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Abstract

Model-based Experimental Design
for Computationally Efficient

Parameter Estimation of
Fed-batch Bioreactors

Jung Hun Kim

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Identification of batch dynamical systems is a tricky task because

of its complexity and nonlinearity. If the macroscopic structure of

a model is available, one can utilize Model-based Design of Experi-

ments (MBDOE) method to facilitate the identification process, more

precisely, the parameter estimation. However, a few crucial prob-

lems arise in utilizing MBDOE for estimating parameters of batch

dynamical systems. First, the whole design depends on the initial es-

timate of the parameters. Second, the gigantic size of the problem

prevents one from obtaining reliable solution in practical amount of

time. Third, correlation between the parameters inhibits calculation

process of MBDOE. In this thesis, we propose two new schemes of

MBDOEs that solve issues of the existing MBDOE schemes. The first

MBDOE modifies the existing on-line MBDOE into a form that can

be efficiently used in large models, solving initial parameter depen-
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dency issue, computation time and sensitivity matrix singularity is-

sue. The second MBDOE improves the existing anti-correlation MB-

DOE into a form suitable for iterative experiments and causes no nu-

merical instability. Finally, we apply the combined scheme of pro-

posed methodologies to the microalgal bioreactor model to demon-

strate its use, as well as study various issues that can occur when the

algorithm is applied in actual cases.

Keywords: Batch process, System identification, Parameter estima-

tion, Model-based design of experiment

Student Number: 2013-20962
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Chapter 1

Introduction

1.1 Identification of batch processes and experimental
designs

Batch processes are widely utilized in chemical industry, espe-

cially in the production of specialized chemicals [1], biological prod-

uct [2, 3, 4, 5, 6], pharmaceuticals [7, 8, 9, 10, 11] and polymers

[12, 13, 14, 15, 16]. The above processes are increasing in their im-

portance, due to the current trend towards small quantity production

of various specialized products. Just like continuous processes, batch

processes require real-time control [17, 18] and process optimization

[19, 18, 20] in order to secure price competitiveness. Various types

of techniques can be used for control and optimization of batch pro-

cesses, which can be divided into methods based on a physical model

and methods that do not require models. Model-free techniques in-

clude methods such as extremum-seeking control [21, 22] and iter-

ative learning control [23, 24, 25], which have a few obvious draw-

backs. First, several batch operations must be attempted until the op-

timum operating condition is found. Secondly, because each attempts

of achieving optimality is case-specific, little knowledge can be ob-

tained in the process of optimization. In other words, if the process
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constraint changes due to new regulation,or if the objective function

changes due to a change in the raw material price, the optimization

calculation must be performed again from the zero basis. In industrial

practice, the time given to achieve process optimization is limited

and the production conditions change almost regularly. This lack of

adaptability of the model-free methods makes it unsuitable for batch

process optimization at the industrial site.

On the other hand, model-based optimizations can be carried out

without burdensome experiments and provide a variety of knowledge

about the process. In utilizing model-based methods, the biggest dif-

ficulty lies in obtaining a reliable model. The task of modeling can

be divided into two parts, structural modeling and the parameter es-

timation. In structural modeling, what happens inside the reactor is

described using first-principle equations and empirical equations. For

example, polymerization process is expressed with a set of equations

that describes the degree of polymerization with mass and energy bal-

ance equations [26, 27]. Likewise, most of the commercial chemical

batch processes are fairly well studied for their underlying principles.

In other words, structural part of the modeling consists mainly of lit-

erature survey, which can be done in relatively short amount of time

and little cost. This leaves the parameter estimation process as the

only remaining procedure for modeling. The parameter values are

usually found by fitting experimental data to the model, where the

resulting parameter estimates correspond to the parameters that best

account for the data. Using a good quality data for fitting is impor-

tant here, because accuracy of the parameter estimates depend on the

quality of data. Especially when the amount of data is scarce, statisti-

cal features of the estimated parameters such as confidence intervals
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are highly influenced by the experiment. In the case where one has

to invest limited time and money to obtain experimental data, even

more importance is given to the informational value of the data.

In order to maximize the informational content of the limited ex-

perimental data, one can take advantage of the methodology called

model-based design of experiments (MBDOE). MBDOE, which is

considered as a type of optimization problem, uses the model struc-

ture explicitly to calculate the optimal experimental condition that is

expected to produce the most information-rich measurements, which

in turn yield the most accurate parameter estimates. The method is

already being widely used in the identification of batch chemical and

biological processes [28, 29, 30, 31].
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1.2 Issues of existing MBDOEs

The problem of finding the optimal experimental conditions for

parameter estimation of batch dynamical systems can be defined in a

straightforward way using MBDOE, as we will see in Chapter 2.1.1.

However, without any systematic modifications to ‘naive’ MBDOE,

the result of MBDOE will be quite poor for following reasons.

1.2.1 Dependence on the initial parameter estimate

One of the most widely known issues with MBDOE is that the

calculation requires, and therefore depends, on the guesses of model

parameter values. In other words, there is a contradiction in which the

objective of the calculation affects the calculation itself. This problem

has been pointed out in literatures on MBDOE, and being considered

as the innate limitation of the method [32, 33].

1.2.2 Numerical size of the problem

Another set of problems is caused by the size of the MBDOE

problem. In the MBDOE, the amount of information is quantified us-

ing a sensitivity matrix which consists of a large number of sensitivity

indices. Calculation of each sensitivity index requires numerical inte-

gration, which makes the calculation of the sensitivity matrix compli-

cated. Solving MBDOE, which is an optimization problem, requires

evaluating the sensitivity matrix over and over. The computational

burden of MBDOE is therefore enormous. This leads to a number of

other problems beyond simply making calculations take longer. For

example, it is very difficult to choose the right solver because the
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problem is not only very large, but also extremely nonlinear. When

using a global optimization solver such as the genetic algorithm, it

takes an unrealistically long time to obtain a solution which is not

even reproducible. Using local optimization methods starting from

the initial solution has a problem of being very sensitive to the choice

of the initial solution. Regardless of the method, it is also a problem

that it is impossible to interpret the solution due to the complexity of

the problem.

1.2.3 Correlation between the parameters

Another set of problems is caused by correlation between param-

eters [34]. The estimate of one parameter depends on the parameter

estimate of the other, which disables unique determination of param-

eter estimates. This issue can also be termed as the practical iden-

tifiability problem. [35] analyzed that, without a specially designed

experiment, no unique set of parameter estimates can be determined

for Michaelis-Menten kinetic model. Various methods for detecting

identifiability have been suggested, including the ones suitable for

relatively small-sized problems [36, 37, 38] and the ones suited for

nonlinear dynamic models [39, 40].

Moreover, correlation between the parameters leads to numerical

problems in solving MBDOE. A column of the sensitivity matrix, i.e.,

a sensitivity vector, corresponds to one parameters. As the correlation

between the two parameters increases, two vectors becomes nearly

parallel, which in turn makes the sensitivity matrix nearly singular.

This (near–)singularity introduces large numerical errors in calculat-

ing performance measures in optimization stage.
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1.3 Current approaches to the issues

Fortunately, the issues have been recognized by many researchers,

and many suggestions have been made to relive them. In this chap-

ter, we briefly review notable improvements of the MBDOE and their

limitations.

1.3.1 Dependence on the initial parameter estimate

To eliminate the effects that comes from the uncertainty of the

initial parameter estimates, one can consider directly taking account

of the parameter uncertainty. One can try to maximize the minimum

possible information content of the experiment, rather than maximiz-

ing the objective function based on all possibilities of parameter es-

timate [41]. If the probability distribution of the parameter estimates

is known or can be assumed, a Bayesian experimental design can be

calculated [42, 43]. One problem with the above-mentioned methods

is that it is very difficult to quantify parameter uncertainty in actual

cases. In addition, the actual calculation of above designs is usually

very complex, contrary to the simplicity of the idea itself. Another

practical approach to deal with the problem is to perform MBDOEs

repeatedly. Once the MBDOE is performed with initial parameter es-

timates, the data is obtained and the parameters are re-estimated using

the data. Then, a second MBDOE is calculated using the re-estimated

parameters, resulting in further improved parameter estimates. This

approach is called sequential design and is commonly used because

of its procedural simplicity [44]. The method requires no additional

computational complexity, but has a drawback that it takes a lot of

time because the experiment has to be repeated and it does not uti-

6



lize the information obtained during the operation until batch termi-

nation time. If the iteration between the parameter update–MBDOE

re-calculation is performed in real time instead of batch-to-batch, the

real-time data can be utilized, which will further reduce the depen-

dence on the initial parameter estimate. Although this method does

not solve the dependency problem perfectly, it is the most advanced

form of the existing sequential MBDOEs. There have been a few

studies that focuses on the merits of this ‘online’ MBDOE. Some

researchers approached the problem from the adaptive control point

of view, where the ‘adaptation’ refers to the real-time re-estimation

of the parameters. Stigter et al. [45, 46] formalized the problem and

utilized it in finding parameters of a bioreactor model. Galvanin et

al. ,[47, 31] Jayasankar et al. [48], and Zhu et al. [49] used similar

frameworks for parameter estimation of relatively simple nonlinear

dynamic models. Rathousky et al. [50], Patwardhan et al. [51], Lars-

son et al. [52, 53], Heirung et al. [54] and Telen [55] respectively

suggested a special form of dual adaptive model predictive control,

employing a form of DOE metric to ensure a persistent excitation

condition.

1.3.2 Numerical size of the problem

The theoretical method for reducing the size of the MBDOE

problem, or solving the problems caused by the size, has not been

the subject of a devoted study. Instead, practical approaches are taken

according to the case. For example, to resolve the dependency prob-

lem with regard to the initial guess of the MBDOE, one can establish

several initial solutions using expert knowledge and then obtain the
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optimal solution by comparing several local solutions. Another com-

mon practice is to reduce the number of parameters that are the ob-

ject of the experimental design. The relative importance of the model

parameters, as measured by the expected difference of the measure-

ment caused by the the parameter value differences, varies by orders

of magnitude. One can reduce the size of the problem by focusing

on a subset of parameters that are far more important than the rest of

the parameters. It is notable that on-line MBDOE mentioned in the

previous section has problem size-reducing effect, as well as solving

the initial parameter estimate dependency problem. This is because

on-line MBDOE computes input action for a relatively short time

span, rather than calculating the entire batch time. By far, studies

that present on-line MBDOEs use a relatively simple model (linear

or slightly nonlinear) in their demonstration. When applied to larger

and complex models, the simple formulation of online MBDOE is

likely to present various problems, as we will see in the Preliminary

section.

1.3.3 Correlation between the parameters

There has been a few methods that have been proposed in or-

der to eliminate the correlation between the parameters, in terms of

MBDOE. In the simplest case, there is a method of expressing the

correlation of all the model parameters as one value and calculating

the MBDOE to minimize this value. A set of schemes using a combi-

nation of conventional MBDOE and MBDOE that reduces parameter

correlation have presented. These methods have been proven success-

ful, yet they are applicable only to a relatively simple model and have

8



a disadvantage that their calculation is very complicated.

An intuitive way of reducing the correlation should be to provide

additional data for the parameter estimation. In [39] and [56], the au-

thors simply provided additional data to the existing dataset, reliev-

ing the correlation between the parameters as the result. In another

study [40], result of the firstly conducted experiment was analyzed,

and then used to design subsequent expeirment aimed at reducing the

parameter correlations.

Another set of approaches used the MBDOE framework, using

some measure of parameter correlation as the objective function. The

simplest design criteira used in this sense is E-optimality, which in-

dicates the smalled eigenvalue of the Fisher’s information matrix. A

modified E-optimality is similarly defined as the ratio of the mini-

mum eigenvalue to the maximum eigenvalue of the information ma-

trix, and is one of the most widely used anti-correlation design cri-

teria [57, 58]. In the study of Pritchard [59], elements of the cor-

relation matrix was explicitly used as the design criterion and the

authors achieved 5% decrement of the correlation indices. This was

however at the cost of larger variances for individual parameters. A

series of methods that balances between reducing the correlation and

minimizing the individual variances was suggested by [60, 61, 62],

where anti-correlation criterion is used as the objective function and

the conventional criteria is used as constraints, or vice versa.
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1.4 Scope of the study

The purpose of modeling is not to obtain a model itself, but to

utilize the obtained model to various applications such as model-

based optimization, model-based control, scheduling, and so on. If

the model parameters are not accurate enough, the results of the op-

timization and control calculation will also be questionable. The ulti-

mate goal of MBDOE is to find the most accurate possible parameter

value so that one can maximize the reliability of the following cal-

culations. Considering this, one can see that the accuracy of the re-

quired model depends on the ultimate purpose of the modeling. How-

ever, there are so many different areas that the model can be used, so

there can be no general answer to that question. Therefore, we con-

sider the variance and correlation index, which are general and simple

statistics of parameter estimates, as the primary measure of MBDOE

performance, with no consideration of future use of the model. In ad-

dition, we will use efficiency in the MBDOE calculation process as

the secondary measure of the proposed scheme.
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1.5 Outline of the thesis

In Chapter 1, we talked about the necessity of the study and

briefly discussed current issues and previous researches. The remain-

ing of thesis will be constructed as follows. In Chapter 2, we will

discuss the theory of MBDOE and then discuss the issues described

in chapter 1 in more detail. In Chapter 3, we propose a more ad-

vanced form of on-line MBDOE, which solves the first two problems

of the three problems mentioned previously. Chapter 4 proposes a

successive complementary anti-correlation MBDOE as a way to fur-

ther improve the existing anti-correlation MBDOE. In Chapter 5, we

apply the algorithm proposed in the previous two chapters to a mi-

croalgal fed-batch bioreactor model and deeply analyze the results

from various perspectives.
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Chapter 2

Preliminaries

2.1 Model-based design of experiments (MBDOE)

2.1.1 Basic formulation

First of all, it is assumed in our study that our system of interest

can be described using a set of ordinary differential equations.

