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Abstract

Fault Detection and Root Causality Analysis
using Multi-mode PCA and Multivariate

Granger Causality

Hahyung Pyun
School of Chemical & Biological Engineering

The Graduate School of Seoul National University

Process data analysis has been great developed for decades in accordance with
progress of data storage and processing speed. As a result, most of plant are not only
using univariate methods, but also multivariate statistical methodologies for real
time monitoring. From the analysis of accumulated normal data, detection accuracy
and rate have been progressing.

However, unlike the fault detection area, fault diagnosis has many problem.

Process fault diagnosis method is largely classified into three methodologies;



gualitative model based analysis, knowledge based analysis and historic data based
analysis. From qualitative analysis perspective, as the process becomes large and
more complicated, it it practically impossible to provide appropriate information for
all abnormal situation. In terms of knowledge based analysis, such as expert system,
the accuracy can be high, but it takes a long time to analyze the fault, so this method
is generally used for post-accident diagnosis. Because of the limitations,
methodologies for real time monitoring and diagnosis are mainly based on historical
data. However, most algorithms of historical analysis use specific data driven model
that actual data occurred in the past so it is only for used in that case.

To solve this problems of real-time fault diagnosis, this thesis proposes root cause
analysis with the fault detected time simultaneously. Especially, it is focused on
providing an accurate root causality even when the fault has a small intensity.

First, for the fast detection of abnormal situation, principal component analysis
(PCA) method is used. Several methods integrated with PCA in normal operation
data modeling procedures. T-score, derived from global PCA is classified into k
normal mode. Divided normal operation data, local PCA models are developed
respectively.

Second, minimum distance to mean (MDM) and k-nearest neighbors (KNN) are
used for matching the class new samples with training normal data. And then,
process is monitored by local mode in detail. When the fault is detected, with
integration PCA contribution and singular value decomposition, hierarchy sensors
are selected. From these sensors, MVGC analyzes root causality.



To verify performance of the proposed method, liquefied natural gas (LNG) plant
fractionation dynamic model is used. From this dynamic model, 45 fault cases are
simulated. Proposed method is perfectly better performance than global PCA. In
terms of fault detection accuracy (FDA) and fault detection rate (FDR), 43 out of 45
cases show dramatically increased results and 2 cases the same results. Comparing
with univariate, shewart 3-sigma, 35 cases are increased results, 8 cases same results
and only 2 cases very lightly poor results. From the MVVGC analysis, root cause
analysis is compared with conventional contribution chart and residual subspace (RS)
amplification. As a result, proposed method provides appropriate root cause while
conventional contribution and RS amplification are failed to find root cause.
Specially, root cause of developed method is similar with real time alarm later. This
methodology provides root cause information only based on normal data, also
suitable for small intensity fault, it is applicable to most process. It is expected to

contribute greatly analysing the new fault in real time.
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CHAPTER 1 Introduction

1.1 Research motivation

Process monitoring has became an essential part of plant management. Before
the computer science is developed, the main methodologies of monitoring and fault
detection and diagnosis (FDD) are constructed qualitatively model based on
knowledge and expert system. After the computer science and data processing are
developed, data driven analysis have been developed sharply, and recently most
studies are based on data driven. Some of them, knowledge and model based
methodologies are integrated with data driven algorithm.

In data driven methodologies, generally, the task of process monitoring is consist
of 4 parts.! ; fault detection, fault identification (or diagnosis), fault estimation and
fault reconstruction. In fault detection part, there have been a great development of
methodology due to the enormous data. Especially, principal component analysis
(PCA), partial least square (PLS), fisher discriminant analysis (FDA) such as
dimension reduction methods are used widely.? Although PCA method has mainly
strength in a high dimension convert into a low dimension, it is also descending
accuracy use enormous data and variables directly. Besides, this method can cover
the linear relationship between variables, it is needed of other methodology for
increasing accuracy. For this reason, reduction methodologies or low dimensioned

variables can be adjusted according to purpose of data handling. Kernel PCA, which



one of the common method, uses kernel space for decomposition so that deal with
non-linear properties.2. Multiway, multiblock, multiscale and multimode PCA also
developed for increasing the model accuracy.>” When PCA is constructed to sub-
model, it can be more sensitive to the abnormality. Furthermore, recently knowledge
based methodologies or qualitative model based methodologies are integrated with
these dimension reduction model to verify the knowledge and accelerate the model
accuracy. Neural network and Bayesian networks also integrated with PCA for
supervised learning for knowledge based theory.®1°

Even though, enormous data and developed algorithms, various fault is still
occurred. It is because data and the algorithms are focused on detecting the fault
from operation data variation difference between normal and abnormal operation.
To monitor the various conditions, multi-mode operation monitoring methods should
be developed to detect fault accurately. Also most fault diagnosis analysis is based
on the specific historic fault data. This method is proper for frequently fault but when
the new variation fault, it does not working at all. Therefore, it is needed that extract
the root cause information between normality and abnormality independent with the

historic fault data,



1.2 Research objectives

The objective of this thesis is to propose a root cause information at initial
fault stage for real time diagnosis. Especially, to provide an accurate root causality
even when the fault has a small intensity and only using the normal operation data.
To develop this objective, fault variation is defined from normal operation data to
solve the new fault. Yoon et al., MacGregor el al. and Yue and Qin proposed fault
direction which associate the normal intensity and fault magnitude. This vector is
used for detecting fault and enhancing the fault information from historic data.

From these concept, proposed methodology comprises 2 parts. First is normal
modeling and monitoring part and second is fault detection and root cause diagnosis
part.

The objective of normal modeling and monitoring part is to manage the detail
normal operation mode through k-means clustering, k-nearest neighbors (KNN) and
minimum distance to mean (MDM) algorithms. k-means clustering method divides
overall normal operation data into k using global T-score which from global
principal component analysis (global PCA). Separated normal operation mode used
for detail normal PCA model, which call local PCA model. New sample data can be
classified proper local normal operation data from (MDM) and (kNN).° These
procedure is described in detail in chapter 3.

The objective of fault detection and root cause diagnosis part is to provide root

cause information at the same time the fault was detected. When the fault is detected,



PCA select proper subspace, which defined principal component subspace (PCS) or
residual subspace(RS), so that removes normal portion in fault data.!* And then,
singular value decomposition convert the contribution to fault magnitude. Finally,
multivariate granger causality method calculated causality based on time series data.
From the causality, root cause in initial fault stage can be provided fault information.
To verify the performance, the suggested method is applied liquefied natural gas
(LNG) plant fractionation process dynamic model.®*? From the fault scenario in this
dynamic model, accuracy of the detection performance and root cause analysis is

evaluated.

1.3 Outline of the thesis

The outline of thesis is organized as follows. Chapter 1 introduce research
motivation and objective. Chapter 2 describes the background theories that used in
algorithms development. In chapter 3, the fault detection procedure is proposed in
detail. And then application results to the LNG fractionation process are given.
Chapter 4 is comprised fault detection and root cause diagnosis algorithm. As same
as chapter 3, application results to LNG fractionation process are given. Chapter 5

presents the conclusions and suggestions for future work.



CHAPTER 2 : Methodologies of fault detection and

root cause analysis

2.1 Introduction

In data-driven monitoring and fault diagnosis, there are enormous
methodologies have been developed recently. Among them, reduction method such
as principal component analysis (PCA)*, partial least squares (PLS)** and fisher
discriminant analysis® is widely used because these are basic concept used in many
applications. However, classical reduction methods have a certain limit that in
nonlinear, the model accuracy decreased sharply. For these reasons, non-linear
reduction methods developed such as using kernel space, high-order data structure
or integrated with other non-linear method.*>*” There are a lot of methodologies and
their applications, in terms of fault diagnosis has problem. Meanwhile, there are
integrated methods, data driven analysis and knowledge base or model base. Dai and
Gao review the integration knowledge base and data driven.'® Hou and Wang review
briefly at model-based to data-driven control.”
Although many developed methodologies, a methodology that can cope with all
situation is impossible. In this study, instead of developing new algorithm, it is
focused on detailed multi-normal modeling to specify relation between normal and
fault. For multi-normal molding, clustering and class matching methodologies are

used. Clustering is used for several data set that can be grouped with meaningful



relation. Also there are variety of methodologies and their application depends on
the complicity of data structure.® If data structure is or can be low dimensioned,
simple method should be more useful for integration and tuning. For this reason, this
paper focused on simple classification and patter recognition method are adjusted
while simplify the data structure. In this chapter, introduce k-means clustering,
minimum distance to mean (MDM), k-nearest neighbors (KNN), PCA and

multivariate granger causality (MVGC) as the background theories.

