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ABSTRACT 

 

Data-driven Approach 

for the Development of 

a Finite Element Model 

for Composite Thin-walled Beam 
 

Dongil Shin 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 

To analyze the behavior of the thin-walled beams using one-dimensional beam 

finite elements, considering complex cross-sectional deformations happening on 

the beam section is important. When it comes to composite thin-walled beams, the 

accurate definition of shape functions that describe local cross-sectional 

deformation becomes more critical. It is because anisotropic and laminate effects 

produce more complicated deformation patterns that do not appear in isotropic 

beams. This dissertation deals with identifying shape functions required for 

composite thin-walled beams and expand the higher-order beam theory which was 
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limited to isotropic thin-walled beams before.  

 

Here, a data-driven approach was conducted to extract the shape functions required 

for general composite thin-walled beams consist of various cross-sections, ply 

orientations and stacking sequences. From the shell-based static analysis results of 

composite beams, big data representing cross-sectional deformations were obtained 

and then the principal component analysis was performed to identify shape 

functions. Compared with previous researches deriving shape functions of 

composite thin-walled beams, proposed approach identified them without various 

kinematic assumptions. Also, the shape functions were derived generally without 

considering a specific condition of ply orientation or stacking sequence.  

 

The higher-order beam elements using these shape functions deal with static, 

vibration and buckling analysis of composite thin-walled beams under general 

conditions. This dissertation demonstrates that the present results agree well with 

those obtained by shell analysis results by numerical examples. The proposed 

research is expected to be applied at various industrial fields requiring composite 

thin-walled beam models. 

 

Keywords: Laminates, Anisotropy, Thin-walled Beam, Cross-sectional 

Deformations, Data-driven Analysis, Finite Element Method 

Student Number: 2013-22493  
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CHAPTER 1.  

INTRODUCTION 

Equation Chapter 1 Section 1 

 

1.1 Motivation 

As large amounts of data become available, and data analysis techniques evolve, 

data-driven approaches are expanding to the field of structural engineering. There 

are two main reasons why data-driven approaches are attractive to researchers. The 

first advantage they offer is that the design can be performed at a significantly 

faster rate than the conventional structural design. For example, in structural 

analysis studies, deep learning has been applied to select the Gauss point to reduce 

the analysis cost in a finite element analysis [1], and in the area of topology 

optimization, research is being conducted using base data to reduce the design time 

cost [2] or to search for crucial design parameters [3]. Second and more 

importantly, many researchers are keenly interested in expanding deductive 

research methods to the area of inductive research methods because the errors and 

uncertainties that have occurred due to an insufficient understanding of physical 

phenomena can be reflected in a data-driven analysis. As an example, studies of 
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data-driven computational mechanics using experimental data are expanding. 

Neggers et al. [4] performed model/data reductions to simplify experimental 

information and make using it more efficient, and Kirchdoerfer and Ortiz [5-7] are 

actively researching data-driven computational mechanics utilizing a data set 

obtained from physical experiments, without resorting to empirical modeling. 

Other data-driven studies in a variety of fields, such as dynamic problems [8], 

fuzzy data [9], and material designs [10], can also be found. 

 

In the field of finite element modeling, elements can be roughly divided into the 

one, two, and three-dimensional types based on the geometry of the model under 

consideration. In most cases, we prefer low-dimensional elements that fit the 

geometric dimensions, taking into account the ease of the design and the analysis 

time cost. However, in some cases, the expression is possible geometrically as a 

low-dimensional element, but it is difficult to trust the analytical results in such 

cases because there are physical phenomena that cannot be expressed in such low 

dimensions. Thin-walled beams, widely used throughout the industry due to their 

excellent mass-to-stiffness ratios, represent a typical example. When an external 

force is applied, as shown in Fig. 1.1 (a), complicated cross-sectional deformation 

occurs in the beam cross-section, including distortion and warping. Given that 

classical one-dimensional beam elements consider only rigid deformation in the 

beam section, it is impossible to describe the complex deformation of the beam 

accurately. Therefore, in the real world, thin-walled beams are analyzed by a two-
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dimensional shell element or a three-dimensional continuum element, and the 

advantage of using a one-dimensional beam element is not realized. 

 

If the thin-walled beam is composed of composite materials, cross-sectional 

deformation happens more complicated. Composite materials have been widely 

used to reduce the weight of a structure without sacrificing stiffness. In particular, 

laminated composites can be tailored to meet various design requirements and have 

been utilized as efficient load-carrying members in automobiles and aircraft. Figure 

1.2 shows a composite thin-walled beam under an axial load (in the z-direction). In 

this figure, we indicate that various deformation patterns can simultaneously occur. 

Specifically, we argue that in addition to typical deformation patterns that occur in 

an isotropic beam (indicated by “isotropic effect”), additional deformation patterns 

also appear because of anisotropic and laminated effects if the thin-walled beam is 

made of a composite material. If these effects are not appropriately taken into 

account when considering cross-sectional deformations, it may be difficult to 

obtain accurate results. 

 

To overcome the hard of describing the complex deformation of the composite 

thin-walled beam, advanced beam theories which consider cross-sectional 

deformation have been devised. In these theories, sectional shape functions 

corresponding higher-order beam degrees of freedom are introduced, where they 

form the bases upon which to represent general cross-sectional deformation, as 
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shown in Fig. 1.1 (b). The critical consideration in these theories is how to define 

sectional shape functions, such as warping and distortion, in addition to six rigid-

body motions of the beam cross-section. 

 

This thesis presents a one-dimensional composite thin-walled beam finite element 

model expanding earlier research on isotropic thin-walled beam. Additional 

conditions required for updating finite element formulation of composite thin-

walled beams are addressed, and a data-driven approach for identifying core cross-

sectional deformations of composite thin-walled beams is proposed. In spite of the 

many available approaches that define sectional shape functions, it remains 

challenging to determine more critical shape functions. Besides, it is sometimes 

hard to derive shape functions for beams with complicated, non-uniform, or 

reinforced sections. Motivated by this, we propose a data-driven approach to 

acquiring such shape functions by collecting and analyzing the section 

deformations occurring in composite thin-walled beams modeled by a two-

dimensional refined shell model.  
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1.2 Previous works 

Recent works on advanced beam theories 

To overcome the hard of analyzing thin-walled beams, advanced beam theories 

which consider cross-sectional deformation have been devised. As mentioned 

above, several advanced beam models performed more accurate beam analyses by 

considering not only rigid body motions but also several local cross-sectional 

deformations as additional degrees of freedom. If we consider for isotropic thin-

walled beam analysis first, advanced beam theories have been extensively 

developed for decades since Vlasov [11] proposed a thin-walled beam theory that 

takes into account warping deformation in the Saint-Venant torsion problem. Since 

then, a number of investigations to establish advanced beam theories and derive the 

corresponding beam finite elements have been reported [12-43]. The core idea 

about the establishment of these theories and finite elements lies in how to define 

or derive the sectional shape functions. Although it is difficult to subdivide the 

methods precisely, there are roughly three approaches which can be used to define 

shape functions. The first is to define the displacement field of the section through 

geometric characteristics. As typical examples, Carrera and his colleagues 

conducted shape functions [13-16] by expanding the displacement field using 

methods such as Lagrangian and Taylor expansion, Camotim and his researchers 

[17-21] formed shape functions by imposing a unit displacement on a particular 

node or wall while forcing other displacements to comply with null or to deform 

under some assumptions, and Vieira et al. [22-24] derived shape functions by 
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solving the eigenvalue problem on a set of linearly independent basis functions 

from the bar model of a thin-walled beam section. Other methods defined shape 

functions through a two-dimensional analysis of the beam cross-section. Hodges 

and related researchers [25-27] decomposed a three-dimensional elasticity problem 

into a one-dimensional problem along the axial direction and a two-dimensional 

problem along the beam cross-section and then derived a beam-type equation that 

takes into account the higher order effects. Genoese et al. [28-30] developed a 

model that reflects sectional shape functions by solving a generalized eigenvalue 

problem of the two-dimensional model of a thin-walled beam section. Lastly, other 

methods seek to obtain shape functions by solving the equilibrium equation 

generated from the physics of the beam. For example, Ferradi et al. [31-33] 

proposed a means of determining transverse deformations and warping 

deformations iteratively using their equilibrium equations along the beam, and Kim 

and his researchers [34-43] derived sectional deformation shapes in a closed form 

using a generalized force-stress relationship.  

 

Recent works on composite thin-walled beams 

Considering composite thin-walled beams, Loughlan and Ata [44] used a 

theoretical model to assess warping in the static analysis of composite thin-walled 

beams and Vo and Lee [45] predicted the response of symmetric and asymmetric 

stacked beams based on shear-deformable theories. Cesnik and Hodges [46] and Yu 

et al. [47] used variational asymptotic beam section analysis to study the exact 
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stiffness of beam sections. Jung et al. [48] used Reissner's semi-complementary 

energy function to analyze the coupling between global deformations of composite 

thin-walled beams, and Sheikh and Thomsen [49] performed an analysis of thin-

walled open and closed beams. Studies on wave propagation [50], vibration [51], 

and buckling [52] in composite thin-walled beams were also reported. Aside from 

the studies mentioned above, a more extensive review on laminated composite and 

sandwich beams may be found in Sayyad and Ghugal [53]. 

 

Several studies performed more accurate beam analyses by considering not only 

torsional warping but also several sectional shape functions that describe the local 

cross-sectional deformations associated with the additional degrees of freedom. 

Silvestre and Camotim [54, 55] conducted static and buckling analyses based on 

the Generalized Beam Theory. They defined cross-sectional deformation modes by 

considering the geometric characteristics of the beam section. Carrera et al. [56-58] 

conducted various studies to analyze composite thin-walled beams based on the 

Carrera Unified Formulation theory. Their sectional shape functions are obtained 

by expanding displacement fields using a method such as the Lagrangian 

expansion method. Genoese et al. [59] defined the sectional shape functions for 

distortion and warping by using two-dimensional analysis on beam cross-sections. 

However, no earlier study has taken a data-driven approach to identify the shape 

functions to the best of our knowledge. 
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Recent works on the data-driven approach in structural analysis field 

Recently, several attempts were made to apply data-driven approaches to analyze 

and design beam structures. Susac et al. [60] conducted a study to predict the beam 

buckling load when the design variables change through an artificial neural 

network, and Ferreiro-Cabello et al. [61] obtained a Pareto set of major factors 

during a slab design process through deep learning. Additionally, Lee et al. [62] 

checked the parameters and key factors that should be considered when applying 

deep learning to a structural analysis using beam structure examples. However, to 

the best of our knowledge, this is the first time thin-walled beam element models 

are created by a data-driven approach in the finite element analysis field. 

 

In this thesis, we obtain cross-sectional deformation data through various static 

analysis results based on shell elements and conduct a data-driven analysis. 

Specifically, we adopted principal component analysis as the means of obtaining 

the sectional shape functions essential for composite thin-walled beam analysis. 

