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ABSTRACT

Smart farms are emerging as ICT technologies have recently been applied to existing 

agricultural technologies. Completion of smart farms requires quantitative analysis of 

complex, diverse, and unpredictable relationships between crops and the environment. 

This calls for the development of new algorithms to interpret agricultural big data and 

systems that can continuously, automatically, and non-destructively monitor the response 

of crops to the environment. In this study, an algorithm was developed to estimate the 

growth of hydroponically grown bell pepper crops in response to environmental factors. 

The development of measuring methods that could automatically and continuously 

collect the growth characteristics was preceded. The leaf area index (LAI) of the bell 
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pepper crops was estimated using light interception profile of crop canopy, including 

quantitative relationship between external weather, and time factors. Ray-tracing 

simulation and machine learning were used to analyze these factors quantitatively. The 

actual LAI was estimated with high accuracy for the developed method. The fresh weight 

measurement system of was designed to measure the weight of the total cultivation 

system considering the physiological and cultural characteristics of bell pepper crops. In 

addition, changes of water content in the substrate were corrected to calculate only the 

fresh weight of the crop. Developed fresh weight measurement systems were able to 

estimate the actual fresh weight with high accuracy. With crop growth characteristics 

collected using the developed measurement methods, and the environment factors 

collected using sensors, the crop growth estimation algorithm was machine learned. As 

crop growth affected by cumulative changes of the environmental factors, the RNN 

algorithm, specialized in chronologically data, was selected. Using the training test 

accuracy, major environmental factors were selected and the optimal algorithm was 

developed. Additional data were collected from the experimental conditions 

independently of the algorithm training conditions, to validate the developed algorithm. 

The accuracy of the process-based growth model (PBM) was compared to evaluate that 

of the developed algorithm. In validation, the accuracy of the developed algorithm 

showed a similar to or higher than that of the PBM. Therefore it was conformed that the 

growth characteristics of crops could be collected as big data and the crop growth could 

be efficiently analyzed by using the systems and methodologies developed in this study.
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GENERAL INTRODUCTION

Bell pepper is an economically important vegetable worldwide, and generally grown 

hydroponically in precisely-controlled greenhouses because of its high sensitivity to 

environmental conditions (Jang et al., 2018; Ngouajio et al., 2008; Sezen et al., 2006). In 

these cultivation conditions, the crop growth responds to the controlling environment 

conditions in greenhouses. For quantitatively analyze the growth response of the crop to 

the environment conditions, to continuously collect crop growth characteristics and 

environmental factors is important.

Leaf area index (LAI), the leaf area per unit cultivation area, is one of the important 

growth characteristics. Crop leaves absorb light, produce biochemical energy, and 

exchange carbon (Cope et al., 2012; Sala et al., 2015). LAI quantitatively correlates with 

crop canopy photosynthesis and transpiration (Suguiyama et al., 2014; Yamori et al., 

2016). LAI is important for estimating crop growth and yield (Bertin and Heuvelink, 

1993; Jones et al., 1991). The weight of crops is also a key parameter used in most of 

crop growth models (Heuvelink, 1999; Jones et al., 1991; Martínez-Ruiz et al., 2019; 

Shamshiri et al., 2016). In the growth models, the weight of crops is used as dry matter, 

however it is important to measure the fresh weight of the crop because most 

horticultural crops are sold in fresh weights (Marcelis et al., 1998). Data of leaf area and 

crop weight are usually collected through destructive means, which inherently limits the 

potential for continuous measurement of crop growth changes and affects crop growth 

and development due to changes in light interception by adjacent crops (Peksen, 2007). 
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The crop growth has been quantitatively analyzed using process based models (PBM)

using environmental factors. PBM consists of modules that various physiological 

processes of crops such as photosynthesis, respiration, biomass assimilation, biomass 

distribution, and stress response. Using PBM, the growth and development of crops can 

be simulated through various process modules according to input variables. Since PBM 

aims to include all biochemical functions of plants, various modules are subjected to 

complicated calculations for even a single variable, and many indices are to be calibrated. 

Big data have been collected in greenhouses, but PBM has limitations in processing such 

big data. Machine learning-based algorithms have recently been used to process big data. 

Therefore, the relationships of crop growth with environmental factors could be analyzed

by using such machine learning algorithms. Among the machine learning algorithms, 

recurrent neural network (RNN) is optimized for analyzing accumulated time series data. 

Since the growth responses of crops are determined by cumulative environmental factors, 

RNN could be useful for analyzing the relationship between environment and crop 

growth.

The objectives of this study were to develop methodologies for continuous, automatic, 

and non-destructive collection of LAI and fresh weight of hydroponically-grown bell 

pepper crops, to develop an algorithm to estimate the growth with RNN, to validate the 

developed algorithm under various greenhouse conditions, and to evaluate the accuracy 

of the algorithm compared to PBM.
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LITERATURE REVIEW

Non-destructive measurements of leaf area index

Simulation techniques can be applied for estimating LAI of crop (Liet al., 2006; 

Rodríguez et al., 2015; Wang et al. 2017). However, there are limitations in estimating 

dynamic changes in LAI, because occurrences caused by various factors during 

cultivation. Regression equation with leaf area and leaf width measurements is generally 

used for measuring the LAI non-destructively in many crops (apples, Sala et al., 2015; 

blue berries, NeSmith, 1991; cucumbers, Blanco and Folegatti, 2003; eggplants, Rivera 

et al., 2007; grapes, Montero et al., 2000; roses, Rouphael et al., 2010; tomatoes, 

Schwarz and Klaring, 2001; and zucchini plants, Rouphael et al., 2006). Regression 

equation methods are time and labor-consuming by measuring leaf length and leaf width 

for all leaves of individual plants. Therefore, to measure the dynamic changes or large 

amount, automatic, non-destructive, and continuous measurements of LAIs are needed 

(Spitters, 1990). For automated continuous measurements of LAI, phenotypes of crop

shape and form have recently been produced by 3D laser scanning, RGB camera, and 

thermal cameras (Dhondt et al., 2013; Fiorani and Schurr, 2013; Llop et al., 2016; 

Nguyen et al., 2015; Sun et al., 2018; Rose et al., 2014). However, this image processing 

methodology requires high cost for the measurements and analyzations of crop shape and 

form (El-Omari and Moselhi, 2011; Paulus et al., 2013; Vos et al., 2010), with high 

demands on platform to build low-cost crop’s shapes (Paulus et al., 2014; Yang et al., 

2013), having difficulties for applications in industrial greenhouses.
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Non-destructive measurements of crop fresh weight

Chen et al. (2016) calculated the fresh weight of hydroponically-grown lettuce crops 

using compressive force load cells installed between a disk on which the crop was fixed 

and another disk fixed to the planting bed. This method is suitable for the deep water 

culture that the moisture in the sponge block fixing the crop is always saturated. 

However, this methodology is not suitable for the substrate hydroponic cultivation 

condition, because irrigation, drainage, and water uptake of crops continuously change 

the water content in the substrate. Baas and Slooweg (2004) developed a system for 

measuring the fresh weight of gerbera planted on a rockwool substrate using a 

compressive force load cell and frequency domain reflectometry (FDR) sensor. The 

system calculates the fresh weight of crops excluding the weight of water in the substrate 

with FDR sensor. However, since the FDR sensor measures the volume of water, 

calibration is required to convert it to weight. In addition, since this system can measure 

only the gravitational weight of the crop, it is difficult to be applied to bell pepper 

cultivation where the crop is supported by the string trellis. CropAssist is a commercial 

product developed to measure fresh weights of trellised crops (Helmer et al., 2005). 

CropAssist measures the change of crop weight by tensile load cell (upper load cell) 

installing between the greenhouse frame and the aluminum bar, which supported the 

string trellis. In addition, a compressive force load cell (lower load cell) is installed under 

the substrate of the crop to estimate the change in the amount of water in the substrate. In 

various previous studies, crop growth and transpiration were estimated using CropAssist 
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(Ahmad et al., 2013; Battista et al., 2015; Ehret et al., 2011; Story and Kacira, 2015). 

However, these studies are limited to tomato and cucumber that weight the crops entirely 

on the string trellis. Suitable methods for bell pepper where the weight of the crop is 

divided into upward (training wire supporting weight) and downward (gravitational 

weight) are needed to be developed.

Crop growth models

Crop growth models have become essential to support scientific research, crop 

management, and agricultural policy analysis, with mathematical and quantitative 

expressions of plant growth processes affecting interactions among genes, environments, 

and crop management (Fischer et al. 2000; Hammer et al., 2002; Hansen, 2002). Crop 

growth models generally include simulations of plant growth, development, biomass 

distribution (leaves, stems, roots, and reproductive structures), and yield. Crop growth 

models can simulate changes of crop growth index variables (e.g., LAI and biomass), 

biomass partitioning to each organ, and yields prediction in response to cultivar 

characteristics, environmental factors (e.g., solar radiation, temperature and CO2), and 

management practices (Huang et al, 2013; Yang et al., 2004). Ideally, such model-

simulated responses can be used to infer responses by real systems. Virtual experiments 

(simulations) using the models can thus complement real experiments, but model 

responses relative to real system responses are needed to be evaluated for a range of 

conditions to establish confidence in the model, and to provide a measure of uncertainty. 

Little has been done to establish uncertainty of agricultural systems models until recently 
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(Asseng et al., 2013, Rosenzweig et al., 2013a, b). Advanced computer technology 

allows simulations close to actual crop growth, which is regulated by the complex 

interaction of many factors (Oteng-Darko et al., 2012). Crop growth models require 

many input data (e.g., management practices, cultivar parameters, soil properties, and 

weather data) to predict crop growth and yield (Basso et al., 2013; Machwitz et al., 2014).

Application of artificial neural network to agricultural research

Artificial neural network (ANN) provides a way of analyzing complex nonlinear and 

multi-dimensional data sets arising from data collection (Wang, 2005). ANN could be 

used for high levels of abstraction from raw data (LeCun et al., 2015). ANN has widely

been used in agricultural research for the purpose of analyzing the biochemical and 

physiological characteristics of various crop cultivations (Arab et al., 2010; Eftekhari et 

al., 2018; Ehret et al., 2011; Kucukonder et al., 2016). Among ANN algorithms, 

recurrent neural network (RNN) is useful for analyzing chronological data and this 

algorithm shows better accuracy than previous algorithms (Adavanne et al., 2017; 

Ororbia et al., 2017). RNN has an advantage of inputting big data of relatively long 

period and the length of output values is also unlimited theoretically (Hochreiter and 

Schmidhuber, 1997). The crop growth responses to the environment are determined by 

accumulated time series data from environmental factors. In order to accurately predict 

the growth of crops in various climatic conditions, the cultivation of the crops must be 

performed on the basis of previous environmental factors.
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CHAPTER 1

Estimating Leaf Area Index of Bell pepper According to Growth 

Stage Using Ray-tracing Simulation and Long Short-term 

Memory

ABSTRACT

Leaf area index (LAI), which represents crop-growth characteristics, is used to 

calculate canopy photosynthetic rate, set irrigation standards, and predict crop growth. 

LAI can be non-destructively and continuously estimated using the light-intensity ratio of 

the upper and lower crop canopy, but it is affected by solar altitude and external weather 

conditions. The objective of this study was to develop a method to estimate LAI using 

the light-intensity ratio of the upper and lower crop canopy via solar altitude and weather 

conditions. Growth stages and weather conditions with solar altitude were set using 3D-

scanned plant models and ray-tracing simulation, respectively. The light intensities at 

each location of the canopy for given conditions were calculated using ray-tracing 

simulation. The relationship between light-intensity ratio and LAI was analyzed using 

long short-term memory (LSTM), which is a type of artificial neural network. According 

to our results, the ratio varied depending on solar altitude and external weather 
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conditions and exponentially decreased with increasing LAI. This LSTM algorithmic 

approach was able to quantitatively analyze this complex relationship; compared with a 

greenhouse experiment for validation, the algorithm was highly accurate (R2=0.808). 

Accuracy further increased when solar altitude and weather conditions were added to the 

model. Therefore, we conclude that, using this method, LAI can be accurately measured 

in a non-destructive and continuous manner.

