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Process data analysis has been great developed for decades in accordance with 

progress of data storage and processing speed. As a result, most of plant are not only 

using univariate methods, but also multivariate statistical methodologies for real 

time monitoring. From the analysis of accumulated normal data, detection accuracy 

and rate have been progressing. 

However, unlike the fault detection area, fault diagnosis has many problem. 

Process fault diagnosis method is largely classified into three methodologies; 
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qualitative model based analysis, knowledge based analysis and historic data based 

analysis. From qualitative analysis perspective, as the process becomes large and 

more complicated, it it practically impossible to provide appropriate information for 

all abnormal situation. In terms of knowledge based analysis, such as expert system, 

the accuracy can be high, but it takes a long time to analyze the fault, so this method 

is generally used for post-accident diagnosis. Because of the limitations, 

methodologies for real time monitoring and diagnosis are mainly based on historical 

data. However, most algorithms of historical analysis use specific data driven model 

that actual data occurred in the past so it is only for used in that case. 

 To solve this problems of real-time fault diagnosis, this thesis proposes root cause 

analysis with the fault detected time simultaneously. Especially, it is focused on 

providing an accurate root causality even when the fault has a small intensity. 

First, for the fast detection of abnormal situation, principal component analysis 

(PCA) method is used. Several methods integrated with PCA in normal operation 

data modeling procedures. T-score, derived from global PCA is classified into k 

normal mode. Divided normal operation data, local PCA models are developed 

respectively. 

 Second, minimum distance to mean (MDM) and k-nearest neighbors (kNN) are 

used for matching the class new samples with training normal data. And then, 

process is monitored by local mode in detail. When the fault is detected, with 

integration PCA contribution and singular value decomposition, hierarchy sensors 

are selected. From these sensors, MVGC analyzes root causality. 



iii 

 

 To verify performance of the proposed method, liquefied natural gas (LNG) plant 

fractionation dynamic model is used. From this dynamic model, 45 fault cases are 

simulated. Proposed method is perfectly better performance than global PCA. In 

terms of fault detection accuracy (FDA) and fault detection rate (FDR), 43 out of 45 

cases show dramatically increased results and 2 cases the same results. Comparing 

with univariate, shewart 3-sigma, 35 cases are increased results, 8 cases same results 

and only 2 cases very lightly poor results. From the MVGC analysis, root cause 

analysis is compared with conventional contribution chart and residual subspace (RS) 

amplification. As a result, proposed method provides appropriate root cause while 

conventional contribution and RS amplification are failed to find root cause. 

Specially, root cause of developed method is similar with real time alarm later. This 

methodology provides root cause information only based on normal data, also 

suitable for small intensity fault, it is applicable to most process. It is expected to 

contribute greatly analysing the new fault in real time. 

 

Keywords: Process monitoring, Fault detection and diagnosis, Multi-mode 

operation, Granger causality, Principal component analysis, Fault magnitude 
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CHAPTER 1 Introduction 

 

 Research motivation 

Process monitoring has became an essential part of plant management. Before 

the computer science is developed, the main methodologies of monitoring and fault 

detection and diagnosis (FDD) are constructed qualitatively model based on 

knowledge and expert system. After the computer science and data processing are 

developed, data driven analysis have been developed sharply, and recently most 

studies are based on data driven. Some of them, knowledge and model based 

methodologies are integrated with data driven algorithm.  

In data driven methodologies, generally, the task of process monitoring is consist 

of 4 parts.1 ; fault detection, fault identification (or diagnosis), fault estimation and 

fault reconstruction. In fault detection part, there have been a great development of 

methodology due to the enormous data. Especially, principal component analysis 

(PCA), partial least square (PLS), fisher discriminant analysis (FDA) such as 

dimension reduction methods are used widely.1 Although PCA method has mainly 

strength in a high dimension convert into a low dimension, it is also descending 

accuracy use enormous data and variables directly. Besides, this method can cover 

the linear relationship between variables, it is needed of other methodology for 

increasing accuracy. For this reason, reduction methodologies or low dimensioned 

variables can be adjusted according to purpose of data handling. Kernel PCA, which 
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one of the common method, uses kernel space for decomposition so that deal with 

non-linear properties.2. Multiway, multiblock, multiscale and multimode PCA also 

developed for increasing the model accuracy.2–7 When PCA is constructed to sub-

model, it can be more sensitive to the abnormality. Furthermore, recently knowledge 

based methodologies or qualitative model based methodologies are integrated with 

these dimension reduction model to verify the knowledge and accelerate the model 

accuracy. Neural network and Bayesian networks also integrated with PCA for 

supervised learning for knowledge based theory.8–10 

 Even though, enormous data and developed algorithms, various fault is still 

occurred. It is because data and the algorithms are focused on detecting the fault 

from operation data variation difference between normal and abnormal operation. 

To monitor the various conditions, multi-mode operation monitoring methods should 

be developed to detect fault accurately. Also most fault diagnosis analysis is based 

on the specific historic fault data. This method is proper for frequently fault but when 

the new variation fault, it does not working at all. Therefore, it is needed that extract 

the root cause information between normality and abnormality independent with the 

historic fault data, 
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 Research objectives 

The objective of this thesis is to propose a root cause information at initial 

fault stage for real time diagnosis. Especially, to provide an accurate root causality 

even when the fault has a small intensity and only using the normal operation data. 

To develop this objective, fault variation is defined from normal operation data to 

solve the new fault. Yoon et al., MacGregor el al. and Yue and Qin proposed fault 

direction which associate the normal intensity and fault magnitude. This vector is 

used for detecting fault and enhancing the fault information from historic data.  

From these concept, proposed methodology comprises 2 parts. First is normal 

modeling and monitoring part and second is fault detection and root cause diagnosis 

part.  

The objective of normal modeling and monitoring part is to manage the detail 

normal operation mode through k-means clustering, k-nearest neighbors (kNN) and 

minimum distance to mean (MDM) algorithms. k-means clustering method divides 

overall normal operation data into k using global T-score which from global 

principal component analysis (global PCA). Separated normal operation mode used 

for detail normal PCA model, which call local PCA model. New sample data can be 

classified proper local normal operation data from (MDM) and (kNN).9 These 

procedure is described in detail in chapter 3. 

The objective of fault detection and root cause diagnosis part is to provide root 

cause information at the same time the fault was detected. When the fault is detected, 
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PCA select proper subspace, which defined principal component subspace (PCS) or 

residual subspace(RS), so that removes normal portion in fault data.11 And then, 

singular value decomposition convert the contribution to fault magnitude. Finally, 

multivariate granger causality method calculated causality based on time series data. 

From the causality, root cause in initial fault stage can be provided fault information. 

To verify the performance, the suggested method is applied liquefied natural gas 

(LNG) plant fractionation process dynamic model.8,12 From the fault scenario in this 

dynamic model, accuracy of the detection performance and root cause analysis is 

evaluated. 

 

 Outline of the thesis 

The outline of thesis is organized as follows. Chapter 1 introduce research 

motivation and objective. Chapter 2 describes the background theories that used in 

algorithms development. In chapter 3, the fault detection procedure is proposed in 

detail. And then application results to the LNG fractionation process are given. 

Chapter 4 is comprised fault detection and root cause diagnosis algorithm. As same 

as chapter 3, application results to LNG fractionation process are given. Chapter 5 

presents the conclusions and suggestions for future work.  
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 : Methodologies of fault detection and 

root cause analysis 

 

 Introduction 

In data-driven monitoring and fault diagnosis, there are enormous 

methodologies have been developed recently. Among them, reduction method such 

as principal component analysis (PCA)13, partial least squares (PLS)14 and fisher 

discriminant analysis1 is widely used because these are basic concept used in many 

applications. However, classical reduction methods have a certain limit that in 

nonlinear, the model accuracy decreased sharply. For these reasons, non-linear 

reduction methods developed such as using kernel space, high-order data structure 

or integrated with other non-linear method.15–17 There are a lot of methodologies and 

their applications, in terms of fault diagnosis has problem. Meanwhile, there are 

integrated methods, data driven analysis and knowledge base or model base. Dai and 

Gao review the integration knowledge base and data driven.18 Hou and Wang review 

briefly at model-based to data-driven control.7  

Although many developed methodologies, a methodology that can cope with all 

situation is impossible. In this study, instead of developing new algorithm, it is 

focused on detailed multi-normal modeling to specify relation between normal and 

fault. For multi-normal molding, clustering and class matching methodologies are 

used. Clustering is used for several data set that can be grouped with meaningful 
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relation. Also there are variety of methodologies and their application depends on 

the complicity of data structure.9 If data structure is or can be low dimensioned, 

simple method should be more useful for integration and tuning. For this reason, this 

paper focused on simple classification and patter recognition method are adjusted 

while simplify the data structure. In this chapter, introduce k-means clustering, 

minimum distance to mean (MDM), k-nearest neighbors (kNN), PCA and 

multivariate granger causality (MVGC) as the background theories. 

 

 k-means clustering 

Clustering is the analysis that binding the scattered data, which have same 

dimension, into meaningful group by a certain criteria. There are many developed 

algorithms in clustering, in this work, k-means clustering is used for classification. 

In cases of low dimension, such as 1, 2 or 3-dimensions which are intuitively 

identifiable, this clustering method is powerful than other method in terms of visual 

perception.  

 k-means clustering method is based on euclidean distance. This concept is very 

simple. First step is place k points into the space randomly that assumed centroids of 

group. Then calculate the distance between object and centroids and assign the group 

that has closest centroids. All objective have been assigned, centroids move to new 

positions. If the new position changed objective to other group, that means unstable, 

repeat and find new centroids. There is no objective moving anymore, clustering is 
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finished. Figure 2-1 shows the procedure briefly. 

𝐽 = ∑ ∑‖𝑥𝑖
(𝑗) − 𝑐𝑗‖

2
𝑛

𝑖=1

𝑘

𝑗=1

 Eq 2-1 
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Figure 2-1 k-means clustering 
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 Minimum distance to means and k-nearest neighbors 

algorithm  

To match observations into proper class is essential part for modeling accuracy. 