Principal component analysis is a feature-extraction method for dimension 

reduction in data analysis. It expresses data in a low-dimensional format while 

maintaining minimum information loss using the dependency between high-

dimensional data variables [63]. The principal component analysis approach was 

previously used in several approaches involving a structural analysis. Aschheim et 

al. [64] used principal component analysis to analyze dominant vibration modes 

during seismic excitations. The relationship between the sample size and the error 
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when using the principal component analysis was also discussed [65], and the 

interstory drift occurring in low-level diaphragm structures was estimated [66]. It 

was also used to analyze imperfections in structures [67], to extract damage 

patterns from frequency response function data to predict damage [68] and to 

undertake damage detection by selecting a damage index [69]. Because the 

principal component analysis is a data analysis method, it can be used to identify 

core bases when well-defined data can be obtained. Here, the principal component 

analysis is used to extract the core shape functions of section deformations 

occurring in a composite thin-walled beam. Because big data from the refined shell 

analysis of a composite thin-walled beam under various selected static loads is used, 

the principal component analysis based approach does not require any assumptions 

about beam sectional deformations, as typically required in earlier thin-walled 

beam analyses. Therefore, the proposed principal component analysis based data-

driven approach can be applied to beam sections of any shape, including open or 

closed sections, with or without symmetry.  
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1.3 Research objectives 

In this dissertation, an efficient one-dimensional beam theory for composite thin-

walled beam analysis based on a higher-order beam theory is proposed. This theory 

includes degrees of freedom that describe the local cross-sectional deformations 

necessary to depict the complicated deformations that occur in composite thin-

walled beams. The theory is updated so that it can represent the effects of 

anisotropic properties and lamination of composite materials. Although several pre-

existing beam-based methods consider additional degrees of freedom associated 

with local sectional deformations (such as warping and distortion), a refined 

higher-order beam analysis that utilizes systematically derived sectional shape 

functions to describe local cross-sectional deformations is expected to yield more 

accurate results. 

 

The shape functions of cross-sectional deformations are derived through data 

processing using the shell-based static analysis results of a composite thin-walled 

beam. We perform a principal component analysis during the data processing step, 

in which the desired shape functions are obtained without any specific assumptions 

on the behavior of cross-sectional deformations. Compared to previous analytical 

or numerical models often requiring various kinematic assumptions, this approach 

requires no such assumptions. Moreover, the approach was shown to be valid for 

various types of cross-sections, making it possible to prioritize significant cross-

sectional deformations. Cross-sectional deformations required for thin-walled beam 
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analysis involves not only deformation happening from the weakness of the cross-

section but also deformations occurring due to axial motions related to the thin-

walled beam's three-dimensional behavior. One of the typical examples is 'Poisons 

modes' [39, 70] that includes the stretch of each wall of the thin-walled beams. 

These deformations are hard to obtain from the eigenvalue analysis of the beam's 

cross-section in lower eigenmodes without specific kinematic assumptions or 

additional conditions [70]. Also, cross-sectional deformations obtained through the 

previous eigenvalue analysis of the beam cross-section gives the weakest 

deformation of the beam section, which is not the proper order for the general 

beam analysis. In other words, it gives cross-sectional deformations according to 

weak deformation of the beam section which differs from the order of dealing with 

the beam's general motion. However, our approach can found these cross-sectional 

deformations directly in the lower principal cross-sectional deformations.  

 

Important issues related to the establishment of a well-defined dataset are 

addressed, and the procedure by which to incorporate the obtained shape functions 

for a higher-order beam analysis is presented. A series of static, vibration and 

buckling analyses using data-driven shape functions are performed for various 

composite thin-walled beams. We demonstrate by numerical examples that the 

present data-driven results agree well with those obtained by shell analysis results, 

and discuss data related issues concerning physical backgrounds. 
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1.4 Outline of thesis 

The thesis is organized as follows. 

 

In Chapter 2, a higher-order beam formulation for an efficient structural analysis 

of composite thin-walled beams will be presented. Because the effects of 

anisotropic properties and lamination cannot be taken into account in the earlier 

higher-order beam theory, the theory is updated so that it can represent these effects. 

The earlier higher-order beam theory will be reviewed, and then an updated finite 

element formulation for a composite thin-walled beam is set up with explicitly 

expressed stiffness matrix, mass matrix, and geometric stiffness matrix. 

 

In Chapter 3, we present a data-driven approach for the identification of principal 

cross-sectional deformations of the composite thin-walled beams required for one-

dimensional beam finite element analysis. We derive the shape functions of cross-

sectional deformations by the principal component analysis using big data 

consisting of the shell-based static analysis results of a thin-walled beam. Important 

issues related to the establishment of a well-defined dataset are addressed, and the 

procedure by which to incorporate the obtained shape functions for a higher-order 

beam analysis is presented. 

 

In Chapter 4, we deal with numerical examples solving static, vibration, and 

buckling analysis of isotropic and composite thin-walled beams. After verifying the 
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solution accuracy of the one-dimensional higher-order beam analysis using the 

data-driven shape functions, we investigate the numerical and data aspects of the 

present data-driven approach. 

 

In Chapter 5, the overall conclusion of this dissertation is presented. 

 

In Appendix A, the previous work obtaining shape functions by physical approach 

will be briefly introduced. The developed approach, a systematic method to derive 

the sectional shape function reflecting the effects of anisotropic properties and 

lamination, has formed the base of the research in this thesis. 
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Fig. 1.1 Illustration of (a) cross-sectional deformation data from the shell analysis 

results and (b) shape functions bases of cross-sectional deformation 
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Fig. 1.2 Illustration of the cross-sectional deformation of the composite thin-walled 

box beam by various effects 
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CHAPTER 2.  

Higher-order beam formulation 

Equation Chapter 2 Section 1 

 

2.1 Overview 

In this chapter, a one-dimensional higher-order beam theory is developed for an 

efficient structural analysis of composite thin-walled beams [43]. Because the 

effects of anisotropic properties and lamination cannot be taken into account in the 

earlier higher-order beam theory [34-42], the theory is updated so that it can 

represent these effects. A higher-order beam formulation will be presented in this 

chapter, while Chapter 3 is devoted to how to define the shape functions using a 

data-driven approach [71].  

 

In Chapter 2.2, the higher-order beam theory for isotropic thin-walled beam will be 

reviewed. After establishing the higher-order beam theory for composite thin-

walled beams in Chapter 2.3, a finite element formulation based on it is set up with 

explicitly expressed stiffness matrix, mass matrix, and geometric stiffness matrix in 

Chapter 2.4.  
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2.2 Theoretical review: Higher-order beam theory for 

isotropic thin-walled beam 

As shown in Fig. 2.1, the cross-section of the beam consists of several walls and 

the local coordinate system of n-, s- and z-axes is introduced with its origin at the 

center of the wall. Because the sectional shape functions in the higher-order beam 

theory [34-43, 71] depict the deformation patterns of a beam section, they are 

represented in terms of the displacements i

  (𝜂=n, s, z) as a function of arc-

length s where i  is the index representing the i-th degree of freedom. Because 

i  denotes the axial variation of the one-dimensional deformation measure, it is 

only a function of z. In terms of i

  and i , the normal ( nu ), tangential ( su ), 

and axial ( zu ) displacements along the wall centerline can be expressed as follows: 

 ( , ) ( ) ( )     ( , , )i

i

i

u s z s z n s z


       (2.1) 

 

Once the displacement field at the center of the wall is defined as Eq. (2.1), one can 

derive the corresponding beam finite element using the minimum potential energy 

principle. 

 

When the shape functions corresponding to degrees of freedom i  are assumed to 

be defined as i

 , the normal ( nu ), tangential ( su ), and axial ( zu ) displacements 
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along the wall centerline can be expressed. Using u  (𝜂= n, s, z) in Eq. (2.1), the 

three-dimensional displacement ( ,  ,  n s zu u u ) at a generic point (n, s, z) can be 

expressed as 

 ( , , ) ( , )n nu n s z u s z   (2.2) 

 ( , , ) ( , ) ( , )s s nu n s z u s z nu s z    (2.3) 

 ( , , ) ( , ) ( , ),z z nu n s z u s z nu s z    (2.4) 

where 
.

( )  and ( )  denote ( )/ s   and ( )/ z  , respectively. The terms 

involved in the differentiation of ( , )nu s z  with respect to s and z appear in Eqs. 

(2.3-2.4) in order to represent the bending effects resulting from the Kirchhoff plate 

theory.  

 

If the three-dimensional displacement is expressed as Eqs. (2.2-2.4), the strains at a 

generic point are given by 

 ( , , ) ( , , ) ( , ) ( , )ss s s nn s z u n s z u s z nu s z      (2.5) 

 ( , , ) ( , , ) ( , ) ( , )zz z z nn s z u n s z u s z nu s z        (2.6) 

 2 ( , , ) ( , , ) ( , , ) ( , ) ( , ) 2 ( , )sz z s z s nn s z u n s z u n s z u s z u s z nu s z          (2.7) 

 

For isotropic beams with a modulus of elasticity of E, Poisson's ratio 𝜐, and shear 

modulus G, one can express the stresses using the equation below. 
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2 2

( ),  ( ),  2
1 1

ss ss zz zz zz ss sz sz

E E
G       

 
    

 
  (2.8) 

 

Then, the total potential energy of a beam with 1 2z z z   is given as 

 
2

2

1
1

1
( 2 ) ( ) ,

2

z
z

ss ss zz zz sz sz zz z sz s z
z A A

dAdz u u dA                 (2.9) 

where A is the cross-sectional area of the beam. 
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2.3 Higher-order beam theory for composite thin-walled 

beam 

Figure 2.1 shows that each wall of the composite thin-walled beam consists of 

laminates composed of anisotropic plies having different stacking angles. When it 

comes to a composite thin-walled beam, three conditions have to be updated from 

the higher-order beam theory for isotropic thin-walled beams to deal with the 

effects of anisotropic properties and lamination in composite materials. 

 

First, the constitutive relation should be updated.  

 

11 12 16

21 22 26

61 62 66

      

      

2     

ss ss

zz zz

sz sz

Q Q Q

Q Q Q

Q Q Q

 

 

 

    
    

     
        

 (2.10) 

In the previous higher-order beam theory, this constitutive relation was limited to 

isotropic properties, where several coupling terms relating stresses and strains are 

zero. To deal with composite thin-walled beams, we have to consider the full 

coupling between stresses and strains in the s-z plane. The specific formulas of 

coupling terms will not be given here because they are available in existing studies 

[72]. 

 

Second, the total potential energy equation of the thin-walled beam should be 

updated. In laminated composite, constitutive relation changes along the thickness 

because the relation depends on the stacking angle of each ply. In other words, 
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constitutive relation in the total potential energy equation should vary along the 

thickness in the updated formulation, while it was constant in isotropic materials. 

 

Finally, two-node elements with the Hermite interpolation instead of linear 

interpolation [34-41] should be used in the finite element formulation, because the 

influence of the curvature in composite thin-walled beams is more significant than 

that in isotropic thin-walled beams. The definition of composite high-order 

elements by applying these conditions is discussed in detail, at Chapter 2.4. 
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2.4 Higher-order beam finite element formulation 

Here, we discuss of deriving the finite element formulation required for the static, 

vibration and buckling analysis [42] of composite thin-walled beams. The finite 

element formulation is developed from previous works on the higher-order beam 

theory. Details can be found followed. 

 

 

2.4.1 Formulation for static analysis 

The finite element equations can be obtained by minimizing Eq. (2.9) [73]. First, 

the displacement along the centerline, defined as u(s, z), is interpolated as 

        

1 2

1 2

1 2

1

2

  ...  ( )

,   ...  ( ) ,
...

( )  ...  

k

k

k

n n nn n

s s s s s

z zz z z
k

u s

s z u s z s z

u s

 

 

 


  


  

  


 
     
      

         
            

 

Ψ

u Ψ D Ψ N d

Ψ

 (2.11) 

where D is the displacement vector corresponding to the beam degrees of freedom 

that refer to shape functions defined later, d is the nodal displacement vector, and N 

is the interpolation function matrix, under the assumption that we use k degrees of 

freedom containing six global deformations. We use two-node elements with the 

Hermite interpolation because to consider the influence of the curvature in 

composite thin-walled beams more precisely. The results obtained by the linear and 

Hermite interpolations are compared in the Appendix. 
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Using Eq. (2.11), the strain and stress are expressed as 

 

  ( )  ( )    0

  ()     0    ()

2 ( )    ()   ( )2

ss

zz

sz

n

n

n







   
          
      

ε ΨNd Bd   (2.12) 

 

11 12 16

21 22 26

61 62 66

     

     ,

     

ss

zz

sz

Q Q Q

Q Q Q

Q Q Q







  
  

    
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σ ε QBd   (2.13) 

where B is the strain interpolation matrix, and Q  represents the constitutive 

relationship between the stress and strain. Q  matrix becomes a function of n 

because it is dependent upon the material property and the stacking angle. 

