;. Clearly, v, ..., vj13 are mutually
adjacent in P(D;) (recall that the edges vjiov;4+3 and v;v,43 are contained
in Fy and Es, respectively). Thus vy, ..., vj13 form a clique of size j + 3 in
P(D,). O

From Theorems2.1.1]and [2.1.8] we know that the clique number of a (1, j)

phylogeny graph is at most two and the clique number of an (i, 1) phylogeny
graph is at most ¢ 4+ 1 for any positive integers ¢ and j.

In the rest of this section, we shall show that the phylogeny graph P(D)
of a (2,2) digraph D is planar if the underlying graph of D is chordal.

The following lemma is a known fact.
Lemma 2.1.20. The class of chordal graphs is closed under contraction.

We denote by G - e the graph obtained by contracting a graph G by an
edge e in G.

Lemma 2.1.21. For a graph G and two adjacent vertices u and v in G, let
K be a clique with at least three vertices in G - uv. If z is the vertexr in K

obtained by identifying u and v, then one of the following is true:
o K\ {z} C Ng(u);
o K\ {z} C Ng(v);

e the subgraph of G induced by (K \ {z}) U {u,v} contains a hole in G.
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Proof. Suppose that K \ {z} ¢ Ng(u) and K \ {z} ¢ Ng(v). Then there is
a vertex w and x in K \ {z} such that w is not adjacent to u and x is not
adjacent to v. Since K is a clique in G - uv, w and z are adjacent to v and u,

respectively, in G, and so uxwvu is a hole in G. n
Lemma 2.1.22. A chordal graph G is K. g)4+1-minor-free.

Proof. Denote w(G) by w for simplicity’s sake. Suppose, to the contrary, that
G contains K, as a minor. Then, since K is complete, G contains an
induced subgraph H such that K is obtained from H by only contraction.
Moreover, we may regard H as an induced subgraph of G for which the
smallest number of contractions are required to obtain K. Then, since G
is chordal, H is also chordal. Clearly H is K i-free, so at least one edge
of H is contracted to obtain K, ;. Let uv be the last edge contracted to
obtain K, from H. Let L be the second last graph obtained in the series
of contractions to obtain K, ,; from H, that is, L - uv = K, 1. Then, by
Lemma [2.1.21] V(L) \ {u,v} C Np(u) or V(L) \{u,v} C Np(v) or L contains
a hole. If V(L) \ {u,v} C Np(u) or V(L) \ {u,v} C Np(v), then L — v
or L — wu is isomorphic to K1, which contradicts the choice of H. Thus
V(L) \{u,v} ¢ Np(u) and V(L) \{u,v} ¢ Np(v), and so L contains a hole.
However, since H is chordal, by Lemma [2.1.20 L is chordal and we reach a

contradiction. ]

Theorem 2.1.23. For a positive integer j and a (2, 7) digraph, if its under-
lying graph is chordal, then its phylogeny graph is K;is-minor-free if j < 2

and Kji4-minor-free if j > 3.

Proof. Let D be a (2,7) digraph for a positive integer j whose underlying
graph is chordal. Then, by Theorem [2.1.16, P(D) is chordal. Moreover,

jg+2, ifj <2
w(P(D)) , .
Jj+ 3, otherwise.
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Figure 2.2: A (2, 2) digraph D whose phylogeny graph contains K5 as a minor.

by Theorem [2.1.19 Thus P(D) is Kj s-free (resp. Kj4-free) if j <2 (resp.
j > 3). By Lemma [2.1.22) P(D) is K s-minor-free (resp. K;4-minor-free)
if j <2 (resp. j > 3). O

The above theorem is false for a (2, j) digraph whose underlying graph is
non-chordal (see Figure [2.2).

Corollary 2.1.24. If the underlying graph of a (2,2) digraph is chordal, then
its phylogeny graph is Ks-minor-free.

In the following, we show that the phylogeny graph of (2, 2) digraph whose
underlying graph is chordal is K3 3-minor-free.

The join of two graphs G and G5 is denoted by G V GG and has the
vertex set V(G1) U V(Gq) and the edge set E(Gy) U E(Gy) U {zy | = €
G and y € Gy}. Let I, denote a set of n isolated vertices in a graph for a

positive integer n.

Lemma 2.1.25. For any (2,2) digraphs, if its underlying graph is chordal,
then its phylogeny graph is K3V Iz-minor-free.
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Proof. Let G be the phylogeny graph of a (2,2) digraph D whose underlying
graph is chordal. Then, by Theorem and Corollary [2.1.24] G is chordal
and Ks-minor-free.

Suppose, to the contrary, that K3V I3 is a minor of G. Then G contains
a subgraph H such that either H = K3V I3 or K3V I3 is obtained from H
by using edge deletions or contractions. Let f be an acyclic labeling of D.

Suppose that H = K3V I3. If H is not an induced subgraph of G, then
two vertices of I3 are adjacent in GG, and so Kj is a subgraph of G, which is
impossible. Thus H is an induced subgraph of G. We denote the vertices of
K3 in H by x1, 29, x5 and the vertices of I3 in H by y1, y2, y3. We may assume
that f(z1) < f(z2) < f(x3) and f(y1) < f(y2) < f(y3).

If f(x1) < f(y1), then the outdegree of z; in the subdigraph Dy of D
induced by V' (H) is zero, which implies dy(z1) < 4 (recall that D is a (2, 2)
digraph), a contradiction. Thus

fly) < flon) < f(w2) < fzz) and  f(n) < fy2) < f(y3).  (2.1.3)

If 23 has two in-neighbors in Dy, then they must be ys and y3, which implies
their being adjacent in G, a contradiction. Therefore x3 has at most one in-
neighbor in Dy. Since D is a (2,2) digraph and dy(z3) = 5, z3 has exactly
one in-neighbor and two out-neighbors in Dy, and two cared edges in H are
incident to x3. The in-neighbor of x3 in Dy is ys or y3 by .

Let y be the in-neighbor of x3 in Dy. Then y € {y2,y3} and f(y) > f(x3).
Thus, by , none of x1, x5, and y; is an in-neighbor of y in Dy. Since
D is a (2,2) digraph, y has at most one out-neighbor other than z3 in Dy.
Then, since dy(y) = 3, by , one of xoy and x1y is a cared edge in G
taken care of by x; or z5. Since f(x1) < f(x2), 22y is a cared edge in G taken
care of by x;.

Let v be a vertex joined to x3 by a cared edge in H. Then x5 and v have
a common out-neighbor in D. Since x3 has all of its two out-neighbors in

Dy, the common out-neighbors of x3 and v should be in H. Since there are
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two cared edges incident to x3 in H, the two out-neighbors of x5 take care of
those two cared edges incident to z3. Since y; has the least f-value among
the vertices in H, y; cannot be none of the other ends of two cared edges
incident to x3 in G. Hence y; must be one of the two out-neighbors of x5 in
Dy which takes care of a cared edge incident to x3. Since {y1,ys2,ys} is an
independent set in (G, neither y, nor y3 can be an in-neighbor of y; in Dy.
Thus z; or x5 is the vertex joined to x3 which is taken care of by y; in Dy.

If 2 is an in-neighbor of y; in Dy, then x1y;x3yx; is a hole in U(D) since
{y,y1} C I3 and x x5 is a cared edge in G which is not an edge in U(D).
Thus x5 is an in-neighbor of y; in Dy. In the following, we shall claim that
Ty w3y, is a hole in U(D) to reach a contradiction. Since {y,y1} C I3,
y and y; are not adjacent in U(D). Since xoxg is a cared edge in G, xo and
xg are not adjacent in U(D). If zyx3 is an edge of U(D), then there is an
arc (3, x1) since f(z1) < f(x3), which contradicts the indegree condition
on z1. Therefore z; and 3 are not adjacent in U(D). By applying a similar
argument, we may show that neither x; and y; nor y and z, are adjacent in
U(D).

Thus H # K3V I3 and so K3 V I3 is obtained from H by using edge
deletions or contractions. Then, K3V I3 may be obtained from the subgraph
of G induced by V(H) by using edge deletions or contractions, so we may
assume that H as an induced subgraph of GG. Then H is chordal. If an edge
deletion was required to obtain K3 V I3 from H, then it would mean that
G contains K5 as a minor, which is impossible. Thus, we may assume that
K3V I3 is obtained from H by only contractions.

Let H* be a graph obtained from H by applying the smallest number
of contractions to contain K3V I3 as a subgraph. Since H is chordal, H* is
chordal by Lemma [2.1.20

Let x1,x9, x3 be the vertices of K3 and vy, ys,y3 be the vertices of I35 for
K3V I3 contained in H*. Let H' be the graph to which the last contraction

is applied in the process of obtaining H* and e = uv be the edge contracted
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lastly. Then H’ is chordal by Lemma [2.1.20, By the choice of H*, u and v
are identified to become a vertex in {x1, T2, T3, Y1, Yo, Y3 }-

Case 1. The vertices u and v are identified to become one of yi, ¥,
y3. Without loss of generality, we may assume that u and v are identi-
fied to become the vertex ys;. By Lemma {z1,29,23} C Npg/(u) or
{1, 29,23} C Npg/(v) or {x1, 22, x3,u,v} contains a hole in H'. Since H' is
chordal, {z1,z9, 23} C Ng/(u) or {z1, 29,23} C Ny/(v). Then

{xlax%x&yl:y?au} or {xlvx%x&yl;y%v}

forms K3V I3 in H', which contradicts the choice of H*.

Case 2. The vertices u and v are identified to become one of 1, z9, x3.
Then each of y;, yo, ys3 is adjacent to one of u, v in H'. Without loss of
generality, we may assume that u and v are identified to become the vertex
z3. By Lemma[2.1.21] {z1, 22} C Ny (u) or {z1, 22} C Ny (v) or {z1, 22, u, v}
contains a hole in H'. Since H' is chordal, {z1, 25} C Ng/(u) or {zy, 29} C
Ny (v). Without loss of generality, we may assume that {x;, 22} C Ny (u).
If w is adjacent to each of y1, Yo, ys, then {z1, xo, u, y1,y2, y3} forms K3V I3
in H', a contradiction to the choice of H*. Thus u is not adjacent to one
of y1, y2, y3 in H'. Without loss of generality, we may assume that u is not
adjacent to y3 in H'. Then v is adjacent to y3 in H'. If v is not adjacent to
one of x1 and xo, then xysvur; or xaysvuxs is a hole in H' and we reach a
contradiction. Thus v is adjacent to x; and x5. If one of ¥, yo is adjacent
to both of u and v, then xq, x9, u, and v together with it form K5 in H’,
a contradiction. Therefore {Ng (u) N {y1,vy2,ys}, Nu(v) N {y1,v2,y3}} is a
partition of {y1,ys, ys}. Thus [Ny (uw) N {y1, y2, ys}| + [Nu(v) N {y1, y2, ys}| =
3. Without loss of generality, we may assume that | Ny (u) N{y1, v, y3}| = 1.
Then {x1, 2, v, y1,y2,ys, u} \ (N (w) N {y1, y2,ys3}) forms K3V I3 in H' and

we reach a contradiction. O

Theorem 2.1.26. For any (2,2) digraph D, if the underlying graph of D is
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chordal, then the phylogeny graph of D is Kjs-minor-free.

Proof. Suppose, to the contrary, that K33 is a minor of P(D). Then K33 is
obtained from P(D) by edge deletions or vertex deletions or contractions.
Let (X,Y) be a bipartition of K33. Among the edge deletions, the vertex
deletions, and the contractions to obtain K33 from P(D), we only take all
the vertex deletions and all the contractions and apply them in the same order
as the order in which vertex deletions and contractions applied to obtain K3 3
from P(D). Let H* be a graph obtained from P(D) in this way. Then H*
contains K33 as a spanning subgraph. In addition, since P(D) is chordal,
H* is chordal by Lemma (it is clear that the chordality is preserved
under vertex deletions). If there is a pair of nonadjacent vertices in H* in
each of X and Y, then those four vertices form a hole in H* and we reach a
contradiction. Thus X or Y forms a clique in H* and so H* contains K3V I3
as a spanning subgraph. Then K3V I3 is a minor of P(D), which contradicts
Lemma [2.1.25 Hence P(D) is K3 3-minor-free. O

Theorem 2.1.27. For any (2,2) digraphs, if its underlying graph is chordal,
then its phylogeny graph is chordal and planar.

Proof. Let D be a (2,2) digraph whose underlying graph is chordal. Then,

by Theorem [2.1.16] P(D) is chordal. Furthermore, by Corollary [2.1.24] and
Theorem [2.1.26, P(D) is planar. O

Corollary 2.1.28. A chordal graph one of whose orientations is a (2,2)
digraph is planar.

Proof. Let GG be a chordal graph one of whose orientations, namely D, is a
(2,2) digraph. Then U(D) is G which is chordal. Thus, by Theorem [2.1.27]
P(D) is planar. Since U(D) is a subgraph of P(D), U(D) is planar. O
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2.2 The phylogeny number and the triangles
and the diamonds of a graph

In this section, we deal with acyclic digraphs and their phylogeny graphs in
the aspect of their holes, and phylogeny numbers of graphs.

We extend the given inequalities in Theorems [1.2.1] [1.2.2] [1.2.3] and [1.2.4]
to graphs with many triangles (Theorem . In the process of doing so,
we derive Theorem [2.2.2| which plays a key role in deducing various meaning
results including Theorem that answers a question given by Wu et
al. [62] (Theorem [2.2.13). They showed that the difference between the phy-

logeny number and the competition number of a graph can be any integer

greater than or equal to —1 and asked whether or not the same is true when
limited to only connected graphs. We answer their question.

We begin with the following lemma.

Given a digraph D and two vertex sets U and V of D, we denote by
(U, V]p the set of arcs in D having a tail in U and a head in V.