Additional keywords: continuous measurement, leaf area, light interception, paprika, 

recurrent neural network
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INTRODUCTION

Crop leaves absorb light, produce biochemical energy, and exchange carbon and 

water; thus, they are important subjects for botanical, morphometrical, physiological, and 

ecological research (Cope et al., 2012; Sala et al., 2015). Among the various 

characteristics of leaves, the leaf area index (LAI), which is the leaf area per unit 

cultivation area, has a quantitative relationship with crop canopy photosynthesis and 

transpiration, so is used as a standard for irrigation and fertilization (Suguiyama et al.,

2014; Yamori et al., 2016). Additionally, LAI is an important parameter for predicting 

crop growth and yield (Bertin and Heuvelink, 1993; Jones et al., 1991). Usually, crop 

leaf area data are collected through destructive means, which inherently limits the 

potential for continuous measurement of crop growth changes and affects crop growth 

and development due to changes in the amount of light interception by adjacent crops 

(Peksen, 2007). Therefore, further non-destructive approaches for estimating leaf area are 

necessary.

Simulation techniques offer an indirect method for estimating crop LAI (Rodríguez et 

al., 2015; Wang et al., 2017). However, simulation has a limited ability to estimate 

dynamic changes in leaf area because it cannot account for variable factors associated 

with cultivation. Although regression models offer a non-destructive approach for 

evaluating leaf area and leaf width for LAI (apples, Sala et al., 2015; cucumbers, Cho et 

al., 2006; eggplants, Rivera et al., 2007; roses, Rouphael et al., 2010; tomatoes, Schwarz 

and Klaring, 2001; and zucchini plants, Rouphael et al., 2006), this method requires a lot 
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of time and labor because the length and width of all leaves on every plant must be 

measured. Automated measurement is a fast, simple, and non-destructive way to measure 

dynamic changes in leaf area and to acquire large amounts of continuous crop growth 

data (Spitters, 1990). Recent examples of an automated continuous measurement of crop 

leaf area include 3D laser scanning, RGB camera, and thermal cameras that can record 

crop shape and form (Llop et al., 2016; Nguyen et al., 2015). However, these imaging 

methodologies require high cost for both measurement and analysis (El-Omari and 

Moselhi, 2011; Paulus et al., 2013) and require expensive platforms in commercial 

greenhouses (Paulus et al., 2014; Yang et al., 2013).

Thus, there is a need for a low-cost and practical continuous LAI measurement 

system. Monsi and Saeki (2005) showed that the light interception of the crop canopy is 

related to crop LAI, according to modifications of Lambert-Beer’s equation. Using the 

differences between the upper and lower light intensities of the crop canopy, LAI can be 

estimated in forests or open fields (Fang et al., 2014; Lena et al., 2016; Lopes et al., 2014; 

Yao et al., 2016). However, in greenhouses, light conditions are changed by interactions 

between the greenhouse location and date, solar altitude by time, and various greenhouse 

structural factors, all of which can have different light characteristics compared with field 

contexts (Buck-Sorin et al., 2011; Gupta et al., 2012). Also, external weather conditions 

change the ratio of diffusive solar radiation, which has high light interception within crop 

canopies, and this can change light spatial distributions in the crop canopy (Li and Yang,

2015). 
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Therefore, to accurately estimate crop LAI, it is necessary to quantitatively analyze

the light receiving patterns of greenhouse-cultivated crop canopies, while considering 

solar altitude and external weather conditions. Solar altitudes and external weather 

conditions are thought to be inevitable factors; thus, they are not yet possible to

artificially control through experimentation. Recent studies have looked at various 

horticultural crops, such as cucumbers (Chen et al., 2014), tomatoes (de Visser et al.,

2014), and roses (Buck-Sorlin et al., 2011), to analyze their spatial light distributions 

using a 3D graphic software and ray-tracing simulation on virtual light conditions. Ray-

tracing simulation is an effective tool for quantitative analyses of crop canopy light 

receiving patterns.

The objective of this study was to develop a continuous LAI estimation system 

applicable to greenhouse cultivation of bell peppers using a ray-tracing method and long 

short-term memory (LSTM) that considers growth stage, solar altitude, and weather 

conditions.
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MATERIALS AND METHODS

Use of 3D crop models and construction of greenhouse model

3D-scanned models of bell pepper (Capsicum annuum L.) developed by Son et al. 

(2018) were used. The growth stages of the models were 14, 21, 28, 35, 42, 49, 56, 63, 

70, 77, and 84 days after transplanting (DAT) (Fig. 1-1). The crops were scanned by 

using a 3D scanner (GO! SCANTM; Creaform, Lévis, Quebec, Canada) and converted to 

a parametric model by using a scanning software (Vxelement; Creaform) and a reverse-

engineering software (Geomagic Design X; 3D Systems, Rock Hill, SC, USA). The 3D 

models were reconstructed by using a 3D CAD software (SOLIDWORKS; Dassault 

Systèmes, Vélizy-Villacoublay, France). 

The Venlo-type greenhouse model were constructed by using the 3D CAD software, 

and the 3D crop models were placed inside the greenhouse model (Fig 1-2). Optical 

simulations were carried out by using an optical simulation software (Optisworks, Optis, 

La Farlède, France). To apply the optical properties of the 3D crop models, crop leaf 

transmittance (Tr) and reflectance (Ref) were measured within a range of 400–700 nm in 

the integrating sphere combined with a radiospectrometer. Leaf absorbance (Abs) was 

calculated as: Abs = 1- (Tr + Ref). The optical properties of glass and iron were applied 

to account for the glass and frame components of the greenhouse model.

Estimation of light intensity during simulation conditions 
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Twelve weeks after transplantation, the plants were used for 3D crop modeling of a 

ray-tracing simulation, in which the solar radiation condition was determined by solar 

altitudes (latitude, longitude, date, time of the simulation set point, bearing, and ceiling 

direction) and microclimate environmental conditions. The location of the experimental 

farm at Seoul National University (Suwon, Korea, Lat. 37.3° N, long. 127° E) was used 

for the solar altitude as the validation experiment site. The orientation of the greenhouse 

was set as south-north-east, and the direction of the ceiling was set as horizontal to the 

height of the greenhouse. The dates of simulation were representative dates for spring, 

summer, autumn, and winter: April 15th, July 15th, October 15th, and January 15th, 

respectively. Seven times (09:00, 10:00, 11:00, 12:00, 14:00, 16:00, and 18:00) were set 

and analyzed for changes in daylight environment. 

Another parameter for determining solar radiation was microclimate environmental 

condition, which indicates the degree of diffuse solar radiation allowed to pass through 

the atmosphere by clouds and aerosols. To estimate microclimate environments, the 

International Commission on Illumination (CIE) proposed a standard general sky, which 

classifies atmospheric conditions related to diffuse solar radiation into 15 standard states 

(Darula and Kittler 2002). Among the 15 CIE standard states, type 1 (standard overcast 

sky), type 6 (partly cloudy sky), and type 12 (standard clear sky) were selected for this 

study and were set to weather conditions corresponding to overcast, cloudy, and clear sky 

provided by the Korea Meteorological Administration. 

Ray-tracing simulation was conducted on 1,008 conditions (12 growth stages * 4 

seasons * 7 times of day * 3 weather conditions), and 5*108 rays were used in optical 
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simulation. Light intensity at the upper canopy (It), light intensity prior to crop-canopy 

interception at 20 cm above the top of the canopy, and light intensity at the lower canopy 

(Ib) at the height of the first main branch were measured.

Application of long short-term memory (LSTM)

The artificial neural network LSTM has been used to analyze sequential periodic data 

(Hochreiter and Schmidhuber 1997); a general network structure was used in this study 

(Fig. 1-3). The light-intensity ratio of the upper and lower crop canopies, weather 

conditions, seasons, and times of the day were used as input data, and LAI was used as 

output data. The time step, one of the parameters for LSTM, was set to seven. 

AdamOptimizer was used for model training (Kingma and Ba, 2014), and the 

hyperparameters for LSTM and AdamOptimizer were empirically changed to solve 

regression problems (Table 1-1). For model training, 70% of the total data were 

randomly selected, and the rest of the data were used for accuracy tests of the training 

results. To include all simulation conditions in the training, k-folds cross test with k = 5 

was conducted (Kohavi 1995). The mean square error (MSE) was set as a cost for 

reducing computation. Training and test accuracy were verified using the coefficient of 

determination (R2) and root mean squared error (RMSE). TensorFlow (v. 1.12.0, Google, 

Menlo Park, CA, USA) was used for computation and model construction (Abadi et al. 

2016).

Cultivation conditions and LAI validation 
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A cultivation validation experiment was conducted to verify the algorithm for 

estimating LAI according to light intensities of the upper and lower crop canopy. The 

algorithm was developed through ray-tracing simulations and machine learning. The 

plants were cultivated in a Venlo-type greenhouse at the experimental farm from 

November 2016 to April 2017. Beginning when the plant formed its first main branch, 

three pyranometers (SP-110; Apogee Instruments Inc., Logan, Utah, USA) were installed 

in the upper crop canopy, and nine sensors were placed in each crop’s first main branch 

to measure the light intensity in the upper canopy (It) and in the lower canopy (Ib) (Fig. 1-

4). Leaf area and LAI were calculated and measured with an LAI meter (Li-3100; LI-

COR, Lincoln, NE, USA) every five days on crops with installed sensors and similar leaf 

numbers and plant heights. External weather condition data were collected from the 

Suwon Korea Meteorological Administration 

(https://www.weather.go.kr/weather/climate/past_ table.jsp?stn=119). The accuracy of 

the algorithm was evaluated by comparing the machine-learned LSTM algorithm with 

ray-tracing simulation results to direct measurements of It, Ib, season, time, and weather 

data.
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RESULTS AND DISCUSSION

Change in light intensity within the crop canopy

With regard to vertical spatial canopy light distribution of the greenhouse floor on 

DAT 63, the transmitted light intensity exponentially decreased from the upper to the 

lower crop canopy (Fig. 1-5). Because solar radiation is mainly absorbed in the leaves of 

the upper canopy, the light intercepting into the lower canopy was blocked (Hilker et al. 

2008; Marchiori et al. 2014). The results in this study were consistent with those of 

previous studies that directly measured canopy light interceptions (Glenn et al. 2015; 

Schirrmann et al. 2015).

The daytime light intensities of the upper crop canopy continuously increased after 

sunrise, had highest intensity at 12:00, and decreased thereafter. Compared to the winter, 

light intensity was higher in the summer with longer daylight hours (Fig. 1-6A, DAT 63, 

clear sky condition), indicating that our ray-tracing simulations were well applied to the 

characteristics of solar radiation changes by time and season. Daytime changes in light 

intensity in the lower crop canopy were affected by the upper crop canopy, and the light 

intensity continuously increased after sunrise, reaching a peak at 12:00 before decreasing. 

However, the ranges of daytime light-intensity changed in the lower canopy were not 

greater than those in the upper crop canopy, which highly affected the light-intensity 

ratio of the upper and lower canopy (Fig. 1-6B, DAT 63, clear sky condition). During the 

daytime, the ratio did not show a constant pattern but was usually higher around sunrise 

and sunset. In contrast to open field cultivation, greenhouses crops are grown along the 
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lane for the convenience of workers, so the light-interception patterns of the upper and 

lower leaves are highly influenced by solar altitude. This trend was particularly 

significant at low solar altitudes with smaller light intensity differences between the 

upper and lower canopy. Even for crops with the same LAI, the light-intensity ratio of 

the upper and lower canopy changed according to the time of day.

Light intensities in the upper and lower canopy were highest under clear sky 

conditions, followed by cloudy sky conditions, and then overcast sky conditions, and 

showed smaller differences under low solar altitude conditions (Fig. 1-7A, DAT 63, 

summer). Solar radiation decreases as clouds block the solar radiation passing through 

the atmosphere (Min and Duan 2005). However, according to previous studies, clouds 

reduced the amount of total solar radiation but increased the ratio of diffuse solar 

radiation (Kanniah et al. 2013; Oliphant et al. 2011; Still et al. 2009). Clouds not only 

increased the ratio of diffuse solar radiation, which has higher light penetration within 

the crop canopy, but also affected the crop canopy’s light interception pattern by 

changing primary growth productivity, net ecosystem exchange, and light-use efficiency. 