 

Inserting the strain and stress expressions in Eqs. (2.12-2.13) into Eq. (2.9) and 

minimizing the total potential energy, the stiffness matrix K and the external nodal 

load vector R corresponding to the generalized stress resultants can be defined as 

 
2

1

T ( , , ) ( ) ( , , ) ,
z

z A
n s z n n s z dAdz  K B Q B   (2.14) 

and 

  
T

1 1 2 2      , R F F F F   (2.15) 

with 
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

   
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   

    
        

  
  
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 







F   (2.16) 

 

In Eq. (2.16), the subscripts 1 and 2 are associated with the node numbers of the 

two-node element, and the axial derivatives, F , in the z-direction are needed as 

nodal variables because Hermite interpolation is used. The forces acting on the 

nodes of the shell model can also be rewritten in the higher-order beam formula by 

imposing that the virtual work expressed in the shell model is equal to that in the 

beam model. Details can be found in the literature [36].  

 

Finally, it becomes possible to express the finite element equation 

 Kd R   (2.17) 

 

 

2.4.2 Formulation for vibration analysis 

The mass matrix M can also be defined similarly [73], 

 
2

1

T T ,
z

z A
dAdz  M N Ψ ΨN   (2.18) 

where 𝜌 is the density. Finally, it becomes possible to express the finite element 

equation for eigenvalue or free vibration problems as 
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2 , Kd Md 0   (2.19) 

where 𝜔 is the angular frequency. 

 

 

2.4.3 Formulation for buckling analysis 

To consider buckling behavior, the geometric nonlinear strains should be 

considered [42]. Geometric nonlinear strains, expressed in terms of the von 

Kármán strain, are defined as follows: 

 

2 2 2 2( )
( , , )

2 2

n z n z n
ss

u u u u nu
n s z

  
    (2.20) 

 
2 2 2 2( )

( , , )
2 2

n s n s n
zz

u u u u nu
n s z

      
    (2.21) 

 2 ( , , )sz n n n nn s z u u u u      (2.22) 

 

The geometric nonlinear strain fields are combined with the pre-buckling stress 

fields to calculate the work performed by buckling. The work performed by the 

nonlinear strain is defined as follows: 

  2  ss ss zz zz sz szb
V V

dV dV                σ ε   (2.23) 

In Eq. (2.23),  , σ , and ε  denote the buckling load scale factor, pre-buckling 

stress vector, and geometric nonlinear strain vector, respectively. The pre-buckling 

stress vector σ  is calculated as 
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  ,σ Qε d   (2.24) 

where d  denotes the vector of deformation calculated by a linear static analysis in 

Eq. (2.17) for the given loading and boundary condition. When we consider the 

finite element for the discretized geometric nonlinear strain, Eqs. (2.20-2.22) are 

obtained in discretized form: 
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  (2.25) 

 

The geometric stiffness matrix, G, can then be defined as 

  ss zz szss zz sz
V

dV    G B B B   (2.26) 

 

Finally, one can express the finite element equation as 

 Kd + Gd = 0   (2.27) 

 

By multiplying the prescribed unit load and critical scale factor calculated from Eq. 

(2.27), the critical load can be obtained, 

 ,crP P    (2.28) 
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where P denotes the prescribed unit load corresponding to the given loading 

condition. More details about the buckling formulation can be found in an earlier 

study [42]. 

  



28 

 

 

 

 

 

 

Fig. 2.1 Coordinate system used for the analysis of the composite thin-walled beam 

and geometric parameters 
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CHAPTER 3.  

Data-driven approach for deriving shape functions of 

composite thin-walled beams 

Equation Chapter 3 Section 1 

 

3.1 Overview 

In this chapter, we derive the shape functions of cross-sectional deformations 

through data processing using the shell-based static analysis results of a thin-walled 

beam [71]. We perform a principal component analysis during the data processing 

step, in which the desired shape functions are obtained without any specific 

assumptions on the behavior of cross-sectional deformations. Important issues 

related to the establishment of a well-defined dataset are addressed, and the 

procedure by which to incorporate the obtained shape functions for a higher-order 

beam analysis is presented. The overall process is sketched in Figs. 3.1-3.4 and a 

detailed explanation of it will be presented below. 
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3.2 Preparing cross-sectional deformation big data 

In a data-driven analysis, it is most important to obtain well-defined cross-sectional 

deformation data (CSD data) to be used to derive the shape functions. As suggested 

in Fig. 3.1, we consider cantilevered beams to collect CSD data. A shell model of a 

cantilevered beam is uniformly meshed along the beam axial direction, and we 

collect the beam deformations obtained over the axial coordinates as the CSD data. 

 

Chapter 3.2.1 introduces the CSD data required for isotropic materials or certain 

composite materials. Chapter 3.2.2 deals with the additional issues involved in 

obtaining the CSD data required for generally laminated composites. 

 

 

3.2.1 Cross-sectional deformation data required for isotropic 

materials or a certain composite 

When generating the CSD data for a thin-walled beam consist of isotropic 

materials or a specific composite, the sectional geometry information and material 

properties of the shell model are identical to those of the target beam model, and 

several different loading conditions are considered. Among other factors, it is most 

important to choose the proper beam length and loading conditions. Concerning 

these issues, the following strategies are taken. 
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- The beam length is approximately five times the sections height. With this 

length, sectional deformations affected by end effects can be correctly 

captured 

- For loading, we consider not only uniformly distributed forces over the 

beam cross-section but also shell nodal forces over all of the shell nodes of 

the beam cross-section at the beam end 

 

To apply the uniformly distributed forces, which will be called the general beam 

force, all shell nodes lying on the section of the beam free end are rigidly coupled 

to the center of gravity of those nodes so that the section moves as if it were a rigid 

cross-section. Three resultant forces and three resultant moments are applied at the 

center of gravity. It has been shown [39] that the resultant beam force loading 

generates cross-sectional deformation due to Poisson’s effect and shear 

deformation. About the shell nodal forces, forces in three independent directions 

are applied at all nodal points of the beam end section. With these loads, local 

sectional deformations will be effectively induced. To avoid overestimating 

particular deformation patterns from a specific load, the beam deformation due to 

each load is normalized to ensure equal overall compliance measures of the beam.  

 

To form an array of CSD data for the principal component analysis, the 

deformations of all cross-sections of the cantilevered beam under all selected 

loading cases are collected. If the beam is divided into Nd cross-sections along its 
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axial direction and the total number of load cases is Nl=6+3m (m: the number of the 

nodes used to discretize the beam cross-section in the shell model), the total 

number of CSD data instances is N=NdNl. The i-th cross-sectional deformation is 

stored as the column vector Si  such that 

 
1 2 1 2 1 2 TS [   ...    ...    ... ]      ( 1,2, , )m m m

i X X X Y Y Y Z Z Z id d d d d d d d d i N    (3.1) 

Each value of Xd , Yd , and Zd  is a nodal displacement component of the shell 

model in the global Cartesian coordinates (X, Y, Z). Accordingly, the vector Si  

contains 3m components. 

 

One can store 1S  to SN  as a matrix U for the subsequent process: 

  
T

1 2S  S  ... SNU   (3.2) 

 

 

3.2.2 Cross-sectional deformation data required for general 

composites  

Assuming that plies of each wall have circumferentially uniform stiffness (CUS) 

with the same angle in this study, composite thin-walled beams have two design 

variables. The first is the rotation angle of the plies and the second is the laminated 

sequences. Combining these design variables yields an infinite number of thin-

walled beam models so that different cross-sectional deformations occur for the 
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same cross-section. Here, we discuss securing the cross-section deformation data 

necessary to represent the sectional deformations of composite thin-walled beams 

laminated with randomly oriented plies. 

 

As addressed in the previous study on composite thin-walled box beam [43], the 

effect of the rotation angle induces the coupling between the stress and strain. If we 

consider Eq. (2.10) in more detail, the constitutive equation can be defined as 

following when the ply orientation 1-2 is equal to the s-z plane ( 0    in Fig. 2.1) 

[72].  
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When the ply rotates at angle  , the constitutive equation varies as 
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where 
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2 2

2 2
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and 
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2 2

2 2

2 2

     cos               sin              cos sin

     sin              cos            -cos sin

2cos sin        2cos sin       cos sin



   

   

     

 
 

  
   

T   (3.6) 

 

The mathematical expressions of the Q  matrix can be obtained as a function of 

 , whereas obtaining this expression by the analysis results requires a sufficient 

database to take into account. The more databases there are, the more likely it is to 

predict the behavior at different angles, but there is a limit because dealing with all 

of the continuous variables is impossible. The constitutive equations defined above 

are revised in form as follows [74] to overcome this problem. 

 
1 2 3 4 5sin2 sin4 cos2 cos4      Q = Q Q Q Q Q   (3.7) 

where 
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 
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where 

 11 22 12 66(3 3 2 4 ) / 8AQ Q Q Q Q      (3.13) 

 11 22( ) / 2BQ Q Q    (3.14) 

 11 22 12 66( 2 4 ) / 8CQ Q Q Q Q      (3.15) 

 11 22 12 66( 6 4 ) / 8DQ Q Q Q Q      (3.16) 

 11 22 12 66( 2 4 ) / 8EQ Q Q Q Q      (3.17) 

 

We can find that the Q  matrix can be separated into five orthogonal bases related 

to  . By considering these bases, we infer that more than five angles related to 1, 

sin 2 , sin 4 , cos2 , cos4  is required to represent the constitutive 

relationship design space. Here, we assumed that the constitutive equation 

information varying according to   could be represented if the determinant of 

the matrix below, consist of five angles 1 - 5 , is nonzero. 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5

 1    sin2     sin4     cos2     cos4

 1    sin2     sin4     cos2     cos4

 1    sin2     sin4     cos2     cos4

 1    sin2     sin4     cos2     cos4

 1    sin2     sin4     cos2

   

   

   

   

   5

0

    cos4

   (3.18) 

For this purpose, five angles [-45°], [-22.5°], [0°], [22.5°] and [45°] of the equal 

interval were selected for 1 - 5 . The example in Chapter 4.3 verifies the validity 
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of the assumption. 

 

Besides, as addressed in the previous study on composite thin-walled box beams 

[43], the effect of the lamination induces the coupling between the stress and 

curvature. This issue should also be taken into account. However, assuming that the 

plate bending results from the shell nodal forces represents more general curvature 

deformations, it had not been further considered. Finally, if the beam is divided into 

Nd cross-sections along its axial direction and the total number of load cases is 

Nl=6+3m as addressed in Chapter 3.2.1, the total number of CSD data for general 

composite thin-walled beam instances becomes N=5NdNl. 
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3.3 Pre-process of cross-sectional deformation data 

The amounts of CSD data from the general beam force and the shell nodal force 

loading are entirely different. To take their contributions equally into account in the 

principal component analysis, we scale Si  from the shell nodal force by a factor 

of 6/3m, where 6 and 3m correspond to the load cases of the general beam force 

and the shell nodal force, respectively. Accordingly, Si  is redefined as follows: 

 

S S          (CSD from general beam force)

6
S S    (CSD from shell nodal force)

3

i ii

i i
m




  (3.19) 

Thus, we can form the matrix U . 