Lemma 2.2.1. Let D be an acyclic digraph, G be an induced subgraph of
P(D), and H be a subgraph of G satisfying the following:

(i) any mazximal clique of H is also a maximal clique in G;

(i1) any maximal clique of G belonging to H and any maximal clique of G

not belonging to H share at most one vertex.
In addition, we let D* be the digraph with the vertex set
V(D*) =V(H)U (V(D)\V(G))
and the arc set

A(D") = ([ INp ] NV (H), {v}]

veX
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where

X ={veV(H)UV(D)\V(G)) | Npv]NV(H) is a clique of size
at least two in H}.

Then P(D*) contains H as an induced subgraph.

Proof. If H is an empty graph, then the statement is trivially true. Now
suppose that H has an edge. Let C be the set of all maximal cliques of
H. We first show that H is a subgraph of P(D*). By definition, V(H) C
V(D*) = V(P(D*)). Take an edge e := wv in H. Then {u,v} C K for some
K € C. By the condition (i), K is a maximal clique of G. Moreover, one of
the following is true: either (u,v) € A(D) or (v,u) € A(D); (u,w) € A(D)
and (v,w) € A(D) for some w € V(D).

Case 1. Either (u,v) € A(D) or (v,u) € A(D). Without loss of generality,
we may assume (u,v) € A(D). Then |N,[v]NV (H)| > 2. Suppose that there
is no clique in C including N[v] N V(H). Since Ny[v] NV (H) is a clique
of G, there is a maximal clique L of G containing N,[v] NV (H). By the
assumption, L does not belong to H. Then {u,v} C K'NL, which contradicts
the condition (ii) given in the lemma statement. Therefore there is a maximal
clique in C containing N, [v]| N V(H). Thus N,[v] NV (H) is a clique in H
and so v € X. Hence, by the definition of D*, (u,v) € A(D*), which implies
that e is an edge of P(D*).

Case 2. (u,w) € A(D) and (v,w) € A(D) for some w € V(D). Suppose
that w ¢ V(H). Then {u,v,w} be a clique in P(D) while {u,v,w} is not
a clique in H. Thus, by the condition (ii), w does not belong to G. Hence
we V(H)U((V(D)\V(Q)). Since Ny [w]NV(H) forms a clique in G, there
is a maximal clique Y in G including Ny[w]| NV (H), so {u,v} C Y. Since
{u,v} C YNK and K € C, by the hypothesis (ii), Y € C. If w € V(G)\V (H),
{u,v,w} forms a clique in G but not in H, which contradicts to the condition

(ii) since {u,v} C K. Therefore w € V(H) U (V(D)\ V(G)) and so w € X.
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By the definition of D*, (u,w) € A(D*) and (v,w) € A(D*). Therefore e is
an edge of P(D*). Thus we have shown that H is a subgraph of P(D*).

To show that H is an induced subgraph of P(D*), we take two vertices
w and v in H which are adjacent in P(D*). Then either (u,v) € A(D*) or
(v,u) € A(D*), or there is a vertex w € V(D*) such that (u,w) € A(D*)
and (v,w) € A(D*). We first assume that (u,v) € A(D*). Then v € X and
u € Npv] N V(H). By the definition of X, Ny[v] N V(H) is a clique in
H. Since v was taken from H, {u,v} C N,v]NV(H) and so u and v are
adjacent in H. By a similar argument, we may show that if (v, u) € A(D*),
then u and v are adjacent in H. Finally we assume that there is a vertex
w € V(D*) such that (u,w) € A(D*) and (v,w) € A(D*). Then w € X, so
Npw)NV(H) is a clique in H. Since {u,v} C Np[w] NV (H), u and v are
adjacent in H. Hence H is an induced subgraph of P(D*). O

Theorem 2.2.2. Let G be a graph and Gy, Gs, ..., Gi be subgraphs of G
satisfying that

(i) E(G1), E(Gs), ..., E(Gy) are mutually disjoint;

(11) any mazimal clique of G; is also a maximal clique in G for each i =

(111) any maximal clique of G belonging to G; and any mazimal clique of G

not belonging to G; share at most one vertex for each i =1,... k.
Then p(G) > Y, p(Gi).

Proof. By the definition of phylogeny number, there is an acyclic digraph
D such that p(G) = |V(D) \ V(G)| and P(D) contains G as an induced
subgraph. For each ¢« = 1,...,k, let D; be a digraph with the vertex set

V(D) = V(Gy) U (V(D)\ V(G))
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and the arc set

where

X, ={veV(G)UV(D)\V(GQ)) | Ny NV(G;) is a clique of size

at least two in G,}.

Then, by conditions (i) and (ii), we may apply Lemma to conclude that
P(D;) contains G; as an induced subgraph. Since D; is a subdigraph of D
which is acyclic, D; is acyclic for each i = 1, ..., k. Now, from D;, we delete
the vertices in V(D;) \ V(G;) which have at most one in-neighbor in V(G})
and denote the resulting digraph by D; for each ¢« =1, ..., k. Then

[Np: () N V(G)] > 2 (2.2.1)

for each vertex w € V(D) \ V(G;) and each i = 1, ..., k. It is easy to check
that D} is acyclic and P(Dj) contains G; as an induced subgraph. Thus
p(G;) < |V(D:)\V(G;)| for each i =1,... k.

Now we show that V(D7) \ V(G,), ..., V(D;) \ V(Gy) are mutually dis-
joint. Suppose, to the contrary, that there are ¢ and j with 1 < i < j <k
such that (V/(D7) \ V(Gy)) N (V(D;) \ V(G;)) # 0. Then there is a vertex
v € (VD)) \V(G) N (V(D))\ V(G,). By @Z1).

|INp-(2) NV(G;)| > 2 and |Np.(z) NV (Gy)| > 2. (2.2.2)
Since D} and D} are subdigraphs of D and G; and G; are subgraphs of G|,
(NB; (x) NV (G;)) U (NB; (x) NV (Gy)) C Np(x) N V(G). (2.2.3)

Obviously, Np.(xz) N V(G;) and Np.(x) N V(G;) form cliques in G; and Gj,
respectively. Then, since E(G;) and E(G;) are disjoint by the condition,
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Np.(z) N V(Gy) is not a clique of G;. Thus N, (z) N V(G) is a clique in G
Whi]Ch is not contained in G; by . In addition, there exist a maximal
clique K of G; containing N,.(z) N V(G;). By the condition (ii), K is a
maximal clique of G. By ,

(N5 @)WV (G)NK > (N5 () "V ()N (NG (2) 1V (Ge)) = Ny (2) WV (G),
and, by , we reach a contradiction to the condition (iii). Thus V(D7) \
V(Gh), ..., V(D;) \ V(G) are mutually disjoint and so

k k
=1

We note that Ule (V(D;)\V(G;)) = V(D) \ V(G). Hence

Zp(Gi) < [V(D)\V(G)] = p(G).

]

Corollary 2.2.3. Let G be a graph and H be a triangle-free subgraph of G

such that any mazimal clique in H is a mazimal clique in G. Then p(G) >
p(H).

Proof. 1t is obvious that H satisfies the conditions (i) and (ii) in Theo-
rem [2.2.2] Since H is triangle-free, any maximal clique of H consists of a
vertex or two adjacent vertices. Furthermore, since any maximal clique of
H is a maximal clique of GG, any maximal clique of G not belonging to H

shares at most one vertex with a maximal clique of H. Thus p(G) > p(H)

by Theorem [2.2.2] O

It is not easy to give a good lower bound for the phylogeny number
of a graph. Corollary is useful in a sense that there is a formula for
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Figure 2.3: A graph G whose phylogeny number can be computed by Corol-
lary

computing the phylogeny number of a triangle-free graph (see Theorem m
and Lemma . For an example, we take the graph G given in Figure .
Then the induced cycle of length 4 in GG satisfies the condition for being H in
Corollary [2.2.3] Thus p(G) > 1 by Theorem and Corollary The
acyclic digraph D given in Figure is a phylogeny digraph for G satisfying
V(D) \ V(G)| = 1. Hence p(G) < 1 and so p(G) = 1.

Lemma 2.2.4 ([47]). Given a graph G, let G1, Gs, ..., Gy, be the connected
components of G and let D; be an optimal phylogeny digraph for G; for each
1=1,2,...,m. Then D = Dy UDyU---U D, is an optimal phylogeny
digraph for G and p(G) = p(G1) + p(G2) + -+ + p(G).

The inequality given in Theorem may be strict if the number &
of subgraphs satisfying the condition (i), (ii), and (iii) is at least two. By
Theorem p(G) = 2 for a graph G given in Figure 2.4 Yet, p(G1) +
p(Gs) < 2 for any two subgraphs Gy and Gy of G satisfying the conditions
(i), (ii), and (iii) in Theorem m To show it by contradiction, suppose
that p(G1) + p(G2) = 2 for some two subgraphs G; and Gy of G satisfying
the conditions (i), (ii), and (iii) in Theorem [2.2.2] Then one of the following
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G

Figure 2.4: A graph G with p(G) = 2. Yet, p(G1) + p(G2) < 2 for any two
subgraphs G; and Gy of G satisfying the conditions (i), (ii), and (iii) in
Theorem [2.2.21

is true: p(Gy) = 2 and p(G2) = 0; p(Gy) = 1 and p(Gs) = 1; p(Gy) = 0
and p(Gy) = 2. A proper subgraph H of G contains at most one cycle, and,
by Theorem and Lemma , p(H) = 1 if H contains a cycle and
p(H) = 0 otherwise. Therefore, if p(G1) = 2 and p(Gz) = 0, then G, = G
and contradicts (i) or (ii) in Theorem [2.2.2] Similarly, the third case cannot
happen. Now suppose that p(G;) = 1 and p(G3) = 1. Then each of G
and G5 contains a cycle by the above observation, which contradicts (i) of
Theorem 2.2.21

In this vein, it is interesting to find properties of a graph G for which
p(G) = Zle p(Gg) for k > 2 and subgraphs G, ..., Gy of G satisfying the
conditions (i), (ii), and (iii) in Theorem [2.2.2] To do so, we need the following
lemma.

A graph G is separable by a vertex w into two subgraphs G; and G, if
V(G1)UV(Ge) =V (G), E(G1)UE(Gy) = E(G), and V(G1) NV (Gy) = {w}.
Lemma 2.2.5 ([49]). Let G be a graph separable by a vertex w into two
graphs Gy and Gs. If at least one of Gy and Gy has an optimal phylogeny
digraph with no incoming arcs towards w, then p(G) = p(G1) + p(Ga).

Theorem 2.2.6. Let G be a graph and G, G, ..., Gy be connected subgraphs
of G satisfying that
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(i) {E(G1), E(Gs),...,E(Gg)} is a partition of E(G);
(i1) every cycle of G belongs to G; for some i € {1,... k};

(iii) at least k — 1 of Gy, ..., Gy are vertex transitive.

Then p(G) = Zle p(Gy).

Proof. We show p(G) = S2F_ p(G;) by complete induction on k. If k = 1,
then G = (G; and so the inequality trivially holds. Suppose that k£ > 2 and
the equality holds for any [ subgraphs of G satisfying conditions (i), (ii), and
(iii) for each [ < k — 1. Without loss of generality, we may assume that G,
is not vertex transitive, if any. Since (G is connected, G; must share a vertex
with G; for some ¢ € {2,...,k} by the condition (i). We may assume that
1= 2.

Suppose that |V(G1) NV (Gy)| > 2. Then we take two vertices wy, wy €
V(G1) NV (G;) the distance between which is the smallest in G;. Let W)
and W5 be a shortest (wq, wy)-path in G and a shortest (ws, wy)-path in Go,
respectively. Then the length of W is the distance between w; and ws in
(1. Suppose that W; and W5 have a common vertex w* other than w; and
wy. Then w* € V(G1) N V(Gs). In addition, the (wy,w*)-section of W is a
path shorter than W; in (G1, so the distance between w; and w* is smaller
than the distance between w; and wy in GGy, which contradicts the choice of
wy and ws. Therefore W, and W5 are internally vertex-disjoint and so Wy W,
is a cycle in G. Then, by the condition (ii), G, contains the cycle W W5 for
some r € [k]. By the condition (i), W;W; belongs to neither G; nor Gy, so
r # 1, 2. Yet, G; and G, share an edge, which contradicts the condition (i).
Therefore |V (G1) NV (Gq)| = 1.

Let w € V(G1)NV(Gy). Then G is separable by w into two subgraphs G4
and G5. Let Dy be an optimal phylogeny digraph for Gs. Since Ds is acyclic,
Dy has a vertex v of indegree zero. If v ¢ V(Gz), P(Dy — v) contains Go
as an induced subgraph, which contradicts the choice of Dy to be optimal.

Thus v € V(G3). Since G is vertex transitive, we may regard v as w. Thus,
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by Lemma [2.2.5, p(G*) = p(G1) + p(G2) where G* is the union of G and
G,. It is easy to check that the subgraphs G*, G, ..., G\ of G satisfy the
conditions (i), (ii), and (iii). Hence, by the induction hypothesis,

k k

and so p(G) = S2F p(G). O
Corollary 2.2.7. Let G be a graph and K be a clique of G that is a block
in G and contains exactly one cut-vertex of G. Then G and the graph Gk
obtained by deleting the vertices in K except the cut-vertex have the same

phylogeny number.

Proof. Let Gy, ..., G, be the components of G for a positive integer w. We
may assume that G; contains K. Let H; be the graph obtained from G; by
deleting the vertices in K except the cut-vertex. Obviously, H; and K satisfy
the conditions (i), (ii), and (iii) of Theorem as connected subgraphs of
G1. Thus, by the theorem, p(G1) = p(H;)+p(K). Since the phylogeny number
of a complete graph is zero, p(K) = 0 and so p(Gy) = p(H;). Therefore
p(G) = p(G1) + - p(Gy) = p(Hy) + - -+ + p(G.,) by Lemma We note
that replacing G; with H; among the components of G results in Gg. Thus
the right hand side of the second equality above equals p(G ) by Lemmam
and this completes the proof. O]

Corollary 2.2.8. Let G be a graph with a pendant vertex v. Then p(G) =
p(G —v).
Now we are ready to extend the inequalities given in ((1.2.1)) to graphs

with many triangles. To do so, we need the following lemmas.
Lemma 2.2.9 ([47]). For any graph G, p(G) > 0.(G) — |V (G)| + 1.