2.2 k-means clustering
Clustering is the analysis that binding the scattered data, which have same
dimension, into meaningful group by a certain criteria. There are many developed
algorithms in clustering, in this work, k-means clustering is used for classification.
In cases of low dimension, such as 1, 2 or 3-dimensions which are intuitively
identifiable, this clustering method is powerful than other method in terms of visual
perception.
k-means clustering method is based on euclidean distance. This concept is very
simple. First step is place k points into the space randomly that assumed centroids of
group. Then calculate the distance between object and centroids and assign the group
that has closest centroids. All objective have been assigned, centroids move to new
positions. If the new position changed objective to other group, that means unstable,

repeat and find new centroids. There is no objective moving anymore, clustering is



finished. Figure 2-1 shows the procedure briefly.

1= Y I~ gl

n
j=1i=1

Eq2-1



< Start )
I

Select k
(number of cluster)

l

Place

k centroids

)

Distance of objects to
centroids

!

Assigned group based
on minimum distance

!

Move centroids to new
points

Figure 2-1 k-means clustering




2.3 Minimum distance to means and k-nearest neighbors

algorithm

To match observations into proper class is essential part for modeling accuracy.
In this work, operation mode, used as a class, has below 3-dimension space, as well
as the reason for using k-means clustering, minimum distance to means (MDM) and
k-nearest neighbors (KNN) method are used for class matching.

MDM and KNN method are based on euclidean distance. A new observation is
compared the distance with normal training variables. MDM uses mean values of
each class training data. The new observation has class the nearest index. In KNN
method, k variables are used in the nearest order. The most class of k nearest
variables is assigned to the new sample. Therefore, in order not to recognize the
wrong class, it is used a sufficiently large training data and k value. Both methods

are used together to reduce misreading.



2.4 Principal component analysis

PCA is a one of the classic method for reducing the dimension of a data
set.1¥19 |t is very powerful for large data set which have linear correlation. This
method convert high dimension correlated sensors into low dimension linearly
uncorrelated variables. PCA can be derived singular value decomposition (SVD) of
data X,

X=UuzwT Eq 2-2
where X isa n x m rectangular diagonal matrix of positive number o, U is an
n X n singular values of X matrix and W is an m x m matrix. In terms of
factoriazation,

XTx =wxTuTuswT Eq2-3
=wzwT Eq2-4
where X is the square diagonal matrix with the singular valued of X. From the

SVD, score matrix can be given as,

T = XW Eq2-5
= UsWTW Eq2-6
= Uz Eq2-7

The process alarm limit can be defined by Hotelling’s T2,

(n*-1)
2 _ Eq 2-8
T, C ) E,(a,n—a) q

10



where a represents the number of selected principal components (PCs),
F,(a,n — a) isthe F-distribution with a and (n-a) degrees of freedom and a
means the level of significance.

In residual part, which is defined squared prediction error (SPE), can detect the

fault using the Q-statistics limit (Saz), given as

1
/
52_9{%%_ \/292+1+M} " Eq 29
a — Y1 0 92
1 1
L Eq 2-10
9i= Z Ajl
j=a+1
260,60 Eq 2-11
he=1— 123 q
36,

Hotelling’s T2 limit and Q-statistics limit are the process threshold of normal
operation. This two methods are complementary to detect fault but should used
separately. When the process is out of the Hotelling’s T?limit, the fault space is
defined as principal component subspace (PCS). Likewise when the SPE alarm
goes off, the process fault is defined as residual subspace (RS).

New sample vector, which means the real time data for monitoring and diagnosis,
can be projected two parts, principal component subspace (PCS) and residual
subspace(RS).%°

x=X+Xx Eq2-12

£ =PPTx Eq2-13

11



¥=({I-PPM)x Eq 2-14

X is PCS projection and ¥ is RS projection. ¥ and ¥ have own monitoring

variable in each subspace.

2.5 Multivariate Grange causality

Granger causality (GC) is based on linear autoregressive modelling of
stochastic process.”?+?2 Briefly, if a variable X,(t) has an information of a future
X1 (t) variable and there is no information that other series used in the predictor,

then X, (t) is said a ‘granger cause’ X; (t). This concept is interpreted as shown,

14 p
X© = Y An()Xat =)+ ) Ap(DXalt =) + &) Eq2-15
J J
var(€,(1)) = 2, Eq 2-16
14 14
%0 = ) An(XE=)+ ) An(DKo(t=)+E@)  Eq21T
J J
var(€,(1)) = 2, Eq2-18

where A(j) is AR coefficient, k is model order, E€(t) is prediction errors. These
equations are the definition of full regression bivariate AR model. If there is no
dependence between X;(t) and X,(t), Aw2(j) and Az(j) are 0. This concept is

consideration of the reduced regression.

p
Xi(©) = ) ALKt =) +Eip(©) Eq 2-19
J

12



var (81(2) (t)) = 21(2) Eq 2-20
14

X () = ) A()Xalt = ) + Ex0y(®) Eq 2-21
J

var (82(1) (t)) = 2201 Eq2-22
Z;(jy means variance € atrestricted j. GC from X,(t) to X,(t) is defined as

log-likelihood ratio,

Zl 2
Fy,ox, = In 2(1) Eq 2-23

This concept can be extended to m variables system by AR-coefficients given as eq
2-19.2

X, (t) w [ A11(k) Ajp(k) - App(k) X, (t—k) & (t)
Xz.(t) _ z Az%(k) Az;(k) Azm.(k) Xz(t._ k) n 52'(15)
k=1

Xm(t) Aml(k) Amz(k) Amm(k) Xm(t_k) 8m(t)
Eq 2-24
GC from X;(t) to X;(t) isgiveneq.20
3o
Fyox = In =L Eq 2-25

%
In this multivariate form, Z; means cov(g;),which is defined variance from all other
m variables, and Z; ;) represent cov(e;;y), which is defiend (m-1) variables that
restricted j.
In this work, ‘MVGC tool box’, developed by Barnett et al. in matlab code, is used

for analyze.?®
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CHAPTER 3 : Multi-mode monitoring using k-means
clustering, minimum distance to mean, k-
nearest neighbors and principal

component analysis

3.1 Introduction

Process monitoring and fault diagnosis have been a significantly important
part of plant management recently. Accumulated data can be enhancement of
monitoring and fault diagnosis performance. However, the amount of the data is so
much existing, it is impossible to use all of these data fully or effectively.?* Therefore
it is important that how to select and use your data.

Principal component analysis (PCA), which widely used in multivariate statistical
process control (MSPC), is used as the concept of how to use. Most of plant use the
PCA for monitoring fault detection. And also it is used for diagnosis information that
providing the affected sensors. Lane et al. adjusts to film manufacturing process for
monitoring and information of affected sensors®, Li et al. use recursive PCA to
thermal annealing process for monitoring.?® Garcia et al., Gallagher et al., used multi-
way PCA for batch process so that the quality management from best case.?’?8

It is important to use the methods integrated others so that increasing the accuracy.
There are another ways to increase the accuracy of model. One of them is overall
model dived sub-model for detail monitoring and diagnosis. This method can be

modeling the segment of process variables or time variables. In terms of process

14



variables, MacGregor et al. proposed multiblock PCA and partial least square (PLS)
and Westerhuis et al., Smilde et al., use this method.'%2% They divide variables from
using their criteria, so increase the accuracy of model performance. In terms of time
variables, Lu et al, Zhao et al., Zhu et al are considered time variables at modeling
stage. They separate the operation mode or time stage so that manage the process
rigorously.

Liquefaction natural gas (LNG) fractionation process, which used in study for
validation, has many operation mode because they have a feature of the downstream
process and affected by refrigeration and liquefaction process. Therefore, it is
important for monitoring to separate the operation mode. For the separate the normal
operation mode, k-means clustering method is adjust to T-score, derived from global
PCA, used for classification. For the new sample data matching with training data,
minimum distance to mean (MDM) and k-nearest neighbors (KNN) method are used.
From the time segment data, local data, is modeled by PCA so that process
monitoring. From the local PCA monitoring, compared with global PCA monitoring
and univariate monitoring, have a good performance.