ẋ = f(x,ϕ;θ) (2.1)

y = h(x) + ϵ (2.2)

ϵ ∼ N(0,Σ) (2.3)

The dynamics of the states f is described as a function of the states

x ∈ RNx , experimental design variables ϕ ∈ RNϕ and model pa-

rameters θ = [θ1, θ2, ..., θP ]
T as in (2.1). Output variables, or mea-

surements y is related to the states x using the function h and the

measurement error ϵ as in (2.2). h is usually a selector function, that

is, h(x) = hTx with h = [δ1, δ2, ..., δNy ] where δi = 1 when the state

xi is measurable and δi = 0 when unmeasurable. Measurement noise

ϵ follows a normal distribution with a known diagonal covariance

12



matrix Σ as in (2.3).

θ ∈ [θLB,θUB] (2.4)

ϕ ∈ [ϕLB,ϕUB] (2.5)

Model parameters as well as the design variables are constrained with

lower and upper bounds as in (2.4) and (2.5). Design vector ϕ in

(2.6) contains all elements that can change the measurement values,

such as initial state variables x(0), time-independent control inputs

w and time-dependent control inputs u, and sample instants tsp. Al-

though the time-dependent control input u(t) can be changed contin-

uously, it needs to be expressed in finite dimension to enable calcula-

tion. This dimensional reduction is called control vector parameteri-

zation(CVP) and one typical way to perform it is to express control

trajectory with a zero-th order hold(ZOH) with control-switching in-

stants tsw.

ϕ = [x(0)T , tTsw,u
T ,wT , tTsp]

T
(2.6)

Next, we define sensitivity matrx St in (2.7) as a partial difference of

the output vector y(t) with regard to the parameters. y(t) refers to

the vector of measurements obtained at the time instant t, i.e., y(t) =

[y1(t), y2(t), ..., yNy(t)]
T . This makes the size of the matrix St to be

(Ny ×Np), where Ny is the number of output variables and Np is the

number of parameters.

St(ϕ; θ̂) =
∂ŷ(t)

∂θ

∣∣∣
ϕ,θ̂

(2.7)
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The dependency shown in (2.7) indicates that in order to evaluate

the value of the elements of St, one not only needs to provide the

design vector ϕ but also the current estimate of the parameters θ̂.

This point will be discussed in more detail in the upcoming section.

If there is only one sampling instant, one can easily obtain the Fisher’s

information matrix(FIM) M as M = St
TΣ−1St. When there are more

than two intsants of measurement, FIM can be obtained as (2.8) by

adding the information matrices of each time instant.

M(ϕ;θ) =

Nsp∑
i=1

Nsp∑
j=1

Σ−1Si(ϕ;θ)
TSj(ϕ;θ) (2.8)

ϕ∗ = argmax
ϕ

F (M(ϕ;θ)) (2.9)

The values σij correspond to the (i, j)–th component of the mea-

surement covariance matrix Σ. The size of the resulting FIM M is

(Np×Np), where (Ny×Nsp×Np) sensitivity induces have to be cal-

culated therein. A scalar function F is taken with regard to the infor-

mation matrix S, which corresponds to some measure of the param-

eter accuracy. The most common choice of F is the determinant(D-

optimality), which represents the area of the parameter confidence re-

gion [32]. Another common choices include the smallest eigenvalue(E-

optimality), and trace(A-optimality) [63, 64, 65]. Lastly, optimal ex-

perimental design ϕ∗ is found as an experimental design that mini-

mizes F(M) in (2.9).

2.1.2 Issues seen in detail

• Dependence on the initial parameter estimate
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As can be see by the expression in (2.7), one requires parameter val-

ues to calculate the sensitivity matrix. Since the actual parameter val-

ues are not known, the best one can do is to use the initial parame-

ter estimate values instead in the MBDOE calculation. This results

in erroneous calculation of the information matrix M , which in turn

makes the optimal experimental design ϕ∗ inaccurate. If the param-

eter estimate is relatively accurate, the damage due to the parameter

uncertainty is small, but it can be serious if the parameter estimate is

far from actual value.

The following example demonstrates the parameter estimate de-

pendency issue. MBDOE is performed to a single-input single-output

system (2.10), using D-optimality criterion.

y =
u

1− θu+ 1.5θu3
+ ϵ

ϵ ∼ N(0, σ2)
(2.10)

Figure 2.1 shows the change of the D-optimality criterion according

to the change of the input.
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The optimality critetrion function (∂y/∂θ)2 depends on θ, dif-

ferent curves can be drawn according to the parameter estimate. The

actual optimality trajectory, drawn by providing true parameter value

θ = 1 is shown in red. Trajectory drawn with the parameter estimate

θ̂a = 0.7 is in blue, and the trajectory drawn with the parameter es-

timate θ̂b = 1.3 is shown in yellow. If we perform MBDOE using

the parameter estimate θ̂b, we obtain u∗
b = 0.527 as a result, which is

a fairly good experiment compared to the actual optimal experiment

u∗ = 0.538. However, when MBDOE calculation is performed start-

ing with θ̂a, we obtain u∗
a = 1.349 that is far different from the actual

optimum value. In this case, the amount of benefit one can get from

MBDOE is limited.

• Numerical size of the problem

If the input-output relationship of the model is given regardless of

the time such as in (2.10), sensitivity values can be easily calculated

by differentiating. When the system is described by differential equa-

tions (2.1), (2.2) and (2.3), sensitivity values can be calculated by

integrating the equation (2.11) obtained by the chain rule.

d

dt

∂y

∂θj
=

∂f

∂x

∂y

∂θj
+

∂f

∂θj
(2.11)

The values of the elements of the matrix ∂f/∂x and the vector ∂f/∂θj ,

requires the state trajectory x(t), which means that one has to perform

numerical integration of the equation (2.1) in prior. As a result, large

number of numerical integrations must be performed to compute a

single sensitivity matrix. Again, in order to perform the optimization

calculation which sets norm of the FIM as the objective function,
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sensitivity matrices have to be evaluated repeatedely. Therefore, the

numerical burden of the MBDOE is usually very heavy.

The following example demonstrates the numerical complexity

issue. Presented in (5.1) is a fed-batch bioreactor model proposed by

Yoo [66].

dX

dt
= µX −XD

dSN

dt
= −ρX + Si

N

uN

V
− SND

dSC

dt
= − 1

YXS

µX − 1

YLS

πX + Si
C

uC

V
− SCD

dQ

dt
= ρX − µQ−QD

dL

dt
= πX − vL− LD

dV

dt
= uN + uC − f0

where

µ = µm

(
1− q0

q

)(
1− l0

l

)(
S2

KS2 + S2

)(
I

KI + I

)
ρ = ρm

(
S1

KS1 + S1

)(
qm − q

qm − q0

)
π = πm

(
S2

Kπ + S2

)
(1− q)(1− l)

v = vm

(
Kv

S2 +Kv

)(
1− l0

l

)
l =

L

X +Q+ L

q =
Q

X +Q+ L

D =
uN + uC

V

(2.12)
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Suppose that we try to evaluate sensitivity matrix of the system, with

tsp = [12, 24, ..., 300]. All the other simulation conditions such as ini-

tial parameter estimate and input trajectory are identical to the con-

ditions given in the original study. First, we obtain y(t) by numerical

integration of the dynamic equation (2.1) and (2.2). And then sen-

sitivity matrices are calculated by integrating (2.11) along with the

y(t) obtained previously. When ode45 function is used for both in-

tegrations, it requires more than 77,000,000 time steps and 42 hours

to inquire a single sensitivity matrix S. Stiffness of the sensitivity

matrix is responsible for this computation time, so the integration

methods suitable for stiff differential equations should be used. When

ode23 function is used instead, it takes 24 seconds for evaluation

with 70,000 time steps. For the optimization calculation, this objec-

tive function needs to be iteratively calculated. For example, if we use

a genetic algorithm with a population of 500 and suppose that it takes

300 generations to obtain an answer. The total time it requires is about

500 * 300 * 24 seconds = 41.7 days, which is makes it impossible to

perform optimization for practical uses.

• Correlation between the parameters

The correlation between the parameters can be quantified by the foll-

wing computations. In (2.13), the approximate variance-covariance

matrix V is defined as the inverse matrix of the information matrix

Z. Elements of the correlation matrix C in (2.14) are found by the

computation given in (2.15). Each elements ci,j indicates the degree

of correlation between the parameters θi and θj . Dependencies with
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regard to ϕ and θ for vii and cij are omitted for notational simplicity.

V (ϕ;θ) = M(ϕ;θ)−1 =


v11 · · · v1P
... . . . ...

vP1 · · · vPP

 (2.13)

C(ϕ;θ) =


c11 · · · c1P
... . . . ...

cP1 · · · cPP

 (2.14)

cij = vij /
√
vii /

√
vjj (2.15)
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2.2 On-line MBDOE

On-line MBDOE maintains the theoretical framework of MB-

DOE described previously. The difference is that MBDOE problem

of reduced size is solved in real-time, and the re-estimated parameter

is used in MBDOE calculation of the next time step. When perform-

ing real-time control in this manner, it is rational to set the control-

switching time tsw and sampling time tsp identical. Also, assume that

switching and sampling occur at a constant time interval T during the

operation, i.e., tsw = tsp = [tsp1 , tsp1 , ..., tspNsp
] = T × [1, 2, ..., kf ]. At a

given time instant tspk , on-line MBDOE solves problems (2.6) through

(2.8) using the sensitivity matrix given by (2.16).

Sk = Sk(ϕ[k]; θ̂[k]) =
∂ŷi[k]

∂θ

∣∣∣
ϕ[k],θ̂[k]

(2.16)

Mk = Mk(ϕ[k];θ[k]) =

k+Hp∑
m=k+1

k+Hp∑
n=k+1

Σ−1Sk
TSk (2.17)

ϕ∗[k] = argmax
ϕ[k]

F (Mk) (2.18)

In (2.16), θ̂[k] is the parameter estimate given in time instant k. The

measurement vector yi is substituted by yi[k], which is vector of the

measurement yi of the time instants (k + 1), ..., (k +Hp) rather than

the entire sampling time instants. The change of the design vector no-

tation from ϕ to ϕ[k] indicates that the control inputs of the reduced

time range is being considered. Hp is the prediction horizon used sim-

ilarly in the model predictive control (MPC), which can be selected

somewhat arbitrarily. Smaller values of Hp indicates that one makes

prediction, and bases one’s decision upon, relatively small time pe-
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riod.

The size of the sensitivity matrix is reduced from (Nsp × Np)

to (Hp × Np). This will undoubtably reduce the computational load

of the problem, solving numerous problems arises from it. However,

two aspects should be noticed:

First, the computation time must be very fast compared to the off-

line case in order to proceed in real time without causing problems.

For example, if the computation time is equal to the sampling time T ,

one can set up the theoretical framework of on-line MBDOE without

much change. However, the instant at which the new parameter esti-

mate is used in MBDOE calculation is delayed by T . This deteriorates

the MBDOE performance accordingly. In order to avoid this, the cal-

culation speed should be very short in comparison with the sampling

interval T . In the previous studies on on-line MBDOEs, computation

time has never been a issue because they were all applied to linear

models or small nonlinear models. In dealing with more complex and

highly nonlinear models, computation will certainly be a problem,

and it is therefore necessary to further reduce the size of the problem

to reduce computation time. The simplest way to reduce the prob-

lem size should be to make Hp smaller. However, there is a lower

limit imposed on the value of Hp because of the rank of the infor-

mation matrix. Suppose that one set Hp as 1 to minimize the compu-

tatioin. For typical batch models, the number of measured outputs is

much less than the number of parameters (NyNp). In this case, rank

of the information matrix Mk equals to Ny assuming no collinear-

ity between sensitivity vectors. Because Mk is not a full rank (Np)

matrix, it is impossible to calculate commonly used optimality crite-

rion. To avoid this, Hp should be equal to or bigger than [Np/Ny]+1,
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which is the minimum Hp that makes Mk full rank. The larger the

difference between Ny and Np, the larger the minimum Hp and heav-

ier calculation. Also, even if Mk meets the full rank condition, it is

highly likely that Mk is in ill-conditioned state. To illustrate this, we

show the sensitivity matrix in the form (2.19).