Lemma 2.2.10. Let G be a graph and xy be an edge of G which is not an
edge of any triangle in G. If a phylogeny digraph D for G contains the arc
(x,y), then x is the only in-neighbor of y in D which belongs to V(G).
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Proof. Suppose, to the contrary, that z € V(G)\ {x} is an in-neighbor of y in
D. Then {z,y, z} forms a triangle in P(D). Since G is an induced subgraph
of P(D) and {z,y,z} C V(G), {z,y, 2z} forms a triangle in G and we reach

a contradiction. O

Lemma 2.2.11. Let G be a graph and xy be an edge of G which is not an
edge of any triangle in G and D be a phylogeny digraph for G. If z is a
common out-neighbor of x and y in D, then z does not belong to G and x

and y are the only in-neighbors of z in D that belong to G.

Proof. Suppose that z is a common out-neighbor of  and y in D. If z belongs
to G, then {z,y,z} forms a triangle in G and we reach a contradiction.
Therefore z does not belong to G. If there is an in-neighbor w of z in D
which belongs to V(G) \ {z,y}, then {z,y,w} forms a triangle in G and we

reach a contradiction. O

Theorem 2.2.12. Let G be a connected Ky-free graph with mutually edge-

disjoint diamonds. Then
[E(G)| — [V(G)] = 2t(G) +d(G) + 1 < p(G) < |E(G)] = V(G)] = t(G) +1

where t(G) and d(G) denote the number of triangles and the number of di-
amonds in G, respectively. Especially, the first inequality becomes equality if

G~ is connected and the second inequality becomes equality if G~ has ezactly
2t(G) — d(G) + 1 components.

Proof. 1t is easy to check that
0.(G) = |[E(G)] = 2(H(G) — 2d(G)) = 3d(G) = |E(G)| - 2t(G) + d(G).

By Lemma |E(G)| — |V(G)| —2t(G) +d(G) + 1 < p(G). Now we show
p(G) < |E(G)|—|V(G)| —t(G) +1 by induction on ¢(G). By Theorems[1.2.1]
1.2.3] and [1.2.4] the inequalities hold for graphs having at most two

triangles. Thus we may assume that G contains at least three triangles.
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Case 1. There is no diamond in G. We take a triangle vvwu in G. Then
E(G—w) = E(G)\{uv}, V(G —uv) = V(G) and t(G —uwv) =t(G) — 1. In
addition, it is easy to check that G —uwv is connected, Ky-free, and diamond-

free. Therefore, by the induction hypothesis,

p(G —w) < |E(G —w)|— V(G —w)| — t(G —uv) + 1
= (IE(@)]-1) = V(G)| = (#HG) - 1) +1
= |E(G)| — [V(G)] — t(G) + 1. (2.2.4)

Let D* be an optimal phylogeny digraph for G — uv. Then, since uw and vw
are edges of G — uwv, one of the following is true: uw or vw is a cared edge of
P(D*); none of uw and vw is a cared edge of P(D*).

Subcase 1-1. uw or vw is a cared edge of P(D*). Then u and w or v
and w have a common out-neighbor in D*. Without loss of generality, we
may assume that u and w have a common out-neighbor z in D*. Since G
is diamond-free and Ky-free, uw is not an edge of any triangle in G — wv.
Therefore z € V(D*) \ V(G) and z has exactly two in-neighbors u and w
which belong to V(G — wv) by Lemma [2.2.11] Now we add an arc (v, 2) to
D* and denote the resulting digraph by D. Then D is an acyclic digraph
satisfying that V(D) \ V(G) = V(D*)\ V(G — uwv) and P(D) contains G as
an induced subgraph.

Subcase 1-2. None of uw and vw is a cared edge of P(D*). Then one of
(u,w) and (w,u) and one of (v,w) and (w,v) belong to A(D*). Since D*
is acyclic, we take an acyclic labeling ¢ of D*. If w has the least (-value
among u, v, and w, then (u,w) € A(D*) and (v,w) € A(D*), and so uw
is an edge of G — wwv, which is a contradiction. Thus u or v has the least
(-value among u, v, and w. Without loss of generality, we may assume that
u has the least f-value among w, v, and w. Then (w,u) € A(D*). Since
uw is not an edge of any triangle of G — wv, w is the only in-neighbor of

w in D* that belongs to V(G — uv) by Lemma [2.2.10f Now we add an arc
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(v,u) to D* to obtain an acyclic digraph D. Then it is easy to check that
V(D) \ V(G) = V(D*) \ V(G — uwv) and P(D) contains G as an induced
subgraph.

Since D* is an optimal phylogeny digraph of G—uwv, |V (D*)\V(G—wv)| =
p(G —uw). Then, since V(D) \ V(G) = V(D*) \ V(G — uv) in each subcase,
V(D)\V(G)| = p(G —uv). Therefore, by [2.2.4), [V(D)\V(G)| < |E(G)|—
|V(G)|—t(G)+1 in each subcase and hence p(G) < |E(G)|—|V(G)|—t(G)+1.

Case 2. There is a diamond in G. Let y and w be nonadjacent vertices
and {z,y,z,w} be a vertex set which forms a diamond A in G. Now let
G* = G — {xz,yz,wz} and D* be an optimal phylogeny digraph for G*.
Then G* is still Ky-free graph and its diamonds are mutually edge-disjoint.
Suppose that there exists an edge of A on a triangle T' distinct from the
triangles xyzx and xwzz. Since G is Ky-free, T and xyzx or T and zxwzx
form a diamond. However, the resulting diamond shares an edge with A and

we reach a contradiction. Therefore none of edges on A is on a triangle in

G*. Thus
|E(G")| = |E(G)|-3, |V(G)|=|V(G)|, and t(G")=1t(G)—2. (2.2.5)

Furthermore, by Lemma [2.2.10],

(1) w is the only in-neighbor of v that belongs to V(G) if (u,v) € A(D*)
for (u,v) € {(z,y), (v, 2), (z,w), (w,z)}.

In addition, by Lemma 2.2.11} if zy (resp. zw) is a cared edge in P(D*), then

(b) a caring vertex of zy (resp. zw) belongs to V(D*)\V (G*) (consequently

V(D*)\ V(G)) and x and y (resp.  and w) are the only in-neighbors
in D* of the caring vertex that belong to V(G).

Subcase 2-1. G* is disconnected. Then it has exactly two components Gy
and G5 which contains z. Obviously G; is connected and Kj-free, and the

diamonds in G; are mutually edge-disjoint for each ¢ = 1, 2. Thus, by the
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induction hypothesis, p(G1) < |E(G1)| — |[V(G1)| — t(G1) + 1 and p(Gq) <
|E(G2)| — |V(Gs)| — t(G3) + 1. Then

p(G") = p(G1) +p(Ga)
< ([E(G1)| = V(G| = t(G1) + 1) + (|E(G2)| — [V(G2)| — 1(G2) + 1)
= [B(G")| = [V(G)] = t(G") + 2

= (E(@)]=3) = [V(G)] = (UG) = 2) +2
= |E(G)| - [V(G)] — t(G) + 1. (2.2.6)

by (2.2.5) and Lemma

Suppose that both of xy and zw are cared edges of P(D*). Then x and y
(resp.  and w) have a common out-neighbor a (resp. b) in D*. Now we add
arcs (z,a) and (z,b) to D* to obtain a digraph D.

Suppose that either zy or zw is cared edge of P(D*). Without loss of
generality, we may assume that zy is a cared edge of P(D*). Then zw is
not a cared edge of P(D*), and so either (z,w) € A(D*) or (w,z) € A(D*).
Since zy is a cared edge, x and y have a common out-neighbor ¢ in D*.
We construct a digraph D from D* by adding the arcs (z,c¢), and (z,w) if
(z,w) € A(D"); (2,2) if (w,z) € A(D").

Now suppose that none of xy and zw is a cared edge of P(D*). Then either
(x,y) € A(D*) or (y,z) € A(D*), and either (z,w) € A(D*) or (w,z) €
A(D*). Since y and w are not adjacent in G*, (y,x) ¢ A(D*) or (w,z) ¢
A(D*). We add the arcs to D* as follows: (z,z) and (z,w) if (y,x) € A(D*)
and (z,w) € A(D*); (z,y) and (z,x) if (z,y) € A(D*) and (w,z) € A(D*);
(z,y) and (z,w) if (z,y) € A(D*) and (z,w) € A(D*); Let D be the resulting
digraph.

We have constructed a digraph D from D* in each of the three cases above.
By (1) and (b), P(D) contains G as an induced subgraph in each case. By (b),
the outdegree of a caring vertex is zero in D* (we recall that we assumed that

the outdegree of any vertex belonging to only optimal phylogeny digraph is
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zero). Moreover, since GG; and G5 are the components of G*, there is no arc
between a vertex in GG; and a vertex in G5 in D*. Therefore D is acyclic in
each case. Furthermore, D* is an optimal phylogeny digraph for G* and the
added arcs have tails in V(G). Thus we may conclude that D is a phylogeny
digraph for G.

Since we did not add any new vertex to construct D from D*, V(D) \
V(G) = V(D*)\V(G™). Since D* was chosen as an optimal phylogeny digraph
for G*, p(G*) = |V(D*) \ V(G*)|. Thus

p(G) < [V(DN\V(G)] = [V(DN\V(G)] = p(G7) < [E(G)|=V(G)|-H(G)+1

by @20).

Subcase 2-2. G* is connected. Clearly G* is Ky-free and its diamonds are

mutually edge-disjoint. Thus, by the induction hypothesis,

p(G7) < [E(GY)] = [V(GY)] = 1(G7) +1
= ([B(G)] = 3) = [V(G)] = (H(G) = 2) +1
= [EG)| = V(G)] = (&) (2.2.7)

where the first equality holds by (2.2.5)).
Suppose that one of zy and zw is a cared edges of P(D*). Without loss

of generality, we may assume that zy is a cared edge of P(D*). Then z and
y have a common out-neighbor a in D*. We construct a digraph D from D*
by adding the vertex b and the arcs (z,a), (z,b), (z,b), and (w,b).

Now suppose that none of zy and zw is cared edge of P(D*). Then either
(x,y) € A(D*) or (y,x) € A(D*), and either (z,w) € A(D*) or (w,z) €
A(D*). Since y and w are not adjacent in G*, (y,z) ¢ A(D*) or (w,z) ¢
A(D*). We construct a digraph D from D* as follows: V(D) = V(D*)U{c};
we alter the arcs incoming toward to z in D* so that they go toward to ¢
in D and add an arc (z,¢); add arcs (z,x) and (z,w) if (y,z) € A(D*) and
(x,w) € A(D*); (z,y) and (z,z) if (z,y) € A(D*) and (w,x) € A(D*); (z,y)
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and (z,w) if (z,y) € A(D*) and (z,w) € A(D*), i.e.

AD") UA{(z,0), (2,2), (z,w)} if (y,2), (z,w) € A(D”)
AD) = A(D) U{(z,0), (z2),(z,9)}  if (2,9), (w,2) € A(D")
AD") UA{(z,0), (2,9), (z,w)}if (2,y), (z,w) € A(D”)

where D' is the digraph with V(D) = V(D*) U {c} and

AD") = (A(D)\{(u, z) € A(D") [u € V(D")})
U{(u,c) |ue V(D") and (u,z) € A(D")}.

We have constructed a digraph D from D* in each of the two cases above.
By (f) and (b), P(D) contains G as an induced subgraph in each case. By
(b), the outdegree of a caring vertex is zero in D*. Therefore adding arcs
(z,a), (2,b), (x,b), and (w,b) to D* does not create a directed cycle in the
first case. Since z has indegree zero in the second case, adding arcs with z as
a tail does not create a directed cycle. Therefore D is acyclic in each case.
Furthermore, D* is an optimal phylogeny digraph for G* and the added arcs
have tails in V(G). Thus we may conclude that D is a phylogeny digraph for
G.

Since we added exactly one vertex to construct D from D*, [V (D) \
V(G)| =|V(D*)\ V(G*)| 4+ 1. Since D* was chosen as an optimal phylogeny
digraph for G*, p(G*) = |V(D*) \ V(G*)|. Thus

p(G) < [V(D)AV(G)| = V(D) \ V(G| +1
=p(G") + 1 < |E(G)] = [V(G)] = 1(G) +1

where the last inequality holds by ([2.2.7)).
Now we prove the “especially” part. Clearly V(G~) = V(G). Since the
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diamonds in G are mutually edge-disjoint,
|E(G7)| = |E(G)|-3(t(G)—2d(G))—5d(G) = |E(G)|—-3t(G)+d(G). (2.2.8)
Suppose that G~ is connected. Since G~ is triangle-free,
p(G7) = [E(GT)[ - [V(GT)[+1

by Theorem [1.2.1] Substituting |[V(G™)| = |V(G)| and |E(G7)| given in
(2.2.8)) into the above equality results in

p(G7) = |E(G)] - [V(G)| — 3t(G) + d(G) + 1. (2.2.9)

Let D~ be an optimal phylogeny digraph for G~. Now we add ¢(G) vertices
to D~ and arcs in such a way that each added vertex takes care of only the
edges on a triangle and two triangle edges on distinct triangles are taken
care of by distinct added vertices. Obviously the resulting digraph D is a
phylogeny digraph for G and so

p(G) < [V(ID)\V(G)| = V(DT)\V(GT)] + H(G)
=p(G7) +G) < |E(G)| = V(G)| = 2t(G) +d(G) + 1
where the last inequality holds by . Consequently, we have shown that
p(G) = |E(G)| = |[V(G)| — 2t(G) + d(G) + 1 if G~ is connected.

Now suppose that G~ has exactly r := 2t(G) — d(G) + 1 components Hy,
..., H,.. For each component H; of G~, p(H;) = |E(H;)| — |V(H;)| + 1 by
Theorem [1.2.1] By Lemma [2.2.4]

r

p(G7) = ZP(HZ-) =Y (EH)| —|V(H)| +1).