Studies of horticultural crop production that artificially increased the ratio of diffuse 

solar radiation in greenhouse conditions have been carried out (Hemming et al. 2008; Li 

et al. 2015), and an effect of increasing diffuse solar radiation was also observed in our 

simulation results. Under cloudy sky conditions, the light-intensity ratio of the upper and 

lower canopy was higher compared with clear sky conditions (Fig. 1-7B, DAT 63, 

summer). Direct solar radiation was mostly absorbed in the upper canopy and did not 

reach the lower canopy, but diffuse solar radiation reached the lower part of the canopy 
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as well, indicating that, even for crops with the same LAI, the light-intensity ratio can 

change according to external weather conditions.

With progressing crop growth stage, LAI and the daily average light-intensity ratio 

increased or decreased sigmoidally according to seasonal variation, but these differences 

were not significant (Fig. 1-8A, clear sky, average for all times). The daily average light-

intensity ratio by DAT exponentially decreased with LAI (Fig. 1-8B, clear sky, average 

for all times). In previous studies (Fang et al. 2014; Lena et al. 2016; Lopes et al. 2014; 

Yao et al. 2016), LAI was estimated by measuring the light-intensity ratio. However, the 

relationship between LAI and light-intensity ratio of the upper and lower canopy showed 

different relational expression fittings at 12:00 and 18:00 (Figs. 1-8B, 1-9B). This 

implies that the optimum equation for LAI and the light-intensity ratio changes according 

to solar altitude. Also, meteorological conditions affected the optimum equation between 

LAI and the light-intensity ratio (Figs. 1-7B, 1-10B, 1-11B). For example, even though 

the light-intensity ratio was 0.3, the optimum equation for clear sky conditions estimated 

LAI to be 2.296, whereas the optimum equation for overcast sky conditions estimated 

LAI to be 2.559. Therefore, to estimate LAI according to light intensity in the upper and 

lower canopy, measurement time and weather conditions should be considered.

It is very difficult to experimentally set solar altitudes, external weather conditions, 

and crop growth stages (Buck-Sorlin et al. 2011; Roccia et al. 2012). Therefore existing 

products estimating LAI recommend to minimize these effects through manually 

methods. However, even with these experimental limitations, the combination of 3D crop 

modeling and ray-tracing simulation is highly useful for analyzing crops' light 
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intercepting patterns (Bailey 2018; de Visser et al. 2014; Henke and Buck-Sorlin 2018; 

Hitz et al. 2019). Using a 3D crop model and ray-tracing simulation, results for changes 

in light intensities according to various conditions, including solar altitude by season and 

time, external weather condition according to cloudiness, and crop growing stage, were 

obtained. This methodology can be useful for studying crops under various 

environmental and cultivation conditions.

LSTM accuracy

The average training accuracy of the LSTM was R2 = 0.990. The test accuracy of each 

fold varied from 0.879 to 0.940 (Table 1-2). The average accuracy of the best test results 

was R2 = 0.937, with RMSE = 1.48 (Fig. 1-12). LSTM was able to learn and estimate 

LAI with high accuracy by weekly scans of the 3D crop model according to season and 

weather conditions. LSTM, a type of recurrent neural network (RNN), is an optimum 

algorithm for analyzing data over time (Brunner et al. 2018). Daily solar radiation is 

comprised of patterned data over time, where it increases after sunrise, reaches the 

highest peak near noon, then decreases and reaches 0 after sunset. Therefore, LSTM was 

suitable for analyzing changes in daytime solar radiation. 

LSTM algorithm learning efforts that excluded season and meteorological conditions 

had lower accuracy than algorithm tests that included these variables (Table 1-2). 

Previous estimates of crop LAI using difference in light intensities in the upper and 

lower canopy did not consider solar altitude or external weather conditions (Glenn et al. 

2015; Schirrmann et al. 2015). Though there are limitations in the execution of 
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quantitative analysis of solar altitudes and weather conditions, this study quantitatively 

analyzed these parameters as input variables through LSTM. 

Validation of LAI in a greenhouse

After verifying the LAI-estimating algorithm that was developed using ray-tracing 

simulation and LSTM, crop LAI was estimated to increase from 1.6 to 3.8, and the light-

intensity ratio of the upper and lower canopy ranged from 0.138–0.479 from DAT 51 

when measurement began to DAT 167 when measurement was completed (Fig. 1-13). 

Algorithm verification, which was performed by substituting daily seasonal and 

meteorological conditions into the ratio data for LAI and the light-intensity ratio of the 

upper and lower canopy, had an accuracy of R2 = 0.808, and linearity error <5.517%

(Fig.1-14). However, when LAI was estimated without meteorological data, algorithm 

accuracy significantly decreased to 0.426. Also, when LAI was estimated without 

seasonal data among the input variables, algorithm accuracy was 0.619, which was lower 

than that when all input parameters used. Not only did LAI and the light-intensity ratio of 

the upper and lower canopy affect the results from ray-tracing simulations, solar altitudes 

and external weather conditions also had an effect.

In this study, quantitative analyses of crop growth stage, season and time, and 

external weather conditions, which are difficult to control in actual experiments, were 

performed through ray-tracing simulations, and an accurate algorithm for estimating crop

LAI was developed. However, this study has some limitations. First, only three weather 

conditions (clear, cloudy, overcast) were used in the simulation. Second, in addition to 
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atmospheric clouds, the diffuse solar-radiation ratio changes according to the amount of 

aerosol present (Kalidindi et al. 2015; Mercado et al. 2009). These aerosols change over 

time into fine dust, air pollution, etc. Recently, fine dust has become an important issue 

not only in Korea, but in other parts of East Asia as well (Uno et al. 2017). However, this 

study could not take into account the effect of aerosols because the Korea Meteorological 

Administration does not provide these information. If aerosols effects are included, the 

accuracy of the algorithm can be further improved.
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Table 1-1. Hyperparameters for long short-term memory and AdamOptimizer.

Parameter Value Description

Learning rate 0.035 Learning rate used by the optimizer

β1 0.9 Exponential mass decay rate for momentum 

estimates

β2 0.999 Exponential velocity decay rate for 

momentum estimates

E 0.0001 A constant for numerical stability

Forget bias 1.0 Probability of forgetting information in the 

previous dataset

Number of perceptrons The number of perceptrons used for the 

hidden layer of LSTM and FC

Time step Number of datasets that the LSTM will see at 

one time
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Table 1-2. Comparison of LSTM test accuracy in case of using all variables, excluding seasonal variables, and excluding weather 

variables.

Input variable Test 1z Test 2 Test 3 Test 4 Test 5 Average

All 0.940 0.940 0.931 0.879 0.930 0.937ay

No season 0.904 0.945 0.921 0.930 0.934 0.927ab

No weather 0.879 0.920 0.892 0.930 0.923 0.901b

zTest data-set number in a 5-fold cross test

yDifferent letters within columns indicate significant differences (p < 0.05) by Duncan’s multiple range test
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Fig. 1-1. 3D structural model and leaf area index (LAI) of paprika by growth stage.
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Fig. 1-2. Combination of greenhouse CAD model (A) with 3D crop model (B).
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Fig. 1-3. A structure of long short-term memory (A) and a diagram of the model work 

(B). h and σ represent hidden layers with a hyperbolic tangent and sigmoid as an 

activation function, respectively.
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Fig. 1-4. Nine sensors installed for measuring light intensities of the lower canopy.
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Fig. 1-5. Spatial light distribution (A) and light intensity by vertical position (B) in the 

canopy.
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Fig. 1-6. Diurnal change in light intensities of the upper (It) and lower (Ib) canopy (A), 

and the ratio of It and Ib (B) 63 days after transplanting (DAT) during clear sky 

conditions.
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Fig. 1-7. Diurnal change in the average light-intensity ratio of the upper (It) and lower (Ib) 

canopy days after transplanting (DAT, A), and the relationship between It / Ib and leaf 

area index (LAI, B) during clear sky conditions.



58

Fig. 1-8. Diurnal change in the light-intensity ratio of the upper (It) and lower (Ib) canopy 

days after transplanting (DAT, A), and the relationship between It / Ib and leaf area 

index (LAI, B) at 12:00 during clear sky conditions.
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Fig. 1-9. Diurnal change in the light-intensity ratio of the upper (It) and lower (Ib) canopy 

days after transplanting (DAT, A), and the relationship between It / Ib and leaf area 

index (LAI, B) at 18:00 during clear sky conditions.
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Fig. 1-10. Diurnal change in the average light-intensity ratio of the upper (It) and lower 

(Ib) canopy days after transplanting (DAT, A), and the relationship between It / Ib and 

leaf area index (LAI, B) during overcast conditions.
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Fig. 1-11. Diurnal change in the average light-intensity ratio of the upper (It) and lower 

(Ib) canopy days after transplanting (DAT, A), and the relationship between It / Ib and 

leaf area index (LAI, B) during cloudy conditions.
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Fig. 1-12. Comparison of leaf area index (LAI) directly measured and estimated by 

LSTM algorithm.
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Fig. 1-13. The light-intensity ratio of the upper (It) and lower (Ib) canopy and the leaf 

area index (LAI) days after transplanting (DAT) in the validation experiment.
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Fig. 1-14. Leaf area idex (LAI) directly measured and estimated by LSTM algorithm 

days after transplanting (DAT, A), and validation accuracy in case of using all 

variables (black circle), excluding seasonal variables (black triangle), and excluding 

weather variables (white circle) (B).
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CHAPTER 2

Nondestructive and continuous measurement of fresh weights of 

Hydroponically-grown Bell Pepper

ABSTRACT

Fresh weight is a direct index of the crop growth, however, it is difficult to 

continuously measure the fresh weight of bell peppers grown in in hydroponic cultures 

due to the difficulty in identifying moisture condition of crops and growing media. The 

objective of this study was to develop a continuous and nondestructive measuring system 

for the fresh weight of bell pepper in hydroponic culture considering the moisture content 

in the growing media. The developed system simultaneously measured the supported 

weight from the trellis string and the gravitational weight using a tensile load cell. The 

weight of moistures in the growing media was calibrated by using the changes in 

moisture content before and after the irrigation at a specific time during the growth 

period. The most stable time-zone for the measurement was determined by analyzing the 

diurnal change of relative water content. To verify the accuracy of the developed system, 

the fresh weight of the fruits, stems, leaves, and roots were measured manually. The 

fresh weights measured by the system showed good agreements with actual fresh weight. 
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From the results, it is confirmed that the system can stably measure the fresh weights of 

bell peppers grown in hydroponic culture with high accuracy. This method can be 

applied to the continuous data collection of crop growth information in hydroponic

cultures.

Additional Keywords: automated measurement, crop growth, frequency domain 

reflectometry (FDR) sensor; load cell, soilless culture
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INTRODUCTION

Bell pepper (Capsicum annuum L.) is an economically important vegetable widely 

consumed due to its high mineral and vitamin contents with various colors (Castro et al., 

2008; Frans et al., 2018; Wyenandt et al., 2017). As its high sensitivity to environmental 

conditions, most of the bell peppers were grown in hydroponic culture systems where 

microclimate is precisely controlled greenhouse (Jang et al., 2018; Ngouajio et al., 2008; 

Sezen et al., 2006; Shin and Son, 2015). In these cultivation conditions, environmental 

control and cultivation techniques in the greenhouse are carried out to optimize the 

growth of crops. Therefore, it is important to measure crop growth reactions to various 

environmental control and cultivation techniques.

Among the crop growth factors, the crop weight is an indicator of the crop growth 

itself and used as a key parameter for crop growth models (Heuvelink, 1999; Jones et al., 

1991; Katsoulas et al., 2015; Martínez-Ruiz et al., 2019). The most common method to 

collect the crop weight is to manually measure it through destructive growth surveys, 

which is not only destructive, but also laborious (Yeh et al., 2014). Therefore, an 

automated and continuous measurement system that measures the crop weight during the 

whole growth period need to be developed. 

Studies on development of systems continuously measure the crop fresh weight have 

been conducted. Chen et al. (2016) and Kim et al. (2016) installed a compressive force 

load cell to measure the fresh weight of the leafy vegetables in deep flow hydroponic

culture. However, this method can be used only in a deep flow hydroponic cultivation in 
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which the moisture in the sponge block is always saturated. It is not applicable for 

general hydroponic cultivation for bell peppers where the moisture in the growing media 

continuously changes by irrigation, drainage, or water uptake from the crops. Baas and 

Slooweg (2004) installed a compressive load cell under the gerbera-planted rockwool 

media, and crop fresh weight was calculated by excluding the moisture weight in the 

rockwool media using frequency domain reflectometry (FDR) sensors. This 

methodology can be used to revise the moisture weight in the growing media that 

continuously changes throughout the day. However this methodology, using a 

compressive load cell, can only be applied to crops that have only gravitational weight 

and it is difficult to apply to large crops such as bell pepper which partial crop weight is 

supported by the string trellis. Therefore, it is necessary to develop a system that can 

measure the crop weight containing the weight supported by the string trellis.