Sk =


r1

r2
...

rNy


k

(2.19)

Mk =

k+Hp∑
m=k+1

Σ−1Sm
TSm

= Σ−1
{
ST
k+1Sk+1 + · · ·+ ST

k+Hp
Sk+Hp

}
= Σ−1

{(
rT1 r1 + rT2 r2 + · · · rTNy

rNy

)
k+1

+ · · ·

+
(
rT1 r1 + rT2 r2 + · · · rTNy

rNy

)
k+Hp

}
(2.20)

Here, ri (i = 1, 2, ..., Ny) are row sensitivity vectors representing the

sensitivity of a single measurement yi with regard to all model pa-

rameters θ. The information matrix Mk in (2.17) can be expressed as

the sum of each information matrix as in (2.20). As exjplained previ-

ously, Mk is full rank assuming that there is no parallel columns and

HpNy > Np, However, dynamic inside the the narrow time horizon is

not significantly different, i.e., row vectors ri|m(m ∈ [k+1, k+Hp])

are nearly parallel. As a result, Mk becomes an ill-conditioned matrix

which makes the numerical accruacy of the optimization(MBDOE)
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calculation poor.
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2.3 Anti-correlation MBDOE

Here, we briefly introduce methods for reducing the correlation

of parameters using the MBDOE framework. The earliest study of

this kind [59] was simply to minimize the elements of the correlation

matrix (2.14). A series of advanced and more sophisticated forms of

anti-correlation MBDOE were studied [61, 62]. One of methods that

the authors have proposed named PAC method is shown below.

min
ϕ∈Φ

c2ij with i,j such that

cij = max c|basepoint

s.t. c2kl(θ̂,ϕ)|k ̸=l < ϵckl

k, l ∈ {1, 2, · · · , Np}

(2.21)

In this method, a representative operating policy is set as a reference,

and then a primary analysis based on information matrix, variance

matrix and correlation matrix is made. Then, the minimization prob-

lem is solved with regard to the correlation indices that exceeds the

predetermined threshold ϵckl. The other methods proposed in the same

paper are variants such as the variances of the individual parameters

are used as constraints. The authors used this method to estimate the

parameters of the bioreactor model and verified it by experiments.

When this method is applied to a larger sized bioreactor model, a

few difficulties are expected. First, the proposed method can give out

drastically different results depending on the basepoint one chooses.

Moreover, result of the primary anlayses also depends on the value of

the parameter estimates. For the above reasons, it is dangerous to use

the above anti-correlation method from a point where uncertainty of
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parameter estimates is large.

The second reason is that it is not suitable for designing exper-

iments using batches. When the model is large and complex, there

is a need to repeat several experiments in order to reduce correlation.

However, the existing methods include steps that are complicated and

requires expert knowledge. This makes them powerful when perform-

ing single experiment, but is not suitable for performing several ex-

perimetns in sequence because of the amount of time and effort re-

quired to design all experiments. There is a need for a methodology

that is simple and consistent regardless of the number of batches, and

that can visually observe improvements over each experiment.
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Chapter 3

Parameter subset selective on-line MBDOE

3.1 Objective of the methodology

As described in Chapter 1, applying the existing MBDOE method-

ology directly to a large, nonlinear batch system results in numer-

ous theoretical as well as practical problems. On-line MBDOE is a

methodology worth developing further because two of the three is-

sues described in former chapters can be addressed by it. However,

as explained in Chapter 2, existing on-line MBDOE methodology is

impractical to be applied to a large-sized, highly nonlinear batch sys-

tems. In this chapter, we present a way to make the existing on-line

MBDOE method more efficient so that it can be used in identification

of large and nonlinear models. This method differs from the existing

on-line MBDOE in that it involves the process of obtaining a sub-

set of parameters at each time step. The MBDOE problem solved in

real time is formulated with regard to a subset of parameters. Us-

ing this method, the amount of computation required to calculated

optimal input is greatly reduced while the optimality of MBDOE is

largely retained. In addition, numerical issues according to the pa-

rameter correlation is also solved.
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3.2 Theoretical formulation

The procedures described in subsections 3.2.1 through 3.2.3 are

repeated for the time indices k = 0, 1, ..., kf . In this study, we con-

sider the time-varying input u[k] as the only member of experimental

design ϕ[k], i.e., ϕ[k] = u[k].

3.2.1 Parameter subset selection

At each time instant k, we select the parameters that dominates

the dynamics of the system according to the algorithm presented

below. Provided a certain experimental design u[k] with prediction

horizon Hp, sensitivity matrix Sk(u[k]) is evaluated and expressed

as a collection of sensitivity vectors (3.4). One should notice that

the algorithm 1 is repeated at every sampling instant, although the

time-dependency is purposely ommitted in order to avoid notational

complexity. The algorithm is largely adapted from the subset selec-

tion procedure suggested by Chu and Hahn (2012). The difference

from the original algorithm is that in the original algorithm, a prede-

termined number of subset parameters are selected in step 3. At each

iteration, one selects one parameter at a time that has the largest norm

of the sensitivity vector (3.1), projected by the sensitivity vectors that

correspond to all previously selected parameters (3.2).

• Step 1. Initiation. Number the column vectors of the sensitivity

matrix S as s1, s2, ..., sNp . Starting at the iteration index k = 1,

let the projected sensitivity vectors as s(k)p = sp, p ∈ [1, Np].

• Step 2. Pre-selection. Choose a parameter with the largest norm

of projected sensitivity vector. Chosen parameter is indexed
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with ik.

ik = argmax
j

s
(k)
j

T
s
(k)
j (3.1)

The 2-norm value of the projected sensitivity matrix, i.e. s(k)ik

T
s
(k)
ik

is named as orthogonal magnitude, and is recored as mp if

ik = p.

• Step 3. Projection. Calculate the orthogonal projection matrix

P (s
(k)
ik
)⊥. I is the (Np ×Np) sized identity matrix.

P (s
(k)
ik
)⊥ = I −

s
(k)
ik
s
(k)
ik

T

s
(k)
ik

T
s
(k)
ik

(3.2)

Using P (s
(k)
ik
)⊥, calculate the next step of projected sensitivity

vectors as s
(k+1)
p = P (s

(k)
ik
)⊥s

(k)
p . Set the iteration index k =

k+1 and return to step 2. Repeat the iteration until the k = Np,

i.e., when all the parameters are align in the order i1, i2, ..., iNp .

• Step 4. Selection. After the iteration of steps 2 and 3 is com-

pleted, a total of Np orthogonal magnitude values m1,m2, ...,mNp

is obtained. Using these, the parameter subset θ̃ can be se-

lected using different criteria. For example, one can choose the

least number of parameters that account for the predetermined

portion of the orthogonal magnitudes starting from θi1 . In this

study, we simply choose a predetermined number (Nr) of most

significant parameters, that is, Nr parameters with the largest

mp’s as the parameter subset.

Chu and Hahn [67] have pointed out the possibility that the succes-

sive selection of parameters can result in suboptimal subset selec-
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tion compared to the case where all subset parameters are selected si-

multaneously. However, the chance of suboptimality is considerably

lower compared to the case where all instants are considered at once.

This is because only a few time instants are considered, where only a

few parameters take effect. In fact, subset parameters selected using

either method showed no difference in both case studies presented in

the current and the later chapter (data not shown). We selected the

process given by steps 1 through 4 because the advantage of a signif-

icantly faster computation easily overrides its potential weaknesses.

Note that because the evaluation of the sensitivity matrix depends

on the selection of experimental design ϕ[k], the selection of the pa-

rameter subset also depends on ϕ[k]. To eliminate the effect of the

selection of ϕ[k], we obtain multiple samples of design vectors that

satisfy (2.5). Samples can be drawn from [ϕLB,ϕUB] by dividing

them into equally spaced grids or using Latin hypercube sampling

if the number of grids becomes excessively large. Orthogonal mag-

nitude values obtained for each grid point are collected, and the total

accumulated values for orthogonal magnitude can be used instead for

subset selection.
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The principle behind the parameter subset selection process can

be explained as follows. The D-optimality used as an objective func-

tion of MBDOE corresponds to the hyper-volume of the n-dimensional

body made by Np column vectors of sensitivity matrix. For simplicity,

consider the case where Ny = 2 and Np = 3 where the hypervolume

is area as in Figure 3.1(a). In this case, we can define three different

areas by combination of three different sensitivity vectors. Each area

is equal to the square root of the D-optimality defined by the reduced

sensitivity matrix, which consists of two out of three sensitivity vec-

tors. In other words, the D-optimality value changes according to the

choice of the parameters. One can use this as the criterion for subset

selection; a subset that maximizes the D-optimality(area) is the best

choice of the selection. If the number of parameters is small, one can

compare all NpCNr areas and choose the optimal subset. However, as

the number of parameters increases, the number of combinations be-

comes too large, so a simplified suboptimal approach is used where

the maximum hypervolume is searched one dimension at a time. Be-

cause the hypervolume of the n+1 dimension is hypervolume of the

n dimension times the orthogonal length, the notion of orthogonaliza-

tion comes naturally. However, the purpose of this orthogonalization

is not to go all the way through Np parameters and find orthogonal

sets of vectors but to compute the hypervolume of vectors. The way

that the orthogonal vectors is obtained in each iteration is the same as

that of Gram-Schmidt process. This method is known to cause large

numerical errors in the calculation process, compared to other orthog-

onalization methods such as Householder transformation. When the

parameter subset is obtained in this way, the calculation result may

become erroneous especially when the number of parameters Np and

31



𝒔1

𝒔2

𝒔3

𝑆12
𝑆13

𝑆23

(a)

𝒔1

𝒔3 = 𝒎3

𝒎1

(b)

Figure 3.1: (a) Geometrics of he sensitivity vectors and the D-optimality of
the sensitivity matrices comprised of subset sensitivity vectors. (b) Geome-
try of the parameter subset selection process and the reduced D-optimality
critrion.
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subset parameters Nr are both large and the difference between the

orthogonal magnitude values is large. In this case, one should keep in

mind that the obtained subset can be erroneous.

3.2.2 Optimal input calculation

The reduced form of the MBDOE problem is formulated using

the parameter subset θ̃[k] found from the previous analysis. The de-

sign vector has the form of (3.3), and the expression for the reduced

sensitivity matrix is shown in (3.4). To keep the computational load

tractable for online application, the zeroth order hold given by (3.5)

is introduced for input variables.

U[k] = [u[k]T ,u[k + 1]T , · · · ,u[k +Hp − 1]T ]T (3.3)

Sk(U[k]) =



∂ŷ[k+1]

∂θ̃

∣∣∣
u[k]

∂ŷ[k+2]

∂θ̃

∣∣∣
u[k],u[k+1]
...

∂ŷ[k+Hp]

∂θ̃

∣∣∣
u[k],u[k+1],...,u[k+Hp−1]


(3.4)

u[k] = u[k + 1] = · · · = u[k +Hp − 1] (3.5)

Solving optimization problems (2.18),(2.17),(2.16) with conditions

(3.3) and (3.5) yields optimal input U∗[k]. Now, a parameter subset

is found again using the sensitivity matrix calculated by substituting

U∗[k] in (3.4).
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3.2.3 Implementation and parameter re-estimation

The first element u∗[k] of the optimal input calculated in the

previous step U∗[k] is implemented to the plant, and the measure-

ment is performed according to (2.2) and (2.3). The parameters are

re-estimated as the values that best describe the measurement values

up to that moment.

θ̂[k] = argmax
θ

J [k] (3.6)

J [k] =
k∑

κ=1

∥y[κ]− ŷ[κ]∥2 (3.7)

ŷ[τ ] = y[τ − 1] +

∫ T

(τ−1)T

f
(
x,u∗[τ − 1]; θ̂[τ − 1]

)
dt (3.8)

The parameter estimate obtained at the final time instant θ̂[kf ] is the

final parameter estimate. Figure 3.2 briefly summarizes the scheme

of the proposed methodology.