1=1
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Since [V(G7)| = Y1, [V(H)| and [E(G7)| = Y1, [E(H)],
p(G7) = [B(G)| ~ V(G| +7

or

p(G7) = |E(GT)| = [V(GT)[ + 2(G) — d(G) + 1.

By ([£.2.9),
p(G7) = |E(G)| - |[V(G)| —t(G) + 1. (2.2.10)

We denote by L the graph obtained from G by attaching a new pendant
vertex to each vertex of G. It is easy to see that the graph obtained from G~

by attaching a new pendant vertex to each vertex of G~ is L™. Now
p(G) =p(L) and p(G~)=p(L") (2.2.11)

by Corollary [2.2.8f Moreover, a maximal clique of L~ is an edge which is
an edge of G~ or a newly added edge incident to a pendant vertex. By
the definition of G, each edge in G~ maximal clique of G. Therefore a
maximal clique of L~ is a maximal clique of L. Thus p(L) > p(L~) by by
Corollary 2.2.3] Then p(G) > p(G~) by (2-2.11). Therefore p(G)) > |E(G)|—
V(@) — ¢(G) + 1 by (2.2.10). Accordingly, we have shown that p(G) =
|E(G)|—|V(G)|—t(G)+1if G~ has exactly 2t(G) —d(G)+1 components. [

The graphs G and Go given in Figure are examples for G| is con-
nected and G5 has 2t(G2) — d(G2) + 1 components, which implies that the
lower bound and the upper bound both in Theorem [2.2.12] are achievable.

Wu et al. [62] showed that the difference between the phylogeny number
and the competition number of a graph can be any integer greater than or
equal to —1 and asked about the difference for a connected graph. We answer
their question as follows.

The Cartesian product of two graphs GG; and G5 is denoted by G; x Gg
and has the vertex set V(G1) x V(G3) and has an edge (ug, u2)(vy, v2) if and
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Figure 2.5: The graphs G; and G5 showing that the lower bound and the
upper bound given in Theorem [2.2.12] respectively, are sharp.

only if either u; = v; and usv, is an edge of G5 or us = vy and u vy is an

edge of Gy.

Theorem 2.2.13. For any nonnegative integer l, there is a connected graph

G satisfying p(G) — k(G)+ 1 =1L.

Proof. Let Gy = Ks. Clearly p(Gg) —k(Gp)+1 = 0. For each positive integer
[, let GG; be the graph obtained by identifying a vertex on a complete graph
K5 and a vertex on a Cartesian product of P, and P denoted by P 1 X P,
(See Figure . We call the identified vertex in Gj v;.

Fix a positive integer [. Obviously P x P; is triangle-free and so the
competition number is |E(P1 X P)| — |V(Py1 X P)|+2 =1+1Dby a
well-known theorem that k(G) = |E(G)| — |V(G)| + 2 for a connected graph
G. Then there is an acyclic digraph D; whose competition graph is P11 X P
with newly added isolated vertices by 7, bay, ..., bit1.

Now we define a digraph D; as follows. We let
I+1

V(D) =V(D)U{a} and A(D,) = AD)U{(v,a)}U U{(bi,l, w)}.

Then it is easy to check that D; is acyclic and the competition graph of D;
is isomorphic to G; with one isolated vertex. Thus k(G;) < 1. It is known

that the competition number of a connected graph is at least one. Since G,
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G1 GZ

Figure 2.6: The graphs G; and G5 defined in the proof of Theorem [2.2.13]

is connected, k(G;) > 1 and so k(G;) = 1.

It is easy to see that Ko and P; x P, satisfy (i) and (ii) of Theo-
rem [2.2.0] as subgraphs of G;. Obviously K- is vertex transitive. Thus, by
Theorem 2.2.6, p(G)) = p(Ki12) + p(Py1 X P). It is known that the phy-
logeny number of a chordal graph is zero, so p(K;;5) = 0. By Theorem [1.2.1]
p(P41 X Py) = . Therefore p(G;) = [. Hence p(G;) — k(G;) + 1 = [ for each

positive integer [. O
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Chapter 3

A new minimal chordal

completion

We need the following notions.

A class of graphs is said to be hereditary if it is closed under isomorphism
and induced subgraphs.

We say that a hole H contains a vertex v (resp. an edge e) if v (resp. e)
is a vertex (resp. an edge) on H. We denote the set of holes in a graph G by
H(G) and the set of holes in G containing u by H (G, u).

A nonempty subset X of V(G) is called a hole cover of G provided that
every hole in GG contains at least one vertex of X. Note that, if G has no hole,
that is, GG is a chordal graph, then any nonempty vertex set is a hole cover
of G.

For a vertex u of a graph GG, we say that u satisfies the non-consecutive
property (NC property for short) if any hole in H (G, u) and any hole not in
H(G,u) do not share consecutive edges. A vertex subset C of G is said to
satisfy the NC property in G if every vertex in C satisfies the NC property
and every hole in G contains at most one vertex in C. We say that a graph
satisfies the NC' property if it has a hole cover satisfying the NC property. It

is easy to see that
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u w X
1—% Hy & Hy O Hs
S

Figure 3.1: A graph G not satisfying the NC property

(f) If a hole cover C of G satisfies the NC property in G, then a nonempty
set C \ A is a hole cover satisfying the NC property in G — A for any
proper subset A of V(G) not including C.

Then it is immediately true that the family of graphs satisfying the NC
property is hereditary. See Figure for a graph not satisfying the NC
property. To see why, suppose to the contrary that there exists a hole cover
C of G satisfying the NC property. To cover the hole Hy, C must contain a
vertex on Hy. Suppose that a vertex in V (H; )NV (H,) is contained in C. Since
C is a hole cover satisfying the NC property, a vertex in V (H3)\V (Hz) must be
contained in C to cover Hs. Then, however, those two vertices are on the hole
of length 8 surrounding H, and Hj, which contradicts the assumption that
C satisfies the NC property. Even if a vertex in V(Hy) N V(Hj) is contained
in C, we may reach a contradiction by applying a similar argument to the
holes H; and H,. Therefore we may conclude that there is no hole cover of
G satisfying the NC property.

Let G be a graph with a hole H. For a vertex u on H, we locally chordalize
the hole H by u in the following manner: we join u and each vertex on H
nonadjacent to u.

In this chapter, we present a chordal completion of a graph G which is

efficient in the following sense: Only edges joining two vertices on holes of G
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are added to obtain our chordal completion (Theorem [3.3.8). Furthermore,
we show that any minimal chordal completion of a graph can be obtained by
joining two vertices on holes of G by edges (Proposition . As a matter
of fact, for a nonnegative integer k, we give a sufficient condition for a graph GG
which has a chordal completion G* satisfying the inequality w(G*)—w(G) < k
(Theorem . This is a strong point of our chordal completion which
differentiate it from other chordal completions. For example, it is shown that
a graph G has treewidth at most k if and only if it has a chordal completion
G* satisfying w(G*) < k + 1. Yet, this characterization gives no information
on w(G), accordingly no significant information on w(G*) — w(G).

For a graph GG and a vertex u satisfying the NC property, locally chordal-
izing all the holes in H(G,u) does not create any new hole (Theorem [3.1.5).
Based on this observation, we found that, a hole cover C of a graph G can

be partitioned into Cy, ..., C, for some positive integer k so that
(i) C; is a hole cover of the graph G; satisfying the NC property,
(ii) G7 is chordal,

where Gy = G = G — C, G, is the graph defined by V(G;) = V(G;_,) UC;
and
k
E(Gi) = E(G;))UE (G - U Cj) ,
j=i+1

and G is a chordal completion of GG; obtained by applying local chordaliza-
tions recursively by the vertices in C; for each i = 1, ..., k (Theorem [3.3.1).
Our chordal completion is G}, obtained for a hole cover with the smallest
number k of partitions in Theorem [3.3.1L The smallest number k is called
the non-chordality index of G and denoted by i(G) (see Definition [3.3.3).

Then we obtain sharp upper bounds for the chromatic number, the list
chromatic number, and the DP chromatic number of a graph in terms of
non-chordality index and prove that the family of graphs with bounded non-

chordality indices satisfies the Hadwiger conjecture and the Erdéds-Faber-
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Lovész Conjecture (Theorems [3.1.1} [3.3.6, [3.3.11} and [3.2.2)). Other than

obtaining sharp upper bounds for chromatic numbers, we prove that the

family of graphs with bounded non-chordality is a linearly y-bounded class

(Theorem |3.4.1)).

3.1 Graphs with the NC property

In this section, we devote ourselves to proving the following theorem.

Theorem 3.1.1. Let G be a graph with the NC property. Then xpp(G) <
w(G) + 1. If G is K,,-minor-free, then xpp(G) <n — 1.

As a corollary of Theorem [3.1.1 we can prove a special case of Four Color

Theorem.
Corollary 3.1.2. For a planar graph G with the NC property, xpp(G) < 4.

Given a graph G and nonempty vertex sets S; and S, we denote the set
of edges joining vertices of S; and vertices of Sy by [S7, S2|. For simplicity,
we use [v, S] instead of [{v}, S] for a vertex v and a nonempty vertex set S

of a graph G.

Lemma 3.1.3. Given a graph G, suppose that there exist a hole H, an in-
duced path P, and two nonadjacent vertices u and v on H not on P satisfying

the properties that
(1) v is nonadjacent to any vertex on P in G;

(ii) there exist an internal vertex on a (u,v)-section of H and an internal
vertex on the other (u,v)-section of H such that each of them is adjacent

to a vertex on P.

Then there is a hole not containing u but containing two consecutive edges

on H incident to v and containing a vertex on P but not on H.
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Proof. Let P = z129- -z, (r > 1). By the hypothesis that u and v are not on
P, z; # u,v for each i = 1,... 7. Since u and v are nonconsecutive vertices

on H, we may give a sequence of H as follows:

H =vxi129 - - 2pUYqYg—1 - - - Y1V (p,g=>1).

For notational convenience, we let S, = {x1,...,2,} and S, = {v1,...,yq}
Let @« = min{i € {1,...,p} | [x;, V(P)] # 0} and § = min{j € {1,...,q} |
ly;, V(P)] # 0}. By the property (ii), [S., V(P)] # 0 and [S,, V(P)] # 0 and
so a and [ exist. Among the vertices on P which are adjacent to z, and
among the vertices on P which are adjacent to ys, we take z, and z; from
them, respectively, with the smallest distance on P. Let P* be the (2., 25)-
section of P. Then C' 1= vx 22 - - - 2o P*Ygys—1 - - - y1v is a cycle not containing
u. We also note that C' contains x;v and y;v, which are consecutive edges on
H incident to v. It is easy to check that C has length at least four. No two
vertices in V(C)\ V(P*) or in V(P*) can form a chord of C' since the vertices
in V(C)\ V(P*) are on the hole H and P* is an induced path. Moreover, a
vertex in V' (C) \ V(P*) and a vertex in V(P*) cannot form a chord of C' by
the choice of a, 3, z,, and z5. Therefore we can conclude that C'is a hole in
G. Since v is not on C, C'is distinct from H. We note that C' and H both are
holes and the vertices on C' other than the ones on P* lie on H. Therefore
there must be a vertex on P* not on H. Since P* is a section of P, C' contains

a vertex on P but not on H. O

Let G be a graph with a hole H. For a vertex u on H, we recall that
locally chordalizing the hole H by u means the following procedure: we join
u and each vertex on H nonadjacent to u. We call an edge added in the

process of a local chordalization of a hole a newly added edge.

Remark 3.1.4. Note that, for a graph G, locally chordalizing the holes
in H(G,u) by a vertex u will destroy all the holes in H(G,u). That is, if
H € H(G,u), then H ¢ H(G*,u) where G* is the graph resulting from the
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local chordalization by wu.

Theorem 3.1.5. Let G be a graph and u be a vertex of G satisfying the
NC property. Then locally chordalizing all the holes in H(G,u) by u does not

create any new hole.

Proof. Let G* be the graph obtained by locally chordalizing all the holes in
H(G, u) by u. Suppose to the contrary that G* has a hole, say H*, not in G.
Obviously H* contains u and at least one newly added edge. Then, since u
is adjacent to exactly two vertices on H*, H* contains one newly added edge
or two newly added edges.

Let uv be a newly added edge and
H* = uuquy - - - upou (p > 2).

Next, we define a cycle C' by considering two cases.

Case 1. H* contains uv as the only newly added edge. By the definition
of local chordalization, there exists a hole H; in H(G,u) containing v on
which v and v are not consecutive. Then u is adjacent to all the vertices
on H; in G*. However, u is not adjacent to uy (kK = 2,...,p) in G*, so we
can conclude that u; (k= 2,...,p) is not on Hy. If u; is on H;, then w; is
adjacent to u in H,. Thus, if u; is on Hy, then uujug - - - u,P is a cycle in G
for the (v, u)-section, denoted by P, of H; not containing u;.

If uy is not on H; and wu; is not adjacent to any vertex on one of the
(v, u)-sections of Hy except u, then we denote such a section by P’.

Now we define the cycle C' as follows:

(
uuug - - - up P if ug is on Hiy;

C = if uy is not on H; and wu; is not adja-

uugug - - - u, P’ cent to any vertex on one of the (v, u)-

L sections of H; except u.
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See (a) and (b) of Figure [3.2] for an illustration.

Case 2. H* contains another newly added edge uw. Then u; = w. Assume
that there is a hole Hy in GG which contains u,v,w. Then no two of u, v, w
are consecutive on Hs. Let @ be the (v, w)-section of Hy containing . Since
u is adjacent to all the vertices on Hs but is not adjacent to u; in G*, we may
conclude that u; is not on Hj for each ¢ = 2,...,p. Therefore wugus - - - u, @

is a cycle in G. Now we let
C = wugus - - - upQ.

See Figure [3.2(c) for an illustration.