This chapter is comprised 5 section. Section 3.1 is introduction. Section 3.2 is
described k-means clustering, MDM and kNN. In section 3.3, LNG plant
fractionation process dynamic model and fault scenario described. In section 3.4, the

result of 45 scenario described and section 3.5 is conclusion.
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3.2 Multimode-PCA monitoring integrated with k-means
clustering, minimum distance to mean and k-nearest

neighbors

The proposed monitoring method is consist of 2 parts. First is normal
operation data modeling. Because PCA is based on linearity system, it is necessary
to adjust a linear interpretation of the process. Among the ways to attempt linearity,
in these study, PCA modeling as segmented normal process data was applied.
Therefore, statistical method and clustering method are integrated with PCA in
modeling procedure. Second is process multi-mode monitoring. PCA projection,
minimum distance to mean (MDM), k-nearest neighbors (kNN) and contribution

charts are used for process monitoring.

3.2.1 Normal operation data modeling

Handling normal data is of great importance to modeling process. The
performance of a model depends on how data is selected and preprocessed. In this
study, Normal operation data modeling has 3 parts.

First step is global PCA modeling. PCA method is shown in section 2.4. Any normal
data contains noise and disturbance. For removing them, outlier data is eliminated
by 3-sigma rule. This rule removes data in excess of 99.7% of the normal data range.
It is important for improving model accuracy. And then these data are rearranged to

the scaled data using from mean and standard deviation. After the preprocessing,

16



these dataset decompose 2 or 1 principal component by the PCA method. It is defined
as global modeling that construct model using from overall normal data. Figure 3-2
shows these procedure.

Second step is k-means clustering to divide global data into several local data.
Accumulated data, which have same dimension, have high probability of similar
dynamic behavior. If data with similar dynamic behavior divided and classification
own them, these information can increase the performance accuracy of model. k-
means clustering is described in section 2.2.

From global modeling, T-score variable are derived. Generally, T-scores are 1~3
dimensional chart, so process state or behavior can be understood intuitively. For
example, figure 3-9 shows the global normal data state in 1-D chart. Visually and
intuitively, this chart shows 3 normal states in them. These scattered data can be
classified to several clusters by k-means clustering. From this clustering method,
normal data are divided into k-class normal data.

Final step for normal modeling is local PCA modeling. Here, except for using local
class normal data, separated data go through same process. Outlier of local normal
data is removed by 3-sigma rule. And then they are rearranged by scaling. Lastly,
PCA decompose them to reduced variables. Each local PCA model calculated own
process limit, Hotelling’s T2 and Q-statistic.

Figure 3-1 shows overall procedure of normal operation data modeling. Figure 3-

2,3,4 shows global PCA modeling procedure, operation mode classification and local

17



PCA modeling procedure respectively.
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3.2.2 Process multi-mode monitoring

The proposed normal modeling is used for multi-mode monitoring. This
part has 2 steps. First step is matching of the new sample data with the class classified
k-means clustering. In this study, minimum distance to means (MDM) and k-nearest
neighbors (KNN) are used to match the class. MDM and kNN method are described
in section 2.3.

For classification, it is needed to processing new sample data. New sample data,
which means real time data, must rearranged by global normal scale data. After that,
this data is projected to global PCA space. From the space, T-score of new sample is
derived. Using these T-score, MDM and kNN match the new sample with local
normal mode that the most similar to new sample. This procedure is shown in figure
3-5.

After the class is decided, the new sample data go through the scaling using from
own local normal class scaling factors. Scaled data can be projected into local PCA
space where they are decomposed to Hotelling’s T2 and Q-statistic. If there is
nothing occurred, this new sample is defined as a normal data so that is is saved in
own local data class. However the new sample data are occurred the alarm,
contribution is analyzed for identifying affected sensors. If alarm is Hotelling’s T2,
T-contribution should be used and SPE contribution should be used if Q-statistics

alarm goes off. This procedure is shown in figure 3-6.

23



C Start

Y

Operation
data
collection

N\

A 4

Data preprocessing
- Scaling with global
normal data

v

Global PCA projection

Operati(‘;n mode
classification
Method :
MDM and kNN
Data : T-scores

h 4

Selecting local normal
mode

)
C e D

Figure 3-5 Operation class matching procedure

24



Hotelling's T2 limit

!

Local
Normal
mode

|

normal

Data preprocessing
- Scaling from local

I

Local PCA projection

SPE limit
Hoteling T? SPE
monitoring monitoring

End

Save as local
normal mode

Figure 3-6 Local monitoring procedure

25



3.3 Liquefied Natural Gas (LNG) fractionation process

3.3.1 Model description

Liquefied Natural Gas (LNG) fractionation process is one of the major process
in LNG plant, 3 others are pre-treatment process, liquefaction process and storage
(shipment). This process separates mixed refrigerant for purification. It is consist of
4-main column, deMethanizer, deEthanizer, dePropanizera and deButanizer. Each
column separates methane, ethane, propane and butane respectively. These columns
have sensitive low temperature and high pressure because of small carbon material
properties. Therefore, for verifying the accuracy of proposed algorithm, this process
is developed dynamic model using from Aspen hysys® v8.1 simulator. Figure 3-7
represent schematic of LNG fractionation process. Table 3-1, 2 show the monitoring

variables and descriptions.
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Table 3-1 Monitoring variables and descriptions

Stream No. Tag name Tag description

1 dM-in-T deMethanizer inlet stream temperature
2 dM-top-P deMethanizer top stream pressure

3 dM-top-T deMethanizer top stream temperature
4 dM-1st-P deMethanizer stage-1 pressure

5 dM-7st-T deMethanizer stage-7 temperature

6 dM-13st-P deMethanizer stage-13 pressure

7 dM-reb-T deMethanizer reboiler temperature

8 dE-in-F deEthanizer inlet stream flow rate

(dM-bot-F) (deMethanizer bottom stream flow rate)
9 dE-in-T deEthanizer inlet stream temperature
(dM-bot-T) (deMethanizer bottom stream temperature)

10 dE-top-T deEthanizer top stream temperature
11 dE-cond-P deEthanizer condenser pressure

12 dE-cond-T deEthanizer condenser temperature
13 dE-1st-P deEthanizer stage-1 pressure
14 dE-11st-P deEthanizer stage-11 pressure
15 dE-11st-T deEthanizer stage-11 temperature
16 dE-20st-T deEthanizer stage-20 temperature
17 dE-28st-P deEthanizer stage-28 pressure
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Table 3-2 Monitoring variables and descriptions

Stream No. Tag name Tag description

18 dE-reb-T deEthanizer reboiler temperature

19 dP-in-F dePropanizer inlet flow rate
(dE-bot-F) (deEthanizer bottom stream flow rate)

20 dP-in-T dePropanizer input temperature
(dE-bot-T) (deEthanizer bottom stream temperature)

21 dP-cond-P dePropanizer condenser pressure

22 dP-1st-P dePropanizer stage-1 pressure

23 dP-19st-T dePropanizer stage-19 temperature

24 dP-37st-P dePropanizer stage-37 pressure

25 dP-reb-T dePropanizer reboiler temperature

26 dB-in-F deButanizer inlet flow rate
(dP-bot-F) (deButanizer bottom stream flow rate)

97 dB-in-T deButanizer input temperature
(dP-bot-T) (deButanizer bottom stream temperature)

28 dB-cond-P deButanizer condenser pressure

29 dB-1st-P deButanizer stage-1 pressure

30 dB-17st-T deButanizer stage-17 temperature

31 dB-34st-P deButanizer stage-34 pressure

32 dB-reb-T deButanizer reboiler temperature

33 dB-bot-T deButanizer bottom stream temperature
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3.3.2 Normal and fault scenario description

The condition LNG fractionation process varies according to the previous
process, such as MR-process or liquefaction. Therefore, this process has several
narrow condition mode. In this work, 3 normal modes are applied; (A) has initial
stream temperature -16.3°C ~ -15.3°C and pressure 61.0bar ~ 62.0bar, (B) has initial
stream temperature -16.8°C ~ -15.8°C and pressure 61.5bar ~ 62.5bar, (C) has initial
stream temperature -17.8°C ~ -16.8°C and pressure 62.5bar ~ 63.5bar. These normal
mode are simulated in stable convergence area and suitable for product specification
area. Table 3.3 and 3.4 show the process overall specifications and normal modes

condition.
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Table 3-3 Process overall specification