3.3 Demonstration

In order to demonstrate the use of the method and prove, the

scheme is applied to a fed-batch bioreactor model. This two-state,

four-parameter model was has been utilized in a few MBDOE studies.
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Figure 3.2: Scheme of the subset-selective on-line MBDOE methodology
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3.3.1 Model description and problem settings

Ẋ = (µ−D − θ4)X

Ṡ =
1

θ3
µX −D(Sin − S)

µ =
θ1S

θ2 + S

(3.9)

X denotes the concentration of the biomass in g/L, and S is the con-

centration of the substrate in the media, also given in g/L. D[h−1] is

the dilution factor, which is a time-varying controllable input of the

system. The second time-variant control element is Sin[g/L], which

is the concentration of the substrate feed. It is assumed that the during

the batch duration T = 40h, control-switching, sampling, and param-

eter re-estimation is performed every 4 hours. As a result, both time-

variant controls changes 10 times and 20 measurements in total are

obtained for parameter estimation. Between each control-switching

time instants, both control variables D and Sin are assumed to hold

as the same value. The admissible ranges for D, Sin, and X(0) are

[0.05,0.2], [5,35] and [1,10], respectively. The variance matrix Σ is

set as diag([0.1, 0.03]) and the initial values of the state variables

were set as X[0] = 5.5 and S[0] = 0. The actual values for the param-

eters θ1, θ2, θ3, θ4 are 0.31, 0.18, 0.55, 0.05. For the initial estimate of

the parameters, i.e. θ̂[0], [0.62, 0.09, 0.8, 0.1] is chosen, representing

double or half of the actual values. The number of subset parame-

ters Nr selected at each time point is set to 3. In this demonstration,

the on-line MBDOE which does not choose the parameter subset is
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also calculated, and the two results are compared with each other. To

solve this problem, SQP method was used and all calculations were

performed in MATLAB 2017b.

3.3.2 Result

The trajectory of the optimal input value u∗[k] obtained from

reduced MBDOE is shown in the following figure. In order to distin-

guish from the optimum input value obtained from the reduced MB-

DOE (u∗[k]), the optimum input value obtained from the full-sized

MBDOE is indicated as u∗
full[k].

In Figure 3.3, we see that the optimal input trajectory in case

of subset parameter selection and no selection results in similar tra-

jectory. It can be interpreted that this is caused by the fact that the

relative importance of the parameters at a certain time instant differs

by orders of magnitude. The significance of the four parameters dur-

ing the batch, calculated with the method presented in Chapter 3.2.1

is shown in Figure 3.4.
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The parameters selected as subset parameters are indicated with

large markers. Here we can see indirectly that the influence of non-

critical parameters on the information matrix is negligible, and inclu-

sion of these parameters in the design process has no significant effect

on the result. The state variables for both cases follows similar trajec-

tory (Figure 3.5), and also the parameter estimate values obtained on-

line (Figure 3.6). In order to compare the performance between the

full-sized D-optimal design and the reduced-sized D-optimal design,

D-efficiency is defined in the following manner.

Deff [k] =
log[det(Sk(U

∗[k];θ)TΣ−1Sk(U
∗[k];θ))]

log[det(Sk(U∗
full[k];θ)

TΣ−1Sk(U∗
full[k];θ))]

(3.10)

Simply put, this value represents the ratio of the logarithm of the

D-optimality of the two optimal inputs obtained by the reduced MB-

DOE and the full-sized MBDOE, respectively. Because the full-sized

optimal design U∗
full[k] is the optimized value with regard to the de-

nominator, the nominator value cannot be larger than the dominator if

the optimization is successfully solved. In other words, Deff [k] has a

theoretical maximum value of 1, and smaller value than this indicates

larger loss of optimality from reducing the problem size by choos-

ing the subset of parameters. The result of this calculation is shown

in Figure 3.7. The Figure shows that the efficiency is relatively low

at k = 6, which is the same instant where the difference between

reduced optimal design u∗[k] and full design u∗
full[k] is evident in

Figure 3.3. However, at all other points, the D-efficiency is close to

1, and the lowered D-efficiency does not significantly affect the accu-

racy of the parameter estimate. In summary, the process of selecting

a parameter subset does little to compromise the performance of the
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algorithm. Finally, the optimality of the total optimal trajectory calcu-

lated online from k = 1 to k = 10 was compared with the optimality

of the input trajectory calculated by the traditional off-line method.

The first bar of Figure 3.7 represents the D-optimality of the optimal

input calculated assuming that the actual parameter values are known.

Obviously, this calculation is impossible in real situation because the

true parameter values are unknown. This value stands for the theo-

retical maximum of D-optimality that can be obtained by any MB-

DOE calculation. The second bar represents the actual D-optimality

of the off-line MBDOE calculation done with the inaccuracy param-

eter estimate. Here, the word actual implies that the value computed

by MBDOE with an unknown parameter is re-evaluated using the true

parameter values. The third and fourth bars represent the actual opti-

mality of the two on-line MBDOEs shown in Figure 3.3. We see that

the loss of optimality when the entire MBDOE is performed with the

inaccurate parameter estimate is considerably large. This loss can be

minimized by using on-line MBDOE schemes, and it can be expected

that on-line MBDOE can be effectively used in the early stages of pa-

rameter estimation of batch systems.
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3.3.3 Comparison for different number of subset pa-
rameters

In the previous simulation, it has been shown that even if all

the parameters are not considered in formulating MBDOE, it has no

detrimental effect on MBDOE performance or parameter estimation.

However, a single simulation is influenced by the effects of initial pa-

rameter estimates as well as random measurement noise. Therefore,

we should perform repeated simulations with random initial param-

eter values, in order to fairly evaluate the effect of Nr. The table 3.1

summarizes the mean values obtained from 100 repeated simulations,

for different number of subset parameters Nr = 1, 2, 3, and 4(full de-

sign). The accuracy of the final parameter estimates were not signif-

icantly different from the full design for Nr = 3 and Nr = 2 cases.

However, the uncertainty of the parameters increased sharply when

Nr = 1. Variances of each parameters were slightly magnified in

Nr = 3 case, compared to the full design case. Even when the subset

parameter was reduced to 2, the variance of the parameters remained

largely unchanged, except for the second parameter. When only one

parameter was chosen for MBDOE, variances of the parameters 1,2,

and 3 were significantly enlarged. However, variance of the fourth pa-

rameter was the smallest in this case. This is because when Nr = 1,

the information is collected exclusively for the parameter 4, which

has the biggest sensitivity with regard to the output variables.
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3.3.4 Effect of model conditions and hyper-parameters
on the performance of the scheme

• Number of parameters Np

The various problems of full-scale MBDOEs that do not utilize sub-

set parameters become worse as the number of parameters increases.

The larger the number of parameters, the larger the FIM, resulting in

a larger nonlinearity of the MBDOE, a longer computation time, and

a greater singularity of the sensitivity matrix. In this case, the relative

advantage of the reduced-sized online MBDOE becomes greater. No

matter how many parameters are used, the number of parameters Np

itself does not affect the performance of the scheme, since the com-

putational and numerical characteristic of reduced MBDOE depend

exclusively on Nr rather than Np.

• Number of subset parameters Nr

As we saw in Chapter 3, as the number of subset parameters Nr in-

creases, the performance of the estimated parameters tends to im-

prove, at the cost of lower computational efficiency. Because both

characteristics are crucial in practical implementation of on-line MB-

DOE, how to choose Nr becomes a very important question. The size

of the sensitivity matrix is HpNy × Nr, and in order for the FIM to

be non-singular, the condition HpNy ≥ Nr must be met. Ny ≥ Nr

is obtained for the extreme case Hp = 1. The same conclusion can

be drawn from an empirical observation of the bioreactor dynamic

model. There is usually only one parameter that dominates the be-

havior of each output value. Therefore, there are Ny parameters that

dominants the total Ny output variables, and neglecting the remaining
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Ny −Np parameters in the MBDOE calculation process has little ef-

fect on the result. Using the above rule of thumb, setting Nr = Ny is

the simplest choice. In fact, in the study performed in current chpater,

there was only small difference in parameter estimation performance

of in the case of Nr = 2 compared to the full design case. However,

Nr = 1 case showed a significant performance degradation. One way

to more rigorously determine Nr is to compare the orthogonal magni-

tude values of the subset parameters during the process of subset se-

lection. Increasing subset parameters can stop when abrupt decrease

of the magnitude value is observed. This method can be used to fur-

ther generalize the proposed algorith, where the hyper-parameter Nr

is also simultaneously calculated as a part of the on-line MBDOE.

• Number of control variables Nu

If the number of inputs is only 1 or 2, the initial search space of the

MBDOE is very small, enabling accurate MBDOE calculation. When

the number of input variables increases, the initial search space of

the MBDOE increases exponentially, and the computation time also

exponentially increases accordingly. When the initial search space

becomes too large, it becomes impossible to implement on-line MB-

DOE efficiently. If the number of inputs is too large, one can consider

replacing the initial grid for the MBDOE into the a more efficient

method such as latin hypercube.
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Chapter 4

Successive complementary anti-correlation
MBDOE

4.1 Objective of the method

In chapter 1.3.3, two methods for relieving parameter correla-

tion have been briefly introduced. One method was to simply accu-

mulate sufficient data by repeating several experiments(i.e., batches),

and the other was to perform a carefully designed experiment us-

ing anti-correlation MBDOE. When only one of the two aforemen-

tioned methods is used in obtaining parameter estimates, there is a

high chance that the result will not be satisfactory. When additional

data is collected using conventional sequential experimental designs,

the resulting measurement has little or no effect on reducing the cor-

relations between parameters. As a result, the issue of parameter cor-

relation remains largely unsolved, while the precision of uncorrelated

parameters is improved. By contrast, parameter estimates obtained

from a single anticorrelating experiment are likely to be relatively

uncorrelated, yet the precision of each parameter tends to be inaccu-

rate. Therefore, in order to obtain parameter estimates that are both

precise and uncorrelated, it is necessary to incorporate the benefits

from both approaches.
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A simple way of achieving an anticorrelation feature in the con-

text of multiple experiments may be to design multiple (parallel) ex-

periments as in [68], using anticorrelation design criteria. Despite

being viable, this approach is naive and is limited for two reasons.

First, the number of design variables for a multiple-experiment MB-

DOE is much larger than that of a single-experiment MBDOE. The

expected consequence is that the calculational burden of MBDOE

becomes excessively large, making one unable to obtain a reliable

solution in a manageable amount of time. Second, all experimental

designs for multiple (parallel) batches depends on initial parameter

estimates, which makes the resulting experimental designs unreliable.

Although this is a problem for any MBDOE, the effect of the initial

estimates is reduced when a sequential strategy is used in which the

recursive parameter re-estimation is performed between each experi-

ment. This strategy cannot be utilized for parallel experiments, so it

is much more sensitive to the initial parameter estimate.

In this study, we incorporate the anticorrelation approach into

the sequential experimental design framework. In the same manner

as the conventional sequential experiment, one iterates between the

experimental design and the parameter re-estimation. What is differ-

ent from the existing method is that the design objective function

for each batch is defined according to the result from the previous

batch and analyses based on it. In other words, a type of information

that is lacking from the previous batch is realized and is sought dur-

ing later experiments. This method utilizes both the anticorrelation

and sequential design methods, helping one to obtain the most pre-

cise parameter estimate, in terms of variance as well as correlation.

Moreover, one can decide when to terminate the sequential design
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by comparing the result of each successive experiment. This prevents

one from performing unnecessary experiments, which is an additional

advantage of the proposed method.
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4.2 Theoretical formulation

The scheme consists of three steps. The first experiment is de-

signed in the same way as a conventional MBDOE (4.2.1). By an-

alyzing the result of the first experiment, the parameter estimates

are updated (4.2.2), and a new objective function is defined as well

(4.2.3). The second set of optimal experimental designs is found with

regard to the new objective function, and the procedure is repeated

until termination (4.2.4). The entire process is summarized in Figure

4.1.

4.2.1 Initial experimental design

By solving the MBDOE problem (2.7),(2.8) and (2.9) with the

initial parameter estimate θ̂[0], one obtains the first optimal experi-

ment ϕ∗
1. As for the scalar function F , a determinant (i.e., D-optimality)

is recommended because in this way, one is expected to obtain the

most ‘balanced’ experimental design in terms of parameter variance

and correlation (wp90Dopt). The resulting design vector ϕ∗
1 is imple-

mented to obtain the measurement vector Y1.

4.2.2 Complementary design formulation

In terms of MBDOE, the informational value of the experiment

ϕ∗
1 is summarized in the matrix M(ϕ∗

1;θ). The dependency of M

on θ indicates that the exact informational value of the experiment

ϕ is obtained only when the true parameter value θtrue is supplied.

Because this is not the case, one can only resort to the parameter es-

timate instead. A better parameter estimate is expected to obtain a
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better approximation of the true informational value of a certain ex-

perimental design. In this respect, using a newly obtained parameter

estimate θ̂1 will improve the estimate of the informational value of

the experiment ϕ∗
1, and we use M(ϕ∗

1; θ̂1) instead of M(ϕ∗
1; θ̂0) in

subsequent analyses of the result. Using (2.13) and (2.14), the ap-

proximate values of the parameter variance and correlation indices

are calculated: V1 ≡ M(ϕ∗
1; θ̂1)

−1
and C1 as (2.14) and (2.15) using

V1.