CropAssist is a system developed to measure the weight of large crop, supported by 

the string trellis (Helmer et al., 2005). It measures the crop fresh weight through the 

tensile load cell (upper load cell) installed between the aluminum bar where the string 

trellis are fixed and the greenhouse frame. In addition, the moisture change in the growth 

media is measured using a compressive load cell (lower load cell) installed under the 

growth media. It has been used to measure the crop growth and the transpiration 

cultivated in various environment and cultivation conditions. (Ahmad et al., 2013; 

Battista et al., 2015; Ehret et al., 2011; Story and Kacira, 2015). However, Cropassist is 

limited to tomatoes or cucumber where the crop weights are entirely supported by the 

string trellis. In case of bell pepper, some of the crop weight is supported on the string 
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trellis, while some weight has the gravitational weight (downward force) conditions. 

Therefore, in order to continuously measure the fresh weight of bell pepper, it is 

appropriate to calculate the weight of crops by measuring the total weight of the 

cultivation system, including the growth medium, and revising the moisture content in 

the growing media. The objective of this study was to develop a continuous and 

nondestructive measuring system for the fresh weight of bell pepper in hydroponic

culture considering the moisture content in the growing media.
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MATERIALS AND METHODS

Fresh Weight Measurement System in hydroponic Culture

The developed instrument consists of four components: an outer frame, an inner 

frame, a load cell, and an FDR sensor (Fig. 2-1), the outer frame serves as the main 

framework which supports the overall system. “The rockwool growing media was on the 

lower part of the inner frame and 4 bell peppers were planted on the growing media. The 

crop was supported by string trellis which was fixed by the upper part of the inner frame. 

With this structure, both the gravitational weight of the crop and rockwool growing 

media (downward force) and the weight supported by the string trellis (upward force) are 

all supported by the inner frame. These inner frame and the outer frame were connected 

using four load cells. S-beam type tensile load cells were used for measuring the crop 

fresh weight. In this research, LDB-2kg load cells (SBA-25, CAS, Yangju, Korea) were 

used, with the resolution of 1g, and the measurement capability from 0 to 25 kg. The load 

cell was connected to an amplifier and conditioner module (CI-1500A, CAS, Yangju, 

Korea) which amplified and converted the electric signal to a proportional weight value. 

This weight signal is then sent to the data logger (CR-1000, Campbell Scientific, Logan, 

USA). To measure the changes in moisture content of the growing media, FDR sensors 

(WT100B, Mi-Rae Sensor, Seoul, Korea) were installed vertically in the middle of the 

rockwool media. The moisture content in the growing media was also collected in the 

equivalent data logger.
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Cultivation Conditions

The experiments were conducted in a Venlo-type glasshouse located in the 

experimental farm of Seoul National University, Suwon, Korea (latitude, 37.3°N; 

longitude, 127.0°E). The vents on the roof and sidewall were automatically opened when 

the temperature was higher than 26°C during the day. Bell pepper seedlings (Capsicum 

annuum L. ‘Sirocco’) at 40 days post-sowing on rockwool cubes (Grodan delta, Grodan, 

Roermond, Netherlands) in a seedling chamber were used. On February 8th, 2018 

(cultivation period 1), and on October 30th, 2018 (cultivation period 2), were 

transplanted into 0.9.0.15 0.07m (L.W.H) rockwool media (Grotop GT Master Dry, 

Grodan, Roermond, Netherlands) with a plant density of 3.3 plants.m2 after 2 weeks of 

acclimatization to the irrigation system at a nutrient concentration of 2.0 dS.m-1, the bell 

pepper seedlings with 5-6 nodes. The EC and pH in the nutrient solutions were 

maintained at 2.6-3.0 dS.m-1 and 5.5-6.5, respectively. The plants were pruned to 

maintain two main stems, which were vertically trellised to a ‘V’ canopy system 

(Jovicich et al., 2004). The environmental factors in greenhouse, such as solar radiation 

[Pyranometer (SP-110, Apogee Instruments, Logan, USA)], temperature (CS220, 

Campbell Scientific, UT, USA), and relative humidity (PCMini70, Gilwoo Trading, 

Seoul, Korea) were measured.

Fresh Weight Calculation

The FDR sensor measured the volumetric moisture content (v/v, %) in the growing 

media. Therefore, the weight-moisture contents revision factor is required to estimate the 
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moisture weight in the growing media. The revision factor was calculated using the 

change of the cultivation system weight measured by the load cell and the change of the 

moisture content in the growing media measured by the FDR sensor before and after the 

first irrigation daily [Equation (1)].

A = 	
���	�	���

�������
                                              (Eq. 2-1)

where, A is the weight-moisture content revision factor, SWa, the system weight after 

irrigation, SWb, the system weight before irrigation, MCa, the moisture content after 

irrigation, and MCb, the moisture content before irrigation. 

The fresh weight of a crop during the day depends on the measured time, since the 

water content in the crops varies depending on the weather and crop conditions (Ueda 

and Nakamura, 2007). Thus, the diurnal changes of relative water content (RWC) in the 

crops were measured for the time zone selection that can represent the fresh weight of the 

crops. RWC was measured hourly for 24hours using Equation (2), during the period 

when the night heating in the greenhouse operated (Feb. 27th, DAT 20) and when the 

night heating did not operate (Apr. 28th, DAT 80).

��� = 	
�����

�����
∗ 100                                         (Eq. 2-2)

where, FW (fresh weight) is the weight of the sample after harvest and TW (fully 

turgid weight).
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The saturated weight of the sample in 4°C distilled water for 4 hours, and DW (dry 

weight), the dry weight of the sample after oven-drying at 70°C for 48 hours (Roger, 

2001).

Growth Survey and Verification 

To verify the crop fresh weight measured by developed systems, destructive crop 

growth survey was carried out. The fresh weight of the stem and leaf, for the crops that 

are similar in size and shape of the system, were measured every 2 weeks during the 

cultivation period. Fruit diameter and fruit length were measured every 2 weeks and fruit 

weight were estimated by substituting in Equation (3).

FFW = 290.74 ∗ WF� ∗ LF + 0.342                                (Eq. 2-3)

where, FFW is the fruit fresh weight, WF, the fruit length, LF, the fruit diameter. 

Also, both of the weight of the harvested crops and the weight of pinched crops in the 

developed system were measured during the cultivation period. The roots of crops are 

closely connected to the rockwool media structures (Fig. 2-2), thus, actual measurement

of the roots fresh weight was impossible. Therefore, the rockwool media including the 

roots was harvested and dried in the oven at 70°C for 48 hours on DAT 10, 30, 75, 113. 

After oven-drying, the initial rock wool media weight was excluded from the dried 

rockwool media and the roots weight. The root fresh weight was calculated indirectly 

with the ratio of the dry and fresh root weight. The total fresh weights with destructive 
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measurements were compared to measured crop fresh weight by the developed system 

for verification.



75

RESULTS AND DISCUSSION

Diurnal Change in RWC and Selection of Appropriate Time for Fresh Weight 

Calculation 

The changes in RWC and greenhouse environment data during the days when the 

nighttime heating was on (Feb. 27th, DAT 20) and when the nighttime heating was off 

(Apr. 28th, DAT 80) are shown in Fig. 2-3 and 4. On DAT 20, daytime RWC decreased 

from sunrise to the lowest at noon and gradually increased. These results are consistent 

with the results of previous studies on various crops of measured daytime RWC (Himeno 

et al., 2017; Klepper et al., 1971; Rajagopal et al., 1977). In the nighttime heating 

conditions, the temperature and humidity changed rapidly which caused relatively 

unstable RWC. Recent studies have shown that there is a time lag between crop water 

uptake and transpiration, and as this time lag, RWC of crop changes (Himeno et al., 

2017). The loss of water in crops continued during the daytime, but after the sunset, 

crops stored the water and contain them constant after midnight (Klein et al., 2016). The 

average RWC of crops does not have a significant difference due to the recovery of water 

contents at night unless there is an extreme water stress condition (Flexas et al., 2006). In 

hydroponic culture, changes of water content in crops are low as the moisture content in 

the media is always contained at an optimum level (Ogbonnaya et al., 2003). The results 

in this experiment showed that the nighttime RWC values were relatively unstable in the 

nighttime heating condition, but the changes in RWC was less than 3% from 03:00 until 
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sunrise. Therefore, the appropriate time for the crop fresh weight calculation was selected 

as after 03:00 to before the transpiration begins.

Weight-Moisture Content Revision and Fresh Weight Calculation 

The changes of FDR sensor and load cell weight before and after the daily first 

irrigation was analyzed (Fig. 2-5). When the irrigation started, the moisture content in the 

growing media and the total system weight increased by the irrigation, decreased by the 

drainage, and stayed constant after drainage. As the transpiration rate is less than 

0.5g.min-1 on the time of first irrigation in the morning (Shin and Son, 2015), changes of 

moisture content in the growing media and total system weight by the transpiration was 

disregarded. The calculated system weight-media moisture content revision factor using 

Equation (1) were 0.072 ± 0.003 (cultivation period 1), and 0.068 ± 0.002 (cultivation 

period 2), respectively. The revision factor was slightly different depending on the 

cultivation period, which is considered to be due to the characteristics of installation 

direction, location and depth of the FDR sensor (Park et al., 2009).

According to previous researches (Kang et al., 2019; Skierucha and Willczek, 2010), 

the absolute value of FDR sensor is affected by the cultivation period and environmental 

factors. However, in this study, the revision factor did not change significantly between 

the cultivation periods. In hydroponic cultivation conditions, when the amount of 

irrigation is proportional to the amount of radiation, the underground parts are stably 

maintained (Jovicich et al., 2007; Nikolaou et al., 2017). The calculated weight-moisture 

content revision factor was substituted into the moisture content at the determined 
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appropriate time to calculate the crop fresh weight excluding the moisture weight in the 

growing media. 

The total system weight, media moisture content, and calculated crop fresh weight 

measured during 2018.04.02-04.17 are shown in Fig. 2-6. The total weight of the system 

measured by the load cell varies with the media moisture content, but the crop fresh 

weight calculated with the weight-moisture content revision factor increased throughout 

the period. In hydroponic cultivation conditions, the weight of moisture in the growing 

media was high proportion among the total cultivation system weight. Therefore, the 

weight of moisture in the growing media should be excluded for accurate crop fresh 

weight measurement.

Destructive Crop Growth Survey

The root samples of the crops taken from the rockwool media on DAT 10, 30, 75, 

and 113 are shown in Table 1. The ratio of dry-fresh weight of the root samples was 

about 0.132, which showed no significant difference depending on the growth stages. To 

calculate the fresh weight of the roots by the growth stages, the ratio of dry-fresh weight 

of the root was multiplied on the measured root dry weight (Table 2). The fresh weight of

the roots at the early growth stage was about 14% of the total crop fresh weight. As the 

growth continues, the proportion decreased to less than 10% after the middle growth 

stage. 

More than 60% of the fresh weight at the last growth stages were reproductive parts 

including the fruit. In bell pepper, both vegetative and reproductive growth 
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simultaneously occurs and the fruit is the most rapidly changing organ of the whole crop 

during the cultivation period (Marcelis et al., 2004). Unlike the continuous increase in 

fresh weight of the roots, stems and leaves during the cultivation periods, fruit abortion 

and harvest caused discontinuously increase of total crops weight. Therefore, fruit fresh 

weight is considered to be the most important factor in the crop fresh weight 

measurements.

Continuous Changes in Fresh Weight and its Verification

The crop fresh weight was nondestructively measured with the selection of 

appropriate time (03:00~sunrise) and the substitution of weight-moisture content revision 

factor. This allowed daily monitoring and recording of crop growth during the cultivation 

periods. Fig. 2-7 shows the fresh weight growth curves of bell peppers during the growth 

period. 

In the early stages of growth, the fresh weight changes were relatively small. As the 

growth progressed, the rate of growth increased and then decreased again, indicating a 

sigmoid growth curve. In general greenhouse cultivation conditions, bell pepper grows in 

sigmoidal form (Gijzen et al., 1997), and this growth from was confirmed by the 

developed system. There was a significant decrease in the crop fresh weight during the 

cultivation period, which was consistent with the fruits harvest date.