In this work, operation mode, used as a class, has below 3-dimension space, as well 

as the reason for using k-means clustering, minimum distance to means (MDM) and 

k-nearest neighbors (kNN) method are used for class matching. 

 MDM and kNN method are based on euclidean distance. A new observation is 

compared the distance with normal training variables. MDM uses mean values of 

each class training data. The new observation has class the nearest index. In kNN 

method, k variables are used in the nearest order. The most class of k nearest 

variables is assigned to the new sample. Therefore, in order not to recognize the 

wrong class, it is used a sufficiently large training data and k value. Both methods 

are used together to reduce misreading.  
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 Principal component analysis 

PCA is a one of the classic method for reducing the dimension of a data 

set.13,19 It is very powerful for large data set which have linear correlation. This 

method convert high dimension correlated sensors into low dimension linearly 

uncorrelated variables. PCA can be derived singular value decomposition (SVD) of 

data X, 

𝑋 = 𝑈𝛴𝑊𝑇 Eq 2-2 

where Σ is a 𝑛 × 𝑚 rectangular diagonal matrix of positive number σ𝑘, U is an 

𝑛 × 𝑛 singular values of X matrix and W is an 𝑚 × 𝑚 matrix. In terms of 

factoriazation,  

𝑋𝑇𝑋 = 𝑊𝛴𝑇𝑈𝑇𝑈𝛴𝑊𝑇 Eq 2-3 

= 𝑊Σ2𝑊𝑇 Eq 2-4 

where Σ is the square diagonal matrix with the singular valued of X. From the 

SVD, score matrix can be given as, 

𝑇 = 𝑋𝑊 Eq 2-5 

              = 𝑈𝛴𝑊𝑇𝑊 Eq 2-6 

   = 𝑈𝛴 Eq 2-7 

The process alarm limit can be defined by Hotelling’s 𝑇2, 

𝑇𝑎
2 =

(𝑛2 − 1)

𝑛(𝑛 − 𝑎)
𝐹𝛼(𝑎, 𝑛 − 𝑎) Eq 2-8 
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where a represents the number of selected principal components (PCs), 

𝐹𝛼(𝑎, 𝑛 − 𝑎) is the F-distribution with a and (n-a) degrees of freedom and 𝛼 

means the level of significance. 

 In residual part, which is defined squared prediction error (SPE), can detect the 

fault using the Q-statistics limit (δ𝛼
2), given as 

δ𝛼
2 =  𝜃1 {

ℎ0𝑐𝛼√2𝜃2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 }

1
ℎ0

⁄

 Eq 2-9 

𝜃𝑖 = ∑ 𝜆𝑗
𝑖

𝑚

𝑗=𝑎+1

 
Eq 2-10 

ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2  

Eq 2-11 

Hotelling’s 𝑇2 limit and Q-statistics limit are the process threshold of normal 

operation. This two methods are complementary to detect fault but should used 

separately. When the process is out of the Hotelling’s 𝑇2limit, the fault space is 

defined as principal component subspace (PCS). Likewise when the SPE alarm 

goes off, the process fault is defined as residual subspace (RS).  

 New sample vector, which means the real time data for monitoring and diagnosis, 

can be projected two parts, principal component subspace (PCS) and residual 

subspace(RS).20 

𝑥 =  𝑥̂ + 𝑥̃ Eq 2-12 

𝑥̂ = 𝑃𝑃𝑇𝑥 Eq 2-13 
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𝑥̃ = (𝐼 − 𝑃𝑃𝑇)𝑥 Eq 2-14 

𝑥  is PCS projection and 𝑥̃  is RS projection. 𝑥  and 𝑥̃  have own monitoring 

variable in each subspace. 

 Multivariate Grange causality 

Granger causality (GC) is based on linear autoregressive modelling of 

stochastic process.17,21,22 Briefly, if a variable 𝑋2(𝑡) has an information of a future 

𝑋1(𝑡) variable and there is no information that other series used in the predictor, 

then 𝑋2(𝑡) is said a ‘granger cause’ 𝑋1(𝑡). This concept is interpreted as shown, 

𝑋1(𝑡) =  ∑ 𝐴11(𝑗)𝑋1(𝑡 − 𝑗)

𝑝

𝑗

+ ∑ 𝐴12(𝑗)𝑋2(𝑡 − 𝑗)

𝑝

𝑗

+ ℇ1(𝑡) Eq 2-15 

𝑣𝑎𝑟(ℇ1(𝑡)) = Σ1 Eq 2-16 

𝑋2(𝑡) =  ∑ 𝐴21(𝑗)𝑋1(𝑡 − 𝑗)

𝑝

𝑗

+ ∑ 𝐴22(𝑗)𝑋2(𝑡 − 𝑗)

𝑝

𝑗

+ ℇ2(𝑡) Eq 2-17 

𝑣𝑎𝑟(ℇ1(𝑡)) = Σ2 Eq 2-18 

where A(j) is AR coefficient, k is model order, ℇ(𝑡) is prediction errors. These 

equations are the definition of full regression bivariate AR model. If there is no 

dependence between 𝑋1(𝑡)  and 𝑋2(𝑡) , A12(j) and A21(j) are 0. This concept is 

consideration of the reduced regression.  

𝑋1(𝑡) =  ∑ 𝐴′
11(𝑗)𝑋1(𝑡 − 𝑗)

𝑝

𝑗

+ ℇ1(2)(𝑡) Eq 2-19 
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Σ𝑖(𝑗) means variance ℇ at restricted j. GC from 𝑋2(𝑡) to 𝑋1(𝑡) is defined as 

log-likelihood ratio,  

Ϝ𝑋2→𝑋1
= 𝑙𝑛

Σ1(2)

Σ1
 Eq 2-23 

This concept can be extended to m variables system by AR-coefficients given as eq 

2-19.21 

{

𝑋1(𝑡)

𝑋2(𝑡)
⋮

𝑋𝑚(𝑡)

} = ∑ [

𝐴11(𝑘)   𝐴12(𝑘)   ⋯   𝐴1𝑚(𝑘)

𝐴21(𝑘)   𝐴22(𝑘)   ⋯   𝐴2𝑚(𝑘)
      ⋮              ⋮            ⋱            ⋮      
𝐴𝑚1(𝑘)   𝐴𝑚2(𝑘)   ⋯   𝐴𝑚𝑚(𝑘)

]

∞

𝑘=1

{

𝑋1(𝑡 − 𝑘)

𝑋2(𝑡 − 𝑘)
⋮

𝑋𝑚(𝑡 − 𝑘)

} + {

𝜀1(𝑡)
𝜀2(𝑡)

⋮
𝜀𝑚(𝑡)

} 

 Eq 2-24 

GC from 𝑋𝑗(𝑡) to 𝑋𝑖(𝑡) is given eq.20 

Ϝ𝑋𝑗→𝑋𝑖
= 𝑙𝑛

Σ𝑖(𝑗)

Σ𝑖
 Eq 2-25 

In this multivariate form, Σ𝑖 means cov(𝜀𝑖),which is defined variance from all other 

m variables, and Σ𝑖(𝑗) represent cov(𝜀𝑖(𝑗)), which is defiend (m-1) variables that 

restricted j. 

 In this work, ‘MVGC tool box’, developed by Barnett et al. in matlab code, is used 

for analyze.23  

𝑣𝑎𝑟 (ℇ1(2)(𝑡)) = Σ1(2) Eq 2-20 

𝑋2(𝑡) =  ∑ 𝐴′
22(𝑗)𝑋2(𝑡 − 𝑗)

𝑝

𝑗

+ ℇ2(1)(𝑡) Eq 2-21 

𝑣𝑎𝑟 (ℇ2(1)(𝑡)) = Σ2(1) 
Eq 2-22 
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 : Multi-mode monitoring using k-means 

clustering, minimum distance to mean, k-

nearest neighbors and principal 

component analysis 

 

 Introduction 

Process monitoring and fault diagnosis have been a significantly important 

part of plant management recently. Accumulated data can be enhancement of 

monitoring and fault diagnosis performance. However, the amount of the data is so 

much existing, it is impossible to use all of these data fully or effectively.24 Therefore 

it is important that how to select and use your data. 

 Principal component analysis (PCA), which widely used in multivariate statistical 

process control (MSPC), is used as the concept of how to use. Most of plant use the 

PCA for monitoring fault detection. And also it is used for diagnosis information that 

providing the affected sensors. Lane et al. adjusts to film manufacturing process for 

monitoring and information of affected sensors25, Li et al. use recursive PCA to 

thermal annealing process for monitoring.26 Garcia et al., Gallagher et al., used multi-

way PCA for batch process so that the quality management from best case.27,28 

 It is important to use the methods integrated others so that increasing the accuracy. 

There are another ways to increase the accuracy of model. One of them is overall 

model dived sub-model for detail monitoring and diagnosis. This method can be 

modeling the segment of process variables or time variables. In terms of process 
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variables, MacGregor et al. proposed multiblock PCA and partial least square (PLS) 

and Westerhuis et al., Smilde et al., use this method.19,29,30 They divide variables from 

using their criteria, so increase the accuracy of model performance. In terms of time 

variables, Lu et al, Zhao et al., Zhu et al are considered time variables at modeling 

stage. They separate the operation mode or time stage so that manage the process 

rigorously. 

Liquefaction natural gas (LNG) fractionation process, which used in study for 

validation, has many operation mode because they have a feature of the downstream 

process and affected by refrigeration and liquefaction process. Therefore, it is 

important for monitoring to separate the operation mode. For the separate the normal 

operation mode, k-means clustering method is adjust to T-score, derived from global 

PCA, used for classification. For the new sample data matching with training data, 

minimum distance to mean (MDM) and k-nearest neighbors (KNN) method are used. 

From the time segment data, local data, is modeled by PCA so that process 

monitoring. From the local PCA monitoring, compared with global PCA monitoring 

and univariate monitoring, have a good performance. 