As stated earlier, diagonal elements of V1 (denoted as v1 =

[v1,11, v1,22, ..., v1,PP ]
T ) and non-diagonal elements of C1 (denoted as

c1 = [c1,12, c1,13, ..., c1,P−1,P ]
T ) encapsulate the statistics of the pa-

rameter estimate θ̂1. Because small values of v1,ii (i ∈ [1, P ]) and

c1,ij (i, j ∈ [1, P ]) indicate precise parameter estimation, we can re-

express our goal for the experiments into minimizing each element

of vb and cb for some b under given thresholds v̄ = [v̄11, v̄22, ..., v̄PP ]

and c̄ = [c̄12, c̄13, ..., c̄P−1,P ]. One intuitive way of setting the vari-

ance threshold values is to set v̄ii = α θnomi , where θnomi indicates

the nominal value of the parameter θi that represents the parameter

magnitude, and α indicates the relative precision that one wants for

that parameter. Correlation threshold values c̄ij can be set as constants

ranging from 0 and 1. Of course, ‘better’ threshold values can be cho-

sen by careful examination of the system. For example, one can set v̄ii
as the value in which the effect of varying the estimate of parameter θi
inside the range θ̂i ± v̄ii is negligible for output prediction. However,

burdensome calculations such as a global sensitivity analysis need to

be performed for this purpose.

Comparing the vectors v1 and c1 to v̄ and c̄ reveals the cur-

rent status of the parameter precision: which parameters’ precisions
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are satisfied and which are not, and the correlations between which

parameters are left to be minimized. We quantify this analysis us-

ing the weight coefficients wv
b = [wv

b,11, w
v
b,22, ..., w

v
b,pp]

T and wc
b =

[wc
b,12, w

c
b,1P , ..., w

c
b,P−1,P ]

T (the batch index b=1 in this case), de-

scribed in (4.1) and (4.2).

wv
b,ii = max

(
1− v̄ii

vb,ii
, 0

)
, for i ∈ [1, P ] (4.1)

wc
b,ij = max

(
1−

(
c̄ij
cb,ij

)2

, 0

)
, for i, j ∈ [1, P ] (4.2)

When the parameter variance vb,ii is larger than the threshold v̄ii, a

positive-valued weight is given. The magnitude of the weight is pro-

portional to the ratio between the two values: a heavier weight is

imposed when the parameter variance is too large compared to the

desired variance. By contrast, when the desired variance is satisfied,

no weight is given to that parameter. The same reasoning is applica-

ble to the weight values cb,ij . The difference is that we put a square

to the ratio c̄ij/cb,ij , considering that the correlation indices can have

negative values.

Weight coefficients from the previous experiment are used to de-

fine a new objective function for the next set of experiments, as in

(4.3).

ϕ∗
b+1 = argmin

ϕ

[
(wv

b )
Tvb+1(ϕ) + γ (wc

b)
Tcb+1(ϕ)

]
(4.3)

Here, the expected variance vectors of the new experiment vb+1(ϕ)

and cb+1(ϕ) are calculated from the information matrix (4.4). The

equation (4.4) is based on the additive property of information, that
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is, an information matrix of multiple experiments is the sum of the

information matrices of the individual experiments. Here, k former

experiments are already fixed as ϕ∗
1,ϕ

∗
2, ...,ϕ

∗
b , and the new experi-

ment ϕ∗
b+1 is the only one to be determined. Therefore, the optimiza-

tion (4.3) yields the experimental design that is dedicated to finding

only what is lacking from the previous experiments in terms of infor-

mation.

M(ϕ∗
1,ϕ

∗
2, ...,ϕ

∗
b ,ϕb+1; θ̂(b)) =

b∑
i=1

M(ϕ∗
i ; θ̂b) +M(ϕb+1; θ̂b)

(4.4)

Another advantage on can obtain from this formulation is that the nu-

merical instability in MBDOE calculations is greatly reduced. Since

anti-correlation MBDOE naturally handles MBDOE with bad con-

dition number in the calculation process, the error in the calculation

process is considerably large, and due to the stiffness in calculating

the objective function, the calculation time also becomes longer. The

‘balanced’ information matrix from the previous step acts as a buffer

for preventing these numerical stiffness problems. The coefficient γ

in (4.3) is the relative weight between the two different objectives,

and can be chosen as an arbitrary positive number. Moreover, addi-

tional constraints of (4.5) are imposed on the optimization problem

(4.3).

cb+1,ij ≤ c̄ij

for (i, j) such that cb,ij ≤ c̄ij.
(4.5)

For the correlation indices that were decreased under the threshold

value in the kth experiment, these constraints ensure the correlation
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indices to be lower than the thresholds in later experiments as well.

Otherwise, correlation indices that were sufficiently small can be in-

creased at the cost of minimizing some other correlation values.

4.2.3 Iteration and termination

The procedures described in 4.2.2 and 4.2.3 are iteratively per-

formed until one chooses to terminate the iteration. One chooses to

terminate the iteration when one of the three conditions are satisfied.

First, one terminates when all the variances and correlation indices

are sufficiently small so that no additional experiment is required.

The ultimate goal of experimental design is satisfied and one can

easily choose to terminate. However, this ideal case is rarely seen

in practice. One commonly encounters the situation where a slight

increase in parameter precision is expected for an additional experi-

ment, mostly owing to the model structure . When the ‘limit’ is de-

tected by analyzing the progress of confidence regions or intervals,

one can choose to terminate the procedure. The last situation arises

when neither the desired precision nor the ‘limit’ is reached, but the

budget (or time) for operating an additional experiment runs out so

that one has no other option.
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4.3 Case study

In order to demonstrate how to utilize the proposed method, the

scheme is applied to a fed-batch bioreactor model. The same model

that utilized in Section 3.3 was again used here, however with a dif-

ferent definition of control vector and problem settings.

4.3.1 Model description

Ẋ = (µ−D − θ4)X

Ṡ =
1

θ3
µX −D(Sin − S)

µ =
θ1S

θ2 + S

(4.6)

D is expressed as a piecewise-constant input with three switching

instants. Sin[g/L] is the concentration of the substrate feed and is a

time-invariant control of the system. The initial value of the biomass

concentration X(0) is another time-invariant control, where the ini-

tial substrate concentration S(0) is assumed to be always 0. Mea-

surements of state variables (2.2) are made three times during the

operation. Measurement noise is generated according to (2.3) with

Σ = diag([0.1, 0.1]). To summarize, the design control vector ϕ con-

sists of 12 elements as

ϕ = [X(0), tsw1 , tsw2 , tsw3 , D1, D2, D3, D4, Sin, t
sp
1 , tsp2 , tsp3 ] . (4.7)
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The admissible ranges for D, Sin, and X(0) are [0.05,0.2], [5,35] and

[1,10], respectively. The batch duration T is fixed at 40 h. Moreover,

the minimum difference between the control switching instants tswi

and the sampling instants tspi is assumed to be 1.

4.3.2 Solution method

At b = 1, a D-optimal experiment ϕ∗
1 was calculated using a

genetic algorithm (GA) with 200 populations. GA was chosen be-

cause it is capable of exploring the entire design space. Therefore,

its solution is more likely to be near a global minimum. For the sub-

sequent experiment designs b = 2, 3, ..., sequential quadratic pro-

gramming (SQP) was used instead of GA, because it can handle the

additional constraint (4.5) much more efficiently than GA. Different

solutions from multiple starting points were obtained, because the

solution from SQP is sensitive with regard to the initial guess. The

initials were chosen according to the following rule.

• X(0) can take one of the values 1, 5.5 or 10.

• tsw can be either [0.1,1,1,2.1], [8.825,17.55,26.275] or [33,34,35].

• Controllable inputs Di can be 0.05, 0.125 or 0.2.

• Sin is chosen from 5, 20 and 35.

• Sampling instants tsp is fixed as [10, 20, 30].

In total, 34 = 81 initial points were generated, and the solutions from

each initial point were compared. The one with the least objective

value was chosen as the final solution. For the desired parameter

variance and desired correlation, v̄ = [0.01, 0.01, 0.01, 0.01]T and

c̄ = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]T were used. γ=0.5 was used in (4.3),
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indicating that we put more emphasis on minimizing the variance

of individual parameters. Parameter estimation was also performed

by SQP, thus providing the parameter estimate of the previous in-

stant as its initial estimate. For an initial estimate of the parameters,

θ̂0 = [0.62, 0.09, 1.00, 0.025] was used. Statistics of the parameter es-

timates calculated after each iteration were analyzed using the latest

evaluation of the information matrix M(ϕ∗
1,ϕ

∗
2, ...,ϕ

∗
b ; θ̂b). Namely,

point estimates and their marginal confidence intervals, and joint con-

fidence regions of parameter pairs were found. A t-score test and chi-

square test were performed as well. All calculations were performed

in MATLAB R2017b.

4.3.3 Result

Iteration #1

The first experimental design ϕ∗
1 was found and implemented (Fig-

ures 4.2 and 4.3, indicated by the dotted-dashed red line). Based on

the measurement Y1, a new parameter estimate θ̂1 was calculated,

and the relevant inferences were calculated as well (Table 4.1, first

row). Based on the χ2-statistics, we could see that the measurement

data was being successfully described by the model and the param-

eters. However, the precision of the two parameters θ2 and θ4 was

questionable, as reflected in the t-score and their marginal confidence

intervals. This can also be seen in the variance matrix in Table 4.2,

where the (2, 2) element of the matrix is obviously high compared to

the other instances. This observation is reflected in the second compo-

nent of the weight vector wv
1. In other words, the variance of the sec-

ond parameter will be part of the objective of the second experiments,
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while the variances of the other parameters will not. The correlations

of the parameters are presented in the first row of Table 4.3. Com-

pared to the threshold correlation value c̄ij = 0.5, only two out of six

correlation instances satisfy the condition cij ≤ c̄ij . The remaining

four correlation indices constitute part of the objective function for

designing ϕ∗
2. Now, a total of six different elements of V2 and C2 are

the objective of minimization for the next experiment. Moreover, two

additional constraints were imposed on c2,23 and c2,24 so that their

values do not exceed the threshold c̄23 = c̄24 = 0.5. Considering that

wv
2,22 is the largest weight coefficient and γ = 0.5, we expect the

second experimental design to primarily minimize the variance of the

parameter θ2.
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Figure 4.2: Trajectories of optimal experimental designs of (a) dilution fac-
tor and (b) substrate inlet concentration. Limits of y-axis correspond to al-
lowed range of each input.
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Figure 4.3: Trajectories of state variables where optimal experimental de-
sign is applied. Large dots correspond to sampling instants.

65



Ta
bl

e
4.

2:
Pr

og
re

ss
io

n
of

va
ri

an
ce

m
at

ri
x

an
d

va
ri

an
ce

w
ei

gh
tc

oe
ffi

ci
en

ts

It
er

at
io

n
nu

m
be

r(
b)

V
ar

ia
nc

e
m

at
ri

x
w

v b

1
1
0
−
3
×

  0.
3
8
1

3.
2
6
8

0
.7
3
1

0
.1
3
7

3.
2
6
8

6
2
.1
0
9

1
.1
0
7

0
.0
6
9

0.
7
3
1

1.
1
0
7

2
.3
0
4

0
.4
3
1

0.
1
3
7

0.
0
6
9

0
.4
3
1

0
.0
9
1

  
[0
,
0.
8
3
9
,
0,

0
]T

2
1
0
−
4
×

  0
.5
0
9

−
0.
2
0
6

1.
1
5
7

0.
3
0
0

−
0.
2
0
6

2
3.
2
0
3

−
4.
5
6
4

−
1.
4
4
6

1
.5
7
6

−
4.
5
4
6

3.
9
0
5

0.
9
2
3

0
.3
0
0

−
1.
4
4
8

0.
9
2
3

0.
2
7
7

  
[0
,
0
,
0,

0
]T

3
1
0
−
4
×

  0.
1
4
8

0.
7
1
4

0.
1
9
2

0.
0
0
7

0.
7
1
4

1
6.
6
0
7

−
0.
7
9
0

−
0.
4
7
7

0.
1
9
2

−
0.
7
9
0

0.
8
6
3

0.
0
7
2

0.
0
0
7

−
0.
4
7
7

0.
0
7
2

0.
0
2
8

  
[0
,
0
,
0,

0
]T

4
1
0
−
4
×

  0.
0
8
0

0.
2
7
7

0.
1
5
1

0.
0
1
3

0.
2
7
7

1
3.
8
1
5

−
0.
5
3
3

−
0.
4
8
0

0.
1
5
1

−
0.
5
3
3

0.
6
7
9

0.
0
7
0

0.
0
1
3

−
0.
4
8
0

0.
0
7
0

0.
0
3
3

  
[0
,
0
,
0,

0
]T

66



Iteration #2

The solution to the second experimental design ϕ∗
2 is shown in Fig-

ures 4.2 and 4.3. As expected, the variance of θ2 was reduced (Table

4.2) and the t-score significantly increased. Moreover, the correla-

tion index between the parameters θ1 and θ2 was minimized as well.