C1[%] C2[%] C3[%] C4[%] others

deMethanizer top

stream 91.60 531 2.06 0.80 0.23
deEthanizer top

stream 0.00 99.55 0.45
dePropanizer top 0.00 0.00 99.61 0.39

stream ' ' ' '
deButanizer top

stream 0.00 0.00 1.23 98.00 0.77
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Table 3-4 3 normal modes condition

Normal Process initial stream Process initial stream
case Temperature [°C] Pressure[bar]
A -16.3 ~-15.3 61.0 ~62.0
B -16.8 ~-15.8 61.5~62.5
C -17.8 ~-16.8 62.5 ~ 63.5
32



In column, there are coexistence of gas phase, liquid phase, vaporization and
liquefaction. For that reason, column processes have many problem with
temperature.®! In this work, 3 types of temperature abnormal situation and 2 leaking
fault are supposed. Fault (1) is deEthanizer inlet (deMethanizer bottom) flow leaking,
(2) is dePropanizer inlet (deEthanizer bottom) flow leaking, (3) is deEthanizer
reboiler temperature overheating, (4) is deEthanizer condenser temperature
overcooling, (5) is deMethanizer reboiler temperature overheating. Each fault has 3
different strengths; 3%, 5%, 10% intensity compared with normal condition. Overall,
there are 3 normal mode, 5 types of fault and 3 types of strength that total 45 cases
are generated and used for analysis. All fault case consist of 500 seconds hormal data
and 2000 seconds abnormal data. Table 3-5 shows fault scenarios. Figure 3-8 shows

fault location in schematic process diagram.
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Table 3-5 Fault scenarios

Fault Fault

type intensity Fault description

3% deEthanizer inlet(deMethanizer bottom) flow 3% leaking
1 5% deEthanizer inlet(deMethanizer bottom) flow 5% leaking

10% deEthanizer inlet(deMethanizer bottom) flow 10% leaking

3% dePropanizer inlet(deEthanizer bottom) flow 3% leaking
2 5% dePropanizer inlet(deEthanizer bottom) flow 5% leaking

10% dePropanizer inlet(deEthanizer bottom) flow 10% leaking

3% deEthanizer reboiler temperature 3% overheating
3 5% deEthanizer reboiler temperature 5% overheating
10% deEthanizer reboiler temperature 10% overheating
3% deEthanizer condenser temperature 3% overcooling
4 5% deEthanizer condenser temperature 5% overcooling
10% deEthanizer condenser temperature 10% overcooling
3% deMethanizer reboiler temperature 3% overheating
5 5% deMethanizer reboiler temperature 5% overheating
10% deMethanizer reboiler temperature 10% overheating
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3.4 Results

3.4.1 Multi-mode modeling

First of all, overall normal data go through the normal modeling procedure,
which is described in section 3.2. In this step, overall 120,000 seconds are used for
clustering. There are 3 types of normal operation data which have 40,000 seconds
data respectively. From the figure 3-9, 3 types of normal operation data can be
recognized. With a factor k of 3, k-means clustering classified the global normal into
3 types of local normal for multi-mode modeling. 3 local normal data are treated
outlier elimination and scaling same as global normal data. After preprocessing, PCA
decomposes each local data to reduced space. Finally, process limit for monitoring

that Hotelling’s T2 and SPE.
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3.4.2 Monitoring fault detection

For performance analysis of the proposed multi-mode monitoring method,
this method is compared with shewart 3-sigma method and global PCA. Fault
detection accuracy (FDA) and fault detection rate (FDR), which are broadly used in
monitoring performance, are adjusted to 3 monitoring methods. FDA and FDR are
defined form type | and type Il errors as shows in figure 3-10 and equation 3-1,2.

FDA = TP + TN Eq a1
"~ TP+FN+FP+TN

FDR Eq3-2

~ FP+TN
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Results are organized in table 3-6 ~ 3-9. The proposed monitoring method are
improved better performance than global PCA in all cases. 43 cases out of 45 showed
better performance than global PCA. Only two cases, B-1-10% and C-1-10% are the
same results in FDA and FDR. Because multi-mode PCA has a specific limit line, it
can detect the fault more sensitively than global PCA.

Compared with the univariate 3-sigma method, 43 cases out of 45 are detected same
or faster in multi-mode PCA. Especially, 3% intensity faults are detected remarkably
faster than shewart 3-sigma. This is because small fault changes the relevant
variables, it may not be able to exceed the individual variable limits. Therefore,
univariate monitoring method does not detect until the fault grows. However,
because the local PCA integrates the variation in individual variables, it can detect

the fault faster and more accurately.
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Table 3-6 FDA and FDR results in Shewart 3-sigma chart, Global PCA and Multi-

mode PCA-Normal A part

Shewart 3-sigma Global PCA Multi-mode PCA

Fault Intensit FDA FDR FDA FDR FDA FDR
type Yo [ [ %] %] [%]

3% 65.08 56.35 6448 5560 8740 84.25
1 5% 87.40 8425 7440 68.00 9460 93.25

10% 99.96 99.95 99.92 9990 9996 99.95

3% 94.64 9330 9180 89.75 95.00 93.75
2 5% 98.00 9750 96.36 9545 97.84  97.30

10% 99.68 99.60 99.36 99.20 99.64 99.55

3% 88.64 85.80 80.32 75.40 90.44 88.05
3 5% 95.84 94.80 88.24  85.30 96.08 95.10

10% 97.96 97.45 93.00 91.25 97.96 97.45

3% 74.32 67.90 - - 9344  91.80
4 5% 89.56 86.95 - - 96.24  95.30
10% 96.80 96.00 - - 98.28  97.85

3% 87.28 84.10 92.08 90.10 93.60 92.00
> 5% 93.60 9200 9576 9470 96.80  96.00

10% 97.80 9725 98.08 97.60 98.60 98.25
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Table 3-7 FDA and FDR results in Shewart 3-sigma chart, Global PCA and Multi-

mode PCA-Normal B part

Shewart 3-sigma Global PCA Multi-mode PCA

Fault Intensit FDA FDR FDA FDR FDA FDR
type Yo [ [ %] %] [%]

3% 86.24 82.80 5840  48.00 90.88  88.60
1 5% 89.76 87.20 6948 6185 99.80 99.75

10% 99.96 99.95 99.96 99.95 9996  99.95

3% 99.64 99.55 87.64 8455 99.64  99.55
2 5% 99.72 99.65 9460 9325 99.72  99.65

10% 99.80 99.75 98.64  98.30 99.80 99.75

3% 96.48 95.60 77.52 71.90 99.16 98.95
3 5% 98.40 98.00 86.84  83.55 99.56 99.45

10% 99.16 98.95 91.04  88.80 99.64 99.55

3% 96.32 95.40 - - 98.44  98.05
4 5% 97.76 97.20 - - 98.96  98.70
10% 99.08 98.85 - - 99.56  99.45

3% 86.36 82.95 9288 9110 9524  94.05
> 5% 92.60 90.75 96.20 9525 9740  96.75

10% 97.80 9725 9828 9785 98.80 98.50
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Table 3-8 FDA and FDR results in Shewart 3-sigma chart, Global PCA and Multi-

mode PCA-Normal C part

Shewart 3-sigma Global PCA Multi-mode PCA

Fault Intensit FDA FDR FDA FDR FDA FDR
type Yo [ [ %] %] [%]
3% 37.04 21.30 - - 82.60 78.25

1 5% 99.96 99.95 79.88 74.85 99.96 99.95

10% 99.96 99.95 99.96 99.95 9996  99.95

3% 90.88 88.60 80.84 76.05 93.08 9135
2 5% 95.24 9405 8568 8210 96.24  95.30

10% 96.44 95.55 88.28 85.35 97.48 96.85

3% 96.32 95.40 75.04  68.80 98.92 98.65
3 5% 98.56 98.20 86.04  82.55 99.52 99.40