 This chapter is comprised 5 section. Section 3.1 is introduction. Section 3.2 is 

described k-means clustering, MDM and kNN. In section 3.3, LNG plant 

fractionation process dynamic model and fault scenario described. In section 3.4, the 

result of 45 scenario described and section 3.5 is conclusion. 
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 Multimode-PCA monitoring integrated with k-means 

clustering, minimum distance to mean and k-nearest 

neighbors 

The proposed monitoring method is consist of 2 parts. First is normal 

operation data modeling. Because PCA is based on linearity system, it is necessary 

to adjust a linear interpretation of the process. Among the ways to attempt linearity, 

in these study, PCA modeling as segmented normal process data was applied. 

Therefore, statistical method and clustering method are integrated with PCA in 

modeling procedure. Second is process multi-mode monitoring. PCA projection, 

minimum distance to mean (MDM), k-nearest neighbors (kNN) and contribution 

charts are used for process monitoring.  

 

 Normal operation data modeling 

Handling normal data is of great importance to modeling process. The 

performance of a model depends on how data is selected and preprocessed. In this 

study, Normal operation data modeling has 3 parts. 

 First step is global PCA modeling. PCA method is shown in section 2.4. Any normal 

data contains noise and disturbance. For removing them, outlier data is eliminated 

by 3-sigma rule. This rule removes data in excess of 99.7% of the normal data range. 

It is important for improving model accuracy. And then these data are rearranged to 

the scaled data using from mean and standard deviation. After the preprocessing, 
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these dataset decompose 2 or 1 principal component by the PCA method. It is defined 

as global modeling that construct model using from overall normal data. Figure 3-2 

shows these procedure. 

 Second step is k-means clustering to divide global data into several local data. 

Accumulated data, which have same dimension, have high probability of similar 

dynamic behavior. If data with similar dynamic behavior divided and classification 

own them, these information can increase the performance accuracy of model. k-

means clustering is described in section 2.2. 

 From global modeling, T-score variable are derived. Generally, T-scores are 1~3 

dimensional chart, so process state or behavior can be understood intuitively. For 

example, figure 3-9 shows the global normal data state in 1-D chart. Visually and 

intuitively, this chart shows 3 normal states in them. These scattered data can be 

classified to several clusters by k-means clustering. From this clustering method, 

normal data are divided into k-class normal data. 

 Final step for normal modeling is local PCA modeling. Here, except for using local 

class normal data, separated data go through same process. Outlier of local normal 

data is removed by 3-sigma rule. And then they are rearranged by scaling. Lastly, 

PCA decompose them to reduced variables. Each local PCA model calculated own 

process limit, Hotelling’s 𝑇2 and Q-statistic. 

 Figure 3-1 shows overall procedure of normal operation data modeling. Figure 3-

2,3,4 shows global PCA modeling procedure, operation mode classification and local 



18 

 

PCA modeling procedure respectively. 
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Figure 3-1 Overall normal operation modeling procedure 
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Figure 3-2 Global PCA modeling procedure 
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Figure 3-3 Operation mode classification procedure 
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Figure 3-4 Local PCA modeling procedure 
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 Process multi-mode monitoring 

The proposed normal modeling is used for multi-mode monitoring. This 

part has 2 steps. First step is matching of the new sample data with the class classified 

k-means clustering. In this study, minimum distance to means (MDM) and k-nearest 

neighbors (kNN) are used to match the class. MDM and kNN method are described 

in section 2.3. 

For classification, it is needed to processing new sample data. New sample data, 

which means real time data, must rearranged by global normal scale data. After that, 

this data is projected to global PCA space. From the space, T-score of new sample is 

derived. Using these T-score, MDM and kNN match the new sample with local 

normal mode that the most similar to new sample. This procedure is shown in figure 

3-5. 

After the class is decided, the new sample data go through the scaling using from 

own local normal class scaling factors. Scaled data can be projected into local PCA 

space where they are decomposed to Hotelling’s 𝑇2 and Q-statistic. If there is 

nothing occurred, this new sample is defined as a normal data so that is is saved in 

own local data class. However the new sample data are occurred the alarm, 

contribution is analyzed for identifying affected sensors. If alarm is Hotelling’s 𝑇2, 

T-contribution should be used and SPE contribution should be used if Q-statistics 

alarm goes off. This procedure is shown in figure 3-6. 
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Figure 3-5 Operation class matching procedure 
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Figure 3-6 Local monitoring procedure 
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 Liquefied Natural Gas (LNG) fractionation process 

 Model description 

Liquefied Natural Gas (LNG) fractionation process is one of the major process 

in LNG plant, 3 others are pre-treatment process, liquefaction process and storage 

(shipment). This process separates mixed refrigerant for purification. It is consist of 

4-main column, deMethanizer, deEthanizer, dePropanizera and deButanizer. Each 

column separates methane, ethane, propane and butane respectively. These columns 

have sensitive low temperature and high pressure because of small carbon material 

properties. Therefore, for verifying the accuracy of proposed algorithm, this process 

is developed dynamic model using from Aspen hysys®  v8.1 simulator. Figure 3-7 

represent schematic of LNG fractionation process. Table 3-1, 2 show the monitoring 

variables and descriptions. 
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Figure 3-7 schematic of LNG fractionation process 
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Table 3-1 Monitoring variables and descriptions 

Stream No. Tag name Tag description 

1 dM-in-T deMethanizer inlet stream temperature 

2 dM-top-P deMethanizer top stream pressure 

3 dM-top-T deMethanizer top stream temperature 

4 dM-1st-P deMethanizer stage-1 pressure 

5 dM-7st-T deMethanizer stage-7 temperature 

6 dM-13st-P deMethanizer stage-13 pressure 

7 dM-reb-T deMethanizer reboiler temperature 

8 
dE-in-F 

(dM-bot-F) 

deEthanizer inlet stream flow rate 

(deMethanizer bottom stream flow rate) 

9 
dE-in-T 

(dM-bot-T) 

deEthanizer inlet stream temperature 

(deMethanizer bottom stream temperature) 

10 dE-top-T deEthanizer top stream temperature 

11 dE-cond-P deEthanizer condenser pressure 

12 dE-cond-T deEthanizer condenser temperature 

13 dE-1st-P deEthanizer stage-1 pressure 

14 dE-11st-P deEthanizer stage-11 pressure 

15 dE-11st-T deEthanizer stage-11 temperature 

16 dE-20st-T deEthanizer stage-20 temperature 

17 dE-28st-P deEthanizer stage-28 pressure 
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Table 3-2 Monitoring variables and descriptions 

Stream No. Tag name Tag description 

18 dE-reb-T deEthanizer reboiler temperature 

19 
dP-in-F 

(dE-bot-F) 

dePropanizer inlet flow rate 

(deEthanizer bottom stream flow rate) 

20 
dP-in-T 

(dE-bot-T) 

dePropanizer input temperature 

(deEthanizer bottom stream temperature) 

21 dP-cond-P dePropanizer condenser pressure 

22 dP-1st-P dePropanizer stage-1 pressure 

23 dP-19st-T dePropanizer stage-19 temperature 

24 dP-37st-P dePropanizer stage-37 pressure 

25 dP-reb-T dePropanizer reboiler temperature 

26 
dB-in-F 

(dP-bot-F) 

deButanizer inlet flow rate 

(deButanizer bottom stream flow rate) 

27 
dB-in-T 

(dP-bot-T) 

deButanizer input temperature 

(deButanizer bottom stream temperature) 

28 dB-cond-P deButanizer condenser pressure 

29 dB-1st-P deButanizer stage-1 pressure 

30 dB-17st-T deButanizer stage-17 temperature 

31 dB-34st-P deButanizer stage-34 pressure 

32 dB-reb-T deButanizer reboiler temperature 

33 dB-bot-T deButanizer bottom stream temperature 
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 Normal and fault scenario description 

The condition LNG fractionation process varies according to the previous 

process, such as MR-process or liquefaction. Therefore, this process has several 

narrow condition mode. In this work, 3 normal modes are applied; (A) has initial 

stream temperature -16.3℃ ~ -15.3℃ and pressure 61.0bar ~ 62.0bar, (B) has initial 

stream temperature -16.8℃ ~ -15.8℃ and pressure 61.5bar ~ 62.5bar, (C) has initial 

stream temperature -17.8℃ ~ -16.8℃ and pressure 62.5bar ~ 63.5bar. These normal 

mode are simulated in stable convergence area and suitable for product specification 

area. Table 3.3 and 3.4 show the process overall specifications and normal modes 

condition. 
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Table 3-3 Process overall specification 

 C1[%] C2[%] C3[%] C4[%] others 

deMethanizer top 

stream 
91.60 5.31 2.06 0.80 0.23 

deEthanizer top 

stream 
0.00 99.55 0.45 

dePropanizer top 

stream 
0.00 0.00 99.61 0.39 

deButanizer top 

stream 
0.00 0.00 1.23 98.00 0.77 
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Table 3-4 3 normal modes condition 

Normal 

case 

Process initial stream 

Temperature [℃] 

Process initial stream 

Pressure[bar] 

A -16.3 ~ -15.3 61.0 ~ 62.0 

B -16.8 ~ -15.8 61.5 ~ 62.5 

C -17.8 ~ -16.8 62.5 ~ 63.5 
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In column, there are coexistence of gas phase, liquid phase, vaporization and 

liquefaction. For that reason, column processes have many problem with 

temperature.31 In this work, 3 types of temperature abnormal situation and 2 leaking 

fault are supposed. Fault (1) is deEthanizer inlet (deMethanizer bottom) flow leaking, 

(2) is dePropanizer inlet (deEthanizer bottom) flow leaking, (3) is deEthanizer 

reboiler temperature overheating, (4) is deEthanizer condenser temperature 

overcooling, (5) is deMethanizer reboiler temperature overheating. Each fault has 3 

different strengths; 3%, 5%, 10% intensity compared with normal condition. Overall, 

there are 3 normal mode, 5 types of fault and 3 types of strength that total 45 cases 

are generated and used for analysis. All fault case consist of 500 seconds normal data 

and 2000 seconds abnormal data. Table 3-5 shows fault scenarios. Figure 3-8 shows 

fault location in schematic process diagram. 
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Table 3-5 Fault scenarios 