The comparisons between the crop fresh weight measured by the system and actual 

crop fresh weight are shown in Fig. 2-8. As a result of verification, R2 showed high 
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linearity with 0.978-0.969 and also d-statistic, which shows the accuracy of the absolute 

value, was 0.948-935 by growth periods, and linearity error <1.725%.

This accuracy was relatively lower than the recent studies in which crop weights 

were measured using load cells (Avotins et al., 2018, error<1.5%; Chen et al., 2016, R2 = 

0.997; Kim et al., 2016, R2 = 0.998). Since these studies have been conducted under deep 

flow hydroponic cultivation conditions with the roots being free from the growing media, 

the crop weight including the roots can be easily measured through the load cell. 

However, comparing to the previous studies of crop fresh weight measurements using 

load cell similar where the crop roots are fixed in the solid growing media or soil (Baas 

and Slootweg, 2004, Helmer et al., 2005), the developed system in this experiment 

accuracy was higher. In addition, the developed system was the suitable system for 

measuring the crop fresh weight of bell peppers grown in hydroponic culture. Also, the 

application of this development is not only limited to bell pepper cultivation, but also 

available to use in various crop cultivation.

As the growth of crops was continuously measured through the developed system, 

additional possibilities were presented for the analysis of the growth of crops according 

to environmental conditions. The crop growth response to the environment is determined 

by accumulated time series change of environmental factors. Generally, it was not 

possible to analyse the chronic relationship between this environment and the growth of 

the crops in discontinuous crop growth surveys. The developed system was able to 

analyse the chronic relationship between the environment and the growth of crops. Fig. 

2-9 is a continuous change in the growth and environment of continuously measured 
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crops during cultivation. Correlation analysis allowed to interpret the continuous 

relationship between the growth of crops and the environment (Table 3). This 

relationship may be useful in later studies that analyze big data for agriculture.

Instrument advantages and limitations

Recently, the demand for agricultural big data has increased due to the emergence of 

smart farm where ICT technology is applied to agriculture (Muangprathub et al., 2019; 

O’Grady and O’Hare, 2017). Among these agricultural big data, information of 

environmental factors can be easily measured and collected through various sensors. 

However, there are still limitations on the information of crop growth. The developed 

system can monitor the crop response to the environmental condition continuously, 

automatically, and non-destructively. 

Load cell was the main sensor used in this developed system. Load cells are durable, 

easy to interact with various data collection systems, and require little maintenance after 

installation (Kumar et al., 2018). In general, crops are grown with high planting density 

in greenhouses. In these dense conditions, crops are affected by the worker’s activities

(Helmer et al., 2005). However, the developed system in this study can be installed in 

coexistence with crop canopy under dense conditions, which does not affect the crop 

environment or any adjacent crops. 

There are also limitations on the developed system. In hydroponic cultivation 

conditions, the weight of moisture in growing media changes by irrigation, drainage, and 

water uptake of crops are several kilograms, but the growth rate of daytime crops is very 
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low. In order to detect such a minute changes, a load cell operating in a fine range is 

required. However, because the cultivation system of a crop is heavy for its structural 

stability, a load cell capable of sustaining a high load is required. A load cell having both 

high resolution and high maximum weight conditions increases in price, so it is 

necessary to select an appropriate level of load cell for the purpose.

Also, this developed system does not provide information on the growth of specific plant 

organs, such as leaves, stem, and fruit. Existing formula-based crop growth prediction 

models estimated total biomass by biomass distribution to each organs (Heuvelink et al., 

1999; Martínez-Ruiz et al., 2019). Therefore, in order to discuss the crop growth using 

the changes in fresh weight collected through developed system, new algorithm for 

predicting the crop growth should be needed.
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Table 2-1. Fresh and dry weights of root samples according to the day after transplanting 

(DAT).

DAT Fresh weight (A) Dry weight (B) A/B

10 0.098 0.013 0.133

30 1.206 0.165 0.137

75 1.935 0.248 0.128

113 1.117 0.147 0.132
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Table 2-2. Growth survey results of fresh or dry weight (kg) of roots, leaves, stems and fruits according to the day after 

transplanting in different cultivation periods.

Cultivation 

period
DAT

Root dry 

weight

Root fresh 

weight

Leaf fresh 

weight

Stem fresh 

weight

Fruit fresh 

weight

1 20 2.599 19.647 79.116 35.864 1.738

34 2.589 19.465 89.609 40.159 4.729

48 5.629 42.327 160.264 121.916 7.857

68 19.171 144.149 662.7493 499.739 237.180

76 29.023 218.220 1195.476 788.339 182.413

91 29.067 218.550 1204.076 782.739 3049.593

104 29.173 219.348 1248.828 708.880 3513.915

2 29 2.599 17.998 53.273 29.581 2.271

44 4.620 37.3153 238.392 189.991 110.930

58 15.629 120.227 531.352 397.048 556.845

71 19.171 162.223 707.071 559.803 1216.035

85 27.684 212.954 807.608 604.624 50.136

101 28.644 220.308 1034.282 785.096 197.835

113 29.001 226.677 1361.963 800.076 643.727

127 41.564 319.723 1685.632 1207.760 1048.149
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Table 3. Correlation analysis of time series variables in the growth and 

environment factors.

Value Temperature
CO2

concentration
Radiation

Relative

humidity

Averagea 0.510** 0.157 0.545** 0.639**

Maximumb -0.187* 0.179 0.547** 0.692**

Minimumc 0.061 -0.288** - 0.353**

*, ** Pearson correlation (r) significant at 0.05 and 0.01, respectively

a Average value of the day

b Maximum value of the day

c Minimum value of the day
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Fig. 2-1. A schematic diagram of the fresh weight measuring system using load cell and 

frequency domain reflectometry (FDR) sensors.
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Fig. 2-2. Distribution of roots inside the rockwool substrate.
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Fig. 2-3. Diurnal changes in relative water content (A) and environmental factors (B) in 

heated condition at night (Feb. 27, 2018).
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Fig. 2-4. Diurnal changes in relative water content (A) and environmental factors (B) in 

unheated condition at night (Apr. 28, 2018).
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Fig. 2-5. Changes in system weight (SW) and moisture content (MC) measured by load 

cells and frequency domain reflectometry sensors, respectively, before and after the 

irrigation. Subscripts a and b mean after and before irrigation, respectively.
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Fig. 2-7. Changes in crop fresh weights measured by the developed system (line) and 

actually measured (dot). A and B mean cultivation periods 1 and 2, respectively.



98

Fig. 2-8. Comparison of crop fresh weights measured by the developed system and 

actually measured.
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Fig. 2-9. Comparison of crop fresh weights measured by the developed system and 

actually measured.
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CHAPTER 3

Development of Growth Estimation Algorithms for 

Hydroponically-grown Bell Pepper Crops Based on Recurrent 

Neural Network

ABSTRACT

For the efficient use of big data for smart farms, quantitative analysis of complex, 

diverse and unpredictable relationships between crop growth and the environment

conditions are required. The objective of this study was to develop an algorithm that can 

interpret the crop growth response to environmental factors based on recurrent neural 

network (RNN). The algorithms were trained with data from three growth periods. The 

developed measurement methods were used to measure the growth characteristics of bell 

peppers. As the crop growth was affected by cumulative changes of environmental 

factors, a RNN algorithm, specialized in chronologically data analysis, was selected. 

Using the training accuracy, major environmental factors were selected and an optimal 

algorithm was developed. Long short term memory (LSTM) algorithm was selected as an 

optimal algorithm among the RNN algorithms. The algorithm consisted of eight 

environmental variables, and three crop growth characteristics as input variables and the 
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weekly crop growth rate as output variables. The training accuracies varied from 0.748 to 

0.806 in all growth periods. The estimated crop growths showed linearly good 

agreements with the actual ones. The algorithm developed in this study are expected to 

be useful in estimation of crop fresh weight by using the relationship between crop 

growth and environment conditions in greenhouses.

Additional keywords: agricultural big data, crop monitoring system, long short term 

memory (LSTM), machine learning, smart farming
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INTRODUCTION

Smart farms are emerging as new digital technologies such as remote sensing 

(Atzberger, 2013), cloud computing (Zamora-Izquierdo et al., 2019), and internet of 

things (IoT) (Baoyun, 2009) are being applied to agricultural technologies. For efficient 

use of big data for the smart farms, it is necessary to understand more about the complex, 

diverse, and unpredictable relationship between crop growth, and environmental factors. 

The emerging digital technologies can contribute to this understanding with continuous

monitoring and measurement by generating large amounts of data at unprecedented rates 

(Chi et al., 2016; Sonka, 2016). So quantitative analysis of big data collected from these 

diverse sources is required (Hashem et al., 2015).

Many studies have been conducted using process based models (PBMs) to 

quantitatively analyze the relationship between crops growth, and the environment (Jones 

et al., 2017). PBM consists of many modules that various physiological process of crops 

(e.g. photosynthesis, respiration, biomass assimilation, biomass distribution, and stress 

response). PBM simulated the crop growth through various process modules according to 

input variables. Since PBM aims to include all biochemical functions of plants, various 

modules are subjected to complicated calculations for even a single variable, and 

calibration of many indexes is required (Dayan et al., 1993; Marcelis et al., 1998). In 

addition, it is important to measure the each crop organs growth to simulate accurate 

models, since PBM estimates the biomass production through the distribution to each 
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organ (Heuvelink et al., 1999; Martznez-Ruiz et al., 2019; Shamshiri et al., 2016). In 

these respects, PBM is not optimized to interpret agricultural big data.

Artificial neural network (ANN) provides a way of analyzing complex, nonlinear, and 

multi-dimensional datasets from big data (Wang, 2005), and could abstract quantitative 

relationship from raw data (LeCun et al., 2015). ANN has been widely used in 

agricultural research for the purpose of analyzing the biochemical, and physiological 

characteristics of various crop cultivations (Arab et al., 2010; Eftekhari et al., 2018; Ehret 

et al., 2011; Kucukonder et al., 2016). Among ANN algorithm, recurrent neural network 

(RNN) is useful for analyzing the chronological data, and this algorithm shows better 

accuracy than previous algorithms (Adavanne et al., 2017; Ororbia et al., 2017). 

Recurrent neural network has an advantage of inputting big data of relatively long 

period, and the length of output values is also unlimited theoretically (Hochreiter and 

Schmidhuber, 1997).The crop growth response to the environment is determined by 

accumulated time series change of environmental factors. Therefore, RNN would be 

useful algorithm to estimate the crop growth response to cumulative environmental 

changes. The objective of this study was to develop an algorithm to estimate the crop 

growth respond to various environment factors in hydroponically-grown bell pepper.
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MATERIALS AND METHODS

Greenhouse and crop cultivation conditions

The experiments were conducted in Venlo-type glasshouses located in the 

experimental farm of Seoul National University, Suwon, Korea (growth period 1, and 2; 

latitude, 37.3°N; longitude, 127.0°E), and, the experimental farm of Nong-woo, Ansung, 

Korea (growth period 3; latitude, 37.0°N; longitude, 127.0°E). The vents on the roof, and 

sidewall were automatically opened when the temperature was higher than 26°C during 

the day. Bell pepper seedlings (Capsicum annuum L. ‘Sirocco’) at 40 days post-sowing 

on rockwool cubes (Grodan delta, Grodan, Roermond, Netherlands) in a seedling 

chamber were used for the experiment. After 2 weeks of acclimatization to the irrigation 

system at a nutrient concentration of 2.0 dS.m-1, the bell pepper seedlings with 5-6 nodes 

were transplanted into 0.9.0.15 0.07m (L.W.H) rockwool slabs (Grotop GT Master Dry, 

Grodan, Roermond, Netherlands), and placed on the gutters with a plant density of 3.3 

plants.m-2. The electrical conductivity (EC) and pH of nutrient solutions were maintained 

at 2.6-3.0 dS.m-1 and 5.5-6.5, respectively. The crops were pruned to maintain two main 

stems, which were vertically trellised to a ‘V’ canopy system (Jovicich et al., 2004). The 

fruit yields were harvested when the coloring were completed. The weight of fruit 

abortion that had fallen before the harvest was measured. The environmental factors in 

greenhouse, such as amount of solar radiation [Pyranometer (SP-110, Apogee 

Instruments, Logan, USA)], temperature (CS220, Campbell Scientific, UT, USA), 

relative humidity (PCMini70, Gilwoo Trading, Seoul, Korea) were measured. The 
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environmental factors in root-zone, such as substrate temperature, EC of the substrate, 

and moisture content of the substrate, were measured using a multiple sensor [WT1000B, 

Frequency Domain Reflectometry (FDR), Mi-Rae Sensor, Seoul, Korea] located at the 

middle of substrate. A pH sensor (DPH-1, DIK electronics, Bucheon, Korea) were 

installed in the middle of the drainage tube.