 
T

1 2S  S  ... SN
   U   (3.20) 

 

Because six rigid-body motions of the beam cross-section are naturally included in 

the beam analysis, we remove the rigid-body components from Si  by means of 

orthogonalization and introduce Si
 and U , which are defined as 

 

6

1

S R
S S R

R R

i j

i i j

j j j


 


   (3.21) 

 
T

1 2S  S  ... S ,N
   U   (3.22) 

where R j  (j=1, 2, …, 6) denotes the rigid-body motions of the cross-section on 

the assumption of a small amount of deformation. 
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Based on the higher-order beam theory requiring the bases of the sectional 

deformations, the in-plane (distortion) and out-of-plane (warping) deformations are 

considered to be independent deformation patterns. Therefore, it is useful to 

decouple Si
 into the vector SXY

i
 consisting only of its in-plane nodal 

displacement values and SZ

i
 consisting only of its out-of-plane nodal 

displacement values. We also considered deformation in the opposite direction to 

take into account the reverse loading case, because the principal component 

analysis is facilitated if the average of the entire CSD data matrix is zero. We 

finally obtained the following preprocessed matrix U , which is 4N 3m in size. 

 
T

1 2 1 2 1 2 1 2S  S  ... S  S  S  ... S  -S  -S  ... -S  -S  -S  ... -SXY XY XY Z Z Z XY XY XY Z Z Z

N N N N
   U  (3.23) 
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3.4 Data-driven analysis for obtaining principal cross-

sectional deformations 

The principal component analysis finds new base axes that are orthogonal to each 

other while maximizing the variances along the axes. In other words, it determines 

the principal factors by obtaining vectors with large variance. Each instance of the 

preprocessed CSD data uses 3m-dimensional information to represent section 

deformation. 

 

For the principal component analysis, we consider a unit vector e  of length 3m. 

 Te e e e 1     (3.24) 

The variance of the U  data projected onto e  can be written as follows: 

 

2( e ( e))
( e)

(4 1)

E
Var

N






 U U
U   (3.25) 

Because the mean of the projected value is zero, the variance is given merely by 

 

T
T

Te e
( e) e e,

(4 1)
Var

N
 



U U
U Σ   (3.26) 

where Σ  corresponds to the covariance matrix. 

 

To solve the variance maximization problem, we introduce that the Lagrangian L  

with the Lagrange multiplier  . 

 
T Te e (e e 1)  ΣL   (3.27) 
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 2 e 2 e 2( )e 0
e

 


     


Σ Σ
L

  (3.28) 

Here,   becomes the eigenvalue of the covariance matrix Σ , and the unit vector 

e  becomes the eigenvector corresponding to the principal component. A larger 

eigenvalue corresponds to a more critical principal component. In this study, we 

define these principal components as the principal cross-sectional deformations and 

define shape functions based on them. It is expected that 3m-dimensional 

information can be well represented by a small number of principal cross-sectional 

deformations.  
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3.5 Post-process required for defining shape functions. 

The obtained principal components represent the sectional deformation in a nodal 

vector form of the shell model. The obtained principal component P
i
 (i=1,2,…,k) 

will be associated with the i-th degree of freedom i , under the assumption that 

we use k principal components containing six global deformations. It contains the 

nodal displacement of a section in the following order.  

 
1 2 1 2 1 2 TP [   ...    ...    ... ]

i i

m m m

X X X Y Y Y Z Z Zd d d d d d d d d    (3.29) 

Note that we associate 
1

P  to 
6

P  with the rigid-body motions 1R  to 6R , while 

P
i
 (i≥7) corresponds to sectional deformations free from rigid-body motions 

(warping, distortion) obtained from the principal component analysis. While P
i
 is 

explicitly written according to the displacements of the nodes discretizing the 

cross-section in the global coordinate, we should express these values in the local 

beam edge coordinate (n, s, z) using the coordinate transformation by the rotation 

angle   (the angle between the s-axis and the X-axis at each edge) on the X-Y or 

n-s plane. This relationship is expressed simply as shown below. 
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cos     sin   0

    0         0     1
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n X
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Zz

d d

d d
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 

 
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    
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  (3.30) 

 

Because the higher-order beam theory uses the functional form ( )i s


 , as in Eq. 
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(2.1), the discrete data represented by P
i
 will be converted into the following 

polynomial: 

 
0 1

0 1( ) ...i i i is a s a s a s
    

           (3.31) 

The highest order   will be determined in the process of determining the 

unknown coefficients 
0

i a


  to i a


  . Note that the interpolation in Eq. (3.31) is 

performed independently for each edge of the beam cross-section. If the data from 

P
i
 is available at   nodes for each edge, the following relationship can be 

written (we defined s-axis coordinate values for the   nodes at an edge as 

1 2, ,...,s s s ). 
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  (3.32) 

In Eq. (3.32), 1e , 2e , …, and e  denote errors between the nodal displacements 

extracted from P
i
 and the corresponding values obtained from the polynomial 

shape function in Eq. (3.31). Because the displacements at the corner nodes ( 1s  

and s ) for one edge must be equal to those at the corner nodes of the adjacent 

edges, 1( )i s


  and ( )i s


   must be identical to 1( )d s  and ( )d s  , 

respectively, implying that 1 0e   and 0e  . These two conditions allow us to 

express 0
i a


  and 1
i a


  in terms of the remaining coefficients 2
i a


  to i a


   as 



43 

follows: 
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 (3.33) 

The coefficients 2
i a


  to i a


   can be determined by a regression analysis, 

yielding 
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The use of low-order polynomials (with  ≥ 2) is preferred for the regression 

analysis, and the value of   is so chosen as to satisfy the following error 

criterion, 
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  (3.37) 

where the first term in the parentheses represents the mean error over all nodes and 
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the second term represents the explained sum of squares (SSE) over the total sum 

of squares (SST). The symbol d  denotes the average of the d  values. The 

parameter   is set to   10-2 for  =s and z and to   10-4 for  =n. By 

conducting the regression analysis for all displacement components at all edges, all 

shape functions are explicitly determined as polynomial functions of s. 
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Fig. 3.1 The procedure used to obtain data-driven shape functions corresponding to 

the higher-order degrees of freedom. First step: Preparing Big Data  
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Fig. 3.2 The procedure used to obtain data-driven shape functions corresponding to 

the higher-order degrees of freedom. Second step: Pre-processing 
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Fig. 3.3 The procedure used to obtain data-driven shape functions corresponding to 

the higher-order degrees of freedom. Third step: Principal Component Analysis 
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Fig. 3.4 The procedure used to obtain data-driven shape functions corresponding to 

the higher-order degrees of freedom. Last step: Post-processing 
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CHAPTER 4.  

Numerical examples and discussions 

Equation Chapter 4 Section 1 

 

4.1 Overview 

In this chapter, we deal with numerical examples solving static, vibration, and 

buckling analysis of thin-walled beams. In Chapter 4.2, we discuss numerical 

examples related to isotropic thin-walled beams. We verify the solution accuracy of 

the one-dimensional higher-order beam analysis using the data-driven shape 

functions by comparing the present results against the ABAQUS shell finite 

element analysis results. Also, we investigate the numerical aspects of the present 

data-driven approach. 

 

Then, in Chapter 4.3, we check the analysis results on composite thin-walled 

beams. As like in Chapter 4.2, we deal with additional numerical and data issues 

when it comes to a composite beam, after verifying the structural analysis results 

on composite thin-walled beams. 
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4.2 Examples using data-driven shape functions for isotropic 

thin-walled beams 

In order to verify that the proposed methodology can be applied to various types of 

cross-sections, the cross-sections in Fig. 4.1, including an open or a closed section, 

with or without symmetry axes are considered (units in Fig. 4.1 are defined as mm). 

Figures 4.2-4.5 show the sectional shape functions determined through the 

principal component analysis procedure. The figures correspond to an isotropic 

thin-walled beam problem (shape functions corresponding to composites can be 

found in Chapter 4.3). Shape functions of the isotropic thin-walled beam were 

confirmed first to verify the validity of the proposed approach. A degree of freedom 

( )i z  varying as a function of the axial coordinate z corresponds to each of the 

shape functions. The CSD data needed for the principal component analysis was 

obtained from ABAQUS [75] four-node element analysis results. All thin-walled 

beams considered are assumed to have a thickness of 2.5 mm (t) and a length of 0.6 

m (L). For the ABAQUS analysis, they were meshed with an element size of 

around 2.5 mm. Considering beams made of steel, E= 200 GPa, 𝜐= 0.3, and 𝜌= 

7800 kg/m3 were used. The first six sectional shape functions shown in Figs. 4.2-

4.5 correspond to 𝜉1 to 𝜉6 representing three rigid-body motions of a section (Ux, 

Uy, Uz) and three rigid-body rotations (𝜃x, 𝜃y, 𝜃z). The sectional shape functions 

associated with the additional degrees of freedom (𝜉7-𝜉24) are those extracted as 

the principal cross-sectional deformation from the principal component analysis. 
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When we identify sectional shape functions in Fig. 4.2 referring to the previous 

higher-order beam theory [34, 39] for an isotropic thin-walled box beam, 𝜉7 and 

𝜉9 represent the torsional distortion and warping and 𝜉10, 𝜉15 and 𝜉16 represent 

the sectional shape functions induced by Poison's effect. 

 

To check the validity of the sectional shape functions from the principal component 

analysis, we considered 1.2 m-long thin-walled beams of the cross-sections shown 

in Fig. 4.1 and performed static, vibration, and buckling analyses under various 

conditions. We initially checked the solution accuracy of the one-dimensional 

higher-order beam analysis using the data-driven shape functions by comparing the 

present results against the ABAQUS shell finite element analysis results. Examples 

1 and 2 in Chapter 4.2.1 investigate how the static, vibration, and buckling analysis 

results of the thin-walled beams consisting of beam cross-sections in Fig. 4.1 vary 

as the number of degrees of freedom increases. We will show that the present data-

driven-based beam analysis yields result nearly identical to those by the shell 

analysis as long as a reasonable number of degrees of freedom is used. 

 

Hence, we investigate the numerical aspects of the present data-driven approach in 

Chapter 4.2.2. For generality, we use a thin-walled beam having a general section, 

as shown in Fig. 4.1 (d), as a test beam. In particular, we examine the effects of 

certain data-related controlling parameters on the obtained results. Specifically, we 

compare the static responses of the beam analyzed by a higher-order beam model 
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using different data-driven shape function sets. The following controlling 

parameters are used for each example. 

- Example 3: Length of the base model and number of the sampled cross-

sections to generate CSD data 

- Example 4: Mesh resolution of the base shell model 

- Example 5: Type of applied load used to collect the sectional deformations 

 

For all numerical studies, 80 Hermite one-dimensional beam elements were used 

along the axial direction. For the shell reference model, a fine mesh approximately 

2.5 mm in size was used to obtain converging results. In the case of the 

cantilevered general section beam 0.6 m in length which is used to generate the 

CSD data, we will have N= NdNl (Nl =3m+6) CSD data. For all problems in the 

examples without additional specific information, a fine mesh gives m=110 

corresponding to the number of shell nodes on the cross-section of Fig. 4.1 (d) and 

Nd corresponding to the number of mesh along the axial axis. With the axial mesh 

size of 2.5 mm, the maximum value of Nd is 240 if data at every section is used. If 

undersampled, Nd can be smaller than 240. 

 

 

4.2.1 Verification of static, vibration and buckling analysis  

Example 1 

In this example, static problems of a cantilevered beam under two loading 



53 

conditions are considered. Loading condition 1 refers to shear line force of 1N 

applied to the edge connecting *c to *d in the Y-direction at the free end of the 

cantilevered beam of the general section shown in Fig. 4.1 (d). For Loading 

condition 2, we consider normal line force of 1N applied to the edge connecting *h 

to *a in the Y-direction at the free end of the same beam considered in Loading 

condition 1. Figures 4.6 (a) and (b) plot the three-dimensional displacement along 

the axial axis at point *a of the wall center when the beam is subjected to Loading 

condition 1 and Loading condition 2, respectively. The static analysis results show 

that the data-driven higher-order beam model can predict the deformations 

sufficiently close to those calculated by the shell analysis. It can be seen that 

displacement components by the data-driven approach are in good agreement with 

those by the shell analysis if more than 18 degrees of freedom are used. Clearly, the 

use of more degrees of freedom improves the accuracy of the solution, implying 

that the sectional shape functions are consistently extracted by the data-driven 

analysis. Static analysis results for the beam cross-sections in Figs. 4.1 (a-c) are 

presented in Figs. 4.9-4.11. 