 Fault 

type 

Fault 

intensity 
Fault description 

1 

3% deEthanizer inlet(deMethanizer bottom) flow 3% leaking 

5% deEthanizer inlet(deMethanizer bottom) flow 5% leaking 

10% deEthanizer inlet(deMethanizer bottom) flow 10% leaking 

2 

3% dePropanizer inlet(deEthanizer bottom) flow 3% leaking 

5% dePropanizer inlet(deEthanizer bottom) flow 5% leaking 

10% dePropanizer inlet(deEthanizer bottom) flow 10% leaking 

3 

3% deEthanizer reboiler temperature 3% overheating 

5% deEthanizer reboiler temperature 5% overheating 

10% deEthanizer reboiler temperature 10% overheating 

4 

3% deEthanizer condenser temperature 3% overcooling 

5% deEthanizer condenser temperature 5% overcooling 

10% deEthanizer condenser temperature 10% overcooling 

5 

3% deMethanizer reboiler temperature 3% overheating 

5% deMethanizer reboiler temperature 5% overheating 

10% deMethanizer reboiler temperature 10% overheating 
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Figure 3-8 Fault location in schematic process diagram. 
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 Results 

 Multi-mode modeling 

First of all, overall normal data go through the normal modeling procedure, 

which is described in section 3.2. In this step, overall 120,000 seconds are used for 

clustering. There are 3 types of normal operation data which have 40,000 seconds 

data respectively. From the figure 3-9, 3 types of normal operation data can be 

recognized. With a factor k of 3, k-means clustering classified the global normal into 

3 types of local normal for multi-mode modeling. 3 local normal data are treated 

outlier elimination and scaling same as global normal data. After preprocessing, PCA 

decomposes each local data to reduced space. Finally, process limit for monitoring 

that Hotelling’s 𝑇2 and SPE.  

  



37 

 

 

Figure 3-9 k-means clustering result 
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 Monitoring fault detection 

For performance analysis of the proposed multi-mode monitoring method, 

this method is compared with shewart 3-sigma method and global PCA. Fault 

detection accuracy (FDA) and fault detection rate (FDR), which are broadly used in 

monitoring performance, are adjusted to 3 monitoring methods. FDA and FDR are 

defined form type I and type II errors as shows in figure 3-10 and equation 3-1,2. 

𝐹𝐷𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 Eq 3-1 

FDR =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 Eq 3-2 
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Figure 3-10 Type I & II errors 
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Results are organized in table 3-6 ~ 3-9. The proposed monitoring method are 

improved better performance than global PCA in all cases. 43 cases out of 45 showed 

better performance than global PCA. Only two cases, B-1-10% and C-1-10% are the 

same results in FDA and FDR. Because multi-mode PCA has a specific limit line, it 

can detect the fault more sensitively than global PCA. 

Compared with the univariate 3-sigma method, 43 cases out of 45 are detected same 

or faster in multi-mode PCA. Especially, 3% intensity faults are detected remarkably 

faster than shewart 3-sigma. This is because small fault changes the relevant 

variables, it may not be able to exceed the individual variable limits. Therefore, 

univariate monitoring method does not detect until the fault grows. However, 

because the local PCA integrates the variation in individual variables, it can detect 

the fault faster and more accurately. 
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Table 3-6 FDA and FDR results in Shewart 3-sigma chart, Global PCA and Multi-

mode PCA-Normal A part 

  Shewart 3-sigma Global PCA Multi-mode PCA 

Fault 

type 
Intensity 

FDA 

[%] 

FDR 

[%] 

FDA 

[%] 

FDR 

[%] 

FDA 

[%] 

FDR 

[%] 

1 

3% 65.08 56.35 64.48 55.60 87.40 84.25 

5% 87.40 84.25 74.40 68.00 94.60 93.25 

10% 99.96 99.95 99.92 99.90 99.96 99.95 

2 

3% 94.64 93.30 91.80 89.75 95.00 93.75 

5% 98.00 97.50 96.36 95.45 97.84 97.30 

10% 99.68 99.60 99.36 99.20 99.64 99.55 

3 

3% 88.64 85.80 80.32 75.40 90.44 88.05 

5% 95.84 94.80 88.24 85.30 96.08 95.10 

10% 97.96 97.45 93.00 91.25 97.96 97.45 

4 

3% 74.32 67.90 - - 93.44 91.80 

5% 89.56 86.95 - - 96.24 95.30 

10% 96.80 96.00 - - 98.28 97.85 

5 

3% 87.28 84.10 92.08 90.10 93.60 92.00 

5% 93.60 92.00 95.76 94.70 96.80 96.00 

10% 97.80 97.25 98.08 97.60 98.60 98.25 
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Table 3-7 FDA and FDR results in Shewart 3-sigma chart, Global PCA and Multi-

mode PCA-Normal B part 

  Shewart 3-sigma Global PCA Multi-mode PCA 

Fault 

type 
Intensity 

FDA 

[%] 

FDR 

[%] 

FDA 

[%] 

FDR 

[%] 

FDA 

[%] 

FDR 

[%] 

1 

3% 86.24 82.80 58.40 48.00 90.88 88.60 

5% 89.76 87.20 69.48 61.85 99.80 99.75 

10% 99.96 99.95 99.96 99.95 99.96 99.95 

2 

3% 99.64 99.55 87.64 84.55 99.64 99.55 

5% 99.72 99.65 94.60 93.25 99.72 99.65 

10% 99.80 99.75 98.64 98.30 99.80 99.75 

3 

3% 96.48 95.60 77.52 71.90 99.16 98.95 

5% 98.40 98.00 86.84 83.55 99.56 99.45 

10% 99.16 98.95 91.04 88.80 99.64 99.55 

4 

3% 96.32 95.40 - - 98.44 98.05 

5% 97.76 97.20 - - 98.96 98.70 

10% 99.08 98.85 - - 99.56 99.45 

5 

3% 86.36 82.95 92.88 91.10 95.24 94.05 

5% 92.60 90.75 96.20 95.25 97.40 96.75 

10% 97.80 97.25 98.28 97.85 98.80 98.50 
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Table 3-8 FDA and FDR results in Shewart 3-sigma chart, Global PCA and Multi-

mode PCA-Normal C part 

  Shewart 3-sigma Global PCA Multi-mode PCA 

Fault 

type 
Intensity 

FDA 

[%] 

FDR 

[%] 

FDA 

[%] 

FDR 

[%] 

FDA 

[%] 

FDR 

[%] 

1 

3% 37.04 21.30 - - 82.60 78.25 

5% 99.96 99.95 79.88 74.85 99.96 99.95 

10% 99.96 99.95 99.96 99.95 99.96 99.95 

2 

3% 90.88 88.60 80.84 76.05 93.08 91.35 

5% 95.24 94.05 85.68 82.10 96.24 95.30 

10% 96.44 95.55 88.28 85.35 97.48 96.85 

3 

3% 96.32 95.40 75.04 68.80 98.92 98.65 

5% 98.56 98.20 86.04 82.55 99.52 99.40 

10% 99.24 99.05 90.64 88.30 99.64 99.55 

4 

3% 95.80 94.75 - - 97.52 96.90 

5% 97.40 96.75 - - 98.44 98.05 

10% 98.84 98.55 88.68 85.85 99.24 99.05 

5 

3% 87.60 84.50 89.76 87.20 94.08 92.60 

5% 93.80 92.25 94.48 93.10 96.80 96.00 

10% 98.00 97.50 97.60 97.00 98.60 98.25 
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 Conclusion 

This study proposes a monitoring method for early detection using k-means 

clustering, kNN, MDM and PCA. First, in normal modeling procedure, T-scores 

calculated from global PCA are classified into k-normal operation using k-means 

clustering. Next these local normal operations are modeled as multi-mode PCA for 

detail monitoring fault detection. The new samples are assigned class by MDM and 

kNN. From assigned local PCA projection, FDR and FDA evaluate the result 

compared with global PCA and shewart 3-sigma method. From the result, proposed 

method has better performance in all cases than global PCA. Only 2 out of 45 cases 

are the same result and the others com out with increased performance. When 

compared to shewart 3-sigma method,  

In monitoring part, MDM and kNN methods are used for matching the proper 

local normal so that system is monitored by local normal PCA modeling. From the 

classification, proposed method detected the fault faster than global PCA and 

shewart 3-sigma. In 2 cases are shown slow FDR and inaccuracy FDA, but there is 

little difference. 8 cases are the same result and 35 cases have good performance in 

FDR and FDA. The average FDA of proposed method is improved by about 5~10% 

to 97%, where global PCA is 88% and shewart 3-sigma is 93%. The average FDR 

of proposed method is also improved by about 5~10% to 96%, where global PCA is 

85% and shewart is 91%. 
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 : Root cause analysis at early abnormal 

stage using principal component analysis 

and multivariate Ganger causality 

 Introduction 

Nowadays, the development of physical sensing technology, distributed 

control system (DCS) and computing technology have brought about the 

development of plant scale. As a result, these huge processes make out an enormous 

amount of data. They enable detailed analysis about system for maximize production 

and minimize safety costs. However, various information and accumulated data are 

not always guaranteed the efficiency and the safety. There are reasons that the 

sensors have complex relationship between each variable, malfunction, calibration 

error, missing, etc. If such incorrect information is provided under abnormal situation, 

it causes confusion in the analysis of causes and problem-solving. Under the 

assumption that there are no physical error, the key of process management is an 

intuitive interpretation of numerous sensors and correlations between them. When it 

comes to fault occurred, early detection and analysis of root cause are the major 

interest area for efficiency and safety. 