Crop growth monitoring

Crop growth characteristics [leaf area index (LAI), fresh weight] monitoring systems 

were installed during cultivation. The LAI measurement system measured the light 

intensity at the top, and bottom of the crop canopy using pyranometer (SP-110; Apogee 

Instruments Inc., Logan, Utah, USA), and calculated the LAI using the light intensity 

ratio at the top and bottom of the canopy. In accordance with Chap.1, the LAI of crops 

was estimated, including both the external weather condition data, collected from the 

Korea Meteorological Administration, and measurement time conditions. Because the 

LAI measurement system was developed taking into account the effects of adjacent crops, 

it was installed in the middle of the greenhouse plantation area. Through this 

methodology, daily changes of LAI were continuously monitored.

The fresh weight measurement system was designed to support the whole crop 

cultivation system in accordance with Chap. 2, and the weight of the whole system was 

measured using tensile load cells. In addition, the water weight in substrate was corrected 

to derive only the fresh weight of the crop. The crop fresh weight at the dawn time zone 

(03:00 - 05:00) when the relative moisture content of the crops is stable was selected as a 
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representative fresh weight of the day. Through this methodology, daily changes of fresh 

weight were continuously monitored. All crop growth characteristics monitoring systems 

were installed using 30mm * 30mm aluminium frames to minimize the restriction of 

greenhouse workers activity, and the shadow caused by the frame.

Recurrent neural network analysis

The RNN has been used to analyze the crop growth respond to various environment 

factors. Among various RNN algorithm, long short-term memory (LSTM) could solve 

the vanishing gradient problem of RNN (Hochreiter and Schmidhuber, 1997). The LSTM 

algorithm has a cell with several gates (Fig. 3-1). LSTM accepts previous data with 

addition operation, so vanishing gradient or exploding gradient problem is not occurred. 

Therefore, LSTM can analyze long time data than simple RNN.

Long short-term memory cells can retain, save, and load information about previous 

data. LSTM receives current input, and previous output simultaneously, and the received 

information is operated through the gates. Previous information is saved as cell state, so 

sequenced data can be analyzed based on cell state. Gates are divided into three parts: 

input, forget, and output. The input gate determines how to select the data. The forget 

gate decides how much data should be forgotten and passes suitably forgotten previous 

data through a hyperbolic tangent function. The output gate combines cell state and input 

data and the combined output is sent to the next cell. The final output is printed when the 

predetermined time step is reached.
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A modified LSTM algorithm called a gated recurrent unit (GRU) was developed (Cho 

et al., 2014). GRU has a similar structure to LSTM, except that it consists of update and 

reset gates. Since GRU has only two gates, it reduces computational complexity while 

retaining the advantages of LSTM. A specific RNN algorithm does not always yield the 

best prediction in all situations (Greff et al., 2015; Jozefowicz et al., 2015). Therefore, 

LSTM and GRU, the most well-known RNN algorithms, were compared. Similar to 

ordinary ANNs, RNN has hidden layers of perceptrons with activation function. In this 

study, input and output activation functions were set to hyperbolic tangent function, and 

gate activation function was set to sigmoidal function.

The environment factors in greenhouse, the environment factors in root-zone, and 

crop growth characteristics were used as input data, and weekly crop growth was used as 

output data. The environment factors in greenhouse were consist of atmospheric 

temperature, relative humidity, light intensity, and CO2 concentration. The environment 

factors in root-zone were consist of moisture content, EC, substrate temperature, and 

drainage pH. Crop growth characteristics were consist of LAI, fresh weight, and days 

after transplanting (DAT). Crop growth was calculated with weekly change of fresh 

weight. The time step, one of the parameters for LSTM, was set to seven. 

AdamOptimizer was used for algorithm training (Kingma and Ba, 2014), and the 

hyperparameters for LSTM, and AdamOptimizer were empirically changed to solve 

regression problems (Table 3-1). 70% of the total data were randomly selected, and were 

used for algorithm training, and the rest of the data were used for accuracy tests of the 

training results. To include all cultivation data, 5-folds cross test was conducted (Kohavi 
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1995). The mean square error (MSE) was set as a cost for reducing computation. 

TensorFlow (v. 1.12.0, Google, Menlo Park, CA, USA) was used for computation and 

model construction (Abadi et al. 2016).

Statistical analysis

A regression analysis was using the SPSS statistical package (IBM, New York, NY, 

USA) and a graph of the model was drawn using Sigmaplot (Systat Software, San Jose, 

CA, USA).
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RESULTS AND DISCUSSION

Collecting variables of RNN algorithm

Environmental variables were collected using sensors in the greenhouse during 

cultivation (Fig. 3-2). The average temperature of growth period 1, grown from February 

to June, was more than 6 degrees higher than that of growth period 2, grown from 

October to March. This was affected by ambient air temperature. Despite the difference 

in average temperature by growth periods, the solar radiation did not vary by growth 

periods. In general open field cultivation, the solar radiation is highly correlated with the 

average temperature. There are studies that use these relationships to estimate solar 

radiation through the relationship with temperature variables without measuring (Beshara 

et al., 2013; Wu et al., 2007). However, in greenhouse conditions, the relationship 

between temperature, and solar radiation is not linear because of the light screen, the 

heating curtain, etc. (De Gelder et al., 2012). Therefore, greenhouse crops should be used 

as independent variables for temperature, and solar radiation. The substrate moisture 

contents did not change rapidly because the amount of irrigation was adjusted to account 

for the solar radiation and the crop growth stage. 

The LAI, and fresh weight of the crop were measured using the crop growth

characteristics measurement methods developed in chap. 1, and 2 (Fig. 3-3A, C, and E). 

The LAI, and fresh weight of the crops showed growth in the form of sigmoidal 

according to DAT. A drastic decrease in fresh weight occurred during the growth period

2 (Fig. 3-3C, 2019.01.16). The crop wires on the top of the system were snapped, which 
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damaged main stems of the bell pepper. This accident was monitored by the fresh weight

measurement system.

The fruits yield, and abortion weigh of the crops grown on the fresh weight

measurement system were measured weekly (Fig. 4-4A). In growth period 3, the fruits 

were kept without harvest until the end of the data collection. The algorithm could

estimate that the crop growth was negatively, since the fruits harvest, and abortions 

caused drastic the fresh weight reduce. Therefore, calibrated fresh weight values, used in 

the previous studies conducted in bell pepper (Cosic et al., 2017; Sønchez-Molina et al., 

2015), were calculated. Calibrated weight was calculated as adding the weight of fruit 

harvested, or abortion to the weight of the current crop (Fig. 3-4B, D, and F). The crop

growth was calculated as weekly changes of the calibrated weight, and used it as an 

output variable of the algorithm.

Optimal RNN Algorithm Selection

The results of comparing the various RNN algorithms test accuracy to select the 

optimal RNN algorithm are shown in Table 3-2. Among all RNN structures, LSTM 

showed the highest accuracy. Although the RMSE of all structures ranged from 0.01 to 

0.03, the single-layered LSTM showed the highest test accuracy with R2 = 0.78. Multi-

layers did not improve the accuracy of RNN models. LSTM showed the higher accuracy 

than GRU.

The contribution of each input variable was evaluated by excluding each input 

variable to train the RNN algorithm, and comparing the accuracy of the results with all 
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input variables (Table 3-3). All variables of the environmental factors in greenhouse 

conditions (atmospheric temperature, relative humidity, light intensity, and CO2

concentration) showed high contribution levels. Among the environmental factors in 

root-zone, substrate moisture content variable showed high contribution, whereas EC, 

temperature of substrate, and, drainage pH were relatively low contribution. Among the 

growth characteristics, LAI and fresh weight variables showed high contribution, 

whereas DAT were relatively low contribution. An ANN, optimized to analyze the 

relationship among nonlinear interactions of different variables, does not decrease 

accuracy as input variable increase (Moon et al., 2018). Considering the economic costs, 

high-contribution variables, such as atmospheric temperature, relative humidity, light 

intensity, and CO2 concentration, and DAT variables that do not require additional 

sensors were selected as algorithm input variables.

Crop growth estimation

The trained algorithm estimated the actual crop growth, although there was some 

deviation between the estimated, and the measurement (Fig. 3-5). The calibrated fresh 

weight of the crop, calculated as integrating the growth estimated by the algorithm, was

similar to the actual calibrated fresh weight (Fig. 3-6). The d-statistic, which indicates the 

estimation accuracy, was 0.749, 0.748, and 0.806, respectively, depending on the growth 

periods. From these results, the developed algorithm was possible to estimate the actual

crop growth. PBM should calibrate various parameters to estimate crop growth response 

to environmental factors. To calibrate the PBM, destructive growth survey should be 



112

required. High level of labor, time and cost were needed to collect agricultural big data 

with destructive growth surveys. In this study, the crop growth were measured, and 

collected non-destructively using continuous measurement method for LAI and fresh 

weight. ANN was used for analysis of such collected data. However, the data collected 

from the several growth periods were not enough to train the ANN. ANN training using 

insufficient data cause overfitting (Jacobs et al., 2017). In this study, the continuously 

collected data were divided into one week intervals, and the growth characteristics, and 

environmental factors of each interval were used for RNN training. Through this process, 

accuracy was high even though relatively small numbers of data were used. The 

methodology would be expected to be used to estimate the crop growth response to 

various environmental factors, and cultivation technology under limited big data 

collection.

During growth period 2, on 2019.01.16 the crop stem was broken, the rate of crop 

growth was dramatically reduced, and then recovered after about two weeks (Fig. 3-7). 

When a plant is physically injured, the stress-defensive mechanism begins (Toyota et al., 

2018) with increased transport of calcium ions through phloem, and this defense 

mechanism causes the crop growth reduction. Also, the physical injury increase the 

maintenance respiration (Fonseca et al., 2002). Therefore, physical injury causes the crop 

growth reduction over several days as well as reduction in the instantaneous fresh weight. 

The RNN, specialized in interpreting data with time intervals between input, and output 

variables (Jozefowicz et al., 2015). The RNN-based growth algorithm developed 

estimated the current crop growth based on the input variables from the past week. The 
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time interval between input, and output variables of RNN affect the estimation accuracy 

during crop physical injury, and its recovery (Fig. 3-7). The actual growth rate of the 

crops has been rapidly decreased after 2019.01.16, and recovered after several days. The 

algorithm estimated higher than the actual growth until 2019.01.22, which used the 

growth characteristics before the physical injury. From 2019.01.23, which used the 

growth characteristics after the physical injury, a decrease of crop growth was estimated. 

RNN, which estimated the current situation (output variables) with information from the 

past (input variables), has the advantage of analyzing the cumulative effect of 

environmental factors, but also has disadvantages that it is difficult to react immediately 

to unexpected changes in conditions.
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Table 3-1. Hyperparameters for recurrent neural network (RNN) and AdamOptimizer.

Parameter Value Description

Learning rate 0.001 Learning rate used by the AdamOptimizer

β1 0.9 Exponential mass decay rate for the momentum 

estimates

β2 0.999 Exponential velocity decay rate for the momentum 

estimates

E 1e-0.8 A constant for numerical stability

Forget bias∗ 1.0 Probability of forgetting information in the previous 

dataset

Time step 2–24 Number of datasets that the LSTM will see at one time
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Table 3-2. Test accuracies and root mean square errors (RMSEs) of trained recurrent 

neural network (RNN) algorithms.

Type of RNN Test accuracy (R2) Test RMSE (kg)

Long short-term memory (LSTM) 0.78 0.325

Gated recurrent unit (GRU) 0.68 0.472

Multi-layered LSTM 0.70 0.427

Multi-layered GRU 0.71 0.386
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Table 3-3. Test accuracies of the long short-term memory (LSTM) after excluding input 

data.