 

Example 2 

This example aims to check if the sectional shape functions derived by the static 

data-driven approach are effective for vibration and buckling analyses. For the 

vibration analyses, free-free and clamped-clamped thin-walled beams having the 

general cross-section shown in Fig. 4.1 (d) were considered. The results for the 
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vibration analysis are given in Tables 4.1 and 4.2 (Eigenfrequencies) and Figs. 4.7 

(a) and (b) (Eigenmodes). In Tables 4.1 and 4.2, the eigenfrequencies by the 

present data-driven approach are denoted by 12, 18 and 24 degrees of freedom, 

which indicate the total number of the sectional shape functions included in the 

analysis. Clearly, the use of more degrees of freedom improves the accuracy of the 

solution, providing evidence of the consistency of the proposed method. When 24 

degrees of freedom are used, the mean error over the lowest five eigenfrequencies 

is 0.88% with a maximum error of 1.57%. Figure 4.7 shows that the eigenmodes by 

the proposed data-driven approach are nearly identical to those by the shell analysis. 

 

Table 4.3 and Fig. 4.8 present the results of a buckling analysis of a cantilevered 

beam with the cross-section shown in Fig. 4.1 (d). The critical load (Pcr) is 

predicted while applying a compressive unit load at the end of the beam with a 

rigid cross-sectional deformation boundary condition. The beam length is varied 

from 0.3 m to 1.2 m. Figure 4.8 showing the buckling mode shapes shows that the 

eigenmodes are correctly predicted for all beams of different lengths. The 

eigenmodes by the proposed approach in the figure were taken for the case of 24 

degrees of freedom. In particular, local deformations appearing in the shortest 

beam are accurately predicted by the data-driven approach. Table 4.3 lists the 

critical loads predicted by the proposed data-driven approach and the shell analyses. 

Clearly, the prediction accuracy of the proposed method increases as the number of 

degrees of freedom increases. The data in Table 4.3 shows that the average error is 
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approximately 1.14% with the maximum error of less than 3% when 24 degrees of 

freedom are used. 

 

Through this example, it is found that the use of the sectional shape functions 

derived from the static data-driven analysis are equally valid for other types of 

analyses, vibration and buckling analyses, supporting the effectiveness and validity 

of the present analysis. Besides, it is also found that the derived shape functions 

can be universally applied for analyses of beams with different lengths and 

boundary conditions. The results of vibration and buckling analyses of beams 

having other cross-sections shown in Figs. 4.1 (a-c) are also presented in Fig. 4.9-

11. They support the findings from the analysis using the cross-section in Fig. 4.1 

(d). 

 

Generally, it is argued that additional cross-sectional deformations are required in 

the higher-order beam analysis process if the complexity of the beam-section 

increases. We confirmed that this tendency is revealed through the methodology 

proposed in this study. In the process of principal component analysis, the 

eigenvalues of the covariance matrix are obtained. For the eigenvector 

corresponding to a large eigenvalue, this study defined the core cross-sectional 

deformation as a priority. In Figure 4.12, the eigenvalue proportion and the remain 

proportion corresponding to each component value were confirmed for each cross-

section in Fig. 4.1. When the k-th eigenvalue is defined as k , eigenvalue 
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The trend of the graph shows that eigenvalue proportion and remain proportion 

decrease in the order of Lipped channel beam, Box beam, Double cell beam, and 

General section beam more quickly. In general, it is discussed that the open section 

beam (Fig. 4.1 (b)) has less influence on the cross-sectional deformation than the 

closed section beam (Fig. 4.1 (a, d)) [11]. Also, it is known that more complex 

cross-sectional deformations occur in the cross-section with multiple cells (Fig. 4.1 

(c)) and asymmetric cross-section (Fig. 4.1 (d)) than in the rectangular cross-

section [35, 37]. When we consider the results of Fig. 4.12, we can confirm that the 

results of the proposed methodology show the results as discussed in the previous 

studies. 

 

Because the cross-sectional deformation that occurs on the beam section depends 

on the loading conditions of the static analysis or vibration and buckling analysis 

conditions, it is difficult to compare the analytical accuracy of thin-walled beams 

quantitatively with a single parameter. So, a qualitative comparison is made from 

the overall static, vibration, and compressive buckling analysis results in Example 

1 and Example 2. When the same number of principal components are considered, 

it can be seen that the analytical results converge early to the shell analysis results 

in the order of cross-sections with small remain proportion values. Nevertheless, as 
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discussed in Example 1 and Example 2, the overall error is not significant when 

using 18 degrees of freedom regardless of the section complexity, and the results 

almost same to the shell analysis can be obtained when using 24 degrees of 

freedom. 

 

 

4.2.2 Examples dealing with the validation of the data-driven 

approach 

Example 3 

To generate the CSD data for the data-driven shape functions, the length of a base 

beam model for a shell analysis was chosen to be approximately five times the 

section height. If cross-sectional deformation at every mesh along the Z-axis 

discretized by shell elements is used, the amount of CSD data will depend on the 

beam length assuming that the axial discretization level is identical. To examine the 

effect of the data size of the principal component analysis on the accuracy of the 

solution, we can vary the beam length. For this analysis, the same beam considered 

in Example 1 in Chapter 4.2.1 is used here. As an error measure of the solution 

accuracy, we will consider the mean compliance (equal to two times the stored 

strain energy). Figure 4.13 shows the compliance errors for varying values of Nd 

for two loading conditions. The compliance by the data-driven beam analysis is 

compared against that by the shell analysis. In the case of Fig. 4.13 (a), we vary the 



58 

length (L) of the cantilevered base beam model analyzed by the shell elements 

while sampling all CSD data at every section. Therefore, the longer the beam is, the 

larger the size of the data becomes. For instance, N becomes 336 180 and 336

240 for beams of L =0.45 m and L=0.6 m, respectively. An examination of Fig. 

4.13 (a) shows that the use of larger Nd values (i.e., longer beams) results in a 

smaller compliance error although the accuracy improvement is marginal if L≥0.6 

m. The beam length of L=0.6 m, which is used throughout our analyses, is 

approximately five times the beam height. When fewer degrees of freedom are 

used, this tendency becomes more apparent. 

 

Fig. 4.13 (b) also shows the effects of Nd on the solution accuracy, but the beam 

length is fixed at L=0.6 m while CSD data is downsampled among the total 336

240 samples. The results of this analysis are shown when the shape function set is 

defined using an equidistant length longer than the mesh size along the beam axis 

to secure the base data. For instance, only one third of all samples are taken if 

Nd=80. If Nd=1 (yielding N=336), each of the cross-sectional deformation only at 

the loaded end of the beam are used for the principal component analysis. If only a 

fraction of available data is used, the solution accuracy can deteriorate considerably. 

This tendency is more apparent with a relatively small number of degrees of 

freedom. 

 

Example 4 
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With this example, we aim to investigate the effects of the base shell mesh 

resolution on the solution accuracy of the data-driven beam analysis. As before, we 

consider a cantilevered beam having the cross-section in Fig. 4.1 (d) under Loading 

condition 1. For this study, three shell meshes are considered:  

- Mesh F: fine mesh size of about 2.5 mm (used for all analyses in previous 

examples). Each cross-section is discretized by 110 nodes 

- Mesh M: medium mesh size of about 4 mm. Each cross-section is 

discretized by 68 nodes 

- Mesh C: coarse mesh size of about 11.5 mm. Each cross-section is 

discretized by 24 nodes 

The data-driven beam analyses are carried out using the cross-sectional 

deformations with different shell meshes. The displacement error along the contour 

of the beam cross-section at the loaded end of the beam is defined as 

2 2 2 2 2 2/n s z n s z
ref

u u u u u u     (ref: shell model Mesh F results). 

 

The numerical results are presented in Fig. 4.14. The horizontal axis represents the 

arc-length s along the contour of the general section beam, where the locations of 

the corner nodes in Fig. 4.1 (d) are marked by the symbols *a, *b, etc. Because the 

shell results with Mesh M and Mesh C still yield small errors in the displacement 

prediction, the data-driven beam analyses with Mesh M and Mesh C also yield 

errors comparable to those by the data-driven beam analysis with Mesh F. All data-



60 

driven higher-order beam models in Fig. 4.14 were tested with 18 degrees of 

freedom. This suggests that as long as converged shell results are used and a 

sufficient amount of CSD data is used, the data-driven beam result yields 

sufficiently accurate results only with marginal errors. 

 

Example 5 

During the determination of U  in Eq. (3.23), we considered CSD data generated 

by general beam force loading (Data set B) and by shell nodal force loading (Data 

set S). Here, we will justify considering these two sets simultaneously during the 

determination of U  instead of using Data set B or Data set S alone. Data set B 

has 6Nd of CSD information while Data set S has 3mNd of CSD information. 

To assess the accuracy of the solution depending on the choice of data set, we 

consider the same cantilevered beam in Example 1 in Chapter 4.2.1 under the 

following loading conditions: 

- Loading condition 3: compressive force of 1 N applied to the mass center 

of the end of the beam with a rigid cross-sectional deformation boundary 

condition 

- Loading condition 4: vertical force of 1N applied to *a in the X-direction at 

the end of the beam with a free cross-sectional deformation boundary 

condition 

We vary the number of degrees of freedom and plot the errors in the mean 
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compliances of the beams in Fig. 4.15 (a) for Loading condition 3 and in Fig. 4.15 

(b) for Loading condition 4. The errors are calculated against the mean compliance 

calculated by the shell analysis. In this study, we aim to obtain a set of shape 

functions that can cover the overall behavior of a thin-walled beam. In fact, the 

required shape functions depend on the handling load. For example, it can be 

predicted that Data set B can provide better analysis results when subjected to the 

general beam force, while Data set S can predict better results when subjected to 

the shell nodal force. 

 

The results in Figs. 4.15 (a) and (b) show that as long as the number of degrees of 

freedom is sufficiently large (i.e., more than 18 degrees of freedom), the errors in 

the compliance calculations are insignificant regardless of the selected data set. 

They also show that the use of Data set B appears to yield the best convergence. 

However, Fig. 4.15 (c) suggests that if Data set B is used alone, the detailed 

deformation is incorrectly estimated, while the simultaneous use of Data sets B and 

Data sets S yields the most accurate results. Fig. 4.15 (c) showed the deformation 

configuration at the end of the thin-walled beam under Loading condition 4 using 

24 degrees of freedom. This study justifies the simultaneous use of Data set B and 

Data set S in the data-driven approach for the analysis of thin-walled beams. With 

the proposed method considering both data sets, we were able to identify the 

relative degrees of freedom quickly, with better results to deal with the overall 

beam responses.  
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4.3 Examples using data-driven shape functions for 

composite thin-walled beams 

In order to verify that the proposed methodology can be applied to general 

composite thin-walled beams including various types of cross-sections, the cross-

sections in Figs. 4.1 (a, b, d) are considered (units in Fig. 4.1 are defined as mm). 

Figures 4.16-4.18 show the sectional shape functions determined through the 

principal component analysis procedure. The figures correspond to a composite 

thin-walled beam problem. Shape functions of the composite thin-walled beam 

were confirmed first to verify the validity of the proposed approach. As in Chapter 

4.2, the CSD data needed for the principal component analysis was obtained from 

ABAQUS [75] four-node element analysis results. All thin-walled beams 

considered are assumed to have a thickness of 2 mm (t) and a length of 0.6 m (L). 