 Multivariable statistical process control is the conventional data-based 

methodology for monitoring and fault detection. It defines the normal state, 

including steady state, that all process variable are operated in approximately the 

same position as normal state. In industrial area, univariate monitoring method is 

commonly used in plant. There are a lot of sensors managed and monitored by 
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operator. They each have several limits for their own purpose that control limit, 

warning limit, risk limit, etc. However, these univariate methods are needed skilled 

operators, knowledge of process and time for analysis. For this reason, multivariate 

monitoring method is developed in academic area and have being adjusted to real 

plant. Principal component analysis (PCA) is one of the most preferred method in 

various system, chemical plant, steel industry, fuel cell, batch process etc. This 

method decompose a large number of sensors to a small number of component as 

maintaining the origin information. It uses orthogonal projection for converting of 

correlated variables into linearly uncorrelated variables. The normal state in process 

are defined that these data are used for PCA modeling. There are two monitoring 

variables whether they are fault or not, Hotelling’s T2 and Q-statistic. Hotelling’s T2 

indicates the distance between center which reduced dimension of normal state and 

observation which projected onto reduced space. SPE indicates dimension-reducing 

distance between PCA normal model and observation. Therefor these two indicators 

are monitored simultaneous. When the fault occurred, each contribution data give 

information about the affected variables in fault state. These data can be useful in 

root cause diagnosis.16,32 Accordingly, the two indicators have great strengths in a 

quick detection, visualization and diagnosis information.  

The PCA methodology is applied to various industries. DOFASCO, which is known 

as steel industry, casting and desulphurization process are adjusted PCA for early 

detection and visualization.33–35 This company uses PCA in real time online 

monitoring system. They use Hotelling’s T2 and SPE plot for monitoring and these 

contribution chart for diagnosis. Although it has strength in early detection and 

diagnosis generally, it also has malfunction or fails in contribution. This is happened 
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when the normal PCA modeling includes so many sensors which are noised and 

unimportant that screening the state of process.  

In Jeong et al. resolved this problem integrating the factor analysis and PCA.36 This 

method sort out these disturbing sensors in Molten Carbon Fuel Cell in order to get 

accurate fault detected time and diagnostic contribution. For the detail normal PCA 

modeling, multi-mode PCA method are developed. It is integrated hierarchical 

clustering and PCA for global PCA. Jiang et al. proposed Bayesian interference and 

joint probability integrated with PCA that adjust training and identify the various 

sub-block normal modes.37 Ha et al. used k-nearest neighbors for matching the local 

normal mode and adjusted PCA for detection. 

Most in case, PCA is developed and integrated with other methodologies for 

monitoring efficiency like early detection. However, it is as important for fast 

monitoring as root cause analysis. In generally, analysis of root cause depends on 

historic data, qualitative knowledge or expert system.38–42 Although historic data is 

very enormous amount in data storage system, they are mainly normal data or 

different process condition compared with present condition. Knowledge base 

qualitative analysis or expert system are very accurate on the one hand. However 

they have a major weakness. Abnormal situation is various depending on the 

condition, therefore there are too many cases to analyze advance. Also, it take a lot 

of time to analyze after the fault. Resolving these problems, data driven fault 

detection and root cause diagnosis are developed recently. MacGregor and Kourti, 

Yue et al. and Qin proposed a reconstruction which integrated Hotelling’s T2 and Q-

statistic approach for increasing accuracy of fault direction and diagnosis root cause. 

20,43 Recently methods of diagnosis a root cause with this concept is studied. Ahnmed 
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et al. used singular value decomposition (SVD) for amplifying root cause 

variables.44,45 Using the residual contribution fault direction, which modeled by 

historical fault data, enhance the contribution data for propagation path. Kitano et al. 

also used reconstruction-contribution from historic fault data.46 Enhancing 

contribution from fault direction has good performance at high intensity and 

frequently occurring abnormalities. However, in a small fault, these methods can not 

shows good performance. Also, because it depends on the historical fault data, it is 

difficult to give a root cause information when a new faults occurs. 

In this work, it is focused on root cause analysis about new fault and initial fault 

stage. PCA method detects the abnormal state using Hotelling’s T2 and Q-statistic. 

When the fault is detected, its contribution data are scaled and analyzed by SVD so 

that it should be find the sensors affected by fault. These sensors are used in 

multivariate granger causality (MVGC) method. Granger causality (GC) is widely 

used for root causality between sensors. This method based on vector autoregressive 

model(VAR), which is linearly regress model.23,45 This method just need time series 

data at specific situation when it is identified fault or abnormal. Especially, it 

indicates better efficiency in using the key variables. As mentioned above, integrated 

MVGC and the selected variables from the PCA and SVD make the effective 

performance in root cause diagnosis. 

This paper is divided into four major section. The first section describes theory 

about PCA and contribution handling. In section 2, methodologies are proposed; 

modeling, fault detection and root cause diagnosis. The next section describes LNG 

fractionation process for case study and fault scenario briefly. And then, result and 

discuss about fault scenario. Finally, the last section presents conclusion. 
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 Monitoring and root cause diagnosis 

In this study, PCA, SVD and MVGC are used for root cause diagnosis. These 

methodologies are generally based on linearity system. To attempt linearity, 

abnormal data is reconstructed at specific time interval, where enough short 

compared to the time interval in normal modeling.  

 

 Fault magnitude sensors 

Background of PCA is same as shown in Section 2.4.  

When a fault is occurred, a new sample data is divided into normal and 

abnormal. These two portion is also reflected in PCS and RS respectively. It is 

expressed 

𝑥 = 𝑥∗ + 𝛯𝑖𝑓 Eq 4-1 

𝑥 = 𝑥∗ + 𝛯̂𝑖𝑓 Eq 4-2 

𝑥̃ = 𝑥̃∗ + 𝛯𝑖̃𝑓 Eq 4-3 

where 𝛯𝑖 represents the fault direction, 𝛯𝑖̂ and 𝛯𝑖̃ are the fault directions on PCS 

and RS, respectively, and i refers to the number of principal components. The 

strength of the fault is represented by ‖𝑓‖, which changes over time. Generally, the 

portion of contribution about 𝑥∗ and 𝑥̃∗  is insignificant compared with the fault 

strength. Therefore, the contribution of x is about the same as the contribution of 𝛯𝑖𝑓. 

However, it is difficult to ignore that very small intensity and the initial stage of 

fault.45 Therefore, the normal variation embedded in the fault data need to be 

removed or minimized. For this purpose, the statistics of the normal contribution 

data, which is used to train data in PCA modeling, should be used to scale the fault 
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contribution data. They are given as  

𝑥′ = 𝛯̂𝑖𝑓 Eq 4-4 

𝑥̃′ = 𝛯̃𝑖𝑓 Eq 4-5 

 Whether 𝛯̂𝑖or 𝛯̃𝑖is determined by which alarm is triggered. These two variables 

only works in their respective subspace. These two parameters are reconstructed 

using from singular value decomposition (SVD). When the alarm occurred, fault data 

set, that has an 𝑘 × 𝑚  in which k is samples corresponding to m sensors, is 

expressed.   

𝑋𝑖 = [ 𝑥1   𝑥2  . . .   𝑥𝑘]𝑇 Eq 4-6 

It can be interpreted from the eq 4-14 or eq 4-15, given as 

 

𝑋̂′
𝑖

𝑇
=  𝛯̂𝑖[ 𝑓1   𝑓2  . . .   𝑓𝑘] Eq 4-7 

𝑋̃′
𝑖

𝑇
=  𝛯̃𝑖[ 𝑓1   𝑓2  . . .   𝑓𝑘] Eq 4-8 

These equation represent PCS and RS respectively. 𝑋̂′
𝑖

𝑇
or 𝑋̃′

𝑖
𝑇

is convert to the 

covariance matrix to analyze the covariation among contributions, 

Cov (𝑋̂′
𝑖
𝑇

) = [̂𝑝𝑞]   ;   𝑝, 𝑞 = 1,2, … , 𝑘 Eq 4-9 

Cov (𝑋̃′
𝑖
𝑇

) = [̃𝑝𝑞]   ;   𝑝, 𝑞 = 1,2, … , 𝑘 Eq 4-10 

SVD method adjust to covariance matrix 𝑋̂′
𝑖

𝑇
or 𝑋̃′

𝑖
𝑇

so that convert correlate 

variables into uncorrelate vairbles while retaining the singular values. SVD 

decomposes the covariance matix into an orthgonal matrix (𝑈𝑖), diagonal matrix (𝐷𝑖) 

and transpose of orthogonal matrix 𝑉𝑖
𝑇. Matrix 𝑈𝑖 has 3 important features. First, 
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𝑈𝑖  consists of fault point data. Second, it is removed or minimized the normal 

portion. Finally, it is decomposition values of process. For this reason, the values in 

first column of 𝑈𝑖 are meaning the contributions that make up the process state. 𝛯̂𝑖 

and 𝛯̃𝑖 are given as eq 4-13, eq 4-14. 

𝑋̂′
𝑖
𝑇

= 𝑈̂𝑖𝐷̂𝑖𝑉̂𝑖
𝑇

 Eq 4-11 

𝑋̃′
𝑖
𝑇

= 𝑈̃𝑖𝐷̃𝑖𝑉̃𝑖
𝑇

 Eq 4-12 

𝛯̂𝑖 = 𝑈̂𝑖(: ,1) Eq 4-13 

𝛯̃𝑖 = 𝑈̃𝑖(: ,1) Eq 4-14 

Finally, fault magnitude sensors, that hierarchical sensors, are selected by the 

procedure shown in Figure 4-2. From the absolute fault magnitude data, 32% is 

selected as hierarchical sensors for multivariate Granger causality analysis, 

representing those that have contributions larger than the sum of the mean and the 1-

sigma value. 

𝑢̅ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑎𝑏𝑠(𝑈𝑖(: ,1))) Eq 4-15 

𝜎̅ = 𝑠𝑡𝑑𝑣(𝑎𝑏𝑠(𝑈𝑖(: ,1))) Eq 4-16 

𝑎𝑏𝑠(𝑈𝑖(: ,1)) > 𝑢̅ + 𝜎̅ Eq 4-17 
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Figure 4-1 Selecting procedure of hierarchy sensors 
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 Normal modeling 

The methodologies described above are integrated for early detection and 

root cause diagnosis. This algorithm is divided 2 parts. First step is normal modeling 

so that PCA method constructs the process limit and information of normal 

contribution in PCS and RS respectively. Normal operation data, which already these 

data are known as normal state, are gathered. These data go through preprocessing. 