10% 99.24 99.05 90.64  88.30 99.64 99.55

3% 95.80  94.75 ; - 9752  96.90
4 5% 97.40  96.75 . ; 98.44  98.05

10% 98.84 98.55 88.68 85.85 99.24 99.05

3% 87.60 8450 89.76 87.20 94.08 92.60
> 5% 93.80 9225 9448 9310 96.80  96.00

10% 98.00 9750 97.60 97.00 98.60 98.25
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3.5 Conclusion

This study proposes a monitoring method for early detection using k-means
clustering, KNN, MDM and PCA. First, in normal modeling procedure, T-scores
calculated from global PCA are classified into k-normal operation using k-means
clustering. Next these local normal operations are modeled as multi-mode PCA for
detail monitoring fault detection. The new samples are assigned class by MDM and
kNN. From assigned local PCA projection, FDR and FDA evaluate the result
compared with global PCA and shewart 3-sigma method. From the result, proposed
method has better performance in all cases than global PCA. Only 2 out of 45 cases
are the same result and the others com out with increased performance. When
compared to shewart 3-sigma method,

In monitoring part, MDM and kNN methods are used for matching the proper
local normal so that system is monitored by local normal PCA modeling. From the
classification, proposed method detected the fault faster than global PCA and
shewart 3-sigma. In 2 cases are shown slow FDR and inaccuracy FDA, but there is
little difference. 8 cases are the same result and 35 cases have good performance in
FDR and FDA. The average FDA of proposed method is improved by about 5~10%
to 97%, where global PCA is 88% and shewart 3-sigma is 93%. The average FDR
of proposed method is also improved by about 5~10% to 96%, where global PCA is

85% and shewart is 91%.
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CHAPTER 4 : Root cause analysis at early abnormal
stage using principal component analysis

and multivariate Ganger causality

4.1 Introduction

Nowadays, the development of physical sensing technology, distributed
control system (DCS) and computing technology have brought about the
development of plant scale. As a result, these huge processes make out an enormous
amount of data. They enable detailed analysis about system for maximize production
and minimize safety costs. However, various information and accumulated data are
not always guaranteed the efficiency and the safety. There are reasons that the
sensors have complex relationship between each variable, malfunction, calibration
error, missing, etc. If such incorrect information is provided under abnormal situation,
it causes confusion in the analysis of causes and problem-solving. Under the
assumption that there are no physical error, the key of process management is an
intuitive interpretation of numerous sensors and correlations between them. When it
comes to fault occurred, early detection and analysis of root cause are the major
interest area for efficiency and safety.

Multivariable statistical process control is the conventional data-based
methodology for monitoring and fault detection. It defines the normal state,
including steady state, that all process variable are operated in approximately the
same position as normal state. In industrial area, univariate monitoring method is

commonly used in plant. There are a lot of sensors managed and monitored by
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operator. They each have several limits for their own purpose that control limit,
warning limit, risk limit, etc. However, these univariate methods are needed skilled
operators, knowledge of process and time for analysis. For this reason, multivariate
monitoring method is developed in academic area and have being adjusted to real
plant. Principal component analysis (PCA) is one of the most preferred method in
various system, chemical plant, steel industry, fuel cell, batch process etc. This
method decompose a large humber of sensors to a small number of component as
maintaining the origin information. It uses orthogonal projection for converting of
correlated variables into linearly uncorrelated variables. The normal state in process
are defined that these data are used for PCA modeling. There are two monitoring
variables whether they are fault or not, Hotelling’s T2 and Q-statistic. Hotelling’s T2
indicates the distance between center which reduced dimension of normal state and
observation which projected onto reduced space. SPE indicates dimension-reducing
distance between PCA normal model and observation. Therefor these two indicators
are monitored simultaneous. When the fault occurred, each contribution data give
information about the affected variables in fault state. These data can be useful in
root cause diagnosis.'®3? Accordingly, the two indicators have great strengths in a
quick detection, visualization and diagnosis information.

The PCA methodology is applied to various industries. DOFASCO, which is known
as steel industry, casting and desulphurization process are adjusted PCA for early
detection and visualization.®*=% This company uses PCA in real time online
monitoring system. They use Hotelling’s T? and SPE plot for monitoring and these
contribution chart for diagnosis. Although it has strength in early detection and

diagnosis generally, it also has malfunction or fails in contribution. This is happened
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when the normal PCA modeling includes so many sensors which are noised and
unimportant that screening the state of process.

In Jeong et al. resolved this problem integrating the factor analysis and PCA.*¢ This
method sort out these disturbing sensors in Molten Carbon Fuel Cell in order to get
accurate fault detected time and diagnostic contribution. For the detail normal PCA
modeling, multi-mode PCA method are developed. It is integrated hierarchical
clustering and PCA for global PCA. Jiang et al. proposed Bayesian interference and
joint probability integrated with PCA that adjust training and identify the various
sub-block normal modes.®” Ha et al. used k-nearest neighbors for matching the local
normal mode and adjusted PCA for detection.

Most in case, PCA is developed and integrated with other methodologies for
monitoring efficiency like early detection. However, it is as important for fast
monitoring as root cause analysis. In generally, analysis of root cause depends on
historic data, qualitative knowledge or expert system.%-42 Although historic data is
very enormous amount in data storage system, they are mainly normal data or
different process condition compared with present condition. Knowledge base
qualitative analysis or expert system are very accurate on the one hand. However
they have a major weakness. Abnormal situation is various depending on the
condition, therefore there are too many cases to analyze advance. Also, it take a lot
of time to analyze after the fault. Resolving these problems, data driven fault
detection and root cause diagnosis are developed recently. MacGregor and Kourti,
Yue et al. and Qin proposed a reconstruction which integrated Hotelling’s T2 and Q-
statistic approach for increasing accuracy of fault direction and diagnosis root cause.

2043 Recently methods of diagnosis a root cause with this concept is studied. Ahnmed
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et al. used singular value decomposition (SVD) for amplifying root cause
variables.*** Using the residual contribution fault direction, which modeled by
historical fault data, enhance the contribution data for propagation path. Kitano et al.
also used reconstruction-contribution from historic fault data.*® Enhancing
contribution from fault direction has good performance at high intensity and
frequently occurring abnormalities. However, in a small fault, these methods can not
shows good performance. Also, because it depends on the historical fault data, it is
difficult to give a root cause information when a new faults occurs.

In this work, it is focused on root cause analysis about new fault and initial fault
stage. PCA method detects the abnormal state using Hotelling’s T2 and Q-statistic.
When the fault is detected, its contribution data are scaled and analyzed by SVD so
that it should be find the sensors affected by fault. These sensors are used in
multivariate granger causality (MVGC) method. Granger causality (GC) is widely
used for root causality between sensors. This method based on vector autoregressive
model(VAR), which is linearly regress model.?**® This method just need time series
data at specific situation when it is identified fault or abnormal. Especially, it
indicates better efficiency in using the key variables. As mentioned above, integrated
MVGC and the selected variables from the PCA and SVD make the effective
performance in root cause diagnosis.

This paper is divided into four major section. The first section describes theory
about PCA and contribution handling. In section 2, methodologies are proposed;
modeling, fault detection and root cause diagnosis. The next section describes LNG
fractionation process for case study and fault scenario briefly. And then, result and

discuss about fault scenario. Finally, the last section presents conclusion.
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4.2 Monitoring and root cause diagnosis

In this study, PCA, SVD and MV GC are used for root cause diagnosis. These
methodologies are generally based on linearity system. To attempt linearity,
abnormal data is reconstructed at specific time interval, where enough short

compared to the time interval in normal modeling.

4.2.1 Fault magnitude sensors

Background of PCA is same as shown in Section 2.4.
When a fault is occurred, a new sample data is divided into normal and

abnormal. These two portion is also reflected in PCS and RS respectively. It is

expressed
x=x"+5 Eq 4-1
X=X+ E&f Eq4-2
¥F=x+Ef Eq4-3

where Z; represents the fault direction, Z, and &, are the fault directions on PCS
and RS, respectively, and i refers to the number of principal components. The
strength of the fault is represented by |||, which changes over time. Generally, the
portion of contribution about £* and X¥* is insignificant compared with the fault
strength. Therefore, the contribution of x is about the same as the contribution of =;f.
However, it is difficult to ignore that very small intensity and the initial stage of
fault.*® Therefore, the normal variation embedded in the fault data need to be
removed or minimized. For this purpose, the statistics of the normal contribution

data, which is used to train data in PCA modeling, should be used to scale the fault
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contribution data. They are given as

o

X

Il
(1))

o~

f Eq 4-4

s~

Il
(&3]

if Eq4-5
Whether Z;or Z;is determined by which alarm is triggered. These two variables
only works in their respective subspace. These two parameters are reconstructed
using from singular value decomposition (SVD). When the alarm occurred, fault data
set, that has an k x m in which k is samples corresponding to m sensors, is
expressed.