Both aspects are illustrated in Figure 4.4 where the length of the ap-

proximate confidence region was considerably reduced along the y-

axis and the skewness of the ellipsoid was reduced at the same time.

However, values of the other correlation indices (c2,13, c2,14, c2,34) re-

mained largely the same. We can interpret this result that for each of

the unchanged correlation indices c2,13, c2,14, c2,34, one of the follow-

ing two events occured. First, a correlation index can be decreased

using some experimental designs; however, decreasing the other ob-

jectives v2,22 and c2,12 is a better way to minimize the overall objec-

tive function as defined by wv
1 and wc

1. Another possibility is that

minimizing the correlation index is prohibited by the model structure

and/or the experimental conditions. For example, we assumed that

inlet substrate concentration Sin is static throughout the experiment,

or that we can switch the value D only three times during the exper-

iment. These constraints make the design space of ϕ much smaller,

preventing one from reaching a state from which we obtain a mea-

surement that possibly decreases a certain correlation index. For this

moment, one cannot decide which of the two has occured for which

parameter. One can discern between the two cases for each parameter

only after an analysis of the next experiment is made. Regarding the

design of the third experiment, no weight was imposed on the param-

eter variance (wv
2 = [0, 0, 0, 0]T ) which makes the objective to min-

imize only the correlation indices c3,13, c3,14, c3,24 and c3,34. In other
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words, our goal of achieving the desired level of variance is achieved,

and the only remaining task is to reduce the correlation between the

parameters. Comparing a new weight wc
2 to the former weight wc

1, the

same number of positive weights were imposed for the experimental

design. Although the weight coefficient wc
2,12 was eliminated, a new

coefficient wc
2,24 was introduced. This may seem unexpected because

we used the constraint c2,24 ≤ c̄24 = 0.5 in solving ϕ∗
2. This could

happen because the values of wv
b and wc

b were evaluated based on

the parameter estimate θ̂b. In other words, before obtaining the mea-

surement Y2, one decides whether the experimental design ϕ∗
2 causes

the constraint violation, based on the state prediction made from θ̂1.

Because the parameter estimate θ̂1 is inaccurate, one erroneously de-

cides that ϕ∗
2 does not cause a violation. After Y2 is measured and the

new (and more accurate) estimate θ̂2 is made, the effects of the for-

mer experiments ϕ∗
1 and ϕ∗

2 are reevaluated according to θ̂2 and reach

different conclusions for the correlation index c2,24. These situations

are undesirable to our process because in this case, the constraint (4.5)

only decreases the search space of the experiment. Because θ2 was the

most inaccurate parameter among θ̂2, we speculate that the erroneous

evaluation of wc
1,24 was largely a result of the inaccurate estimate θ̂2,2.

We will briefly discuss how to address this issue in the concluding

section.
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Figure 4.4: Joint confidence region between the parameters θ1 and θ2.
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Iteration #3

A third optimal experiment ϕ∗
3 was implemented and θ̂(3) was ob-

tained. The results of an analysis are summarized on the third rows

of Tables 4.1–4.3. No significant decrease in the variances of indi-

vidual parameters was achieved. However, a significant reduction in

the correlation indices c3,14 and c3,34 was observed, as well as a mod-

erate decrease in the correlation index c3,13. Figure 4.5 depicts the

confidence ellipsoid of parameters θ1 and θ4, where the skewness of

the ellipsoid was relieved in the third iteration. However, this was at

the cost of the index c3,24 whose absolute value was increased from

0.572 to 0.705. Only two indices c3,13 and c3,24 violated the threshold

c̄ = 0.5, from which we built our fourth experiment.
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Iteration #4

In analyzing the statistics of the parameter estimate θ̂4 obtained from

ϕ∗
4, we see little impact on relieving the parameter correlations, which

was our goal for the experiment. Correlation indices ck,13 and ck,24

actually increased from 0.537 and 0.470 to 0.661 and 0.476, respec-

tively. This is also indicated in the joint confidence regions in Figure

4.6, where little difference is observed in their shapes or sizes. Com-

paring the results of experiments ϕ∗
3 and ϕ∗

4, we conclude that we

reached a state where little is expected from additional experiment(s).

Therefore, we terminate the iteration at k = 4, gathering θ̂4 as the fi-

nal parameter estimate. Statistics of the final estimate θ̂4 are given in

the last rows of Tables 4.1, 4.2, and 4.3. All t-values of the parameters

were below the reference t-value, and the lack-of-fit test showed that

the measured data was successfully described by the model. All vari-

ances of the parameters were minimized under a desired variance of

0.01, and so were the four out of six correlation indices. Correlation

indices that remained unsatisfied were the indices between θ1 − θ3

and θ2 − θ4. This indicates that the correlation exists between these

two pairs owing to the model structure, which is difficult to decouple

by means of experimental design.
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4.4 Remarks on the choice of hyper parameters

• Weighting factors wv
b,ii and wc

b,ij

In (4.1) and (4.2), There are two reasons for giving a zero weight

weight of 0 for parameters and parameter pairs that do not exceed

their reference values. First, one can actually calculate a level of vari-

ance and correlation below which is not required according to the end

use of the model. It is more efficient to minimize the variance and

correlation indices below the reference point rather than minimizing

variance and correlation of all parameters. Moreover, minimizing the

number of terms contained in the objective function makes it easier

to interpret the calculation results.

• Relative weight between the variance and correlation γ

The implication of the value γ and its effect on MBDOE is clear.

It is responsible for determining which of the two conflicting objec-

tive functions to put more emphasis on. For limiting cases where the

value is 0, the MBDOE concentrates only on reducing the variance

of the individual parameters without considering the correlation. On

the other hand, the larger the gamma value, the smaller the priority

on the variance and the greater the priority on the correlation indices.

One important fact is that if the variance of a parameter is large, then

the correlation indices calculated for this parameter estimates also

lose their reliability. Ultimately, both variance and correlation should

be minimized. However, in reality, it is a more efficient approach to

minimize variance first and then minimize the related correlation val-

ues. This was naturally achieved in the previous simulation even if γ

was fixed from beginning to the end. There is no guarantee that this
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tendency will repeat all the time, so it is necessary to induce this ten-

dency by adjusting γ. One can start with a very small γ, say 0.01, in

order to concentrate on reducing the variances that are not sufficiently

minimized by prior D-optimal batch. Then one can increase γ as the

batch repeats, concentrating more on minimizing the correlation be-

tween the parameters.
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4.5 Conclusion

An experimental design method for the parameter estimation of

batch systems that combines anticorrelation criteria and sequential

design is presented. The parameters of batch systems such as fed-

batch bioreactors are generally highly correlated, and one should of-

tentimes apply both the sequential design and anticorrelation criteria

in order to obtain a reliable set of parameter estimates. This study

presented a method to utilize both approaches in an integrated way,

as demonstrated in the case study. The case study showed that the

resulting parameter estimates satisfied both the variance and the cor-

relation. Moreover, by analyzing the progression of the weight coeffi-

cients, we could determine a point at which to terminate the iteration.

One undesirable occurrence in the case study was that of the oc-

currence of the weight coefficient wc
2,24 as compared to the former

coefficient wc
1,24 = 0. This incident can be detrimental to the perfor-

mance of the algorithm (although it was not in our case), and there-

fore should be avoided if possible. One simple way of avoiding this

problem is to use the weight coefficient wc
b,ij = 0 whenever either of

the variances vb,ii or vb,jj is not satisfied. This is based on the obser-

vation that the erroneous evaluation of wc
1,24 was related to the invalid

estimate of θ2. In other words, we evaluate (and attempt to minimize)

solely the correlation indices between the parameters that are individ-

ually well estimated.

Another question that can be asked is whether our scheme is ap-

plicable to a much larger system. When naively implemented on a

large system, the objective function involves too many elements. In

particular, the number of correlation indices in the objective function
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can be up to Np(Np − 1)/Np, which makes the objective function

too complex and makes the resulting experimental design uninter-

pretable. Surprisingly, the same amendment proposed for solving the

erroneous weight problem can be used here. By putting no (or little)

weight on the parameters that are imprecise, one can focus each ex-

perimental design on minimizing a small number of indices. In addi-

tion, parameter subset selection methods such as those in [67, 69] can

be used in order to exclude parameters that are essentially irrelevant

to the model behavior.
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Figure 4.5: Joint confidence region between the parameters θ1 and θ4.
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Figure 4.6: Joint confidence region between parameters (a) θ1 and θ3, (b) θ2
and θ4
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Chapter 5

Application to a microalgal fed-batch bioreactor

5.1 Necessity of the combined scheme

The statistic of the estimated Np parameters is summarized in the

Fisher’s information matrix, which can be visualized by the hyper-

ellipsoid of the Np dimension in Figure 5.1(a). The D-optimality

used as the objective function in Chapter 3 corresponds to the vol-

ume of this hyper-ellipsoid. In other words, MBDOE which uses

D-optimality as the objective function, calculates an experiment that

minimizes the volume of this ellipsoid. The resulting ellipsoid is ex-

pected to look like the ellipsoid shown in Figure 5.1(b). However,

in most practical situations the resulting ellipsoid resembles to form

shown in Figure 5.1(c). This is because, due to the model’s structural

characteristics, it is usually more advantageous to reduce the volume

of ellipsoid by reducing the variance of specific parameters than to

reduce it by reducing the variance of all parameters simultaneously.

In both cases, the volume of the ellipsoid is the same, but the latter

is worse in terms of parameter accuracy. The variance of the second

parameter is unacceptably large, and also the correlation between the

parameters is large. In order to fix this situation, we need the type of

algorithm proposed in Chapter 4. The variance and correlation index
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of each parameter, used as the objective function in scheme in Chap-

ter 4, indicate the axial length and skewness of the ellipsoid, respec-

tively. To summarize, each of the two proposed methods is imperfect,

so it is necessary to use them in complementary sense.
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𝑣𝑎𝑟(𝜃1)

𝑣𝑎𝑟(𝜃2)

𝑣𝑎𝑟(𝜃3)

(a)

(b)

(c)

Figure 5.1: (a) Hyperellipsoid representing the confidence region of param-
eters. (b) Ideal transformation of the confidence region. (c) Non-ideal trans-
formation of the confidence region.
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5.2 Overall scheme of the study

In the two previous chapters, we proposed two algorithms and

demonstrated them using a relatively simple model. Both methods

worked well, but in reality, most of the models used in practice are

larger and more complex, so there is a necessity to validate the meth-

ods with more realistic models. Therefore, we have applied the meth-

ods to a 6 - state, 14 - parameter fed-batch bioreactor model to verify

its usefulness. Given that different types of MBDOEs have different

types of advantages and disadvantages, it is very important to de-

cide which type of MBDOEs to use in which order. The first thing

to consider in choosing the type of MBDOE is the dependence on

the parameter initial estimates. We compared the performance of the

off-line MBDOE and the on-line MBODE (both of full-sized design

and reduced design) in Chapter 3 and confirmed the effect of on-line

MBDOE that minimizes the effect of initial parameter inaccuracy.

Therefore, we can conclude that it is best to operate the first batch

using the on-line MBDOE. After the first batch has been completed,

the accuracy of the estimated parameters is calculated. If the statistics

of the parameter estimate is unsatisfactory, either on-line MBDOE

or conventional off-line MBDOE can be performed again, using D-

optimality criteria as an objective. Repeating this process comes to

a point where the acceptable accuracy of the parameters is obtained.