Outlier data is eliminated by 3-sigma method in statistics, which means out of 99.7% 

normal data ranges removed for model accuracy. And they are scaled by average and 

standard deviation. After stable data set is ready, PCA method decompose them to 

reduced spaces, PCS and RS. In these 2 spaces respectively, it is calculated that limits 

for monitoring and scale statistics of contribution. Figure 4-2 shows procedure of 

handling the normal data. 
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Figure 4-2 Normal data monitoring and handling procedure 
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 Fault detection and diagnosis 

Fault detection and diagnosis consist of two parts. The first part is 

monitoring the process. New data, real-time data, goes through the scaling process 

used in normal data statistics. Then, the scaled data are projected to the PCA normal 

model. From the projection, the model is monitored by the Hotelling’s 𝑇2 and SPE. 

When the process alarm occurs, the fault data are collected. Then, the subspace is 

determined by which alarm occurred. If the sample data exceed the Hotelling’s 𝑇2 at 

k time, the data are gathered from (𝑡 − 𝑛) time to t time, n times before t time to t 

time is reached. These data goes into PC-subspace. In this space, the T-contributions 

are calculated and scaled by normal contribution, and then, the covariance of these 

contribution data is analyzed by SVD method to select the hierarchical sensors. The 

fault magnitude method removes the normal portion, Ui(:,1), with the empirical rule 

selecting sensors with more than 32%. Finally, the MVGC method is performed for 

these sensors, resulting in the construction of a causality matrix. If the alarm occurs 

from SPE, the process is the same as PCS, except that it is performed in RS. This 

algorithm is described in Figure 4-3. 
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Figure 4-3 Fault detection and root cause diagnosis procedure 
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 Application to the Liquefied Natural Gas (LNG)  

fractionation Process 

 Process Description 

LNG fractionation process has 4 main columns. (Figure 3-8) Each column 

separates methane, ethane, propane and butane respectively. These columns are 

operated in very low temperature and high pressure. Therefore, product 

specifications are very sensitive. Safety management is also very important. In this 

work, in order to generate data for verifying the algorithm, dynamic model is 

developed using from Aspen hysys®  simulator. From this model, normal operation 

data is generated. Process condition, sensors are the same as shown in section 3.3. 

 

 Normal data processing 

PCA modeling calculate in order of procedure figure 4-4. From the normal 

data modeling, it derive PCS and RS and its normal contribution normalization result 

respectively. Figure 4-4(a) and Figure 4-4 (b) shows normal data variation in PCS, 

Hotelling’s 𝑇2 chart and normal data variation in RS, SPE. 
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Figure 4-4 (a) Hotelling’s T2 chart (b) SPE chart at normal state 
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 Fault scenario 1 : A-3-3% 

First scenario is reboiler overheating in deEthanizer column. It is common 

fault in deEthanizer. This fault is caused several reasons such as control limit 

changed improperly, not detected in accurate temperature, malfunction in control 

logic, steam valve opening or human error, etc.31,47 To simulate this fault, heat duty 

of deEthanizer reboiler is increased 3 % than normal state. 3% of heat duty is very 

small compared with the normal value, but if it lasts, there can be flooding occurred 

in column. Figure 4-5 (a) and (b) shows the alarm in Hotelling’s T2 and Q-statistics. 

Comparing figures 4-5 (a) and (b), detecting time in PCS is 240.0 seconds and RS is 

289.0 seconds. PCS space detects alarm earlier than RS, analysis should be in PCS. 

Before using the developed algorithm, contribution chart is used for diagnosis 

information at PCA methodology. This is generally performed in conventional PCA 

analysis.
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Figure 4-5  (a) Hotelling’s T2 chart (b) SPE chart at 0~500 seconds fault occurred 
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From the figure 4-5, alarm detected earlier in Hotelling’s 𝑇2  than Q-statistics, 

therefore T-contribution in PCS should be used for diagnosis. To demonstrate the 

excellence of the algorithm, conventional PCA contribution and RS amplification 

are compared with the developed algorithm. Generally, a contribution chart is used 

at alarm time for finding sensors affected by fault. Figure 4-6 shows the T-

contribution chart at alarm time. If the contribution chart provide proper information 

about reboiler overheating, temperature sensors around the deEthanizer reboiler, 

such as dE-reb-T, dP-in-T (dE-bot-T), or dE-20st-T should provide larger values than 

those from the other sensors. However, it is pointing to irrelevant variables, such as 

dM-in-T, dM-top-T and dP-reb-T, which are higher than group of deEthanizer 

sensors on the whole. This contribution trends is due to intensity of fault that means 

small scale fault or initial stage, therefore they take up more portion of normal 

information than fault information.  

 The RS amplification method uses the fault direction, which is constructed from the 

historical SPE contribution of same fault, to enhance affected sensors. 44,45 Using the 

RS amplification method, its result is shown as Figure 4-7. This method causes dE-

reb-T and dP-in-T (dE-bot-T) to be sufficiently higher than the other sensors. 

However dM-in-T, dM-top-T, dB-in-F (dP-bot-F), which the next large sensors, are 

screening the relevant sensors that are affected by fault. This is because RS 

information is used even though alarm is occurred in PCS. These screening sensors 

acts as misleading elements in MVGC analysis. It can be shown in root analysis 
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result, table 4-2 and figure 4-11. 

 Compared with conventional PCA contribution and RS amplification, the 

developed algorithm shows a much more reasonable result, as indicated in Figure 4-

8. The sensors of deEthanizer mainly affected by fault are increased, such as dE-

20st-T, dE-reb-T, and dP-in-T (dE-bot-T). In addition, portions of unrelated fault 

sensors are decreased, such as dM-in-T, dM-top-T, and dP-cond-P. This is because 

ignoring a portion of the normal contribution enhances the related sensors and 

diminishes the normal behavior of the unaffected sensors, such that the hierarchical 

sensors can stand out. 
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Figure 4-6 T-contribution chart at alarm occurred 

  



64 

 

 

Figure 4-7 RS amplification chart at alarm occurred 
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Figure 4-8 Fault magnitude chart at 141 ~ 240 seconds 

  



66 

 

Using the method mentioned in Figure 4-2, the magnitude sensors are selected for 

analysis in the MVGC method. From these sensors, MVGC analysis constructs the 

causality matrix. This matrix shows that proposed method can provide the root 

causality more clearly than the RS amplification method can. The causality matrix 

is described in Table 4-1 and Table 4-2 for the RS amplification method and fault 

magnitude method, respectively. Row variables means causal sensors and column 

variables are the affected sensors. A significant amount of data, through a 

comparison of internal data in its own table, is shaded thickly, and slightly larger 

data shaded thinly.  
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Table 4-1 Granger causality using RS amplification method 

 dE-reb-T 
dP-in-T 

(dE-bot-T) 
dM-in-T 

dP-in-F 

(dE-bot-F) 

dB-in-F 

(dP-bot-F) 
dM-top-T 

dE-reb-T - 0.14272 0.097082 0.064009 0.015276 0.000247 

dP-in-T 

(dE-bot-T) 
0.051614 - 0.010908 8.77E-05 0.017597 5.62E-06 

dM-in-T 0.056997 0.015298 - 0.001025 0.024647 0.000534 

dP-in-F 

(dE-bot-F) 
0.037005 0.012381 0.00244 - 0.008263 0.008511 

dB-in-F 

(dP-bot-F) 
0.037484 0.02653 1.32E-04 0.008476 - 6.69E-05 

dM-top-T 0.004426 0.448781 0.422897 0.098121 0.010157 - 
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Table 4-2 Granger causality using proposed method 

 dE-20st-T dE-reb-T 
dP-in-T 

(dE-bot-T) 
dE-1st-P dE-11st-P dE-28st-P 

dE-20st-T - 0.26911 0.03337 0.03353 0.00799 0.00943 

dE-reb-T 0.00011 - 0.21870 0.01235 0.01291 0.00086 

dP-in-T 

(dE-bot-T) 
0.00281 0.00585 - 0.02228 0.02003 0.04079 

dE-1st-P 0.00007 0.00000 0.00052 - 0.00006 0.00338 

dE-11st-P 0.00000 0.00000 0.00029 0.00406 - 0.01191 

dE-28st-P 0.00020 0.00035 0.00385 0.00153 0.00403 - 
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The proposed method shows the greatest strength of cause and effect from dE-reb-

T to dE-20st-T. Next is from dP-in-T (dE-bot-T) to dE-reb-T. They are reasonable 

processes from the interpretation point of view because the initial root causes are 

located near the reboiler. On the other hand, RS amplification shows the main 

causality is from dP-in-T (dE-bot-T) and dM-in-T to dM-top-T. Intuitively, these 

causalities are not reasonable because the physical distance between the sensors is 

too far or these are not sensor relationships that can affect or be affected. These 

compared root causalities are described in Figure 4-9. For a visual comparison, the 

fault magnitude method and RS amplification method are expressed in the process 

diagram, as shown in Figure 4-10. Green arrows indicate the RS amplification 

causality, and red arrows represent the fault magnitude causality. The developed 

method should be recognized more clearly in the process diagram.  
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Figure 4-9 Causality flow using (a) RS amplification and (b) fault magnitude 
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Figure 4-10 Schematic diagram the root causality from fault magnitude and RS 

amplification 
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 Fault scenario 2 : C-1-3% 

The fault of second scenario is deEthanizer inlet stream leaking. Leaking is 

very common fault in plant. To simulate this fault, 3 % inlet stream bypassed. Figure 

4-11 shows the alarm in Hotelling’s T2 and Q-statistics. Comparing these 2 charts, 

detecting time in PCS is 436.0 seconds and alarm in RS occurs at 926.0 seconds. 