For the ABAQUS analysis, they were meshed with an element size of around 2.5 

mm. Considering beams made of general carbon fiber reinforced plastic, the 

material properties for the analysis of the beam are as follows: 
LE = 141.96 GPa, 

TE = 9.79 GPa, 
LTG = 6 GPa, 

LT = 0.42, and 𝜌= 1445 kg/m3. We considered 

five beams having a single ply at [-45°], [-22.5°], [0°], [22.5°] and [45°]. The first 

six sectional shape functions shown in Figs. 4.16-4.18 correspond to 𝜉1 to 𝜉6 

representing three rigid-body motions of a section (Ux, Uy, Uz) and three rigid-body 

rotations (𝜃x, 𝜃y, 𝜃z). The sectional shape functions associated with the additional 

degrees of freedom (𝜉7-𝜉30) are those extracted as the principal cross-sectional 



63 

deformation from the principal component analysis. When we compare sectional 

shape functions in Figs. 4.16-4.18 referring to the sectional shape functions in 

Chapter 4.2 for isotropic thin-walled beams, they look quite similar, but the order 

changes and it differs in detail. Part of this effect is covered in the examples. 

 

To check the validity of the sectional shape functions from the principal component 

analysis, we considered 1.2 m-long thin-walled beams of the cross-sections shown 

in Figs. 4.1 (a, b, d) and performed static, vibration, and buckling analyses under 

various conditions. We initially checked the solution accuracy of the one-

dimensional higher-order beam analysis using the data-driven shape functions by 

comparing the present results against the ABAQUS shell finite element analysis 

results. Examples 1 and 2 in Chapter 4.3.1 investigate how the static, vibration, and 

buckling analysis results of the composite thin-walled beams vary as the number of 

degrees of freedom increases. In Example 3, the numerical results based on our 

theory for composite thin-walled box beams are checked with different ply angles 

and stacking sequences. We will show that the present data-driven-based beam 

analysis yields result nearly identical to those by the shell analysis as long as a 

reasonable number of degrees of freedom is used. 

 

Hereafter, we investigate the data-related aspects of the present data-driven 

approach in Chapter 4.3.2. We use a thin-walled beam having a box section, as 

shown in Fig. 4.1 (a), as a test beam. In particular, we examine the effects of 



64 

certain data-related controlling parameters on the obtained results. Specifically, we 

compare the static responses of the beam analyzed by a higher-order beam model 

using different data-driven shape function sets. The following controlling 

parameters are used for each example. 

- Example 4: The number of reference shell models which are consist of 

different ply orientations required for obtaining shape functions for a 

general composite thin-walled beam 

- Example 5: Comparing proposed shape functions with shape functions 

from specific thin-walled beam models 

 

As like in Chapter 4.2, 80 Hermite one-dimensional beam elements were used 

along the axial direction for all numerical studies. For the shell reference model, a 

fine mesh approximately 2.5 mm in size was used to obtain converging results. In 

the case of the cantilevered general section beam 0.6 m in length which is used to 

generate the CSD data, we will have N= 5NdNl (Nl =3m+6) CSD data. For all 

problems in the examples, a fine mesh gives m=144 corresponding to the number 

of shell nodes on the cross-section of Fig. 4.1 (a) and Nd corresponding to 240, the 

number of mesh along the axial axis. 

 

 

4.3.1 Verification of static, vibration and buckling results 

Example 1 
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In this example, static problems of a cantilevered beam under three loading 

conditions are considered. The beam has two plies with the same thickness of 1 

mm and is stacked at [15°/30°]. Loading condition 1 refers to shear line force of 

1N applied to the edge connecting *c to *d in the Y-direction at the free end of the 

cantilevered beam of the box section shown in Fig. 4.1 (a). For Loading condition 

2, we consider normal line force of 1N applied to the edge connecting *c to *d in 

the X-direction at the free end of the same beam considered in Loading condition 1. 

Loading condition 3 refers to normal line force of 1 N/m applied at point (45, 120) 

of the wall center in the negative Y-direction along 0.6 m to 0.9 m of the clamped-

clamped box beam. Figures 4.19 (a), (b) and (c) plot the three-dimensional 

displacement along the axial axis at point (45, 120) of the wall center when the 

beam is subjected to Loading condition 1, Loading condition 2 and Loading 

condition 3, respectively. The static analysis results show that the data-driven 

higher-order beam model can predict the deformations sufficiently close to those 

calculated by the shell analysis. It can be seen that displacement components by the 

data-driven approach are in good agreement with those by the shell analysis if 

more than 30 degrees of freedom are used. Clearly, the use of more degrees of 

freedom improves the accuracy of the solution, implying that the sectional shape 

functions are consistently extracted by the data-driven analysis. Static analysis 

results for the beam cross-sections in Figs. 4.1 (b) and (d) are presented in Figs. 

4.22-4.23. 
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Example 2 

This example aims to check if the sectional shape functions derived by the static 

data-driven approach are effective for vibration and buckling analyses. For the 

vibration analyses, free-free and clamped-clamped thin-walled beams having the 

box cross-section shown in Fig. 4.1 (a) were considered. The results for the 

vibration analysis are given in Tables 4.4 and 4.5 (Eigenfrequencies) and Figs. 4.20 

(a) and (b) (Eigenmodes). In Tables 4.4 and 4.5, the eigenfrequencies by the 

present data-driven approach are denoted by 15, 30, 45 and 60 degrees of freedom, 

which indicate the total number of the sectional shape functions included in the 

analysis. Clearly, the use of more degrees of freedom improves the accuracy of the 

solution, providing evidence of the consistency of the proposed method. When 60 

degrees of freedom are used, the mean error over the lowest four eigenfrequencies 

is 0.72% with a maximum error of 1.21%. Figure 4.20 shows that the eigenmodes 

by the proposed data-driven approach are nearly identical to those by the shell 

analysis. 

 

Table 4.6 and Fig. 4.21 present the results of a buckling analysis of a cantilevered 

beam with the cross-section shown in Fig. 4.1 (a). The critical load (Pcr) is 

predicted while applying a distributed compressive unit load at the free end of the 

beam. The beam length is varied from 0.6 m to 2.4 m. Figure 4.21 showing the 

buckling mode shapes shows that the eigenmodes are correctly predicted for all 

beams of different lengths. The eigenmodes by the proposed approach in the figure 
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were taken for the case of 60 degrees of freedom. In particular, local deformations 

appearing in the shortest beam are accurately predicted by the data-driven approach. 

Table 4.6 lists the critical loads predicted by the proposed data-driven approach and 

the shell analyses. Clearly, the prediction accuracy of the proposed method 

increases as the number of degrees of freedom increases. The data in Table 4.6 

shows that the average error is approximately 0.67% with the maximum error of 

less than 1% when 60 degrees of freedom are used. 

 

Through this example, it is found that the use of the sectional shape functions 

derived from the static data-driven analysis are equally valid for other types of 

analyses, vibration and buckling analyses, supporting the effectiveness and validity 

of the present analysis. Besides, it is also found that the derived shape functions 

can be universally applied for analyses of beams with different lengths and 

boundary conditions. The results of vibration and buckling analyses of beams 

having other cross-sections shown in Figs. 4.1 (b) and (d) are also presented in Figs. 

4.22-23. They support the findings from the analysis using the cross-section in Fig. 

4.1 (a). 

 

Example 3 

This example checks whether the proposed method is valid if the ply is laid out at 

an arbitrary angle or in various stacking sequences. The other geometric and 

material properties, boundary conditions are the same as in Example 1, except the 
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stacking sequences in this example. First, we tested static problems of composite 

thin-walled beams having a single ply of 2 mm thickness, where the ply angle 

varies from 0°-90°. The beam rotation angle is predicted while applying a torsional 

load (1 Nm) or a bending moment (1 Nm) at the end of the beam with a rigid cross-

sectional deformation boundary condition. Figure 4.24 shows how the torsional 

rotation angle (for the torsional load case) and the bending rotational angle (for the 

bending moment case) vary as the ply angle varies from at 0°-90°. The numerical 

results obtained by the present theory using 45 degrees of freedom are found to be 

in good agreement with the results of the shell analysis over a wide range of ply 

angles. It suggests that the proposed beam theory is capable of predicting the 

structural behavior of composite thin-walled beam, which is consist of an 

arbitrarily angled ply, accurately. 

 

Then, we consider a static analysis of composite thin-walled beams having two 

plies of 1 mm thickness, stacked at [0°/90°], [15°/-15°] and [-10°/50°]. Figures 

4.25 (a) and (b) plot the three-dimensional displacement along the axial axis at 

point (45, 120) of the wall center when the beam is subjected to Loading condition 

1 and Loading condition 2, respectively. 45 degrees of freedom were used for static 

analysis. The static analysis results show that the data-driven higher-order beam 

model can predict the deformations sufficiently close to those calculated by the 

shell analysis generally, regardless of the stacking sequences. 
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4.3.2 Examples dealing with special issues in a composite 

thin-walled beam under the data-driven approach 

Example 4 

In this example, we deal with the number of required reference shell models consist 

of different ply angles to obtain qualified shape functions of composite thin-walled 

beams. As addressed in Chapter 3.2.2, we suggest that more than five thin-walled 

beam models having different single ply angle should be considered to obtain 

shape functions which can recover the behavior of composite thin-walled beams 

laminated with plies consist of arbitrary angles. We check the validation of the 

assumption by comparing static analysis results of a composite thin-walled beam. 

The data-driven beam analyses are carried out using the shape functions with 

different data sets. As before, we consider a cantilevered beam having the cross-

section in Fig. 4.1 (a) under Loading condition 1 and Loading condition 2. The 

geometric and material properties, boundary conditions are the same as in Example 

1 in Chapter 4.3. For this study, four shape function sets are considered: 

- Data set A1: shape functions are obtained by an anisotropic material thin-

walled beam consist of a single ply. Ply angle is [0°] 

- Data set A3: shape functions are obtained by three anisotropic material 

thin-walled beam consist of a single ply. Ply angles are [-45°], [0°] and 

[45°] 
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- Data set A5: shape functions are obtained by five anisotropic material 

thin-walled beam consist of a single ply. Ply angles are [-45°], [-22.5°], 

[0°], [22.5°] and [45°]. The shape functions obtained here are the 

proposed shape functions and are used in other composite thin-walled 

beam examples 

- Data set A7: shape functions are obtained by seven anisotropic material 

thin-walled beam consist of a single ply. Ply angles are [-45°], [-30°], [-

15°], [0°], [15°], [30°] and [45°]. The shape functions obtained here are 

used for checking the convergence of the configures of the shape functions 

 

As an error measure of the solution accuracy, we will consider the mean 

compliance (equal to two times the stored strain energy). We vary the number of 

degrees of freedom and plot the errors in the mean compliances of the beams in Fig. 

4.26 (a) for Loading condition 1 and in Fig. 4.26 (b) for Loading condition 2. The 

errors are calculated against the mean compliance calculated by the shell analysis. 

In this study, we aim to obtain a set of shape functions that can cover the behavior 

of general composite thin-walled beams. It is expected that using many composite 

thin-walled beam models can give better shape functions set. However, we aim to 

check whether the marginal model number required is five as suggested. 

 

The results in Figs. 4.26 (a) and (b) show that the errors in the compliance 
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calculations decrease regardless of the selected data set when using more degrees 

of freedom. However, both of the figures suggest that if Data set A1 or Data set A3 

is used, the meaningful error remains, while the use of Data set A5 and Data set A7 

yield the most accurate results at almost the same level as suggested in Chapter 

3.2.2. 