From this moment, the inaccuracy of a few remaining parameters and

the correlation between the parameters are the most important tasks

to be solved. We convert the scheme to successive complementary

anti-correlation MBDOE at this moment and find the point at which

we end the parameter estimation process by looking at the changes in
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wv and wc. The overall scheme is summarized in the Figure 5.2 on

the next page.
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5.3 Model description

In this chapter, we simulate the fed-batch microalgal bioreac-

tor model suggested by Yoo [66] referred in Chapter 2 earlier. There

are two main reasons for choosing this model. First, this model has

enough generality because it has the shape, size, and complexity that

is typical of macroscopic bioprocess models commonly used in in-

dustry. Secondly, the model was established by the authors and col-

laborators from the development stage. Therefore, various simulation

conditions such as initial state values and the magnitude of the mea-

surement error can be set realistically. it is also advantageous to an-

alyze the result and its implications from the practical point of view.
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The model is shown in (5.1).

dX

dt
= µX −XD

dSN

dt
= −ρX + Si

N

uN

V
− SND

dSC

dt
= − 1

YXS

µX − 1

YLS

πX + Si
C

uC

V
− SCD

dQ

dt
= ρX − µQ−QD

dL

dt
= πX − vL− LD

dV

dt
= uN + uC − f0

where

µ = µm

(
1− q0

q

)(
1− l0

l

)(
S2

KS2 + S2

)(
I

KI + I

)
ρ = ρm

(
S1

KS1 + S1

)(
qm − q

qm − q0

)
π = πm

(
S2

Kπ + S2

)
(1− q)(1− l)

v = vm

(
Kv

S2 +Kv

)(
1− l0

l

)
l =

L

X +Q+ L

q =
Q

X +Q+ L

D =
uN + uC

V

(5.1)

The physical meanings of the parameters are given in Table 1. Their

true values and lower and upper bounds for the estimation are also

given. Parameter ranges and constraints are specified by inspecting

each parameter. The initial parameter estimate θ̂[0] is randomly se-
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lected such that it respects the given ranges and constraints. The batch

termination time tf is 300 hours and the time interval between the

control/sampling instants T is 12 hours, making kf = 300/12 = 25

and Nsp=24. Initial state vector x[0] is [0.1, 0, 0, 0.5, 0.01, 2]. The ad-

missible ranges for each input variable are uN(in ml/h) ∈ [0, 10],

uC(in ml/h) ∈ [0, 10] and uI(in µmol/m2s) ∈ [0, 300]. For the

measurement noise Σ, values [0.03, 0.001, 0.001, 0.005, 0.001, 0] is

used. This reflects the actual error variances measurements of each

states.
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5.4 Parameter subset selective on-line MBDOE

5.4.1 Simulation settings

As an indicator of design optimality F , the log-determinant of

FIM , i.e., D-optimality is used. In addition to its various advanta-

geous properties [32], this is because the parameter subset selection

method we use corresponds to finding the subset with the largest D-

optimality criteria [67]. Prediction horizon Hp is set as 3. The sample

experimental designs at each time instant ϕ[k] are defined as grid

points generated from the input range. The admissible ranges of in-

put variables are divided into 3 equally spaced values, resulting in 9

samples. By comparing the orthogonal contribution to the sensitiv-

ity matrix Sk of each parameters, Nr = 5 parameters are selected.

Here, Nr is equal to Ny − 1. This is because state variable V car-

ries little informational value in parameter estimation because V can

be directly calculated from input values uN and uC regardless of the

parameter values. The columns of the sensitivity matrix Sk are nor-

malized by multiplying them by nominal scale of each parameter, i.e.,

θi,UB−θi,LB in order to avoid the dependency of scale of each param-

eters. The reduced-sized optimization (MBDOE) problem is formu-

lated with subset ϕ̃[k], and solved via interior-point algorithm. The

method requires an initial point to begin with, and different initial

points can lead to different local minima. We divide the solution space

(experimental design space) into 3Nu = 27 grids, each of them per-

forming as an initial point. All solutions obtained from the respective

initial points are compared, and the solution with the least objective

value is labeled as U∗[k]. Additionally, solution to parameter estima-

tion problem (3.6) is obtained by interior-point algorithm. The latest

89



estimate of parameter θ̂[k− 1] is used as the starting point in the cal-

culation of the next-step parameter estimate θ̂[k]. After performing a

batch experiment, one obtains Fisher’s information matrix Mb from

which you can calculate the variance of each parameter. This is com-

pared with the reference variance value v̄ii for each parameter, and

if the parameter satisfying this criterion is 10 or more out of 14, one

terminates the on-line MBDOE and proceeds to perform successive

complementary MBDOE from the next batch. The reference variance

values are set using lower and upper bounds of each parameter as in

(5.2).

v̄ii = 0.01(θi,UB − θi,LB)

for i ∈ [1, Np]
(5.2)

All calculations were performed on MATLAB 2017b.
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5.4.2 Result

Batch #1 : First on-line MBDOE
At each instant k, the significance of each parameters is represented

by the orthogonal magnitudes previously defined in (3.1). Figure 5.3

shows the variation of these values over time. Y-axis in this graph

shows the logarithm of the orthogonal magnitude value and each line

corresponds to a parameter. Higher value indicates greater the impor-

tance of the corresponding parameter. The Nr = 5 most important

parameters that are used for MBDOE of k-th time step is represented

by larger markers. We can divide the total of 14 model parameters

into three categories according to their relative importance. The most

important parameters (parameters #1, 3, 6 and 11) were selected as a

member of subset in large number of time instants. Other parameters

(parameters #2, 4, 7, 8, 9, 13 and 14) were a member of subset at

smaller number of instants. Three parameters (parameters #5, 10 and

12) had little significance at all time and were never selected. The

most number of selection was 14 for parameter #11, out of kf=25

possible instances. It can be confirmed by this that parameters show

importance in limited time ranges, so it is efficient to concentrate the

design objective only to a selected subset of parameters at each in-

stant.
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Figure 5.4 shows optimal input trajectories for each input, which

is the product of reduced-sized MBDOE. Applying this input results

the state trajectory shown in Figure 5.5. It also shows the measure-

ments obtained from the state at each time instant. The progression

of the parameter estimates calculated on-line are shown in Figure

5.6. We observe sharp changes of the parameter estimate values be-

fore k = 10. This is due to the fact that a small number of data, or

small amount of error, significantly changes the residual function in

the early phase. The fluctuating tendency of the parameter estimates

seems to have affected the data trend of Figure 5.3 at early instants

as well. Parameter estimate values converges after k = 18. When

we calculate the residuals of the data using the final parameter esti-

mates and actual parameters, the values are not significantly different

— 2.91 ∗ 105 for the estimated parameter and 2.71 ∗ 105 for the real

parameter. Comparing the final parameter estimate θ̂[kf ] to the true

parameter value indicated as the red line, we see that some bias re-

mains. This seems to be due to the fact that we use the previously

estimate value θ̂[k−1] as the starting point for estimating the param-

eter at the current step, θ̂[k]. In other words, the parameter estimate

values are path-dependent due to the way we obtain it. This is a very

important fact about the on-line MBDOE — On-line MBDOE is di-

rectly affected by the performance of the parameter estimation. This

can be detrimental to the successful implementation of the scheme

because the severe bias of the parameters can deteriorate the perfor-

mance of the MBDOE as well. As a way to solve the bias problem

of real-time parameter estimation, one can consider using multiple

initial point for parameter re-estimation, just as we did for real-time

MBDOE. The problem with this method is that the number of pa-
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rameters is very large, making the initial search space also large. In

this case, real-time parameter estimation is unable to be performed

smoothly on-line. One way to compensate for this is to perform real-

time parameter estimation starting from the parameter estimate of the

previous time step, and at the same time perform off-line parameter

estimation using a much wider search space. The sudden change of

parameter estimates in early batch stage is another practical problem

shown in the simulation. One possible solution to this is to use as a

buffer that collects as much data as possible before the start of the

experiment. This buffer prevents the residual function from chang-

ing abruptly with an addition of small number of data. Alternatively,

one can hold the parameter re-estimation process until a sufficient

amount of data is collected in the early operation stage. In the pre-

ceding chapter, we mentioned that one of the reasons that we choose

parameter subsets is that FIM may be too ill-conditioned when all pa-

rameters are considered. In this case, calculation of FIM and its norm

causes large numerical errors, deteriorating the result of optimization

computations. To study the effect of subset selection in solving this

problem, the condition number of FIM defined with the subset pa-

rameters and the condition number of FIM defined with the original

parameters is compared. Figure 5.7 shows that the condition number

of the reduced FIM is much smaller at all time instant, relieving the

numerical instability problem caused by ill-conditionedness of FIM.
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Fast computation time is one of the constraints that must be sat-

isfied in performing the on-line MBDOE. If the computation time

in each step takes too long, the real-time information is reflected

to the experiment in a delayed sense, deteriorating the efficiency of

MBDOE scheme. In the suggested algorithm, there is an additional

step compared to the existing on-line MBDOE, the process of sub-

set selection. In order for this algorithm to work smoothly on-line,

a total of three calculations(subset selection, MBDOE and parame-

ter re-estimation) must be completed sufficiently fast. As shown in

Figure 5.8, the time required for determining subset is very small

compared to the time required for the other two tasks. In addition,

the size of the sensitivity matrix Sk used for the MBDOE calculation

becomes very small compared to the full-parameter case. This and

the lowered condition number makes the MBDOE calculation step

much faster for the reduced-sized MBDOE. The longest time took

for all 3 calculations was 938 seconds, which is about 1.3% of the

sampling interval T = 12h. In a nutshell, the computation time is

not a problem for the proposed algorithm. However, in this study, we

did not consider the time required for obtaining the measurement val-

ues. In an actual implementation, if no in-line sensor is utilized, the

most time-consuming step for the on-line scheme should be the time

for obtaining the measurement. If the time required for measurement

is considerable, the formulation of the objective function should be

modified to a form that considers the time delay.

The variance of the parameter estimates obtained from the first

batch, is shown in the first row of Figure 5.9. Among 14 parame-

ters, all parameters except for 2 parameters had a sufficiently small

value compared to the reference value v̄ii. According to the prede-
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termined criterion, it is determined that the remaining process of pa-

rameter estimation is performed with the successive complementary

anti-correlation MBDOE.
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5.5 Successive complementary anti-correlation MBDOE

5.5.1 Simulation settings

The initial state values are fixed and assumed to be known as

[0.1, 0, 0, 0.5, 0.01, 2], as in the previous batch. Each input is a time-

dependent variable, and is control vector parameterized by 7 design

parameters. The input is piecewise constant, characterized by Nsw =

3 control-switching instants. A total of Nu(Nsw + Nsw + 1) = 21

variables are used for characterizing all three inputs. Measurements

for all state variables are made at three sampling instants, making

the length of the design vector ϕb to be 24. In addition, there are

additional constraints between the sampling instants and sampling

instants that there should be at least 1h difference between each in-

stant. The MBDOE calculation was calculated using the interior point

method with multiple starting points. We have created starting points

according to the following rules.

• Switching instants for all 3 inputs can be either [1, 2, 3], [75,

150, 225] or [297, 298, 299].

• Controllable input uN for all time instants can be either 0.001,

5 or 10.

• Controllable input uC for all time instants can be either 0.001,

5 or 10.

• Controllable input uI for all time instants can be either 0.001,

150 or 300.

• Sampling instants tsp are fixed as [100, 200, 300].

In total, 34 = 81 initial points were generated, and the solutions

from each initial point were compared. The one with the least ob-
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jective value was chosen as the final solution. For the desired param-

eter correlation values, c̄ij = 0.7 was chosen for all 14C2 elements.

γ=1 was used in for determining objective function (4.3), indicat-

ing that we put approximately the same emphasis on reducing the

weights and on reducing the correlations. Parameter estimation was

also performed by the interior-point method, providing the parame-

ter estimate of the previous instant as its initial estimate. Statistics of

the parameter estimates calculated after each iteration were analyzed

using the latest evaluation of the information matrix, namely Mb =

M(ϕ∗
1,ϕ

∗
2, ...,ϕ

∗
b ; θ̂b). All calculations were performed in MATLAB

R2019a.

5.5.2 Result

Figure 5.9 shows the diagonal values vb,ii of variance matrices

according to the batch index b. The red horizontal line represents

the level at which the variance vb,ii of the parameter equals to the

reference value v̄ii. If the bar goes higher than this line, the weight

wv
b,ii > 0 is given to the variance of the parameter θi. Figure 5.10

shows the comparison of the size of the correlation index to the ref-

erence value for 14 different parameter pairs selected from a total of

14C2 = 91 parameter pairs. As in Figure 5.9, the weight wc
b,ij > 0

is imposed on the parameter pair (i, j) when the blue bar cross over

the red baseline in Figure 5.10. The parameter pairs shown in Figure

5.10 is the pairs that have exceeded the reference correlation at least

once from b = 1 through b = 4. Correlation values of the remain-

ing 77 pairs have never exceeded the reference value once. Figure

5.11 shows a graphical representation of the correlation index matrix.
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Here, the correlation indices selected as the objective function are in-

dicated by red squares, and the ones selected in a previous batch are

indicated by orange squares.

The optimal input trajectory calculated by each successive com-

plementary MBDOE is shown in Figure 5.12. Figure 5.12 shows the

trajectories of state variables obtained by applying the optimal in-

put trajectory as well as the instances of sampling. The sum of the

weights calculated using FIMb after each batch is shown in Figure

5.13.