Excluded data Test accuracy (R2)

Atmospheric temperature (°C) 0.75 (-0.03)

Relative humidity (%) 0.73 (-0.04)

CO
2

concentration (μmol∙mol
-1

) 0.76 (-0.02)

Solar radiation (W/m
2

) 0.75 (-0.03)

Moisture content of substrate (%) 0.73 (-0.05)

Substrate temperature (°C) 0.77 (-0.01)

Electrical conductivity (EC) of substrate (dS∙m
-1

) 0.77 (-0.01)

Drainage pH 0.77 (-0.01)

Day after transplanting (DAT) 0.77 (-0.01)

Leaf area index (LAI) 0.74 (-0.04)

Fresh weight (kg) 0.75 (-0.03)
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Fig. 3-1. A structure of a long short-term memory (LSTM). I, input vectors; O, output 

vectors; C, cell state; h, tanh for input and output activation function; σ, sigmoidal 

function for gate activation function; t and t–1, current and previous times, 

respectively.
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Fig. 3-2. Environmental conditions in the greenhouse during growth period 1 (Sept 1 –

Dec 01, 2018; A and B), growth period 2 (Dec 01, 2018 – Apr 01, 2019; C and D), 

and growth period 3 (Feb 01 – June 01, 2018; E and F).
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Fig. 3-3. Changes in fresh weight and leaf area index (LAI) during growth period 1 (Sept 

1 – Dec 01, 2018; A), growth period 2 (Dec 01, 2018 – Apr 01, 2019; C), and growth 

period 3 (Feb 01 – June 01, 2018; E). B, D, and F represent the calibrated fresh 

weights during growth periods 1, 2, and 3, respectively
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Fig. 3-4. Fruit yield and abortion at one-week interval (A) and calibrated crop fresh 

weight considering fruit yield and abortion (B).
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Fig. 3-5. Comparison of weekly crop growth rates measured by the system and estimated 

by the algorithm during growth periodq (Sept 1 – Dec 01, 2018; A and B), growth 

period 2 (Dec 01, 2018 – Apr 01, 2019; C and D), and growth period 3 (Feb 01 – June 

01, 2018; E and F). B, D, and F represent the test accuracies of the algorithms during 

growth periods 1, 2, and 3, respectively.
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Fig. 3-6. Comparisons of crop fresh weights measured by the system and estimated by 

accumulated crop growth rate during the growth periods from Mar. 19 to Dec 01, 

2018 (A, growth period 1), from Dec 01, 2018 to Mar 24, 2019 (B, growth period 2), 

and from Sep 5 to 28, 2018 (C, growth period 3).
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Fig. 3-7. Comparison of weekly crop growth rates measured by the system and estimated 

by the algorithm during growth period from Jan. 10, 2019 to Feb. 3, 2019.
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CHAPTER 4

Validation and Evaluation of Growth Estimation Algorithm for 

Hydroponically-grown Bell Pepper Crops Based on Recurrent 

Neural Network

ABSTRACT

Since recurrent neural network (RNN) has a 'black box' hidden layers inside the 

algorithm, it is impossible to manually calibrate the parameters unlike process-based 

model (PBM). Validation process is essential in evaluation of the algorithm developed. 

The objectives of this study were to validate the developed algorithm in greenhouses and 

evaluate the accuracy of the algorithm compared to the PBM. Validation of the RNN-

based crop growth prediction algorithm was carried out using the data collected from a 

large commercial greenhouse. The CropGro-bell pepper model was applied to compare 

and evaluate the accuracy of the developed algorithm. The parameters of the PBM were 

calibrated using the growth survey data collected during growth period for the algorithm 

training. As a result of the validation, it was confirmed that a reliable level of accuracy 

was achieved in commercial greenhouses. The PBM was able to simulate the growth of 
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each organ, however the output was estimated as dry weight. In order to compare the 

accuracy with the developed algorithms, it was converted to fresh weight using the ratio 

of dry and fresh weights of each organ. The accuracy of the developed algorithm showed

higher than that of the PBM.

Additional keywords: comparative analysis, crop monitoring system, CropGro, machine 

learning, process-based model (PBM)
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INTRODUCTION

Smart farm technologies have been introduced to identify the relationship between 

crops and environments from various aspects (Wolfert et al., 2017). Due to the demands 

of modeling and quantitative technologies for big data (Hashem et al., 2015), previous

studies have attempted to estimate the crop growth using algorithms based on machine 

learning (Ehret et al., 2011; Gupta et al., 2015; Gi et al., 2018; Kumar et al., 2017). These 

studies used machine learning to produce meaningful results in areas of data that were 

previously difficult to interpret, or to indicate an improvement in the accuracy of 

predictions compared to previous studies.

The growth prediction models, or algorithms developed through various studies are 

incorporated into the platform (e.g. AquaCrop, DSSAT, HORTSIM) to simulate the crop 

growth, or yield response to environmental factors. Ideally, such simulated results can be 

used to infer the real systems results (Asseng et al., 2013; Körner et al., 2015; Yadav et 

al., 2018). Virtual experiments (simulations) using the models can complement actual

experiments, but there is a need to improve model responses relative to real system 

responses for a range of conditions to establish confidence in the model (Jones et al., 

2017). Little has been done to establish uncertainty of agricultural systems models 

(Rosenzweig et al., 2013a, Rosenzweig et al., 2013b, Asseng et al., 2013).

In process based crop models (PBMs), the parameters of the model were determined 

to reflect the physiological crop characteristics. THRSH, for example, is a widely used 

parameter in the growth of Fabaceae (CropGro-soybean, Ma et al., 2006), an indicator of 
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the weight ratio of seeds, and whole fruits. It is possible to calculate these parameters 

automatically through an overall crop growth survey. In general, in the process of 

estimating parameters, certain coefficients may be outside the normal range, depending 

on the developer purpose. However, it is possible to manually adjust these parameters by 

hand calibrating them to the value estimated empirically by the users of the model.

Although in many studies artificial neural networks (ANN)s have been shown to 

exhibit superior predictive power compared to traditional approaches, they have also 

been labeled a “black box” because they provide little explanatory insight into the 

relative influence of the independent variables in the prediction process. Therefore, the 

RNN algorithm requires a different validation process than the PBM. A strategy is 

needed for validating crop estimation algorithm in each crop period using datasets 

independent of those used for algorithm training. The objectives of this study were to 

collect data from additional growth conditions, validate the developed algorithms, and 

evaluated the developed algorithm comparing with the widely-used PBM of bell peppers.
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MATERIALS AND METHODS

Growth cultivation for validation

The validation were conducted in two Venlo-type glasshouse located commercial 

farm, Jinju, Korea (validation 2, latitude, 35.1°N; longitude, 128.0°E). Environmental 

control, and crop cultivation management in the greenhouse was carried out in the same 

way as in Chap 3. The environmental factors in greenhouse, such as amount of solar 

radiation [Pyranometer (SP-110, Apogee Instruments, Logan, USA)], temperature 

(CS220, Campbell Scientific, UT, USA), relative humidity (PCMini70, Gilwoo Trading, 

Seoul, Korea) were measured. The moisture content of the substrate, were measured 

using a multiple sensor [WT1000B, Frequency Domain Reflectometry (FDR), Mi-Rae 

Sensor, Seoul, Korea] located at the middle of substrate.

A growth survey was conducted every one week. The LAI of the crop was calculated 

by substituting the measured leaf length (L), leaf width (W), and node numbers (N) for 

the Eq. 4-1.

��	 = 	−0.266	 + 	0.563 ∗ � ∗�	 + 	0.232 ∗ �                   (Eq. 4-1)

The fresh weight of the stem and leaf were measured weekly during the cultivation 

period. Fruit weight with fruit diameter, and fruit length were measured every week, and 

calculated by substituting in Eq. 4-2. 
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FFW = 286.30 * WF2 * LF + 1.136                             (Eq. 4-2)

where, FFW is the fruit fresh weight, WF, the fruit length, LF, the fruit diameter. The 

weight of the harvested crops and the weight of pinched crops in the developed system 

were measured during the cultivation period.

Growth estimation algorithm

The RNN-based growth estimation algorithm, which was trained in chap. 3 was used. 

The test accuracy of algorithm training was 0.768.

Bell pepper PBM

The PBM selected for comparison to evaluate the accuracy of the algorithm is the 

CropGro-Bell Pepper. CropGro is a PBM platform that applies models to various crops 

such as soybean, peanut, dry bean, faba bean, macuna, chickpea, cowpea, velvet bean, 

cotton, pasture, etc., starting with development of PBM for tomato (Jones et al., 1991; 

Shi et al., 2015). CropGro-Bell Pepper is a variant of the soybean model that reflects the 

genotype, and ecotype of the bell pepper.

The model parameters (Table 4-1, and 4-2) were calculated from the growth survey 

results investigated in Chap. 2, and auto calibrated with the GLUE cofficient estimator 

(Ratto et al., 2001). 

Validation of RNN algorithm and comparison of growth prediction to PBM
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To validate the developed algorithm, the weekly crop growth was estimated with the 

environmental variables, and crop growth characteristics collected in validation growth 

period. The crop fresh weight was calculated by integrating the estimated crop growth.

To validate the PBM, Decision Support Systems for Agrotechnology Transfer v4.7 

(DSSAT, Jones et al., 2003; Hoogenboom et al., 2012) was used to simulate the bell 

pepper growth response to environment. Since the output value of the PBM were as the 

dry matter state of each organ (leaves, stems, roots, and fruits), the fresh weight was 

calculated with the ratio of the dry, and fresh weight by organs, and growth stages. 

Accuracy was evaluated by comparing the fresh weight of a crop predicted by the RNN 

algorithm, and PBM with the actual fresh weight.
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RESULTS AND DISCUSSION

Environmental factors for validation

Environmental data were collected using sensors in the greenhouse throughout the 

validation growth period (Fig. 4-1). The validation growth period, which completed a 

year of bell pepper cultivation, was included within the temperature range of algorithm 

trained cultivation. The temperature range was maximum of 40.31°C, and minimum of 

14.37°C. In validation cultivation, high level of environmental control was applied to all 

other environmental factors, thus, humidity, light intensity, and CO2 concentration were 

all within the range of algorithm trained cultivation conditions. ANN accuracy reduce for

data out range of the data used for training (Da Silva et al., 2017). Therefore, this 

validation dataset was available.

Growth characteristic for validation

During the validation cultivation period, the measurements were conducted by the 

actual growth measurements. The fresh weight was discontinuous due to the fruit harvest 

(Fig.4-2). The crop LAI increased as sigmoid form by DAT. 

The fruits yield weight during the growth period was shown as Fig. 4-3. Calibrated 

fresh weight was calculated as Chp. 3. Calibrated fresh weight increased continuously as 

sigmoid from by DAT (Fig. 4-4).

PBM calibration
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CropGro-bell pepper model was calibrated using the growth measurements collected 

from algorithm learned and applied cultivation period (Tables 3 and 4). The 

automatically calculated parameters were re-calibrated by hand to match the results of

the previous study (Csizinszky, 1999) and empirical values. For LFMAX, maximum leaf 

photosynthesis rate at 30°C, 350 vpm CO2, and high light (mg CO2
. m-2 . s) and SIZLF,

maximum size of full leaf, the values recorded from simple measurement were entered.

In CropGro, the crop growth stages are divided into 7 stages, and it estimates no further 

growth after the crop reaches the R7 stage. Also, when the photothermal day is above a 

certain value, it is estimated that the growing point no longer develops resulting in no 

appearance of new nodes (Boote et al., 1998). However, bell pepper grows infinitely 

during the growth period under greenhouse conditions (Jensen, 1997), the effect on this 

parameter should be minimized. Boote et al. (2012) revised the infinite values of SD-PM, 

time between first seed (R3), and physiological maturity (R7), and FL-VS, time from 

first flower to last leaf on main stem, for greenhouse grown tomatoes to represent the 

tomato growth curve as an infinite form. Therefore, in this study, SD-PM, and FL-VS 

were set to 330 because the growth, and development of bell peppers continued until the 

end of the measurement.

Validation and evaluation

As a result of the validation, the developed algorithm was able to estimate the growth

similarly to the actual crop growth (Fig. 4-5). Although the accuracy was relatively low 

compared to training test, validation results showed the crops growth with reliable level 
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of accuracy. These results presented the possibility for the use of the developed 

algorithms even from the data with growth survey, currently being used in most

agricultural studies. 