 

Figure 4.27 shows the comparison between shape functions obtained from different 

data set using the modal assurance criterion (MAC) [76]. The MAC number is 

defined as a scalar representing the degree of consistency between two different 

modal vectors. MAC was formerly used for model-to-test comparisons and model 

updating. However, it can be successfully applied for comparing shape functions 

from different data sets. The MAC takes on values from zero (representing no 

consistent correspondence) to one (representing a consistent correspondence), and 

it is defined as follows 

 

2
1 T 2

1 T 1 2 T 2

{ P } { P }

{ P } { P }{ P } { P }

i j

i i j j

ijMAC
 

   

   (4.1) 

where 
1P

i
 is the i-th principal component of Data set 1 and 

2 P
j
 is the j-th 

principal component of Data set 2. Concerning principal components obtained by 

using Data set A7, we compared principal components obtained from Data set A1, 

Data set A3, Data set A5 in Figs. 4.27 (a), (b) and (c), respectively. When we 

consider Figs. 4.27 (a) and (b), principal cross-sectional deformations are similar 
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order under 20 degrees of freedom. However, the order of principal components is 

quite different after then. Also, considering Fig. 4.26, although the MAC values are 

close to one, they give different shape functions in detail. 

 

On the other hand, in the case of using Data set A5 in Fig. 4.27 (c), it can be 

confirmed that the shape functions are predicted in almost the same order. Taking 

into account that use of Data set A5 yields accurate results at the same level with 

Data set A7, the results verify the suggestion to use five thin-walled beam models 

for obtaining the shape functions of general composite thin-walled beams. 

 

Example 5 

In this example, we discuss the difference between shape functions required for 

general composites (corresponding to Chapter 3.2.2) and shape functions required 

for isotropic materials or a specific composite (corresponding to Chapter 3.2.1). We 

discuss two issues in this example. The first issue is the difference between the 

shape functions required for composite thin-walled beam and isotropic thin-walled 

beam, which was mentioned in the previous work [43]. Then, validating the use of 

shape functions for a specific composite, which was discussed in Chapter 3.2.1, is 

the second issue. The verifications of these problems are discussed by comparing 

static analysis results from data-driven beam models using different shape 

functions and checking the MAC value between them. For this study, two 

additional shape function sets are considered: 
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- Data set Iso: shape functions are obtained by an isotropic material thin-

walled beam. Considering beams made of steel, E= 200 GPa and 𝜐= 0.3 

were used 

- Data set [30°]: shape functions are obtained by an anisotropic material 

thin-walled beam consist of a single ply. Ply angle is [30°], and other 

material properties are the same in Chapter 4.3 

 

We compare static analysis results of a composite thin-walled beam, which are 

carried out using the shape functions with different reference data. As before, we 

consider a cantilevered beam having the cross-section in Fig. 4.1 (a) under Loading 

condition 1 and Loading condition 2. All conditions except beam thickness and ply 

orientation are shown in Example 4 in Chapter 4.3. The ply is a single ply with a 

thickness of 2 mm and the rotation angle   is 30°. Figures 4.28 (a) and (b) plot 

the errors in the mean compliances of the beams for Loading condition 1 and 

Loading condition 2, respectively. The errors are calculated against the mean 

compliance calculated by the shell analysis. The results in Fig. 4.28 show that the 

errors decrease regardless of the selected data set when using more degrees of 

freedom as like the previous examples. However, the figure shows that if Data set 

Iso is used, the meaningful error remains, while the use of Data set [30°] yields the 

most accurate results at almost the same level with the proposed shape functions 

when using more than about 30 degrees of freedom. 
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Figures 4.29 (a) and (b) shows the MAC value between the principal component 

obtained by Proposed (Data set A5) with those by Data set Iso and Data set [30°], 

respectively. When we consider Fig. 4.29 (a), we can see that the order of the 

principal cross-sectional deformations for the isotropic thin-walled beam are quite 

different compared to the proposed principal cross-sectional deformations. Figure 

4.28 shows that even if the MAC values are close to 1, shape functions are 

provided differently in detail, which means that the structural analysis error 

becomes meaningful. This shows the necessity of using shape functions required 

for composite materials.  

 

Figure 4.29 (b) also seems like the order of the principal cross-sectional 

deformations are different, and even the deformation patterns are coupled to each 

other. However, considering Fig. 4.28 together, it shows that whether the principal 

cross-sectional deformations are different, it can give qualified analysis results. By 

this, we can show that the shape functions can be obtained even with limited data 

when the composite thin-walled beam of a specific condition should be considered. 
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Table 4.1 Eigenfrequencies obtained by the data-driven approach with different 

numbers of sectional shape functions (12, 18, and 24 DOFs) for a free-free 

isotropic beam having the cross-section shown in Fig. 4.1 (d) (unit: Hz) 

Method 1st 2nd 3rd 4th 5th 

Shell 229.19 415.88 546.56 707.42 764.64 

12 DOFs 241.01 435.34 590.11 726.09 847.01 

18 DOFs 229.84 418.02 550.46 719.59 773.49 

24 DOFs 229.63 416.40 549.27 716.17 771.84 
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Table 4.2 Eigenfrequencies obtained by the data-driven approach with different 

numbers of sectional shape functions (12, 18, and 24 DOFs) for a clamped-

clamped isotropic beam having the cross-section shown in Fig. 4.1 (d) (unit: Hz) 

Method 1st 2nd 3rd 4th 5th 

Shell 219.19 399.12 517.04 724.78 737.57 

12 DOFs 232.92 418.67 558.98 747.35 820.67 

18 DOFs 221.95 404.87 524.97 739.43 748.56 

24 DOFs 221.40 402.48 523.03 736.19 746.41 
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Table 4.3 The critical load (Pcr) calculated by the data-driven approach using 

different numbers of sectional shape functions (12, 18, and 24 DOFs) for a 

isotropic cantilever beam under a compressive load having the cross-section shown 

in Fig. 4.1 (d) with different beam lengths (L) (unit: N) 

Method L= 300mm L= 600mm L= 900mm L= 1200mm 

Shell 1088850 326850 147567 83406 

12 DOFs 1282101 358807 162013 91611 

18 DOFs 1126624 328627 148495 83972 

24 DOFs 1121417 328235 148378 83916 
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Table 4.4 Eigenfrequencies obtained by the data-driven approach with different 

numbers of sectional shape functions (15, 30, 45, and 60 DOFs) for a free-free 

composite beam having the cross-section shown in Fig. 4.1 (a) (unit: Hz) 

Method 1st 2nd 3rd 4th 

Shell 185.58 220.37 262.03 281.19 

15 DOFs 187.94 223.16 293.76 298.76 

30 DOFs 185.04 219.96 263.90 279.66 

45 DOFs 184.66 219.43 262.20 278.12 

60 DOFs 184.39 219.10 260.09 277.83 
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Table 4.5 Eigenfrequencies obtained by the data-driven approach with different 

numbers of sectional shape functions (15, 30, 45, and 60 DOFs) for a clamped-

clamped composite beam having the cross-section shown in Fig. 4.1 (a) (unit: Hz) 

Method 1st 2nd 3rd 4th 

Shell 255.58 291.73 305.82 327.77 

15 DOFs 293.25 308.46 328.28 345.06 

30 DOFs 259.00 289.63 305.37 331.91 

45 DOFs 256.80 288.42 304.07 329.97 

60 DOFs 254.81 288.20 303.72 329.14 
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Table 4.6 The critical load (Pcr) calculated by the data-driven approach using 

different numbers of sectional shape functions (15, 30, 45, and 60 DOFs) for a 

composite cantilever beam under a compressive load having the cross-section 

shown in Fig. 4.1 (a) with different beam lengths (L) (unit: N) 

Method L= 600mm L= 1200mm L= 1800mm L= 2400mm 

Shell 28151 27666 16940 9584 

15 DOFs 40610 40135 20501 11622 

30 DOFs 29125 28678 17191 9730 

45 DOFs 28771 28346 17101 9681 

60 DOFs 28310 27866 17053 9654 
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Fig. 4.1 Various beam cross-sections considered for analysis: (a) box beam, (b) 

lipped channel beam, (c) double-cell beam, and (d) general section beam 
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Fig. 4.2 Sectional shape functions of the isotropic thin-walled beam derived by the 

data-driven approach for the cross-section in Fig. 4.1 (a) 
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Fig. 4.3 Sectional shape functions of the isotropic thin-walled beam derived by the 

data-driven approach for the cross-section in Fig. 4.1 (b) 
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Fig. 4.4 Sectional shape functions of the isotropic thin-walled beam derived by the 

data-driven approach for the cross-section in Fig. 4.1 (c) 
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Fig. 4.5 Sectional shape functions of the isotropic thin-walled beam derived by the 

data-driven approach for the cross-section in Fig. 4.1 (d) 
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Fig. 4.6 Numerical results for Example 1 in Chapter 4.2 for (a) Loading condition 

1 and (b) Loading condition 2. The three-dimensional displacements in the X-, Y- 

and Z-directions are plotted by the present data-driven one-dimensional analysis 

using 12, 18 and 24 degrees of freedom and compared with the shell-based results. 

The measurements were taken at point *a (see Fig. 4.1 (d)) of the cross-section 

along the beam axial axis 
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Fig. 4.7 Eigenmodes obtained for Example 2 in Chapter 4.2 (a) free-free beam and 

(b) clamped-clamped beam. Shell: the result by ABAQUS shell elements, 

Proposed: the result by the present data-driven beam elements 
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Fig. 4.8 Buckling mode shapes in beams under axial compression for Example 2 in 

Chapter 4.2. L: beam length, Shell: the result by ABAQUS shell elements, 

Proposed: the result by the present data-driven beam elements 
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Fig. 4.9 Numerical results for a isotropic box beam. Three-dimensional 

displacement along the Z (axial) coordinate along (45, 120) (see Fig. 4.1 (a)) of the 

wall center subjected to (a) shear line force of 1N applied to the *a - *b edge in the 

Y direction and (b) normal line force of 1N applied to the *c - *d edge in the X 

direction. (c) Eigenmodes with eigenfrequencies in the free-free beam, and (d) 

buckling mode shapes with the critical load in the cantilevered beam under a 

compression load 



90 

  

Fig. 4.10 Numerical results for a isotropic lipped channel beam. Three-dimensional 

displacement along the Z (axial) coordinate along (30, 120) (see Fig. 4.1 (b)) of the 

wall center subjected to (a) shear line force of 1N applied to the *c - *d edge in the 

Y direction and (b) normal line force of 1N applied to the *b - *c edge in the Y 

direction. (c) Eigenmodes with eigenfrequencies in the free-free beam, and (d) 

buckling mode shapes with the critical load in the cantilevered beam under a 

compression load 
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Fig. 4.11 Numerical results for a isotropic double-cell beam. Three-dimensional 

displacement along the Z (axial) coordinate along (30, 120) (see Fig. 4.1 (c)) of the 

wall center subjected to (a) a shear line force of 1N applied to the *a - *b edge in 

the Y direction and (b) a normal line force of 1N applied to the *d - *e edge in the X 

direction. (c) Eigenmodes with eigenfrequencies in the free-free beam, and (d) 

buckling mode shapes with the critical load in the cantilevered beam under a 

compression load 
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Fig. 4.12 The tendencies of the eigenvalue of the principal components 

corresponding to each beam sections in Fig. 4.1 for Chapter 4.2.1. (a) Eigenvalue 

proportion and (b) Remain proportion 
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Fig. 4.13 The effects of the data size on the solution accuracy for Example 3 in 

Chapter 4.2. Errors in the mean compliance are plotted for (a) the proposed 

approach when the reference beam length varies from 0.15 m to 0.9 m and (b) the 

proposed approach when downsampling among the total amount of cross-sectional 

deformation data when the beam length is fixed at 0.6 m 
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Fig. 4.14 The effects of the shell mesh resolution on the solution accuracy for 