Xi=[x1 x5 ... x)7 Eq 4-6

It can be interpreted from the eq 4-14 or eq 4-15, given as

T
D

ilfi f2 - fil Eq 4-7
Eq 4-8

)
|
[x

~
)}

Xi = Elfi f2 - fil

[x

These equation represent PCS and RS respectively. )?’iTor X"l-Tis convert to the
covariance matrix to analyze the covariation among contributions,
Cov (&) = [Bng] ; Pa=12,...k Eq 4-9

Cov(X'") =[Gyl 5 Pa=12,...k Eq 4-10

SVD method adjust to covariance matrix X ’iTor X ’iTso that convert correlate
variables into uncorrelate vairbles while retaining the singular values. SVD
decomposes the covariance matix into an orthgonal matrix (U;), diagonal matrix (D;)

and transpose of orthogonal matrix V;”. Matrix U; has 3 important features. First,
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U; consists of fault point data. Second, it is removed or minimized the normal
portion. Finally, it is decomposition values of process. For this reason, the values in
first column of U; are meaning the contributions that make up the process state. £;

and Z; are given as eq 4-13, eq 4-14.

£ =000 Eq 4-11
X = 0DV Eq4-12
5 =0,¢1) Eq 4-13
5 =001 Eq 4-14

Finally, fault magnitude sensors, that hierarchical sensors, are selected by the
procedure shown in Figure 4-2. From the absolute fault magnitude data, 32% is
selected as hierarchical sensors for multivariate Granger causality analysis,

representing those that have contributions larger than the sum of the mean and the 1-

sigma value.
u = average(abs(U;(:,1))) Eq 4-15
a = stdv(abs(U;(:,1))) Eq 4-16
abs(U;:, 1)) >u+a Eq 4-17
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4.2.2 Normal modeling

The methodologies described above are integrated for early detection and
root cause diagnosis. This algorithm is divided 2 parts. First step is normal modeling
so that PCA method constructs the process limit and information of normal
contribution in PCS and RS respectively. Normal operation data, which already these
data are known as normal state, are gathered. These data go through preprocessing.
Outlier data is eliminated by 3-sigma method in statistics, which means out of 99.7%
normal data ranges removed for model accuracy. And they are scaled by average and
standard deviation. After stable data set is ready, PCA method decompose them to
reduced spaces, PCS and RS. In these 2 spaces respectively, it is calculated that limits
for monitoring and scale statistics of contribution. Figure 4-2 shows procedure of

handling the normal data.

53



Start

Normal
operation data
collection
Data preprocessing
- Qutlier elimination
- Scaling
PCA modeling
PC-subspace Residual-subspace
oy s
Hotellmgs'!’ limit SPE limit calculation
calculation
T2 statistics SPE statistics
contribution contribution
calculation calculation
T2 statistics SPE statistics
contribution scaling contribution scaling
Save contribution Save contribution
statistics statistics
End

54

Figure 4-2 Normal data monitoring and handling procedure



4.2.3 Fault detection and diagnosis

Fault detection and diagnosis consist of two parts. The first part is
monitoring the process. New data, real-time data, goes through the scaling process
used in normal data statistics. Then, the scaled data are projected to the PCA normal
model. From the projection, the model is monitored by the Hotelling’s T2 and SPE.
When the process alarm occurs, the fault data are collected. Then, the subspace is
determined by which alarm occurred. If the sample data exceed the Hotelling’s T2 at
k time, the data are gathered from (t —n) time to t time, n times before t time to t
time is reached. These data goes into PC-subspace. In this space, the T-contributions
are calculated and scaled by normal contribution, and then, the covariance of these
contribution data is analyzed by SVD method to select the hierarchical sensors. The
fault magnitude method removes the normal portion, Ui(:,1), with the empirical rule
selecting sensors with more than 32%. Finally, the MVVGC method is performed for
these sensors, resulting in the construction of a causality matrix. If the alarm occurs
from SPE, the process is the same as PCS, except that it is performed in RS. This

algorithm is described in Figure 4-3.
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Figure 4-3 Fault detection and root cause diagnosis procedure
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4.3 Application to the Liquefied Natural Gas (LNG)
fractionation Process

4.3.1 Process Description

LNG fractionation process has 4 main columns. (Figure 3-8) Each column
separates methane, ethane, propane and butane respectively. These columns are
operated in very low temperature and high pressure. Therefore, product
specifications are very sensitive. Safety management is also very important. In this
work, in order to generate data for verifying the algorithm, dynamic model is
developed using from Aspen hysys® simulator. From this model, normal operation

data is generated. Process condition, sensors are the same as shown in section 3.3.

4.3.2 Normal data processing

PCA modeling calculate in order of procedure figure 4-4. From the normal
data modeling, it derive PCS and RS and its normal contribution normalization result
respectively. Figure 4-4(a) and Figure 4-4 (b) shows normal data variation in PCS,

Hotelling’s T2 chart and normal data variation in RS, SPE.
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Figure 4-4 (a) Hotelling’s T2 chart (b) SPE chart at normal state
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4.3.3 Fault scenario 1 : A-3-3%

First scenario is reboiler overheating in deEthanizer column. It is common
fault in deEthanizer. This fault is caused several reasons such as control limit
changed improperly, not detected in accurate temperature, malfunction in control
logic, steam valve opening or human error, etc.34’ To simulate this fault, heat duty
of deEthanizer reboiler is increased 3 % than normal state. 3% of heat duty is very
small compared with the normal value, but if it lasts, there can be flooding occurred
in column. Figure 4-5 (a) and (b) shows the alarm in Hotelling’s T?and Q-statistics.
Comparing figures 4-5 (a) and (b), detecting time in PCS is 240.0 seconds and RS is
289.0 seconds. PCS space detects alarm earlier than RS, analysis should be in PCS.
Before using the developed algorithm, contribution chart is used for diagnosis
information at PCA methodology. This is generally performed in conventional PCA

analysis.
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From the figure 4-5, alarm detected earlier in Hotelling’s T2 than Q-statistics,
therefore T-contribution in PCS should be used for diagnosis. To demonstrate the
excellence of the algorithm, conventional PCA contribution and RS amplification
are compared with the developed algorithm. Generally, a contribution chart is used
at alarm time for finding sensors affected by fault. Figure 4-6 shows the T-
contribution chart at alarm time. If the contribution chart provide proper information
about reboiler overheating, temperature sensors around the deEthanizer reboiler,
such as dE-reb-T, dP-in-T (dE-bot-T), or dE-20st-T should provide larger values than
those from the other sensors. However, it is pointing to irrelevant variables, such as
dM-in-T, dM-top-T and dP-reb-T, which are higher than group of deEthanizer
sensors on the whole. This contribution trends is due to intensity of fault that means
small scale fault or initial stage, therefore they take up more portion of normal
information than fault information.

The RS amplification method uses the fault direction, which is constructed from the
historical SPE contribution of same fault, to enhance affected sensors. 444> Using the
RS amplification method, its result is shown as Figure 4-7. This method causes dE-
reb-T and dP-in-T (dE-bot-T) to be sufficiently higher than the other sensors.
However dM-in-T, dM-top-T, dB-in-F (dP-bot-F), which the next large sensors, are
screening the relevant sensors that are affected by fault. This is because RS
information is used even though alarm is occurred in PCS. These screening sensors

acts as misleading elements in MVVGC analysis. It can be shown in root analysis
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result, table 4-2 and figure 4-11.