Calibrated PBM was able to simulate organ-specific growth of crops (Fig. 4-7). In the 

early days of growth, roots grew faster, but soon decreased, and the growth of stem, and 

leaves grew rapidly. From the time of the first fruit development, the growth of fruit was 

a major factor in the whole crop growth. This is because fruits sink strength was very 

high compared to other organs of bell pepper (Vieira et al., 2009).

The ratio of dry-fresh weight was highest in fruits, and lowest in roots (Fig. 4-8). In 

other crop organs, the ratio of dry-fresh weight did not change depending on the growth 

stages, except for stem, where the ratio was highest in the initial growth stage, and 

maintained constant after the middle growth stage. Because PBM calculated the crop 

growth based on dry weight, fresh weight was calculated with the ratio of dry-fresh 

weight measured during every growth stages. The fresh weight comparison results of the 

RNN algorithm, and the PBM estimated results are shown in Fig. 4-9. The RNN 

algorithm estimated the fresh weight with higher accuracy than PBM. The RNN 

algorithm had lower RMSE value than the PBM, and the d-statistic was also higher than 

the PBM. Although the amount of data used to optimize RNN training was insufficient, 

the algorithms developed were more accurate than PBMs. Rather than PBM, which 

calculated the parameters through the weekly growth survey, the developed algorithm 

trained the RNN through the automatically measured crop growth characteristics daily, 

so algorithm developed could reflect the changes of environment more precisely. Also in 



138

PBM, the crop growth was estimated using only temperature, CO2 concentration, and 

light intensity, while in the RNN algorithm, relative humidity, and substrate moisture 

contents were added. Relative humidity, and growth rate were not environmental factors 

that directly affect photosynthesis rate, but they were environmental factors that affect 

the water content of crops. As most of the horticultural crops were sold fresh in the 

markets, it is imported to measure the crop fresh light (Marcelis et al., 1998). Therefore, 

quantitative analysis of more diverse environmental factors is required for the growth of 

horticultural crops growth. However, the developed algorithm could not estimate the

each organ growth. Therefore, further study is required on the development of algorithms 

to estimate the growth of the target organ.
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Table 4-1. Bell pepper genotype coefficientsin CropGro-pepper.

Index Description (unit)

PPSEN Slope of the relative response of development to photoperiod with time 

(positive for shortday plants) (1/hour)

EM-FL Time between plant emergence and flower appearance (R1) 

(photothermal days)

FL-SH Time between first flower and first pod (R3) (photothermal days)

FL-SD Time between first flower and first seed (R5) (photothermal days)

SD-PM Time between first seed (R5) and physiological maturity (R7) 

(photothermal days)

FL-LF Time between first flower (R1) and end of leaf 

expansion(photothermal days)

LFMAX Maximum leaf photosynthesis rate at 30 C, 350 vpm CO2, and high 

light (mg CO2/m
2-s)

SLAVR Specific leaf area of cultivar under standard growth conditions (cm2/g)

SIZLF Maximum size of full leaf (three leaflets) (cm2)

CSDL Critical Short Day Length below which reproductive development 

progresses with no daylength effect 

(for shortday plants) (hour)

XFRT Maximum fraction of daily growth that is partitioned to seed + shell

WTPSD Maximum weight per seed (g)

SFDUR Seed filling duration for pod cohort at standard growth conditions 

(photothermal days)

SDPDV Average seed per pod under standard growing conditions (#/pod)

PODUR Time required for cultivar to reach final pod load under optimal 
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conditions (photothermal days)

THRSH Threshing percentage. The maximum ratio of (seed/(seed+shell)) at 

maturity. 

SDPRO Fraction protein in seeds (g(protein)/g(seed))

SDLIP Fraction oil in seeds (g(oil)/g(seed))
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Table 4-2. Bell pepper ecotype coefficients in CropGro-pepper.

Index Description (unit)

MG Maturity group number for this ecotype, such as maturity group

TM Indicator of temperature adaptation

THVAR Minimum rate of reproductive development under short days and 

optimal temperature

PL-EM Time between planting and emergence (V0) (thermal days)

EM-V1 Time required from emergence to first true leaf (V1), thermal days

V1-JU Time required from first true leaf to end of juvenile phase, thermal 

days

JU-R0 Time required for floral induction, equal to the minimum number of 

days for floral induction under optimal temperature and 

daylengths, photothermal days

PM06 Proportion of time between first flower and first pod for first peg

PM09 Proportion of time between first seed and physiological maturity that 

the last seed can be formed

LNGSH Time required for growth of individual shells (photothermal days)

R7-R8 Time between physiological (R7) and harvest maturity (R8) (days)

FL-VS Time from first flower to last leaf on main stem (photothermal days)

TRIFOL Rate of appearance of leaves on the mainstem (leaves per thermal 

day)

RWIDTH Relative width of this ecotype in comparison to the standard width 

per node

RHGHT Relative height of this ecotype in comparison to the standard height 

per node
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R1PPO Increase in daylength sensitivity after R1 (h)

OPTBI Minimum daily temperature above which there is no effect on 

slowing normal development toward flowering (oC)

SLOBI Slope of relationship reducing progress toward flowering if TMIN for 

the day is less than OPTBI
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Table 4-3. Calibration of bell pepper genotype coefficients in CropGro-pepper.

Index Value Index Value

PPSEN 0 CSDL 12.33

EM-FL 40 XFRT 0.6

FL-SH 10 WTPSD 0.007

FL-SD 15 SFDUR 40

SD-PM 330 SDPDV 150

FL-LF 200 PODUR 42

LFMAX 0.98 THRSH 6.5

SLAVR 275 SDPRO 0.3

SIZLF 350 SDLIP 0.05
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Table 4-4. Calibration of bell pepper ecotype coefficients in CropGro-pepper.

Index Value Index Value

MG 1 LNGSH 35

TM 1 R7-R8 0

THVAR 0 FL-VS 330

PL-EM 5 TRIFOL 0.35

EM-V1 10 RWIDTH 1

V1-JU 24 RHGHT 1

JU-R0 5 R1PPO 0

PM06 0 OPTBI 0

PM09 0 SLOBI 0
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Fig. 4-1. Environmental conditions such as temperature, solar radiation, CO2 

concentration (A) and relative humidity and substrate moisture content (B) in the 

greenhouse during growth period from Aug 01, 2017 to June 01, 2018 used for 

growth validation.
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Fig. 4-2. Changes in fresh weight and leaf area index (LAI) during growth period from 

Aug 01, 2017 to June 01, 2018 used for growth validation.
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Fig. 4-3. The weights of yield and abortion during growth period Aug 01, 2017 to June 

01, 2018 used for growth validation.
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Fig. 4-4. Calibrated fresh weights considering yield and fruit abortions during growth 

period from Aug 01, 2017 to June 01, 2018 used for growth validation.
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Fig. 4-5. Weekly crop growth rates measured by the system and estimated by the 

algorithm during growth period from Aug 01, 2017 to June 01, 2018 used for growth 

validation.
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Fig. 4-6. Comparison of crop growth rates measured by the system and estimated by the 

algorithm during growth period from Aug 01, 2017 to June 01, 2018 used for growth 

validation
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Fig. 4-7. Dry weight of each organ estimated by the process-based model with days after 

transplanting (DAT).
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Fig. 4-8. The ratio of dry and fresh weights of each organ with days after transplanting 

(DAT).
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Fig. 4-9. Comparison of calibrated fresh weights estimated by the recurrent neural 

network (RNN) algorithm and the process-based model (PBM) with after days from 

transplanting (DAT) in growth validation periods.
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CONCLUSIONS

In this study, growth of hydroponically-grown bell peppers (Capsicum annuum L.) 

were estimated using recurrent neural network through nondestructive measurement of 

leaf area index and fresh weight. First, an automatic and continuous measurement system 

for LAI was developed using relationship between light interception of crop canopy and 

LAI. Ray tracing simulation and machine learning were used. The developed system 

showed high accuracy with d-stat. = 0.808. Second, an automatic and continuous 

measurement system for fresh weight was developed using load cells and FDR sensors. 

Estimated fresh weight showed good agreements with measured ones with a high 

accuracy of R2 = 0.935. Third, for estimating the crop growth, a RNN algorithm was 

designed, which consists of eight environmental variables and three growth 

characteristics as inputs, and the weekly crop growth rate as an output. Long short term 

memory (LSTM) algorithm was selected as an optimal algorithm. The machine learning 

was conducted using the data collected from two crop growth periods in the same 

greenhouse. The algorithm showed a test accuracy with R2 = 0.754. Finally, validation of 

the RNN-based crop growth prediction algorithm was carried out using the data collected 

from large commercial greenhouse. The parameters of the PBM were calibrated using the 

growth survey data collected during the growth period for algorithm training. The 

developed prediction algorithms showed similar accuracies to those of the PBMs in both 

sides of research and commercial greenhouses. For the results, it was confirmed that the 

developed measurement systems could nondestructively and continuously collect the 
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growth information, and the RNN-based crop growth estimation algorithms well 

estimated the crop growth.
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ABSTRACT IN KOREAN

ICT 기술이 기존의 농업 기술에 적용되면서 스마트 팜이 대두되고 있다. 

스마트 팜의 완성을 위해서는 작물과 환경 사이의 복잡하고 다양하고 예측

불가능한 관계에 대한 정량적인 분석이 가능해야 한다. 이를 위해 환경에

대한 작물의 반응을 연속적, 자동적, 비파괴적으로 모니터링할 수 있는

시스템과 농업 빅데이터를 해석할 수 있는 새로운 알고리즘 개발이 요구된다. 

본 연구에서는 파프리카 수경 재배 조건에서 다양한 환경 요인에 의한

작물의 생육의 변화를 예측하는 순환 신경 회로망 기반 알고리즘을

개발하였다. 파프리카의 생육 예측 알고리즘 개발에 앞서 주요한 생육 변수인

엽면적 지수(LAI)와 작물의 생체중 정보를 자동적, 연속적으로 수집할 수

있는 시스템 개발을 선행하였다. 본 연구에서는 기존의 LAI 비파괴적 측정

방법론에서 고려하지 않았던 요인들(기상 조건, 측정 시간)에 대한 정량적인

분석을 추가하였다. 이러한 요인들을 분석하기 위해 광추적 시뮬레이션과

인공신경회로망 기계 학습을 활용하였다. 개발된 LAI 측정 시스템은 높은

정확도로 실제 LAI 를 추정하는 것이 가능하였다. 작물의 생체중 정보 수집

시스템은 파프리카의 생리적, 재배적 특성을 반영하여 재배 시스템 전체의

무게를 측정할 수 있는 형태로 설계하였다. 또한 배지의 내 수분의 무게를

배지 내 함수율을 통해 보정하여 작물의 생체중을 계산하였다. 개발된 생체중

측정 시스템은 높은 정확도로 실제 생체중을 추정하는 것이 가능하였다. 
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개발된 작물 특성 측정 시스템을 이용하여 수집된 작물 생육 정보와 센서를

이용하여 수집된 환경 변수를 이용하여 작물 생육 예측 알고리즘을 기계

학습하였다. 작물의 생육은 과거로부터 누적된 환경 요인에 의해 결정되기

때문에 시계열 데이터 분석에 특화되어 있는 순환신경회로망 알고리즘을

활용하였다. 알고리즘의 학습 정확도를 이용하여 주요한 환경 요인을

선정하고 최적의 알고리즘을 개발하였다. 개발된 알고리즘의 학습 정확도를

검증하기 위해 알고리즘 학습 조건과 독립된 실험 조건에서 추가 자료를

수집하였다. 개발된 알고리즘의 정확도를 평가하기 위해 기존의 수식 기반

작물 생육 모델의 정확도와 비교 분석하였다. 검증 결과 개발된 생육 예측

알고리즘은 작물 생육 모델보다 더 높거나 비슷한 수준의 정확도를

나타내었다. 결과적으로 본 연구를 통해 개발된 작물 생육 특성 측정

시스템과 작물 생육 추정 알고리즘은 작물의 생육 정보를 연속적으로

수집하거나 작물 생육과 환경 사이의 관계를 정량적으로 분석하는 데 유용한

도구로 활용 가능할 것으로 판단하였다.

추가 주요어: 자동 측정. 작물 생육 모델, 엽면적 지수, 기계학습 광추적

시뮬레이션

학번 : 2014-30378
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