It is obvious that the cycle C' defined in each case has length at least
four and Puq, P'uq, and @ are induced paths of GG including u and the two
vertices right next to u on C'. Moreover, u is not adjacent to any vertex on C'
except the two vertices right next to u, and the two vertices right next to u
on C are not adjacent in G. Thus, by Lemma [2.1.13] the path U composed
of u and the two vertices right next to it can be extended to a hole H in G so
that V(U) € V(H) C V(C) and H contains a vertex among us, ug, - . . , Up.
Then u is adjacent to u; for some i € {2,3,...,p} in G* by the definition of
local chordalization, which contradicts the choice of H*.

Now it remains to consider the following cases:

(i) the edge uv is the only newly added edge contained in H*, u; is not on
Hy, and there is a vertex on each (u, v)-section of H; which is adjacent

to up in G,

(ii) a newly added edge uw other than wv exists in H* and there is no hole

in G which contains all of u, v, and w.

We assume the case (i). The hypothesis of Lemma is satisfied by
H, for H, uy for P, u, and v. Therefore there exists a hole not containing «

but containing consecutive edges on H; incident to v. This contradicts the

67



hypothesis that u satisfies the NC property. Therefore the case (i) cannot
happen.

Now we assume the case (ii). Since v and w are not consecutive vertices
on H*, w is not adjacent to v in . Since uv and uw are newly added edges,
there exist a hole H3 containing v and v, and a hole H, containing u and
w in G. By the case (ii) assumption, w is not on Hs and v is not on Hj.
Let Hy = vx 2o 2quyYr—1--- 10 and Hy = w2123+ - - 2,0WWe—1 - - - W W
(g,7,s,t > 1). See Figure [3.2(d) for an illustration. Since u is adjacent to
all the vertices on Hj (resp. Hy) and is not adjacent to u; in G*, we may
conclude that u; is not on Hj (resp. Hy) for each i = 2, ..., p. For notational
convenience, we let S, = {z1,..., 2.}, Sy = {v1,-- .y}, S: = {21, ., 2},
and Sy, = {w1, ..., w}.

Suppose that, in G, [w, S;] # 0 and [w, S,] # 0. We apply Lemma [3.1.3]
with Hs for H, w for P, u, and v to reach a contradiction as before. There-
fore [w,S;] = 0 or [w,S,] = 0. Without loss of generality, we may assume
(w, S;] = 0. In addition, w is not adjacent to v in G. Thus [w, S, U{v}] = 0.

Suppose that [S, U {v}, S.] # 0 and [S, U {v}, Sy] # 0. Then we apply
Lemma with Hy for H, vai2e--- x4 for P, u, and w for v to reach a
contradiction as before. Therefore [S, U {v},S,] = 0 or [S, U {v},S,] = 0.
Without loss of generality, we may assume [S, U {v},S.] = 0. Then [S, U
{v}, S, U{w}] =0.

Now we consider the sequence Q) := vx12s - - - Tqu2s251 - - - z1w. As being
sections of H3 and H,, respectively, the two subsequences vz iz, - - - x,u and
uzszs—1 -+ - 21w of @ are induced paths in G. In addition, since [S, U{v}, S, U
{w}] =0, Q is an induced path in G. Consider the cycle C' := Quaus - - - u,v.
Since u is on Hs, Hy, and H*, u is not incident to any chord of C' in GG. Then
we apply Lemma with C, @, and z,uzs for P to reach a contradiction

as before. 0

Corollary 3.1.6. Suppose that a graph G has a hole cover C = {uy,...,ux}
satisfying the NC property and that Gy = G and, fori=1,... .k, G; is the
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Figure 3.2: The cycle C defined in the proof of Theorem [3.1.5 The gray
colored edges represent the newly edges on the hole H* in G* and w in (c)
and (d) turns out to be u;.

graph obtained by locally chordalizing the holes in H(G;_1,u;) by u;. Then Gy,
1s chordal. Moreover, the resulting chordal graph is independent of the order

of uy, ..., ug by which the local chordalizations are performed.

Proof. By induction on the size k of a hole cover satisfying the NC property.
If k =1, then Gy is chordal by Theorem [3.1.5] Suppose that the statement
is true for any graph with a hole cover with size k& — 1 satisfying the NC
property. Now we locally chordalize the holes in H(G,u;) by u; to obtain
G1. By Theorem .15 C \ {u} is a hole cover of Gy. By (f), C \ {u} still
satisfies the NC property in GG;. Therefore, by the induction hypothesis, G
is chordal.

It is sufficient to show the uniqueness for the case k = 2. Let G’ and G”
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be the graphs obtained by locally chordalizing the holes in H (G, ug) by us
and the holes in H(G’, uy) by g, respectively.

Since C satisfies the NC property, no hole in G contains two vertices
in C. Therefore, by Theorem B.1.5, H(G,u1) = H(G',u1) and H(G1,uz) =
H (G, uz), which implies Gy = G”. O

Let G be a graph with a hole cover C satisfying the NC property. Corol-
lary[3.1.6says that a chordal graph can be obtained by applying local chordal-
izations recursively by the vertices in C and the resulting chordal graph is
the same no matter which order of the vertices is taken. The uniqueness of
the resulting chordal graph allows us to denote it by a notation, say CAJ(C)
In the rest of this paper, we derive some noteworthy theorems by utilizing

o~

G(C) for graphs G having hole covers C satisfying the NC property.

Lemma 3.1.7. Let G be a graph with a hole cover C satisfying the NC
property. Suppose that vertices u and w in C are adjacent in G. Then any
newly added edge incident to u and any newly added edge incident to w are
not adjacent in G(C).

Proof. Suppose to the contrary that there exist a newly added edge incident
to u and a newly added edge incident to w which are adjacent in @(C)
Let wv and wv be such edges for some v € V(G). Then, by the definition
of local chordalization, neither uwv nor wv is an edge in G and there exist
H, € H(G,u) and H,, € H(G,w) sharing the vertex v.

To reach a contradiction, suppose that there exist an internal vertex on
a (u,v)-section of H, and an internal vertex on the other (u,v)-section of
H, each of which is adjacent to w. Then, by Lemma with P = w,
there is a hole in G not containing u but containing two consecutive edges
on H, incident to v, which contradicts the hypothesis that C satisfies the
NC property. Therefore there exists one of the (u, v)-sections of H, such that
w is not adjacent to any internal vertex on it. Let ) be such a section. By

symmetry, we may conclude that there exists one of the (v, w)-sections of
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H,, such that u is not adjacent to any internal vertex on it. Let R be such a
section.

Let W be the concatenation of @) and R at v. Then W is a (u, w)-walk in
G —uw. Now W contains a (u,w)-path S as an induced subgraph in G —uw.
By the previous argument, the vertex immediately following v on S cannot
be on R while the vertex immediately preceding w on S cannot be on Q.
Therefore we may conclude that the length of S is at least three. Thus S
and the edge uw form a hole in GG. However, this hole contains both u and

w, which is impossible as C satisfies the NC property. O

Theorem 3.1.8. Let G be a graph with a hole cover C satisfying the NC
property. Suppose that a vertex set K forms a clique in é(C) but not in G.
Then there ezists a verter uw € K NC such that K \ {u} is a clique in G.

Proof. Since K is a clique in G(C) but is not a clique in G, K N C # 0.
Suppose that K N C is not a clique in G. Then there exist two vertices x
and y in K N C such that zy ¢ E(G). This implies that there exists a hole
in G containing both z and y, which is impossible by the hypothesis that C
satisfies the NC property. Therefore K N C is a clique in G. However, K is
not a clique in G, so there exist vertices u € K NC and v € K \ C such that
uv is a newly added edge. We claim that every newly added edge whose end
vertices belong to K is incident with u by contradiction. Suppose that there
exists a newly added edge zw such that {z,w} C K \ {u}. By the definition
of @(C), we may assume z € C and w ¢ C. Since K N C is a clique in G,
zu € E(G). Then Lemmal3.1.7 implies that v # w, and ww and zv are edges
in G. If vw is a newly added edge, then either v or w belongs to C, which is
not the case. Therefore vw € E(G). Then the cycle uzvwu is obviously a hole
in G containing u and z, which contradicts the hypothesis that C satisfies
the NC property. Thus we have shown that every newly added edge in K is
incident with u. Hence K \ {u} is a clique in G. O

Corollary 3.1.9. Let G be a graph with a hole cover C satisfying the NC
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property. Then w(@(C)) < w(@) + 1. Furthermore the equality holds if and
only if

() There exists a vertex uw € C such that the set

U v@) | uNau p\ {u}

HeH(G,u)

contains a maximum clique K of G.

Proof. By Theorem , w(@(C)) < w(G) + 1. Furthermore, by the same
theorem, w(G(C)) = w(G) + 1 if and only if there is a clique K in G(C) of
size w(G) + 1 and there is a vertex v € K N C such that K \ {u} forms a
clique in GG, which is equivalent to (7). O

Theorem 3.1.10. Let G be a graph with a hole cover C satisfying the NC
property. Then every clique of @(C) s a minor of G.

Proof. Let K be a clique in @(C) of size n. If K is a clique in G, then we
are done. Suppose that K is not a clique in G. By Theorem [.1.8] there
exists a vertex u € K NC such that K \ {u} is a clique in G. Therefore
\V(H) N (K \ {u})| < 2 for every H € H(G,u). Furthermore, every newly
added edge whose end vertices are in K is incident with wu.

Let uvy,...,uv; be the newly added edges whose end vertices are in K
and X = {vy,...,v;}. Take a vertex v; € X. Then there exists H € H(G,u)
containing v;. Since uv; is a newly added edge, u and v; are not consecutive
on H. Then each of the (u,v;)-sections of H contains at least one internal
vertex. In addition, V(H)NX C V(H)N (K \{u}). Since we have shown that
V(H)N(K\{u})| <2, |V(H)NX| < 2. Since v; € V(H)NX, V(H) contains
at most one vertex in X other than v;. Thus one of the (u,v;)-sections of H
does not contain any vertex in K as an internal vertex. Let P; be such a
section. In GG, we contract the edges on P, except the edge incident to v; to

obtain the edge e; joining u and v;. Then P, is transformed to a (u, vq)-walk
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W5 in the graph G resulting from the contractions and still does not contain
any vertex in K other than u and v, by the way of contractions and by the
choice of P,. In Gy, we contract the edges on W, except the edge incident
to vy to obtain the graph G5 and the edge e, joining v and vy in Go. We
may repeat this process until we obtain the graph G; from G;_; and the edge
e; joining v and v; in G;. Now, G contains the vertices of K and the edges

uvy, ..., uv; so that K is clique of size n in Gj. n
Now we have the following corollary.

Corollary 3.1.11. Let G be a graph with a hole cover C satisfying the NC
property. If G is K, -minor-free, then @(C) is K, -free.

Now we are ready to give a proof of Theorem [3.1.1

A proof of Theorem . Since @(C) is a chordal completion,

xor(G) < xpr(G(C)) = w(G(C)

~—

By Corollary [3.1.9] w(@(C’)) <w(G@)+1, s0o xpp(G) < w(G) + 1. Moreover,
by Corollary [3.1.11] if G is K,-minor-free, then w(G(C)) < n — 1 and so
XDP(G) <n-—1. O

3.2 The Erdos-Faber-Lovasz Conjecture

The following is one of the versions equivalent to the conjecture given by
Erdés, Faber, and Lovasz in 1972.

Conjecture 3.2.1. If G is the union of k edge-disjoint copies of K for a
positive integer k, then x(G) = k.

In this section, we show that the above conjecture is true for the graphs

satisfying the NC property by deriving the following theorem.
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Theorem 3.2.2. If a graph G satisfying the NC property is the union of k
edge-disjoint copies of Ky for a positive integer k, then xpp(G) = k.

We start by showing the following lemmas.

Lemma 3.2.3. Let G be a graph and L be a mazimal clique of G. Suppose

that every verter in G — L is a simplicial vertex in G. Then G s chordal.

Proof. 1t suffices to prove the lemma when G is connected. Suppose to the
contrary that G has a hole H. Since L is complete and H is a hole in G,
\V(H)N L] < 2. Then V(H) \ L forms an induced path in G and, by the
hypothesis that any vertex in G — L is a simplicial vertex in G, |V (H)\ L| <
2. Since H is a hole, 4 < |V(H)| = |[V(H)NL| + |V(H) \ L| < 4 and
so [V(H)NnL| = 2 and |[V(H)\ L| = 2. Since V(H) \ L := {u,v} and
V(H)N L := {x,y} are cliques in G, uv and zy are edges in G. Since H is a

hole, u cannot be a simplicial vertex in G and we reach a contradiction. [

Lemma 3.2.4. Let G be a union of k edge-disjoint copies of K and L be
the set of those k copies of Ky for a positive integer k. Then w(G) = k.
Furthermore, if a mazimal clique of G with size k does not belong to L, then

G is chordal.

Proof. Since G contains Ky, w(G) > k. We prove that any maximal clique
of G not belonging to £ has size at most k to show w(G) < k. Let L be a
maximal clique of G with size [ which does not belong to L. For each vertex
u in L, let n, be the minimum number of cliques in £ needed to cover the
edges in the edge cut [u, L\ {u}]. Since each edge of G is covered by a unique
maximal clique in £, n, is the number of cliques in £ which share an edge
with L. Since L is a maximal clique of G and does not belong to L, the edges
on L are covered by at least two cliques in £ and so n, > 2 for each u € L.
Now let u* be a vertex in L with the minimum p := n,«. By the observation
that n, > 2 for each w € L, p > 2. Let Ly, ..., L, be the cliques in £ which
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cover the edges in [u*, L \ {u*}]. Let I; = |[L N L;| — 1 for each i = 1,...,p.

Without loss of generality, we may assume
W>lh>->1,>1 (3.2.1)

Suppose that there exist distinct vertices u; and us in L N L; for some 7 €
{1,...,p} such that an edge in [u;, L \ L;] and an edge in [ug, L \ L;] are
covered by the same clique K in £. Then K # L;. However, since K is a

clique, ujus is covered by K, a contradiction to the hypothesis. Therefore

(8) two edges in [L N L;, L \ L;] are covered by distinct cliques in £ for

1 =1,...,p unless they have a common end in L N L;.