Because PCS detects the alarm earlier than RS does, the analysis should occur 

through the PCS. In the same way as fault scenario 1, to demonstrate the excellence 

of the algorithm, conventional PCA contribution and RS amplification are compared 

with the developed algorithm. 
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Figure 4-11 (a) Hotelling’s T2 chart (b) SPE chart at 0~500 seconds fault occurred 
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First, figure 4-12 shows the T-contribution chart at alarm time. This chart shows 

mainly pointing deEthanizer column sensors. If the contribution chart provide proper 

information about leaking at deEthanizer inlet stream, flow sensors of deEthanizer, 

such as dE-in-F (dM-bot-F) and dP-in-F (dE-bot-F), should provide larger values 

than those from the other sensors. However, flow sensors are not high and irrelevant 

sensors such as dB-in-T (dP-bot-T) and dB-reb-T are higher so that it can not used 

for MVGC analysis.  

 Using the RS amplification method, shown in figure 4-13, it makes dE-in-F (dM-

bot-F) dramatically high and deEthanizer sensors are also high ranked. It seems good 

for finding affected sensors. However dM-in-P, dM-1st-P, dM-13st-P and dB-in-T 

(dP-bot-T) can be used in hierarchy sensors so that make a misleading in causality 

analysis. 

 Using developed algorithm, figure 4-14 shows the fault magnitude, which is 

removed normal portion. It shows deMethanizer and deButanizer sensors are 

decreased, so irrelevant sensors are removed. Also it makes dE-in-F (dM-bot-F) and 

dP-in-F (dE-bot-F) dramatically high. 
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Figure 4-12 T-contribution chart at alarm occurred 
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Figure 4-13 RS amplification chart at alarm occurred 
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Figure 4-14 Fault magnitude chart at 337~436 seconds 
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Using the method mentioned in Figure 4-2, the magnitude sensors are selected for 

analysis in the MVGC method. From these sensors, MVGC analysis constructs the 

causality matrix. This matrix shows that proposed method can provide the root 

causality more clearly than the RS amplification method can. The causality matrix 

is described in Table 4-3 and Table 4-4 for the RS amplification method and fault 

magnitude method, respectively. The proposed method shows the greatest strength 

of cause and effect from dE-in-F (dM-bot-F) to dP-in-F (dE-bot-F). This causality is 

significantly greater than other values, so it can be recognized and interpreted as flow 

fault easily. On the RS amplification, the most strength cause and effect is from dB-

in-T (dP-bot-T) to dM-1st-P. Second is from dE-cond-P to dB-in-T (dP-bot-T). 

Intuitively, these causalities are not reasonable because the physical distance 

between the sensors is too far or these are not sensor relationships that can affect or 

be affected. These compared root causalities are described in Figure 4-15. For a 

visual comparison, the fault magnitude method and RS amplification method are 

expressed in the process diagram, as shown in Figure 4-16. Green arrows indicate 

the RS amplification causality, and red arrows represent the fault magnitude causality. 

The developed method should be recognized more clearly in the process diagram. 
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Table 4-3 Granger causality using RS amplification method 

 
dE-in-F 

(dM-

bot-F) 

dE-

28st-P 

dE-

11st-P 

dE-

cond-P 

dM-

13st-P 

dM-top-

P 

dM-1st-

P 

dB-in-T 

(dP-bot-

T) 

dE-in-

F 

(dM-

bot-F) 

- 0.01308 0.00000 0.00487 0.02799 0.05371 0.00417 0.00476 

dE-

28st-P 
0.00006 - 0.00447 0.03533 0.00278 0.00075 0.00020 0.00131 

dE-

11st-P 
0.00184 0.00002 - 0.01042 0.00098 0.00027 0.00217 0.00462 

dE-

cond-

P 

0.00138 0.00017 0.00142 - 0.00024 0.00165 0.00118 0.00124 

dM-

13st-P 
0.00033 0.00023 0.00054 0.00628 - 0.00066 0.00444 0.00391 

dM-

top-P 
0.00197 0.00050 0.00083 0.00080 0.00158 - 0.00106 0.00015 

dM-

1st-P 
0.00100 0.00335 0.01288 0.03507 0.00084 0.00389 - 0.13892 

dB-in-

T 

(dP-

bot-T) 

0.00003 0.00042 0.00635 0.07209 0.05685 0.00005 0.00173 - 
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Table 4-4 Granger causality using proposed method 

 
dE-in-F 

(dM-bot-

F) 

dP-in-F 

(dE-bot-

F) 

dE-20st-

T 

dP-37st-

P 

dE-cond-

T 

dB-in-F 

(dP-bot-

F) 

dP-cond-

P 

dE-in-F 

(dM-bot-

F) 

- 0.0226 0.0025 0.0157 0.0024 0.0038 0.0035 

dP-in-F 

(dE-bot-F) 
0.5183 - 0.0614 0.0263 0.0409 0.0039 0.0031 

dE-20st-T 0.0559 0.0778 - 0.0220 0.0043 0.0019 0.0000 

dP-37st-P 0.0146 0.0191 0.0841 - 0.0000 0.0078 0.0000 

dE-cond-

T 
0.0922 0.0059 0.0173 0.0156 - 0.0236 0.0007 

dB-in-F 

(dP-bot-F) 
0.0250 0.0205 0.0658 0.0048 0.0001 - 0.0046 

dP-cond-P 0.0002 0.0659 0.0830 0.0120 0.0192 0.0066 - 
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Figure 4-15 Causality flow using (a) RS amplification and (b) fault magnitude 
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Figure 4-16 Schematic diagram the root causality from fault magnitude and RS 

amplification 
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 Fault scenario 3 : A-4-3% 

Final scenario is condenser overcooling in deEthanizer column. It is also 

common fault in deEthanizer. In this case, compared with the scenario 1, it is 

expected that propagation path is to be opposite direction. For simulating this fault, 

heat duty of deEthanizer condenser is increased 3 % than normal state. In this case, 

SPE alarm is occurred earlier than Hotelling’s 𝑇2limit. The detecting time is 165.0 

seconds in RS, and not alarmed until about 2000 seconds in PCS. Figure 4-17 (a) 

and (b) show these result. Therefore, the root causality should be analyzed in RS. To 

prove the excellence of the algorithm, the conventional PCA contribution and RS 

amplification are compared with the developed algorithm. 
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Figure 4-17 (a) Hotelling’s T2 chart (b) SPE chart at 0~500 seconds fault occurred 
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Using the SPE contribution at 165 s, Figure 4-18 shows the SPE contribution chart 

at the alarm time. Sensors dE-cond-P, dE-1st-P, dE-11st-P, dE-28st-P, and dP-in-F 

(dE-bot-F) are the most affected. Using RS amplification makes this result clearer. 

Figure 4-19 shows that dE-cond-P, dE-1st-P, dE-11st-P, dE-28st-P, and dP-19st-T are 

enhanced, and the other sensors are weaken by the RS amplification method. This is 

a suitable result because these sensors are related to the condenser. The proposed 

method, fault magnitude, shows that dE-top-T, dE-cond-P, dE-1st-P, dE-11st-P, and 

dE-28st-P are the major fault sensors, as shown in Figure 4-20. These results appear 

to be similar except for one or two sensors; dP-in-F (dE-bot-F) in SPE-contribution, 

dP-19st-T in RS-amplification, and dE-top-T and dE-1st-P in the fault magnitude 

method. 
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Figure 4-18 SPE contribution at alarm occurred 
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Figure 4-19 RS amplification chart at alarm occurred 
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Figure 4-20 Fault magnitude chart at 66~165 seconds 
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A small difference in the result of the three methodologies, produces a completely 

different result in the MVGC analysis. Tables 4-5, shows the causality from the three 

methods, SPE-contribution, RS-amplification, and fault magnitude, respectively. 

 First, the SPE contribution shows that dE-cond-P affects dP-in-F (dE-bot-F), dE-

28st-P affects dE-cond-P and dE-11st-P, and dP-in-F (dE-bot-F) affects dE-cond-P 

and dE-28st-P. These causalities can be interpreted that the relationship between 

causality sensors is a bit far, broad, and crossed, such that it is ambiguous to define 

the root cause. RS amplification provides the main causalities as dE-11st-P to dE-

28st-P and dE-cond-P. The weak causalities are from dE-28st-P to dE-11st-P, from 

dE-cond-P to dE-11st-P, and from dP-19st-T to dE-28st-P. These results can be 

interpreted as the fault starts from the column internal pressure problem. Finally, the 

fault magnitude methodology shows that dE-top-T affects dE-1st-P primarily, and 

weak causalities are given by dE-cond-P to dE-1st-P and dE-top-T. This result 

indicates that the root cause starts from the condenser area. These results are 

described as a flow diagram in Figure 4-21 and can be more clearly visualized in the 

process diagram in Figure 4-22. This result comes from the difference of just two 

sensors, compared with the SPE contribution and RS amplification. It can be 

interpreted that causality must include all the major variables about the fault. If one 

key variable is missing, the result can be misleading, as results show. Therefore, the 

fault magnitude algorithm can select hierarchical sensors properly and find the 

accurate root cause at the initial stage of fault.  
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Table 4-5 Granger causality using proposed method 

 dE-1st-P dE-cond-P dE-11st-P dE-28st-P dE-top-T 

dE-1st-P - 0.021268 0.003558 0.001124 0.092738 

dE-cond-P 0.00171 - 0.002833 6.89E-08 0.000581 

dE-11st-P 0.000144 0.001618 - 0.002808 5.69E-05 

dE-28st-P 0.000658 0.001038 0.003933 - 0.00041 

dE-top-T 0.003782 0.017225 0.002918 1.02E-04 - 
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Figure 4-21 Causality flow using (a) SPE contribution (b) RS amplification and (c) 

fault magnitude 
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Figure 4-22 Schematic diagram the root causality from fault magnitude, RS 

amplification and SPE contribution 
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 Conclusion 

This study proposes a fault analysis using divide subspace for minimize the 

normal portion in fault information. First, PCS and RS respectively used for proper 

removing of normal portion. Scaled fault contribution decomposed by SVD and 

from the fault magnitude hierarchy variables are selected. MVGC calculated these 

major variables so that make a matrix of causality. For verifying the performance, 

root cause compared with conventional contribution and RS amplification. Because 

the fault scale is too small, contribution information at initial stage can not provide 

root cause properly. RS amplification is good performance in enhancement 

contribution affected variables. However, in terms of the MVGC analysis, RS 

amplification provide misleading when the alarm occurred in PCS. Also, because 

the key variables are essential in MVGC analysis, developed method is able to 

obtain better performance than RS amplification in root causality analysis. 