Compared with conventional PCA contribution and RS amplification, the
developed algorithm shows a much more reasonable result, as indicated in Figure 4-
8. The sensors of deEthanizer mainly affected by fault are increased, such as dE-
20st-T, dE-reb-T, and dP-in-T (dE-bot-T). In addition, portions of unrelated fault
sensors are decreased, such as dM-in-T, dM-top-T, and dP-cond-P. This is because
ignoring a portion of the normal contribution enhances the related sensors and
diminishes the normal behavior of the unaffected sensors, such that the hierarchical

sensors can stand out.
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RS amplification at 240 s
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Figure 4-7 RS amplification chart at alarm occurred
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Using the method mentioned in Figure 4-2, the magnitude sensors are selected for
analysis in the MVGC method. From these sensors, MVVGC analysis constructs the
causality matrix. This matrix shows that proposed method can provide the root
causality more clearly than the RS amplification method can. The causality matrix
is described in Table 4-1 and Table 4-2 for the RS amplification method and fault
magnitude method, respectively. Row variables means causal sensors and column
variables are the affected sensors. A significant amount of data, through a
comparison of internal data in its own table, is shaded thickly, and slightly larger

data shaded thinly.
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Table 4-1 Granger causality using RS amplification method

dP-in-T . dP-in-F dB-in-F
dE-reb-T  gEbotT)  IMIMT  (GEpot-F)  (dP-botF) IM-TOPT
dE-reb-T : 014272 0097082 0064009 0015276  0.000247
dP-in-T
ety 0051614 - 0010908  8.77E-05  0.017597  5.62E-06
dM-in-T  0.056997  0.015298 ; 0001025 0024647  0.000534
dP-in-F 037005 0012381  0.00244 : 0008263  0.008511
(dE-bot-F) : : : :
dB-in-F (037484 002653  1.32E-04  0.008476 : 6.69E-05
(dP-bot-F) ' : : :

dM-top-T ~ 0.004426 0.448781 0.422897 0.098121 0.010157 -
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Table 4-2 Granger causality using proposed method

dP-in-T

dE-20st-T  dE-reb-T (dE-bot-T) dE-1st-P  dE-11st-P  dE-28st-P
dE-20st-T - 0.26911 0.03337 0.03353 0.00799 0.00943
dE-reb-T 0.00011 - 0.21870 0.01235 0.01291 0.00086
(ddggg*;l‘—r) 0.00281 0.00585 - 0.02228 0.02003 0.04079
dE-1st-P 0.00007 0.00000 0.00052 - 0.00006 0.00338
dE-11st-P  0.00000 0.00000 0.00029 0.00406 - 0.01191
dE-28st-P  0.00020 0.00035 0.00385 0.00153 0.00403 -
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The proposed method shows the greatest strength of cause and effect from dE-reb-
T to dE-20st-T. Next is from dP-in-T (dE-bot-T) to dE-reb-T. They are reasonable
processes from the interpretation point of view because the initial root causes are
located near the reboiler. On the other hand, RS amplification shows the main
causality is from dP-in-T (dE-bot-T) and dM-in-T to dM-top-T. Intuitively, these
causalities are not reasonable because the physical distance between the sensors is
too far or these are not sensor relationships that can affect or be affected. These
compared root causalities are described in Figure 4-9. For a visual comparison, the
fault magnitude method and RS amplification method are expressed in the process
diagram, as shown in Figure 4-10. Green arrows indicate the RS amplification
causality, and red arrows represent the fault magnitude causality. The developed

method should be recognized more clearly in the process diagram.
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Figure 4-9 Causality flow using (a) RS amplification and (b) fault magnitude
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4.3.4 Fault scenario 2 : C-1-3%

The fault of second scenario is deEthanizer inlet stream leaking. Leaking is
very common fault in plant. To simulate this fault, 3 % inlet stream bypassed. Figure
4-11 shows the alarm in Hotelling’s T?and Q-statistics. Comparing these 2 charts,
detecting time in PCS is 436.0 seconds and alarm in RS occurs at 926.0 seconds.
Because PCS detects the alarm earlier than RS does, the analysis should occur
through the PCS. In the same way as fault scenario 1, to demonstrate the excellence
of the algorithm, conventional PCA contribution and RS amplification are compared

with the developed algorithm.
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First, figure 4-12 shows the T-contribution chart at alarm time. This chart shows
mainly pointing deEthanizer column sensors. If the contribution chart provide proper
information about leaking at deEthanizer inlet stream, flow sensors of deEthanizer,
such as dE-in-F (dM-bot-F) and dP-in-F (dE-bot-F), should provide larger values
than those from the other sensors. However, flow sensors are not high and irrelevant
sensors such as dB-in-T (dP-bot-T) and dB-reb-T are higher so that it can not used
for MVGC analysis.

Using the RS amplification method, shown in figure 4-13, it makes dE-in-F (dM-
bot-F) dramatically high and deEthanizer sensors are also high ranked. It seems good
for finding affected sensors. However dM-in-P, dM-1st-P, dM-13st-P and dB-in-T
(dP-bot-T) can be used in hierarchy sensors so that make a misleading in causality
analysis.

Using developed algorithm, figure 4-14 shows the fault magnitude, which is
removed normal portion. It shows deMethanizer and deButanizer sensors are
decreased, so irrelevant sensors are removed. Also it makes dE-in-F (dM-bot-F) and

dP-in-F (dE-bot-F) dramatically high.
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T-contribution at 436 s
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RS amplification at 436 s
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Fault magnitude
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Using the method mentioned in Figure 4-2, the magnitude sensors are selected for
analysis in the MVGC method. From these sensors, MVVGC analysis constructs the
causality matrix. This matrix shows that proposed method can provide the root
causality more clearly than the RS amplification method can. The causality matrix
is described in Table 4-3 and Table 4-4 for the RS amplification method and fault
magnitude method, respectively. The proposed method shows the greatest strength
of cause and effect from dE-in-F (dM-bot-F) to dP-in-F (dE-bot-F). This causality is
significantly greater than other values, so it can be recognized and interpreted as flow
fault easily. On the RS amplification, the most strength cause and effect is from dB-
in-T (dP-bot-T) to dM-1st-P. Second is from dE-cond-P to dB-in-T (dP-bot-T).
Intuitively, these causalities are not reasonable because the physical distance
between the sensors is too far or these are not sensor relationships that can affect or
be affected. These compared root causalities are described in Figure 4-15. For a
visual comparison, the fault magnitude method and RS amplification method are
expressed in the process diagram, as shown in Figure 4-16. Green arrows indicate
the RS amplification causality, and red arrows represent the fault magnitude causality.

The developed method should be recognized more clearly in the process diagram.
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Table 4-3 Granger causality using RS amplification method

d(E(;m:F dE- dE- dE- dM-  dM-top- dM-1st- ?d%'_'&;tT_

bot-F) 28st-P 11st-P cond-P 13st-P P P T)
dE-in-
( di/l- - 0.01308 0.00000 0.00487 0.02799 0.05371 0.00417 0.00476
bot-F)
ngEt:P 0.00006 - 0.00447 0.03533 0.00278 0.00075 0.00020 0.00131
1fsEt:P 0.00184  0.00002 - 0.01042 0.00098 0.00027 0.00217 0.00462
dE-
cond- 0.00138 0.00017 0.00142 - 0.00024 0.00165 0.00118 0.00124
P
1%';/&, 0.00033 0.00023 0.00054 0.00628 - 0.00066 0.00444 0.00391
tg'p\)/-ll-:’ 0.00197 0.00050 0.00083 0.00080 0.00158 - 0.00106  0.00015
fs'l/-ll; 0.00100 0.00335 0.01288 0.03507 0.00084 0.00389 - 0.13892)
dB-in-
(C;L_ 0.00003 0.00042 0.00635 0.07209 0.05685 0.00005 0.00173 -
bot-T)
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Table 4-4 Granger causality using proposed method

dE-in-F dP-in-F dB-in-F
(dM-bot- (dE-bot- dE-_?_Ost- dP-ﬁ?st- dE-(_:IE)nd- (dP-bot- dP-(S)nd-
F) F) F)
dE-in-F
(dM-bot- - 00226 00025 00157 00024 00038  0.0035
F)
dP-in-F  cyzpm ; 0.0614 00263 00409 00039  0.0031
(dE-bot-F) : : : : :
dE-20st-T 00559  0.0778 ; 00220 00043 00019  0.0000
dP-37stP 00146 00191 00841 ; 0.0000  0.0078  0.0000
dE'CTO”d' 00922 00059 00173  0.0156 ; 0.0236  0.0007
dB-in-F 0250 00205 00658  0.0048  0.0001 - 0.0046
(@P-bot-F) O : : : : :

dP-cond-P 0.0002 0.0659 0.0830 0.0120 0.0192 0.0066 -
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Figure 4-15 Causality flow using (a) RS amplification and (b) fault magnitude
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4.3.5 Fault scenario 3 : A-4-3%