Batch #2 : First successive complementary MBDOE
The optimal input trajectory and the final parameter estimate from

the first batch θ̂[kf ] = θ̂1 are used to Fisher’s information matrix

M1. Variance and correlation indices are obtained from M1, and are

used to define weight values wv
1,ii and wc

,ij shown in the first row of

Figures 5.9 and 5.10, respectively. As mentioned earlier, variances

were found to be lower than their reference values except for the two

parameters (parameters #10 and #12). Variances of those two param-

eters and the correlation indices for the seven parameter pairs were in-

cluded in the objective function for MBDOE of the second batch ex-

periment. The result of the first successive complementary MBDOE

ϕ∗
2 was executed and parameter estimate θ̂2 was obtained using the

measurement Y2. Little change of value was observed in the change

of the parameter estimates θ̂2 compared to θ̂1. The re-evaluated value

of the cumulative information matrix M1(ϕ
∗
1; θ̂2) +M2(ϕ

∗
2; θ̂2) was

used to calculate v2,ii and c2,ij . As shown in the second rows in Fig-

ures 5.9 and 5.10 and the second matrix in Figure 5.11, variances of
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Figure 5.9: Change of variances and variance-weights over batches #1
through #4
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Figure 5.10: Change of correlation indices and correlation-weights over
batches #1 through #4 for selected parameter pairs
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Figure 5.11: Change of correlation indices over batches #1 through #4
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the two parameters were definitely below the reference value v̄ii. We

succeeded in reducing the correlation values of 4 out of the 7 objec-

tive parameter pairs. However, an unexpected increase of correlation

values for 6 parameter pairs was observed, which was below the ref-

erence value in the initial design. These increased correlation values

were reflected in defining wc
ij in designing ϕ∗

3.
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Batch #3 and #4 : Second and third successive complemen-
tary MBDOEs
Using the resultant optimal design ϕ∗

3, Y3, θ̂3, M3, v3,ii, c3,ij were

calculated in sequence. This time, the problematic correlation indices

have shown significant reduction, leaving 4 correlation indices still

above the reference value. The objective function for the fourth batch

was designed aiming for reduction of those 4 variables. The sequence

of MBDOE, implementation, and the analyses was performed as the

same way as before. Comparing the correlation indices c4,ij to c3,ij ,

two of the four correlations were relived, however at the cost of two

other enlarged correlation indices. In the case of correlation index

cb,9,10, its value remained fairly large since the first simulation until

b = 4, and it is speculated that it is the model structure itself that

causes this the most. The total sum of the weight is still decreasing,

but we terminated the iteration at b = 4 because the termination cri-

teria by the sum of total weight (< 1) is satisfied. As a result, we ob-

tained 14 estimated parameters with satisfactory values of variances

and acceptable values of correlation indices. As a result of applying

the two algorithms presented in the previous chapters to a larger-sized

model, it is shown that both schemes work effectively together.
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Figure 5.12: Optimal input trajectories for batches #2 thorugh #4
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Figure 5.14: Sum of weight values for batches #2 through #4
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5.6 Comparison to the D-optimal-only case

Previously in Chapters 5.1, we explained why one should use

MBDOE with two different objective functions in complementary

sense. In this chapter, we compare the parameter estimation perfor-

mance of the combined scheme presented in Chapter 5.2 to the case

where only the D-optimal MBDOE is repeatedly used. First, in Figure

5.15, we see that bigger D-optimalities (i.e., the volumes of the con-

fidence region hyper-ellipsoid) have achieved for iterative D-optimal

case. However, for variances and correlation indices of individual pa-

rameters, the performance of two schemes is reversed. We compared

the variances of the parameter #10 and #12, which had shown the

largest variances after implementation of the first batch in Chapter

5.3. Figure 5.16 shows that the variance of parameter 10 decreases

sharply when the combined scheme is used, while the variance of

the D-optimality case remains large. In the case of parameter #12,

the value of the combined scheme is very small from the second ar-

rangement. However, when only the D-optimality is used, the value

has decreased after 4th batch. Similar differences can be observed for

the parameter correlation index. The progression of the correlation

indices between the two parameter pairs (#1, #2) and (#12, #14) are

shown in Figure 5.17 (a) and (b). In both cases, the decrease of cor-

relation indices for the combined scheme case is larger than in the D-

optimal case, and the sum of the squares of all 91 correlation indices

is compared in 5.17 (c). In conclusion, while the iterative D-optimal

design is advantageous for the minimizing the overall confidence re-

gion, we observe that the combined scheme presented in Chapter 5

shows advantage in improving statistics of individual parameters.
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Figure 5.15: Comparison of D-optimality values of iterative D-optimal de-
sign case(blue) and the case using the combined scheme(red).
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Figure 5.16: (a) Progression of the variance of the parameter #10. (b) Pro-
gression of the variance of the parameter #12.
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Figure 5.17: (a) Progression of the correlation index between the parameters
#1 and #2. (b) Progression of the correlation index between the parameters
#12 and #14. (c) Progression of the sum of squares of all correlation indices.
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5.7 Remarks

5.7.1 Choice of the solution method

In actual implementing the proposed algorithm, the calculation

result of the MBDOE can be different depending on the solution

method. In addition, the performance of the proposed MBDOE scheme

can also be influenced by the convergence performance and the com-

putation speed of the algorithm. Therefore, it is necessary to find the

optimal solver by comparing the performance of solution methods

in solving the proposed MBDOE. To do this, we first solved the on-

line reduced MBDOE in Chapter 5.4 using two representative opti-

mization solvers, the interior-point method and the SQP method. At

each time step, the 33 = 27 initial points were given. Since there

are 24 time steps to solve MBDOE, making a total number of initial

points(i.e., total number of solving MBDOE) to be 648. For each of

these initial points, we compared the improvement of objective func-

tion from the initial point, and the elapsed time to reach the solution,

as shown in Figures 5.19 (a) and (b). Their average values are shown

in the Table 5.2.
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Figure 5.18: (a) Comparison of the optimization(maximization) perfor-
mance of on-line reduced MBDOE by interior-point method and SQP. (b)
Comparison of the computation time for solving on-line reduced MBDOE
by interior-point method and SQP.
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We confirmed that SQP is superior method in terms of both op-

timization performance and computation time. The same analysis is

done for successive complementary MBDOEs. In this case, we com-

pared the performance of the two solvers for the 81 initial points used

in the first successive complementary MBDOE calculation in Chapter

5.5. As shown in table 5.3, the SQP method has better optimization

performance and also, shorter computation time for this case as well.

Therefore, we recommend SQP as the solution method for solving

the proposed MBDOEs.
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Figure 5.19: (a) Comparison of the optimization(maximization) perfor-
mance of successive complementary MBDOE by interior-point method and
SQP. (b) Comparison of the computation time for solving successive com-
plementary MBDOE by interior-point method and SQP.
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Method Interior-point SQP

Improvement of optimality 4.16 5.23
Computation time [s] 7.03 5.78

Table 5.2: Comparison of the two solution methods for solving reduced on-
line MBDOE

Method Interior-point SQP

Improvement of optimality 2.26 6.77
Computation time [s] 1345 543

Table 5.3: Comparison of the two solution methods for solving reduced suc-
cessive complementary MBDOE
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Nomenclature

α Ratio of the reference variance value v̄ii with regard to the

nominal parameter magnitude θnomi

f Dynamic equations of the states vector

h State-output relation function

x State variables vector

y Output variables vector

ϵ Measurement error vector

ϕ Design variables vector

θ Model parameters vector

γ Relative weight parameter between the parameter variance weights

and correlation weights

F A matrix-to-scalar function measuring the MBDOE optimal-

ity

µ Specific growth rate

π Lipid product formation rate

πm Maximum lipid production rate

ρ Nitrogen substrate consumption rate

ρm Maximum uptake rate
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Σ Covariance matrix for the measurement error

σij Covariance between the measurement yi and yj

b Batch number index

C Correlation matrix

Cb Correlation matrix obtained from the cumulative information

matrix Mb

cij Correlation index between parameters θi and θj

D Dilution factor for bioreactor feed

Deff D-efficiency, ratio of the logarithms of D-optimality values be-

tween different MBDOEs

Hp Prediction horizon used for constructing Mk

k Discrete time index

KI Half saturation constant of light for growth

Kv Proportional constant of carbon source for lipid consumption

Kπ Half saturation constant for oil production

KS1 Half saturation constant of nitrogen source for uptake

KS2 Half saturation constant of carbon source for growth

L Intracellular lipid concentration

l Mass portion of lipid product inside the cell

l0 Minimum lipid quota for supporting growth
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M Fisher’s information matrix

Mk Fisher’s information matrix composed from Sk+1, ..., Sk+Hp

mp Orthogonal magnitude value for the parameter θp

mum Maximum growth rate

NP Number of parameters, of dimension of the parameter vector

Nr Number of subset parameters

Nϕ Dimension of the design variables

Nsp Number of sampling instants during a batch operation

Nx Dimension of the state variables

Q Intracellular nitrogen concentration

q Mass portion of nitrogen inside the cell

qm Maximum quota of nitrogen above which uptake rate stops

qo Minimum nitrogen quota for supporting growth

S Substrate concentration in the medium

SC Carbon(glucose) substrate concentration inside the bioreactor

Si
C Concentration of the carbon substrate in the inlet feed

SN Nitrogen(glycine) substrate concentration inside the bioreac-

tor

Si
N Concentration of the nitrogen substrate in the inlet feed

Sin Substrate concentration of the inlet feed
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T Time difference between sampling instants for on-line MB-

DOE

t Continuous time index

uC Carbon source inlet feedrate

uI Illumination intensity

uN Nitrogen source inlet feedrate

V Variance matrix

V Volume of the bioreactor medium

v Intracellular lipid consumption rate

vm Maximum lipid consumption rate

Vb Variance matrix obtained from the cumulative information ma-

trix Mb

vii Variance value for parameter θi

vij Covariance value between parameters θi and θj

X Biomass concentration in the medium

Yb Measurement vector obtained from the batch b

Yls Yield coefficient of substrate to lipid

Yxs Yield coefficient of substrate to biomass

c̄ij Reference(threshold) correlation index for the parameter pair

θi and θj
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v̄ii Reference(threshold) variance value for the parameter θi

cb Vector of correlation indices obtained from the cumulative in-

formation matrix Mb

ri i-th row of the sensitivity matrix Sk

s
(k)
p Projected vector of the sensitivity vector sp at k-th iteration

sp p-th column vector of the sensitivity matrix

tsp Sampling instants

tsw Control-switching instants

u Time-varying input variables

U[k] Array of time-varying input variables from time instants k

through (k +Hp − 1)

vb Vector of parameter variances obtained from the cumulative

information matrix Mb

w Time-invariant input variables

wc
b Vector of correlation weight coefficients calculated after batch

b

wv
b Vector of variance weight coefficients calculated after batch b

x(0) Initial state variables

y[k] Measurements obtained at time instant k

ϕ[k] Vector of design variables, to be determined at time instant k

ϕ∗ Optimal experimental design calculated by MBDOE
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ϕLB Lower bounds for the design variables ϕ

ϕUB Upper bounds for the design variables ϕ

θLB Lower bounds for the parameters θ

θUB Upper bounds for the parameters θ

ŷ[k] Model-predicted values for the measurements obtained at time

instant k

θ̂ Parameter estimate

θ̂[k] Real-time parameter estimate vector, updated at time instant k

θi i-th parameter

θ̃[k] Parameter subset selected at time instant k

Sk Sensitivity matrix with regard to the measurement y[k]

St Sensitivity matrix with regard to the measurement yt

wc
b,ij Weight coefficient given for parameter pair θi and θj calcu-

lated after batch b

wv
b,ii Weight coefficient given for parameter θi calculated after batch

b
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초록

회분식및반회분식반응기모델은매우복잡하고비선형성이

크기때문에,파라미터추정이매우어렵다.모델에대한구조가알

려져있는상태라면,파라미터추정을위해서모델기반실험계획법

(MBDOE)를사용할수있다.하지만이 MBDOE를회분식반응기

의파라미터추정에적용할경우여러가지의치명적인문제점이발

생하게 된다. 첫 번째, MBDOE의 결과가 초기 파라미터 추정치에

따라달라진다.두번째,문제자체의크기가너무커서한정된시간

안에 믿을 만한 해를 구하기가 불가능하다. 세 번째, 파라미터들간

의 상관성 때문에 수치적으로 안정된 MBDOE 계산을 수행 하는

것이어렵다.본논문에서는이러한기존의MBDOE기법의문제점

들을해결하는두가지의새로운MBDOE기법을제안한다.첫번째

MBDOE는기존의온라인 MBDOE를그크기가큰모델에도효율

적으로적용가능한형태로개선하여초기파라미터에대한의존성

문제,계산시간문제와, sensitivity matrix의불안정성문제를해결

한다.두번째로제안한MBDOE는기존의 anti-correlation MBDOE

을더개선시켜서반복실험에적당하고수치적으로안정한형태로

발전시킨다. 마지막으로, 이렇게 제안된 두 가지의 방법론을 반회

분식 미세조류 모델의 파라미터 추정 문제에 실제로 적용하여, 알

고리즘의사용방법을실제적으로증명하고,적용과정에서발생할

수있는다양한문제들에대해탐구하였다.

주요어 : 반회분식 공정, 생물공정, 파라미터 추정, 모델기반 실험

계획법
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