Since Ly, ..., L, are mutually edge-disjoint,

(U(L NLi)\ {U*}) U {u'}

i=1

p

LﬂULi

i=1

l:

P

p
=D JLNL)\{u}+1=) Li+1. (3.2.2)
i=1 i=1

Since p > 2, L; and Ls exist. Each edge in [(L N Ly) \ {u*}, (L N La) \ {u*}]
is covered by exactly one clique in £ by the hypothesis. Since any edge
in [(LN L)\ {u*}, (LN Ly) \ {u*}] is not incident to u*, any clique in £
covering an edge in [(L N Ly) \ {u*}, (L N Ly) \ {u*}] cannot be L; for any

1 =1,...,p. Therefore we need at least p+1;l5 cliques in £ to cover the edges
in [u*, L\ {u*}U[(LN L)\ {u*}, (LN Ly \ {u*}] and so

For each vertex u in L N Ly, n, > p and so there are at least p cliques in £
needed to cover the edges in [u, L\ {u}]. By (%), we need at least p+1;(p—1)
distinct cliques in £ to cover the edges in [u*, L\ {u*}JU[(LNLy)\{u*}, L\ L]

and so
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p+hp—1) <k. (3.2.4)

If Iy > p, then

p

L= lLi+1 (by (3:2:2))
i=1

<hLp+1 (by (3.2.1))

<lily+p (by the case assumption and the fact that p > 2)

<k (by (B:23))

Therefore we have shown that [ < k if [ > p and so the “furthermore” part
is vacuously true.

Now assume [, < p — 1. Then

p

L= li+1 (by (3:2:2))
=1

<(p—Dh+1l+1 (by (3.2.1))

<(@-1h+p (by the assumption that o < p —1)

<k (by (3.2.4))

To show the “furthermore” part, suppose [ = k. Then each of the three
inequalities above becomes the equality. Now, if p = 2, then [, = 1 and
l=10l+1l+1=1+2 =k, which implies I; = k — 2. If p > 3, then, by

B21),Lh=--=l,=p—land k=p*>—p+1.
Case 1.p=2. Let LN Ly = {u*,uy,us, ..., ux_o} and LN Ly = {u*,v}. Since
u; and v belong to L, u;v is an edge in G for each 1 = 1,...,k —2. Since L is

an edge clique cover of GG, there is a clique in £ covering the edge u;v for each
i=1,...,k—2. By (), no clique in £ contains u;, uj,vfor1 <i<j<k—2.
Therefore, by relabelling the cliques in L if necessary, we may assume L;,o
is a clique covering u;v for each i = 1,...,k —2. Then (L; N L) N L = {u*},
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(LiNLi)NL={u_o}fori=3,...,k,and (L; N L;) N L = {v} for 2 <i<
J < k. Therefore L; and L; share exactly one vertex in L for distinct 7, j in
{1,...,k}

Case 2.p > 3. Then ly = -+ =1, = p—1and k = p> —p+ 1. Let
LNLy = {u*,vy,...,vp—1} and LNLy = {u*, wy, ..., w,_1}. Since L is a clique
in G, v; and w; are adjacent in G and the edge v;w; must be covered by a
clique in the edge clique cover L for any ¢,j € {1,...,p—1}. Let K;; € L be
a clique which covers the edge v;w; for4,j € {1,...,p—1} and let £ = {K, ; |
i,j € {1,...,p — 1}}. Suppose K, ; = L, for some 7,5 € {1,...,p— 1} and
t € {1,...,p}. Then the edges u*w; € [LNLy, L\ L] and v;w; € [LNLy, L\ L]
are covered by K ;, which is impossible by (#). Therefore K, ; cannot be any
of Ly,...,L,. By (8), K;; # K if (i,7) # (¢, 7). Therefore |[K| = (p — 1)?
and

{Li,...,. L} UK|=p+(p—17=p"—p+1.

Since |L] =k =p*—p+1, L.={Ly,...,L,} UK.

To apply Lemma [3.2.3] we first claim that M NN C L for any distinct
cliques M, N € L. Take two distinct cliques M and N in L. If M and N
belong to {Ly,..., Ly}, then M NN = {u*} C L. Suppose that one of M and
Nisin {Ly,...,L,} and the other is in IC. Without loss of generality, we may
assume M = L; := {u*,x1,...,2,1} and N = K;; for some ¢t € {1,...,p}
and i,j € {1,...,p—1}. By the hypothesis that the cliques in £ are mutually
edge-disjoint,

{v;} ift=1

Lthi,' -
T ) ift=2.

Therefore M NN = L,NK;; C L for t =1,2. Assume 3 <t < p. Note that

Elt = [{/Ul, c. ,'Upfl}, {$1, c. ,xp,l}] C [L N L17 L \ Ll] N [L N Lt7 L \ Lt]
(3.2.5)
Suppose that an edge v,z is covered by L, for some a € {1,...,p}. Then
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the edges u*rs and u*v, are covered by L,. However, u* and v, belong to
LN Ly, {uzs,v,xsy € [LN Ly, L\ L], and we reach a contradiction to
(#). Therefore each edge in Ej; should be covered by a clique in K. Since
K C L, it follows from (#) that each clique in K covers at most one edge in
Ey C[LN Ly, L\ Li|N[LN L, L\ L. Since |K| = (p — 1)* = |Eyl, each
clique in K covers exactly one edge in Ey;. Therefore K ; covers v,z for some
r,s € {1,...,p—1}. Thus L, N K, ; contains the vertex z,. By the hypothesis
that the cliques in £ are mutually edge-disjoint, L; N K; ; = {z,} C L. Hence
MNN CLfor M =L, and N = K, ;. Finally we suppose that M and N
belong to K. Then M = K, ; and N = Ky j for some ,7', j, 7' € {1,...,p—1}
with (4,7) # (¢,4"). If i =4/, then M NN = {v;} C L by the hypothesis.
Suppose i # i'. Take a vertex y € L\ L;. Since L is a clique and {v;, vy, y} C
L, v;y and vyy are edges of G and should be covered by cliques in £. We note
that L; covers u*y if L, covers v;y or vyy for any b € {1,...,p}. Therefore,
by the hypothesis that the cliques in £ are mutually edge-disjoint, v;y and
vyy are covered by cliques in K. Let K. 4 be a clique in K covering v;y. Then
Ve, ¥4,y belong to K, 4. Since K. 4 is a clique, v, and y are adjacent. Then v.y
and v;y belong to [LN Ly, L\ Ly] and are covered by K. 4. Thus, by (1), v; = v,
and so ¢ = c¢. Similarly, v;y is covered by Ky 4 for some d' € {1,...,p—1}.
By the hypothesis on £, K, ; and K, o are the unique cliques in £ covering
vy and vy, respectively. As K; 4 and Ky 4 are uniquely determined by y,
we may denote K; 4 and Ky o by A(y) and B(y), respectively. Now we define
a function F' : L\ Ly — {(K;(,Kivy) | 1 < ¢.¢d < p—1} by F(y) =
(A(y), B(y)) for y € L'\ L;. Then F is well-defined. By the hypothesis on £
again, A(y) N B(y) = {y} for each y € L\ L; and so F is injective. Since
the domain and the codomain of F' have the same cardinality (p — 1)?, F is
bijective. Since M and N belong to K, (M, N) is contained in the codomain
of F and so there exists a vertex z € L\ L; such that F(z) = (M, N). Then
M = A(z) and N = B(z),so M NN = A(z) N B(z) = {z} C L. Hence we
have shown that M N N C L for any distinct cliques M and N in L.
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In both cases, we have shown that M NN C L for any distinct cliques M
and N in £. Now we will show that every vertex in G — L is simplicial in G.
Take a vertex v in G — L. Suppose to the contrary that v is not a simplicial
vertex in (G. Then v has two neighbors z; and 2z, which are nonadjacent
in GG. Since L is an edge clique cover of G, £ contains a clique covering
vz; and a clique covering vzy. Since z; and z, are nonadjacent, these two
cliques are distinct. However, they share a vertex v which is not in L. This
contradicts our claim that the intersection of any two cliques in £ is a subset
of L. Therefore every vertex in G — L is a simplicial vertex in GG. Thus, by

Lemma [3.2.3 G is chordal. m

A proof of Theorem[3.2.3. Let G be a graph satisfying the NC property
which is the union of k£ edge-disjoint copies L1,..., Ly of K. Obviously
xpp(G) > k. By Lemma [3.2.4] w(G) = k. Let £ = {L,...,Ly}. Then L is
an edge clique cover consisting of cliques of size k.

Fix i € {1,...,k}. Then |L;NL;| < 1 for any j € {1,...,k} \ {i}.
Since L; has k vertices, L; has a vertex v not contained in L; for any j €
{1,...,k} \ {i}. Then v is a simplicial vertex of G. Since i is arbitrarily
chosen, L; has a simplicial vertex for any i = 1,... k.

If G is chordal, then xpp(G) = w(G) = k by (§). Now we suppose that G
is non-chordal. Then, by the “furthermore part” of Lemma any clique
not belonging to £ has size less than k. Since L; has a simplicial vertex
of G, we may take a simplicial vertex from L; and denote it by v; for each
i=1,...,k Let G = G—{vy,...,vx}. Then G’ still satisfies the NC property.
Since any clique not belonging to £ has size less than k, w(G’') = k — 1. Let
C be a hole cover of G’ satisfying the NC property. Then a\’(C) is chordal
by definition and, by Corollary |3.1.9, w(a\’(C)) < w(G)+1 =k Let G*
be the graph obtained from E}\’(C) by adding the vertices vy, ..., v, and the
edges which were incident to vy, ..., v in G. Then G is a spanning subgraph
of G*. Since vy,...,v; are simplicial vertices of GG, they are still simplicial
vertices of G*. Therefore, the fact that ZJ\’(C) is chordal implies that G* is
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chordal. Moreover, we note that exactly k — 1 edges are added for v; for each
t=1,...,k to obtain G* from é\’(C) Then, since w(z}'\’(C)) <k,

k< xpp(G) < xpp(G") =w(G") <k

and so xpp(G) = k. O

3.3 A minimal chordal completion of a graph

3.3.1 Non-chordality indices of graphs

Given a graph G, we apply a sequence of local chordalizations to obtain a
chordal completion G* of G as follows: Let C = {vy,...,v;} be a hole cover
of G and Gy = G{; = G — C. By the definition of hole cover, Gf is chordal.
Let GGy be the graph with

V(G)) = V(G U{v;} and E(G)) = E(GY)UE (G - O@ﬁ) .

j=2

Obviously {v;} is a hole cover of G satisfying the NC property. By Corol-

lary , we obtain the chordal graph GF = é\l({vl}) Let Go be the graph
with

V(Gy) = V(G U{vs} and E(Gy) = E(GY)UE (G - O@ﬁ) .

j=3

Again, {vs} is a hole cover of G5 satisfying the NC property. Let G% =
@({vg}) and we repeat this process until we obtain the chordal graph G =
é\l({vl}) as a desired graph G*. Then Gy is a chordal completion of G. We
note that if G' is chordal, then G = G}. Now we have shown the following
theorem.

In the rest of this chapter, for the notation U;’:p S; of a finite union of
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sets, we assume that it refers to an empty set if p > ¢.

Theorem 3.3.1. Let G be a graph with a hole cover C. Then C can be

partitioned into Cy,...,Ck for some positive integer k so that
(i) C; is a hole cover of the graph G; satisfying the NC property,
(i1) G} is chordal,

where Gy = Gy = G — C; G, is the graph defined by V(G;) = V(Gi_,) UC;,

k
E(G)) = E( ;-*_1>UE<G— U cj),

j=i+1
and G} = /G\Z(CZ) foreachi=1,... k.

Let G be a graph with a hole cover C. We call an ordered partition (Cy, . .., Cx)
of a hole cover C satisfying the conditions (i) and (ii) in Theorem a local
chordalization partition of C. Then the graphs G;, G} are uniquely determined
by the given local chordalization partition C := (Cy,...,Cx) of C. We call the
process of obtaining GG; and G the chordalization chain corresponding to C.
Especially, we write the process of obtaining G; from G} | as G} ;| <¢, G;
(in the context that G}_; is a proper subgraph of G;, we use “strictly less”
notation) for i = 1, ..., k. Then the chordalization chain corresponding to C

may be represented as
GOZGS <a Gl SGT <e, G2 SG;< < GkﬁGZ

We note that G} is a chordal completion of G. By the way, the last chordal
completion in the chordalization chain corresponding to C is a minimal chordal

spanning supergraph of G.

Proposition 3.3.2. Let G be a graph, C = (Cy,. .. ,Cy) be a local chordal-
wzation partition of a hole cover C of G, and G* be the last graph in the
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chordalization chain corresponding to C. Then G* is a minimal chordal com-
pletion of G.

Proof. Let H be a graph that is a spanning supergraph of G and a proper
subgraph of G*. Then E(G*)\ E(H) # 0. By definition, each edge of E(G*)\
E(H) is incident to one of vertices in C. Let s be the smallest index such
that some vertices in C, are incident to edges in E(G*) \ E(H). Now let B
be the set of edges in E(G*) \ E(H) which are incident to vertices in Cs.
By the definition of local chordalization, G — B is not chordal. Thus there
exists a hole C' in G% — B. By the choice of s, the edges in E(G*) \ E(G?)

_ o1 Cj. By definition, (U;_, ., C;) NV (G?) = 0.
Since V(G?%) = V(G% — B), the edges in E(G*) \ E(G?%) cannot be chords of
C'. Since E(H) C E(G*), the edges in E(H) \ E(G?) cannot be chords of C.

Therefore C' is a hole in H and so H is not chordal. Hence we have shown

. . . . 4
are incident to vertices in (J ¥

that G* is a minimal chordal completion of G. O

Now we are ready to introduce a parameter of a graph which measures the

number of steps of adding new edges to reach one of its chordal completion.