Final scenario is condenser overcooling in deEthanizer column. It is also
common fault in deEthanizer. In this case, compared with the scenario 1, it is
expected that propagation path is to be opposite direction. For simulating this fault,
heat duty of deEthanizer condenser is increased 3 % than normal state. In this case,
SPE alarm is occurred earlier than Hotelling’s T2limit. The detecting time is 165.0
seconds in RS, and not alarmed until about 2000 seconds in PCS. Figure 4-17 (a)
and (b) show these result. Therefore, the root causality should be analyzed in RS. To
prove the excellence of the algorithm, the conventional PCA contribution and RS

amplification are compared with the developed algorithm.
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Using the SPE contribution at 165 s, Figure 4-18 shows the SPE contribution chart
at the alarm time. Sensors dE-cond-P, dE-1st-P, dE-11st-P, dE-28st-P, and dP-in-F
(dE-bot-F) are the most affected. Using RS amplification makes this result clearer.
Figure 4-19 shows that dE-cond-P, dE-1st-P, dE-11st-P, dE-28st-P, and dP-19st-T are
enhanced, and the other sensors are weaken by the RS amplification method. This is
a suitable result because these sensors are related to the condenser. The proposed
method, fault magnitude, shows that dE-top-T, dE-cond-P, dE-1st-P, dE-11st-P, and
dE-28st-P are the major fault sensors, as shown in Figure 4-20. These results appear
to be similar except for one or two sensors; dP-in-F (dE-bot-F) in SPE-contribution,
dP-19st-T in RS-amplification, and dE-top-T and dE-1st-P in the fault magnitude

method.
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SPE-contribution at 165s
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RS amplification at 165 s
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A small difference in the result of the three methodologies, produces a completely
different result in the MVVGC analysis. Tables 4-5, shows the causality from the three
methods, SPE-contribution, RS-amplification, and fault magnitude, respectively.

First, the SPE contribution shows that dE-cond-P affects dP-in-F (dE-bot-F), dE-
28st-P affects dE-cond-P and dE-11st-P, and dP-in-F (dE-bot-F) affects dE-cond-P
and dE-28st-P. These causalities can be interpreted that the relationship between
causality sensors is a bit far, broad, and crossed, such that it is ambiguous to define
the root cause. RS amplification provides the main causalities as dE-11st-P to dE-
28st-P and dE-cond-P. The weak causalities are from dE-28st-P to dE-11st-P, from
dE-cond-P to dE-11st-P, and from dP-19st-T to dE-28st-P. These results can be
interpreted as the fault starts from the column internal pressure problem. Finally, the
fault magnitude methodology shows that dE-top-T affects dE-1st-P primarily, and
weak causalities are given by dE-cond-P to dE-1st-P and dE-top-T. This result
indicates that the root cause starts from the condenser area. These results are
described as a flow diagram in Figure 4-21 and can be more clearly visualized in the
process diagram in Figure 4-22. This result comes from the difference of just two
sensors, compared with the SPE contribution and RS amplification. It can be
interpreted that causality must include all the major variables about the fault. If one
key variable is missing, the result can be misleading, as results show. Therefore, the
fault magnitude algorithm can select hierarchical sensors properly and find the

accurate root cause at the initial stage of fault.
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Table 4-5 Granger causality using proposed method

dE-1st-P  dE-cond-P  dE-11st-P  dE-28st-P  dE-top-T
dE-1st-P - 0.021268 0.003558 0.001124 0.092738
dE-cond-P  0.00171 - 0.002833  6.89E-08  0.000581
dE-11st-P ~ 0.000144  0.001618 - 0.002808  5.69E-05
dE-28st-P  0.000658  0.001038  0.003933 - 0.00041
dE-top-T  0.003782 0.017225 0.002918 1.02E-04 -
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4.4 Conclusion

This study proposes a fault analysis using divide subspace for minimize the
normal portion in fault information. First, PCS and RS respectively used for proper
removing of normal portion. Scaled fault contribution decomposed by SVD and
from the fault magnitude hierarchy variables are selected. MVVGC calculated these
major variables so that make a matrix of causality. For verifying the performance,
root cause compared with conventional contribution and RS amplification. Because
the fault scale is too small, contribution information at initial stage can not provide
root cause properly. RS amplification is good performance in enhancement
contribution affected variables. However, in terms of the MVGC analysis, RS
amplification provide misleading when the alarm occurred in PCS. Also, because
the key variables are essential in MVGC analysis, developed method is able to
obtain better performance than RS amplification in root causality analysis.
Proposed method uses both space, PCS and RS according to criteria, all the key

variables that reflect the process state, it can make an accurate root cause.
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CHAPTER 5 Concluding Remarks

In this thesis, a multi-mode process monitoring for early detection and
robust root cause diagnosis for initial fault stage are proposed. The methodology is
consist of 2 parts; first part is normal operation modeling from global to local based
on PCA and classification. Second part is monitoring and fault detection based on
MDM, kNN and PCA and final part is root cause diagnosis based on PCA, SVD and
MVGC.

First, process overall normal operation data is decomposed into reduced space from
PCA method. T-score, which is calculated with reducing dimensions, is used for k-
means clustering method. The value of k is defined intuitively using the T-score chart.
All normal training variables have own group class and PCA makes new local model
using variables in group. This is defined local PCA modeling. After the modeling,
each mode makes own process limitation, Hotelling’s T2 and SPE, it is ready ready
for monitoring and fault detection.

Secondly, a new sample variable is projected into global PCA model. From T-score
and MDM, kNN methods, it can be assigned class with training local normal data.
In assigned group, it is determined fault or normal. When the fault occurred, it goes
through root cause diagnosis part.

Finally, fault data is determined PCS or RS from alarm index. If it beyond

Hotelling’s T2 alarm limit, it is calculated in PCS, or beyond SPE alarm, it is
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calculated in RS. In each space, contribution plot is scaled from normal contribution,
and then it is decomposed by SVD. From the SVD, fault magnitude is derived and
also empirical rule from statistics select the hierarchy sensors. These sensors are
analyzed by MVGC and the result is root casual information.

To verify the proposed methodology, LNG plant fractionation process is applied. A
total of 45 case studies is used for comparing. In monitoring result, proposed method
is compare with global PCA and univariate method, shewart 3-sigma based on FDR
and FDA. First, proposed method has only 2 cases are drawing and all the rest are
exceedingly better performance than global PCA. Compared with univariate method,
35 cases are enough better performance, 8 cases are the same and only 2 cases are a
little poor but there is few difference. Proposed method has the average of FDR value
is 96.2 where univariate is 91.4 and global PCA is 85.5. In FDA, 97.0 is proposed
method, 93.1 is univariate method and 88.4 is global PCA. From these result,
proposed model increase the monitoring accuracy and detection rate.

In diagnosis part, root cause from proposed method have good performance. To
verify the performance, conventional contribution chart at fault time and RS
amplification method are compared with proposed method. From the graph chart,
proposed method can isolate normal portion from fault data. Therefore, only
proposed method can provide proper root cause at fault initial detection stage.
Especially, initial alarm propagation is very similar with proposed root cause. This
method is only used normal historic data and assumed small intensity of fault, it can
be adjusted most plant.
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Future work is to enhance the classification part. Because using the dynamic model,
it has limitation of various normal operation mode so it can be perfectly performed
the classification. Lastly, when the fault occurred, in this study 100 seconds fault
data are used, but there is no criteria. If sensitivity analysis and decision rule is

defined, the robustness of this method can be increased.
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Nomenclature and Abbreviations

FDA : Fault detection accuracy
FDR : Fault detection rate

kNN : k-nearest neighbors

GC: Granger Causality

LNG : Liquefied natural gas

MDM : Minimum distance to mean
MVGC : Multivariate granger causality
PCA : Principal component analysis
PCS : Principal component subspace
RS : Residual subspace

SPE : Squared prediction error

SVD : Singular value decomposition
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