Proposed method uses both space, PCS and RS according to criteria, all the key 

variables that reflect the process state, it can make an accurate root cause.
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 Concluding Remarks 

 

In this thesis, a multi-mode process monitoring for early detection and 

robust root cause diagnosis for initial fault stage are proposed. The methodology is 

consist of 2 parts; first part is normal operation modeling from global to local based 

on PCA and classification. Second part is monitoring and fault detection based on 

MDM, kNN and PCA and final part is root cause diagnosis based on PCA, SVD and 

MVGC. 

First, process overall normal operation data is decomposed into reduced space from 

PCA method. T-score, which is calculated with reducing dimensions, is used for k-

means clustering method. The value of k is defined intuitively using the T-score chart. 

All normal training variables have own group class and PCA makes new local model 

using variables in group. This is defined local PCA modeling. After the modeling, 

each mode makes own process limitation, Hotelling’s T2 and SPE, it is ready ready 

for monitoring and fault detection. 

Secondly, a new sample variable is projected into global PCA model. From T-score 

and MDM, kNN methods, it can be assigned class with training local normal data. 

In assigned group, it is determined fault or normal. When the fault occurred, it goes 

through root cause diagnosis part. 

 Finally, fault data is determined PCS or RS from alarm index. If it beyond 

Hotelling’s T2 alarm limit, it is calculated in PCS, or beyond SPE alarm, it is 
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calculated in RS. In each space, contribution plot is scaled from normal contribution, 

and then it is decomposed by SVD. From the SVD, fault magnitude is derived and 

also empirical rule from statistics select the hierarchy sensors. These sensors are 

analyzed by MVGC and the result is root casual information. 

To verify the proposed methodology, LNG plant fractionation process is applied. A 

total of 45 case studies is used for comparing. In monitoring result, proposed method 

is compare with global PCA and univariate method, shewart 3-sigma based on FDR 

and FDA. First, proposed method has only 2 cases are drawing and all the rest are 

exceedingly better performance than global PCA. Compared with univariate method, 

35 cases are enough better performance, 8 cases are the same and only 2 cases are a 

little poor but there is few difference. Proposed method has the average of FDR value 

is 96.2 where univariate is 91.4 and global PCA is 85.5. In FDA, 97.0 is proposed 

method, 93.1 is univariate method and 88.4 is global PCA. From these result, 

proposed model increase the monitoring accuracy and detection rate. 

 In diagnosis part, root cause from proposed method have good performance. To 

verify the performance, conventional contribution chart at fault time and RS 

amplification method are compared with proposed method. From the graph chart, 

proposed method can isolate normal portion from fault data. Therefore, only 

proposed method can provide proper root cause at fault initial detection stage. 

Especially, initial alarm propagation is very similar with proposed root cause. This 

method is only used normal historic data and assumed small intensity of fault, it can 

be adjusted most plant. 
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Future work is to enhance the classification part. Because using the dynamic model, 

it has limitation of various normal operation mode so it can be perfectly performed 

the classification. Lastly, when the fault occurred, in this study 100 seconds fault 

data are used, but there is no criteria. If sensitivity analysis and decision rule is 

defined, the robustness of this method can be increased. 
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Nomenclature and Abbreviations 

 

FDA : Fault detection accuracy 

FDR : Fault detection rate 

kNN : k-nearest neighbors 

GC: Granger Causality 

LNG : Liquefied natural gas 

MDM : Minimum distance to mean 

MVGC : Multivariate granger causality 

PCA : Principal component analysis   

PCS : Principal component subspace 

RS : Residual subspace 

SPE : Squared prediction error 

SVD : Singular value decomposition 
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Abstract in Korean (요 약) 

데이터 저장, 처리 속도가 발전하면서 공정 데이터 분석 영역 또한 지

난 수십년 동안 급속도로 발전하였다. 그 결과 많은 공장들이 단변량 뿐 

아니라 다변량 통계 기법을 활용하여 실시간으로 빠른 이상 감시를 이루

어 내고 있다. 지속적으로 축적되는 정상 데이터를 통해 이상과 정상을 

구분하는 방법은 점점 더 빠르고 정확해 지고 있다. 

하지만 이상 진단 영역은 빠른 이상 감시와는 달리 많은 제약들이 존

재하고 있다. 공정 이상을 진단하는 방법은 정성적인 모델 분석 방법, 

전문가 시스템과 같은 지식을 기반으로 하는 방법, 공정 감시와 같이 데

이터를 기반으로 하는 방법으로 나누어 진다. 이 중 정성적인 모델 분석 

방법은 공정이 커지고 복잡해 지면서 모든 이상 상황에 적합한 대응 정

보를 제공하는 것은 현실적으로 불가능하다. 전문가 시스템과 같이 지식

을 기반으로 한 이상 진단은 그 정확도는 높을 수 있으나, 분석 시간이 

오래 걸리기 때문에 주로 사고 후 진단에 활용되는 것이 일반적이다. 이

러한 제약들 때문에 실시간으로 이상을 진단하는 방법론들은 주로 과거 

데이터를 기반으로 한 분석 방법이다. 하지만 과거 데이터를 기반으로 

한 대다수의 실시간 이상 진단 방법론들은 실제 일어났던 이상 자체를 

분석하여 그 특정 이상에 최적화된 관리 방법을 제공해 주는 방법을 사

용하고 있기에 그 적용 범위가 협소하고 공정 상태에 따라 그 정확도 편
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차도 심각하게 달라질 수 있다.  

실시간 이상 진단이 갖는 이러한 어려움을 해결하고자 본 논문에서는 

빠르게 감지되는 이상 시간과 동시에 그 이상의 근원 정보를 제공하는 

연구를 수행하였다. 특히, 이상 감지 시간에 그 이상 원인을 찾기 힘든, 

이상의 크기가 매우 작은 경우를 가정하고 연구를 진행하였다.  

첫째, 이상을 빠르게 감시하기 위해 다변량 통계 기법 중 가장 기본적

인 주성분 분석 방법론을 사용하였으며, 정확도 및 감시 속도 성능을 높

이기 추가적인 모델링 과정을 거쳤다.  먼저 주성분 분석 방법론에서 도

출되는 Hotelling’s T2 값을 k-평균 군집법으로 군집화 하여, 여러 개의 

정상 운전 모드를 나누었다. 나누어 진 정상 운전 모드는 각각 다시 주

성분 분석 방법으로 모델링 하여 개별적인 로칼 주성분 분석 모델을 도

출하였다.  

둘째, 여러 개의 로칼 주성분 분석 모델을 효과적으로 매칭하여 이상을 

감시하기 위해, 최소거리평균법과 k-최근접 이웃 알고리즘을 적용하였

다. 본 방법론을 적용하여 실시간 데이터를 매칭된 로칼 주성분 분석으

로 이상을 감시하였다 

마지막으로, 실시간 이상 진단 정보 제공을 위해 주성분 분석의 컨트리

뷰션 정보와 특이값 분해, 다변수 그레인져 인과관계 방법론을 사용하였

다. 이상의 크기가 작은 이상들을 대상으로 하기 때문에, 이상 데이터에 
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섞여 있는 정상 정보를 제거해 주는 방법이 필요하다. 본 문제를 해결하

기 위해 주성분 분석 후 이상에 기여한 부분 공간에서 정상 정보를 최소

화 하는 방법을 적용하였다. 일단, 티스퀘어 값을 통해 이상이 감지되면 

주성분 부분 공간으로, 잔차 분석을 통해 이상이 감지되면 잔차 부분 공

간에서 분석을 수행한다. 부분 공간이 정해지면, 해당 이상의 컨트리뷰

션 값을 정상 상태의 주성분 분석에서 도출된 컨트리뷰션 값으로 스케일

링을 수행한다. 스케일링 된 값들을 특이값 분해를 수행하여 해당하는 

실시간 데이터의 센서 별 이상 크기로 새롭게 정의하여 도출할 수 있다. 

도출된 센서들의 이상 크기 정보로 주요 원인 센서를 도출하고, 최종적

으로 도출된 센서들을 다변수 그레인져 인과관계로 분석하여 시간이 고

려된 센서 사이의 인과관계 표를 파악한다.  

개발된 방법론의 성능 평가를 위해 천연 가스 액화 플랜트의 분리공정 

동적 모델로 생성한 45경우의 이상 상황에 적용하였다. 제안된 이상 감

시 방법론은 전체 데이터 주성분 분석 감시보다 모든 이상 상황에 대해

서 월등히 빠른 감시 성능을 보였다. 단변수의 슈하트 3 시그마와 비교

해서는 43개의 이상 상황에서 월등히 빠른 감시 성능을 보였다. 본 결

과는 제시한 방법론이 전체 정상 데이터를 매칭되는 로칼 정상들로 정밀

하게 감시함을 입증한다. 다변수 그레인져 인과관계 분석 결과를 통해서 

얻은 이상 원인 정보는 전통적으로 주성분 분석의 컨트리뷰션 차트 정보
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를 이용하는 것과 기존 논문의 잔차 정보를 통한 이상정보강화와 비교하

였다, 그 결과로 기존 방법이 정확히 제공하지 못한 이상 원인 정보를 

본 논문에서 개발한 방법론은 정확하게 제시하여 주는 것을 확인하였으

며, 공정도에 결과를 도시하여 시각화된 비교를 통해 그 성능이 우수함

을 확인 하였다. 본 방법론은 정상 데이터만을 기반으로 하였고, 작은 

이상 상황에 맞도록 가정하여 개발하였기에 대부분의 공정에 적용 가능

하며, 새로운 이상을 실시간으로 빠르게 분석하는데 크게 공헌할 것이라

고 기대하는 바이다. 

 

주요어 : 공정 모니터링, 이상 감시 및 진단, 다중 모드 운전, 그레인져

인과관계, 주성분 분석 

학번 : 2011-30989 

성명 : 편 하 형 
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