Definition 3.3.3. The non-chordality index of a graph G, denoted by i(G),
is defined as follows: If G is chordal, i(G) = 0. If G is not chordal, then i(G)
is defined to be the smallest k over all the hole covers of G in Theorem [3.3.1]

Remark 3.3.4. A graph G satisfies the NC property if and only if G satisfies
i(G) < 1.

Example 3.3.5. We consider the graph G given in Figure Since G does
not satisfy the NC property, i(G) > 2 by Remark . It is easy to check
that C = {u,v,w,z} is a hole cover of G. See Figure for an illustration.
Since Gj is a chordal completion of G, i(G) < 2. Thus i(G) = 2.

In this section, we prove the following statement.

Theorem 3.3.6. For any graph G, xpp(G) < w(G) +i(G). Especially, if G
is non-chordal and K,-minor-free, then xpp(G) <n —2+i(G).
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Figure 3.3: A chordalization chain Gy = G <{uvw) G1 < G} <o} G2 < G5
for a local chordalization partition C = ({u,v,w}, {z}) of G
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In order to do that, we show the following theorem first.

Theorem 3.3.7. Let G be a graph, C = (C1,...,Cp) be a local chordalization
partition of a hole cover C of G, and G* be the last graph in the chordalization
chain corresponding to C. If a vertex set K of G forms a clique in G*, then
there exists a subset C* of K N C such that K \ C* is a clique in G and
IC*NCi| <1 foreachi=1,... ¢

Proof. Let
Go=Gy<e, G1 <G1 < Ga <Gy <<, G <Gy =G"

be the chordalization chain corresponding to C for graphs G; and chordal
graphs G7. Then C; is a hole cover of the graph G| satistying the NC property
foreachi=1,...,¢. Foreachi=0,1,...,¢, we add the vertices in U] i1C
to G} and then restore the edges in G to obtain H;, that is, H; is the spanning
supergraph of G with the edge set E(G) U E(G}). Then, by the definitions
of G; and G}, Hy = G} and, for each i =0,...,0 -1,

¢ ¢
H; — U C;=G;, H;— U C; = Gy,

Jj=i+1 Jj=i+2

—

and, since G, ; = Gi11(Cit1),

Hiy — U C; = <H - U c) is1) (3.3.1)

Jj=i4+2 Jj=i4+2

We claim that if L is a clique in H;;; but is not a clique in H;, then L\ {u} is
a clique in H; for some vertex u € LNC; 1 foreachi =0,1,... /—1. Suppose
L is a clique in H;;1 but not a clique in H; for some i € {0,1,...,¢—1}. Then
L*:=L\ U?:Hz C, is a clique in H;1q — Uf i+2 Cj. Since two vertices joined
by an edge in H;1; but not in H; belong to V(G},,) = V(G) \ Uj:iJr2 ’’
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L* is not a clique in H; — (J°_..,C;. We note that (3.3.1) holds and Ciyy

j=i+2 “j
is a hole cover of G, ; = H; i U?:Hz C; satisfying the NC property. Thus,
by Theorem [3.1.8] there exists a vertex u in L* N C;q such that L*\ {u} is
a clique in H; — Uf:l 42 Cj. For the same reason why L* is not a clique in
H, — U§:¢+2 C;j, L'\ {u} is still a clique in H;.

Now we take a clique Ly := K in Hy. For i = 0,...,¢— 1, we sequentially
obtain a clique L;,1 in H,_; 1 in the following way. If L; is a clique in H,_; 1,
then we let L;.1 = L;. If L; is not a clique in Hy_;_1, then, by the claim which
has been proven above, there exists a vertex u € L; NCy_; such that L; \ {u}
is a clique in Hy_; 1 and we let L;y; = L;\ {u}. Let C* = K'\ L;. Then K \C*
equals L, and so is a clique as L, is a clique in Hy = G. Moreover, since at
most one vertex in Cy_; was deleted to obtain L;,; from L;, we have C* C C

and [C*NC;| <1 for each ¢ = 1,...,¢, which completes the proof. ]

Theorem 3.3.8. Let G be a graph, C = (C1,...,Ciw)) be a local chordal-
ization partition of a hole cover C of G, and G* be the last graph in the
chordalization chain corresponding to C. Then, for an induced subgraph H of
G, w(H") <w(H) + i(G) where H* is the subgraph of G* induced by V (H).
FEspecially, if G is non-chordal and K,,-minor-free, then w(G*) < n—2+i(G).

Proof. It G is chordal, then the first part of the statement is immediately
true as we may take G as G* and the second statement is vacuously true.

Thus we may assume G is non-chordal. Then ¢ :=i(G) > 1. Let
G():GS <c G SGT <ey G2§G§< - <g, GzSGZ:G*

be the chordalization chain corresponding to C. Clearly H* is a chordal com-
pletion of H. Let K be a maximum clique of H*. Then K is a clique in G*.
By Theorem [3.3.7] there exists a subset C* of K NC such that K \ C* is a
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clique in G and |C*NC;| <1 for each i =1,...,¢. Then

y4
<> jernegl <

i=1

C* =

l
cnlJe
j=1

Now we note that K \ C* is a clique in G, K C V(H), and H is an induced
subgraph of G. Thus K'\C* is a clique in H and so |K\C*| < w(H). Therefore
w(H*) = |K| < |K\C*|+|C*| <w(H)+ ¢ and so the first statement is true.

To show the “especially” part, assume that G is K,-minor-free. Let Z be
the graph with the vertex set V(G) and the edge set E(G) U E(G7). Then
Uﬁ:g C; is a hole cover of Z and (Cs, ..., Cy) is a local chordalization partition
of U§:2 C,. By the definition of non-chordality index, ¢(Z) < ¢ — 1. Let

Zy = Zak <e, Z1 < Zf <cs Ly < Z; <. <c Zo1 < ZZ—I

be the chordalization chain corresponding to (Cs,...,C/). By the way, Zy =
Zy =G, Zi =Gy and Z) = Gy for i =1,...,¢ — 1. To reach a contra-
diction, suppose that Z has a clique L of size n. Then L* := L\ Uﬁ:z Cj is
a clique in G7. By the definition of Z, the edges in L but not in L* belong
to G. Since C; is a hole cover of (G satisfying the NC property, by Theo-
rem L* is a minor of G; as G} = é\l(Cl). As G is a subgraph of G
and the edges in L but not in L* belong to GG, we may conclude that L is a
minor of G with size n, which is a contradiction. Therefore Z is K,,-free and
so w(Z) < n—1. Take a maximum clique K of G*. If K is a clique of Z, then
w(G*) = K| <w(Z) <n—-1<n-2+4i(G) and so the inequality holds.
Suppose that K is not a clique of Z. By Theorem there exists a subset
C*of KN (U?:g Cj) such that K\ C** is a clique in Z and [C* NC;| < 1 for
each i =2,...,/. Then

14
<>lerngl<e-1.

=2

l
cnl e

j=2

| =
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Thus
n—1>w(Z)>|K\C" > |K[—-|C"] > w(G") - ({-1)

and the “especially” part is true. O

A proof of Theorem|[3.3.6, Take a graph G and let G* be a chordal comple-
tion of G given in Theorem[3.3.8} Then, since G* is chordal, x pp(G*) = w(G*)

by (§). Thus, by Theorem [3.3.8]
Xop(G) < Xpp(G7) = w(G¥) S w(G) +i(G)

and, if G is non-chordal and K,,-minor-free, then the right hand side of the
second inequality above may be replaced with n — 2 4 i(G). O

By (1.2.2)), Theorem gives x;(G) < w(G) +i(G) for a graph G and
X1(G) < n—2+i(G) if G is non-chordal and K,,-minor-free. Actually, the in-
equality x;(G) < w(G)+i(G) is sharp and accordingly so is the first inequality
given in Theorem |3.3.6l To show it, we need the following proposition.

Given a graph G, we denote the independence number and the vertex

cover number of G by «(G) and S(G), respectively. It is well known that
a(G) + B(G) = [V(G)].

Proposition 3.3.9. Fvery graph G is 5(G)-degenerate.

Proof. Take a graph G. Let I be an independent set of G with size a(G).
Take a subgraph H of G. Suppose V(H)NI # (). Then, as I is an independent
set of G, V(H) N is an independent set of H. Thus any vertex in V(H) NI
has degree at most |V(H) \ I| < |[V(G)\ I| = B(G). f V(H) N I =, then
\V(H)| < |[V(G)\ I| = B(G), and so any vertex of H has degree at most
B(G) — 1. Hence G is B(G)-degenerate. O

We recall that if a graph G is k-degenerate, then xpp(G) < k+1, from which

the corollary below is immediately true. As a matter of fact, the corollary
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enhances the known inequality x(G) < 5(G) + 1 for a graph G.
Corollary 3.3.10. For a graph G, xpp(G) < 5(G) + 1.

Consider a complete graph K,, with n > 2. Then «(K,) = 1, f(K,) =
[V (K,)| =1, and x(K,) = xi(Ky) = xpp(K,) = |V(K,)| = B(K,)+1. Hence
the upper bound for xpp(K,) in Corollary is sharp.

For a complete graph K, with n > 2, the inequality given in Corol-
lary is sharp even for x(K,) and y;(K,) as we have seen above. Yet,
it is not necessarily in that way as it is known that S(Cy) = 2, x(Cy) =
Xi(Cy) =2 < B(Cy) + 1, and xpp(Cy) =3 = B(Cy) + 1.

Now we are ready to present the following theorem, which implies that the
inequality x;(G) < w(G) + i(G) is sharp (and so xpp(G) < w(G) + i(G) is
sharp).

Theorem 3.3.11. For a positive integer s and a nonnegative integer t, there
is a graph G with x(G) = w(G) = s+ 1, i(G) =t, and x;(G) = s+t + 1.

Proof. 1f t = 0, then we let G = K,,1. Suppose t > 1. We may represent ¢

as the sum of s nonnegative integers, that is, ¢ = »_._, m; for nonnegative

integers my, maq, ..., ms. Let G be a graph isomorphic to K14, 14ms,.. 14mem
where m = (s + t)(SH). Let Vi, Vs, ..., V;, and V1 be the partite sets of G
with |[Vi| =m; +1fori=1, ..., s and |V,,1| = m. Now we take a vertex v;

from V; for i =1, ..., s. Then C :=J;_, (Vi \ {v;}) is a hole cover of G with
size Y7 m; =t. Let C1,Cy, ..., C; be all the singleton subsets of C. Then it
is easy to check that (Cy,Cs,...,C;) is a local chordalization partition of C.
Thus i(G) < t.

On the other hand, it is obvious that w(G) = s+ 1. Then, as it is easy to
check that a complete multipartite graph is perfect,

X(G) =w(G) =s+1.
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Since [Ve1| = m and [V(G) \ V| = 220 (1 + my) = s + ¢,
XDP<G> <s+t+1 (332)

by Corollary|3.3.10] In addition, | J;_, V; and V,;; form two disjoint vertex sets
of G with sizes s+t and (s+t)*+") respectively, so G contains Kot (s4t)stt s a
subgraph. Then, from the observation made by Gravier [2I] that x; (K} 4) >

k for any positive integer k, we obtain
xXi(G)>s+t+1. (3.3.3)

Thus, by (T22), @32), and B33), s+1+1 < 1(G) = xpp(G) < s+1+1
and so x;(G) = s+t + 1. Since w(G) = s+ 1, i(G) >t by Theorem [3.3.6, As
we have shown that i(G) < t, we complete the proof. O

It is worthy of attention that Theorem guarantees the existence of
a graph G with ¢(G) =t for any nonnegative integer ¢.

We recall that w(G) < x(G) < xi(G) < xpp(G) for a graph G and that
the gaps between w(G) and x(G), between x(G) and x;(G), and between
x1(G) and xpp(G) can be arbitrarily large. Yet, Theorem tells us that
the sum of those gaps cannot exceed i(G). Especially, if G satisfies the NC
property, then those gaps cannot exceed one and at most one of them can be

one.

3.3.2 Making a local chordalization really local

In this section, we devote ourselves to convincing readers that the “local” in
our terminology “local chordalization” makes a sense.

Let G be a non-chordal graph and X(G) = Upycyq) V (H). We define a
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relation ~¢ on Q(G) so that, for u,v € Q(G),

u ~g v < either v and v are on the same hole or there exists a sequence
Hy, ..., H; of distinct holes in H(G) such that v € Hy, v € Hy,

and H; and H;,, share a vertex for each i =1,... ¢t — 1.

It is easy to see that ~¢ is an equivalence relation and that, for each hole in

G, the vertices on the hole belong to the same equivalence class.

Proposition 3.3.12. Let G' be a non-chordal graph, H be a hole in G, and
S be the equivalence class under ~¢g containing V(H). If adding a chord of
H to G yields a new hole H*, then V(H*) C S.

Proof. Since H is a hole, there are two nonadjacent vertices v and v on H.
Suppose that adding the edge joining u and v to G creates a new hole H*.
Obviously uv is a chord of H in G + uv. Let x be a vertex in H* other than
u and v. It suffices to show x € S to complete the proof. If x is on H, then
we are done. Thus we may assume that z is not on H.

Case 1. x is adjacent to an internal vertex of each of the two (u,v)-sections
of H. Since u, v, and x are on the hole H* with v and v consecutive on H*,
x is nonadjacent to one of w and v in G 4+ wv. Without loss of generality, we
may assume that x is nonadjacent to v in G+wuv. Obviously x is nonadjacent
to v in G. By applying Lemma for P = {x}, there exists a hole in G
containing x and v. Therefore x ~g v. Since v € S, x € S.

Case 2. One of the two (u,v)-sections of H has no internal vertex that is
adjacent to z. Let R be such a (u, v)-section. Then none of z and its neighbors
on H* is an internal vertex on R. While traversing along the (z,v)-section
(resp. (z,u)-section) of H* not containing u (resp. v), let y (resp. z) be the
first vertex at which we meet R. Let @1 be the (y, z)-section of H* containing
x, Q2 be the (y, z)-section of R, and @) = Q1Q)>. By the choices of y and z, Q)

is an induced cycle of G containing x and a vertex on H. Since two neighbors
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of x on H* are nonadjacent in G, () is a hole in G. Since () contains z and
avertexon H, z € S. O

Remark 3.3.13. Let G be a non-chordal graph and Q(G)/~¢ be the set
of equivalence classes under ~g. Take an equivalence class S € Q(G)/~¢, a
hole H with V(H) C S, and vertices u and v on H which are not consecutive.
Proposition implies that the equivalence classes in Q(G)/~¢ except S
are still equivalence classes under ~¢y,,, and if there are other equivalence

classes under ~g. ., they are disjoint subsets of S. Therefore Q(G + uv) C

Q(a).

Remark 3.3.14. Let G be a non-chordal graph and ¢ = i(G). By the def-
inition of i(G), there exist a hole cover C of G and a local chordalization
partition C = (Ci1,...,Cp) of C. Let

Go=Gp<e, G1 <G <, G2 <G5 <<, G <Gy =2G" (3.34)

be the chordalization chain corresponding to C. Let H be the subgraph of G
induced by Q(G). Then, by the definition of induced subgraph, all the holes
in H are contained in G. By the definition of (G), all the holes in G are
contained in H. Therefore H(G) = H(H), Q(G) = Q(H), and C is a hole

cover of H. Thus the equivalence classes under ~ are the equivalence classes

under ~g. We recall that
Go=G,=G—C, (3.3.5)

V(Gi) = V(GL,) UG, B(Gi) = E(GL,) UE (G Y cj> . (336)

—~

foreachi=1,...,¢. Let Hy = Hj = H —C. Since H is an induced subgraph
of G, Hy is an induced subgraph of G by (3.3.5)). Furthermore, Gy, G§, Ho,
and H are chordal and so H(G}) = H(Go) = H(Hy) = H(H{) = 0 and

91



Q(GE) = QUGy) = Q(Hy) = QHS) = 0. Let Hy be the graph defined by
V(H§) UCy and

=
E
I

E(H)) = E(H})UE (H - cj) .

Since H and Hj are induced subgraphs of G' and Gf, respectively, H; is
an induced subgraph of G; and H(H;) C H(G1) by (3.3.6). Take a hole
Q, in G,. Since Gy is an induced subgraph of G, V(Q;) ¢ Q(G) \ UL, C:.
Since Q(G) = V(H) and V(H) \ U'_,C = V(H,), V() C V(H,). Since
H; is an induced subgraph of G, €2y is a hole in H;. Thus we have shown
that H(H;) = H(G1). Hence, since C; is a hole cover of Gy satisfying the
NC property, it is a hole cover of H; satisfying the NC property and so we
obtain fl\l(Cl) =: H{. Since H(H;) = H(G;) and H; is an induced subgraph
of G1, H{ is an induced subgraph of G7. Let Hsy be the graph defined by
V(H,) = V(H{)UCy and

E(Hy) = E(H})UE (H - OQ-) .

Then Q(G) \ Uf:3 Ci = V(Hs). Since H and H; are induced subgraphs of G
and G7, respectively, Hs is an induced subgraph of Gy and H(Hy) C H(G2)
by . Take a hole €2y in Gj. Since G7 is chordal, 23 must contain a
vertex v in Cy. By the way, since Cy is a hole cover of G4 satisfying the NC
property, €2 contains exactly one vertex in Cy and so v is the only vertex on
()5 that is contained in C,.

Since G is non-chordal, there exist a hole in G. The chain given in (|3.3.4))
is the shortest, one of the holes in G must be in GG;. Thus there exists an edge
in E(GY) \ E(Gy). Take an edge e in E(G7) \ E(G1). Then there is a hole in
G such that e is its chord in G + e. By Proposition [3.3.12, Q(G +e¢) C Q(G).

If E(G) \ E(G1) = {e}, then, by Proposition [3.3.12 V(Qs) C Q(G>) C
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Q(G+e) C Q(G) and so V(€2s) C Q(G). Suppose that E(G)\(E(G1)U{e}) #
() and take an edge €’ in E(G3)\ (E(G1) U{e}). Then there is a hole C' in G
such that € is its chord in G + €’. Now there is a hole in G + e such that ¢’
is its chord in G U {e,e'}. For, if C' is a hole in G + e, then it is such a hole.
Otherwise, by the definition of local chordalization, e is a chord of C' and ¢’
is a chord of a hole from C + e.

By applying Proposition for G+ e and an edge ¢/, Q(GU{e, e'}) C
Q(G). We may repeat this argument to conclude that Q(GU(E(G7)\E(G,))) C
Q(G). Since G is an induced subgraph of G U (E(G7) \ E(G1)) and s is a
hole in G,

V(§) C Q(G2) QG U (E(GY) \ E(GY))) € QG),

and so V(€2) C Q(G). Therefore we have shown that V(€;) C Q(G) whether
or not E(G7)\ (E(Gy)U{e}) # 0. Thus the vertices on 5 belong to Q(G) \
Uf:3 C;. Since Q(G) \ Uf:g C; = V(H3) and Hs is an induced subgraph of G,
s is a hole in Hy and so H(G2) C H(Hz). Thus H(Gs) = H(H,). Hence,
since Cy is a hole cover of (G5 satisfying the NC property, it is a hole cover
of H, satisfying the NC property and so we obtain I/J\Q(Cg) =: H. We may
repeat this process to obtain Hs, H;, ..., H,, H; such that

¢
V(H;) =V(H,)UC;, E(H;)=FE(H)UE (H - U Cj) :
H} = H;(Cy),

and H(G;) = H(H;) for i = 3,...,¢. Noting that H(G) = H(H) and G}
(resp. HJ) is a chordal completion of G (resp. H), we may conclude that
i(H) < (=1i(GQ).

To show that i(G) < i(H), we need to introduce the chordalization chain
corresponding to a local chordalization partition C’' of a hole cover C' of

H terminating at H Z.*( Y- By mimicking the previous argument constructing
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v \ /’
G1 G2

Figure 3.4: Q(G1) = Q(G3), so i(Gy) = i(G2) by the argument given in
Remark [3.3.14

the chordalization chain corresponding to C for H , we may construct the
chordalization chain corresponding to C' for G to conclude i(G) < i(H).
Thus i(G) = i(H) and it is sufficient to apply local chordalization process to
the induced subgraph H of G, which is a local structure, to obtain a desired
chordal completion of G. In this vein, we may claim that the “local” in our

terminology “local chordalization” is meaningful in another respect.

Example 3.3.15. The graph G, in Figure is obtained from G by re-
placing the vertex v of G by the complete graph K,,. Then Q(G;) = Q(Gs).
By the argument given in Remark [3.3.14] i(G1) = i(G>). Yet, the treewidths
of G; and G5 are 2 and n — 1, respectively.

By the argument given in Remark [3.3.13 the following proposition is

true.

Proposition 3.3.16. For a non-chordal graph G,
i(G) = max{i(G[51]),...,i(G[S,])}

where Sy, ...,S, are the equivalence classes under ~¢.
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Proof. Let G be a graph and C = (C1,...,Cie)) be a local chordalization
partition of a hole cover C of G. Then, for each j = 1,...,i(G), CNS; is
a hole cover of G[S;]. In addition, by the argument given in Remark [3.3.13]
a subset of {C; N S;,...,Cie) N S;} forms a local chordalization partition
of C N S;. Thus i(G[S;]) < i(G) for each j = 1,...,i(G) and so i(G) >
max{i(G[S1]),...,i(G[S,])}.

Now let Ci = (Ci,... ,Cf(G[SjD) be a local chordalization partition of a
hole cover C7 of G[S] for each j = 1,...,r. Clearly |Jj_, 7 is a hole cover
of G. In addition, by the argument given in Remark

J J J
U U UChcis.icisny)
j=1 j=1

j=1

is a local chordalization partition of | J;_, C’ where C) = () forany j = 1,...,r

and any p, i(G[S;]) < p < max{i(G[S1]),...,i(G[S,])}. Hence
max{i(G[S1]),...,i(G[S,])} > i(Q).

]

The join, denoted by GV Gy, of two graphs GG; and G is the graph with
the vertex set V(G1) U V(Gs) and the edge set F(G1) U E(Gy) U {uv | u €
V(G1) and v € V(Gy)}. We denote by I,,, an empty graph with m vertices.

Theorem 3.3.17. Suppose that a non-chordal graph G does not contain
I,V K,, for positive integers m > n as a subgraph and w(G[Q(G)])+i(G) < m.
Then there is a chordal completion G* of G with w(G*) < m + n.

Proof. Since G is non-chordal, i(G) > 1. Let H be the subgraph of G induced
by Q(G). By the argument in Remark [3.3.14] i(G) = i(H). Let H* be the
subgraph of G* induced by Q(G) where G* is a chordal completion of G
obtained in Remark [3.3.14] Then H* is a chordal completion of H.
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Suppose to the contrary that w(G*) > m + n. Then there is a clique K
of size m + n in G*. Clearly K N Q(G) forms a clique in G*. Since H* is an
induced subgraph of G*, K N Q(G) forms a clique in H*. By Theorem [3.3.8
K N Q(G)| < w(H) + i(G). By the hypothesis, |K N Q(G)| < m. Since
K| = m+mn, |K\ QG)| > n. By the definition of local chordalization
and Remark the end vertices of each of the edges newly added to
obtain G* belong to Q(G), so K \ Q(G) still forms a clique in G and each
vertex in K NQ(G) is adjacent to each vertex in K \ Q(G) in G. By moving
m — |K N Q(G)| vertices in K\ Q(G) into K N Q(G) if |K NQG)| < m,
we may claim that G contains I,, V K,, as a subgraph. This contradicts the

hypothesis, so we conclude that w(G*) < m + n. ]
The following corollary is an immediate consequence of Theorem [3.3.17]

Corollary 3.3.18. Suppose a graph G does not contain I, V K, for positive
integers m > n as a subgraph and w(G[QG)]) +i(G) < m. Then xpp(G) <

m -+ n.

Remark 3.3.19. Since K4 is non-chordal and has a hole cover which is
a singleton, i(K34) = 1. Then, by Theorem [3.3.6, xpp(K24) < 3. Yet,
Xpp(Ka4) <5 by Corollary(3.3.18, Thus, for xpp(K2.4), Theoremmgives
a better upper bound than Corollary [3.3.18|

On the other hand, for a certain graph G, Corollary gives a better
upper bound of xpp(G) than Theorem m To see why, consider the graph
G given in Figure 3.5 If G contained a subgraph isomorphic to IgV Ky, then
G would have at least four vertices with degree at least 11, which does not
happen in G as the two vertices common to Kg and K7, are the only vertices
with degree at least 11. Hence GG does not contain Ig V K, as a subgraph.

It is easy to check that w(G) = 11 and w(G[Q(G)]) = 5. The graph
G[Q(Q)] is represented by using bold edges in Figure [3.5[ and happens to be
the graph given in Figure . Therefore i(G') = 2. Then Theorem m gives
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rise to xpp(G) < 11 4 2 while Corollary |3.3.18] gives rise to xpp(G) < 11.
Furthermore, since w(G) = 11, xpp(G) is actually equal to 11.

Figure 3.5: A graph GG which shows that Theorem [3.3.17| may be regarded as
an improvement of Theorem [3.3.8] The vertices enclosed by a dotted ellipse
form a clique.

3.4 New y-bounded classes

A class F of graphs is said to be y-bounded if there exists a function f :
N — R such that for every graph G € F and every induced subgraph H of
G, x(H) < f(w(H)).

We may extend the notion of y-boundedness as follows. A class F of
graphs is said to be y;-bounded (resp. xpp-bounded) if there exists a function
f N — R such that for every graph G € F and every induced subgraph H
of G, xi(H) < f(w(H)) (resp. xpp(H) < f(w(H)).

A graph G is called perfect graph if x(H) = w(H) for every induced
subgraph H of G.
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We may also extend the notion of perfect graph as follows. We say that a
graph G is list-perfect (vesp. DP-perfect) it x,(H) = w(H) (resp. xpp(H) =
w(H)) for every induced subgraph H of G.

We denote the class of perfect graphs, the class of list-perfect graphs, and
the class of DP-perfect graphs by P, P;, and Ppp, respectively.

By , a xpp-bounded graph class is y;-bounded and a x;-bounded
graph class is x-bounded. In the proof of Theorem [3.3.11] we have shown
that for any positive integer s and any nonnegative integer ¢, there exist a
complete multipartite graph G with w(G) = s+1 and x;(G) = s+t+1, which
implies that the class of complete multipartite graphs is not y;-bounded. Any
complete multipartite graph is, however, perfect, which implies that the class
of complete multipartite graphs is y-bounded. Accordingly, a xy-bounded class
is not necessarily x;-bounded. Furthermore, Ppp C P, C P by . Yet,
Ppp C P, C P as Koy is perfect but not list-perfect and C}y is list-perfect
but not DP-perfect.

Note that w(C,,) = 2 and xpp(C,) = 3 for even integer n > 4. Thus no
graph in Ppp contains a hole of even length. Since a graph containing a hole
of odd length is not perfect, no graph in Ppp contains a hole of odd length.
Therefore Ppp is included in the class of chordal graphs. Thus, by (§), Ppp
is the class of chordal graphs.

Now we present new y-bounded classes.

Theorem 3.4.1. A family of graphs the non-chordality index of each of which

does not exceed k for some nonnegative integer k s linearly x pp-bounded.

Proof. Take a family F of graphs the non-chordality index of each of which
does not exceed k for a nonnegative integer k. Let f : N — R be a function
defined by f(x) = x + k. Take a graph G in F. Then i(G) < k. Let H
be an induced subgraph of G. By the first part of Theorem [3.3.8 there
exists a chordal completion H* of H such that w(H*) < w(H) + i(G). Thus
Xpp(H) < xpp(H*) =w(H*) <w(H)+i(G) < f(w(H)). Hence the theorem

1s true. O
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By Remark [3.3.4] the following corollary is immediately true.

Corollary 3.4.2. The class of graphs with the NC property is x pp-bounded.
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