Example 4 in Chapter 4.2. Errors by larger shell mesh analyses (Mesh M, Mesh C) 

and data-driven beam analysis corresponding to shape functions obtained when 

using different shell mesh sizes (Mesh F, Mesh M, Mesh C) are plotted 
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Fig. 4.15 The effects of the selected data sets on the solution accuracy for Example 

5 in Chapter 4.2. Errors in the mean compliance for (a) Loading condition 3 and (b) 

Loading condition 4, and (c) deformation configuration at the free end of the thin-

walled beam model under Loading condition 4 using 24 degrees of freedom 
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Fig. 4.16 Sectional shape functions of the composite thin-walled beam derived by 

the data-driven approach for the cross-section in Fig. 4.1 (a)  
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Fig. 4.17 Sectional shape functions of the composite thin-walled beam derived by 

the data-driven approach for the cross-section in Fig. 4.1 (b)  
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Fig. 4.18 Sectional shape functions of the composite thin-walled beam derived by 

the data-driven approach for the cross-section in Fig. 4.1 (d)  
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Fig. 4.19 Numerical results for Example 1 in Chapter 4.3 for (a) Loading condition 

1, (b) Loading condition 2 and (c) Loading condition 3. The three-dimensional 

displacements in the X-, Y- and Z-directions are plotted by the present data-driven 

one-dimensional analysis using 15, 30 and 45 degrees of freedom and compared 

with the shell-based results. The measurements were taken at point (45, 120) (see 

Fig. 4.1 (a)) of the cross-section along the beam axial axis 
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Fig. 4.20 Eigenmodes obtained for Example 2 in Chapter 4.3 (a) free-free beam 

and (b) clamped-clamped beam. Shell: the result by ABAQUS shell elements, 

Proposed: the result by the present data-driven beam elements 
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Fig. 4.21 Buckling mode shapes in beams under axial compression for Example 2 

in Chapter 4.3. L: beam length, Shell: the result by ABAQUS shell elements, 

Proposed: the result by the present data-driven beam elements 
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Fig. 4.22 Numerical results for a composite lipped channel beam. Three-

dimensional displacement along the Z (axial) coordinate along (30, 120) (see Fig. 

4.1 (b)) of the wall center subjected to (a) shear line force of 1N applied to the *c - 

*d edge in the Y direction and (b) normal line force of 1N applied to the *b - *c edge 

in the Y direction. (c) Eigenmodes with eigenfrequencies in the free-free beam, and 

(d) buckling mode shapes with the critical load in the cantilevered beam under a 

compression load 
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Fig. 4.23 Numerical results for a composite general section beam. Three-

dimensional displacement along the Z (axial) coordinate along *a (see Fig. 4.1 (d)) 

of the wall center subjected to (a) shear line force of 1N applied to the *c - *d edge 

in the Y direction and (b) normal line force of 1N applied to the *h - *d edge in the 

Y direction. (c) Eigenmodes with eigenfrequencies in the free-free beam, and (d) 

buckling mode shapes with the critical load in the cantilevered beam under a 

compression load 
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Fig. 4.24 Numerical results for Example 3 in Chapter 4.3 conducted with a single-

layer composite thin-walled box beam under torsional moment and bending 

moment 
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Fig. 4.25 Numerical results for Example 3 in Chapter 4.3 for (a) Loading condition 

1 and (b) Loading condition 2. The three-dimensional displacements in the X-, Y- 

and Z-directions are plotted by the present data-driven one-dimensional analysis 

using 45 degrees of freedom and compared with the shell-based results. The 

measurements were taken at point (45, 120) (see Fig. 4.1 (a)) of the cross-section 

along the beam axial axis 
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Fig. 4.26 The effects of the selected data sets on the solution accuracy for Example 

4 in Chapter 4.3. Errors in the mean compliance for (a) Loading condition 1 and (b) 

Loading condition 2 
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Fig. 4.27 MAC values between shape functions obtained by different data sets for 

Example 4 in Chapter 4.3. (a) Data set A1 and Data set A7, (b) Data set A3 and 

Data set A7 and (c) Data set A5 and Data set A7 
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Fig. 4.28 The effects of the selected data sets on the solution accuracy for Example 

5 in Chapter 4.3. Errors in the mean compliance for (a) Loading condition 1 and (b) 

Loading condition 2 
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Fig. 4.29 MAC values between shape functions obtained by different data sets for 

Example 5 in Chapter 4.3. (a) Data set Iso and Data set A5 and (b) Data set [30°] 

and Data set A5 
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CHAPTER 5.  

Conclusions 

 

 

In this thesis, we proposed a data-driven approach for a higher-order beam analysis 

of composite thin-walled beams in which the core cross-sectional shape functions 

corresponding to higher-order beam degrees of freedom are derived using a data-

driven approach. Because the effects of anisotropic properties and lamination 

cannot be taken into account in the earlier higher-order beam theory, the beam 

formulation was updated so that it can represent these effects. After establishing the 

modified higher-order beam theory for composite thin-walled beam, a finite 

element formulation based on the developed higher-order beam theory was set up 

with explicitly expressed stiffness, mass, and geometric stiffness matrices. 

 

In the process of deriving shape functions, the big data representing local 

deformations of all cross-sections of a composite thin-walled beam was obtained 

using the structural response of a statically loaded thin-walled cantilevered beam 

modeled by a detailed shell model. This big data was processed by a principal 

component analysis to extract the principal cross-sectional deformations used to 
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derive the sectional shape functions corresponding to important beam degrees of 

freedom. Compared to previous analytical or numerical models often requiring 

various kinematic assumptions, this approach requires no such assumptions. 

Moreover, the approach was shown to be valid for various types of cross-sections, 

making it possible to prioritize significant cross-sectional deformations. 

 

The findings from our data-driven approach are summarized below. 

- The use of two sets of loads, the global beam force and shell nodal force, 

applied at the cantilevered beam was found to be effective for generating 

reliable cross-sectional deformation data 

- The generated data of the cross-sectional deformations must be properly 

pre-processed before the principal component analysis: the 

orthogonalization of the resulting deformations with respect to six rigid-

body motions, separating the cross-sectional deformation data into two 

parts, the in-plane and out-of-plane deformations to be consistent with the 

higher-order beam theory, and adjusting the average of the entire cross-

sectional deformation data matrix to zero 

- The amount of cross-sectional deformation data critically affects the 

solution accuracy; accordingly, a sufficient amount of data should be used. 

A guideline was given 

- The sectional shape functions derived by static analyses were found to be 

valid not only for static problems but also vibration and buckling problems 
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(within about 1% errors), justifying the validity of the proposed approach 

- If the mesh resolution of the shell model for the thin-walled beam was 

sufficiently fine to yield converging results, the collected data of cross-

sectional deformations was also found to be reliable 

- Using more than five anisotropic thin-walled beam models enables 

obtaining shape functions for analyzing the behavior of general composite 

thin-walled beams 

- Shape functions that can analyze isotropic thin-walled beams were not 

enough to analyze composite thin-walled beams. However, shape 

functions specialized for a certain composite thin-walled beam model can 

be defined with limited data 

 

While the analysis here is limited to linear analysis as the first work on the subject, 

the proposed big-data approach is expected to be more effective when dealing with 

nonlinear thin-walled beam problems where the cross-sectional deformation of the 

beam has more influence. Also, this thesis has concentrated on the process of 

defining shape functions to a given specific section, but the extension of this work 

should be able to deal with a general approach to carried out shape functions 

generally without performing new analysis according to the cross-sectional shape. 

It is also expected to extend this research to the field of data-driven reduced finite 

element modeling, as the identification process for deformation modes can be 

applied to other dimensional models similarly.  



113 

 

 

 

APPENDIX A. 

Physical approach for deriving shape functions of 

composite thin-walled box beams 

Equation Chapter (Next) Section 1 

 

A.1 Overview 

In the Appendix, research [43] on composite thin-walled box beam that obtains 

shape functions by a physical approach is introduced. The developed higher-order 

beam theory here has formed the base of the research in this thesis. A systematic 

method to derive the sectional shape functions that are critical in developing the 

higher-order beam theory for composite box beams is proposed. Because the 

effects of anisotropic properties and lamination cannot be taken into account in the 

earlier higher-order beam theory [34-42], the developed theory must consider 

additional degrees of freedom related to sectional shape functions that can 

represent these effects. The sectional shape functions needed for composite thin-

walled box beams are newly derived by considering the characteristics of the 

anisotropic materials. After establishing the higher-order beam theory for 

composite thin-walled box beam, a finite element formulation was considered by 

the procedure introduced in this dissertation. Various numerical studies, including a 
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case for arbitrary ply orientations, confirmed that our higher-order beam theory 

using 26 nodal degrees of freedom for each node yields results sufficiently 

comparable with the detailed shell results. Satisfactory results were obtained for 

both static and free-vibration problems.  

 

Figure A.1 shows a thin-walled box beam with width b, height h, and wall 

thickness t. The cross section of the beam lies on the plane containing the global X 

and Y-axes, and the axial direction of the beam is defined as the Z-axis. The local 

coordinates, ned, sed, and zed (ed=1, 2, 3, 4), are introduced for each of the four walls 

forming the thin-walled box beam. The positive directions of these local 

coordinates are illustrated in Fig. A.1. In the Appendix, the sign ed will be omitted 

when the equations are regardless of the edge number. 
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A.2 Cross-sectional deformations derived by plane stress 

assumption 

Referring to Fig. 2.1, ply indices are assigned from the inside to the outside of the 

beam cross section. It is assumed that the q-th ply of each wall has 

circumferentially uniform stiffness (CUS) with the same angle. The overall process 

is sketched in Fig. A.2 and a detailed account of it will be presented below. 

 

To derive the sectional shape functions, the stress distribution on the cross section 

is considered first for an external force, moment, or bimoment (see the figures on 

the left of Figs. A.3-A.4 for example.) Then, we calculate the strain field arising 

from the stress. The next step is to identify the cross-sectional deformations needed 

to generate the strain field. The obtained deformations are used to define the 

sectional shape functions for the degrees of freedom used for composite thin-

walled box beam analysis. Although the subsequent analysis is valid for a case 

involving multiple plies, we assume that the composite thin-walled box beam 

consists of a single anisotropic ply at an arbitrary angle to facilitate our 

explanations. A case involving multiple plies will be considered in the examples at 

the end of the Chapter A.4 by extending the proposed approach in the single ply 

case in a straightforward manner. 

 

Because the state of stress in the s-z plane at the centerline of the composite thin-
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walled box beam (n=0) shown in Fig. 1.2 can be assumed to be in a state of plane 

stress, the following stress-strain relation is employed [72]: 
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If the eight degrees of freedom Vlasov beam theory [11] is used, one can consider 

eight external loads denoted by a symbol 𝜁, which represents four out-of-plane 

loads ( ,  ,  ,  )z x y LF M M B  and four in-plane loads ( ,  ,  ,  )x y z TF F M B . Here, F and 

M denote the force and moment, respectively, 
LB  denotes the longitudinal 

bimoment that generates warping, and 
TB  represents the transverse bimoment 

that causes distortion [34]. The stress fields caused by out-of-plane loads with unit 

magnitude and in-plane loads with unit magnitude are denoted by zz

  and sz

 , 

respectively. The second columns in Figs. A.3-A.4 illustrate the distribution of 

zz

  and sz

 , whose explicit formula are given below. Because the main forms of 

the stress fields were derived in [11, 77], the detailed procedure used to derive 

them are not repeated here. 
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1( ) ( 1)TB ed

sz eds     (A.9) 

 

Once zz

  and sz

  are determined, stresses ( , )zz s z  and ( , )sz s z  created by 

external loads along the centerline of the cross section (n=0) can be written as 

( ) ( )zz zz s z    ( ,  ,  ,z x yF M M   and 
LB ) and ( ) ( )sz sz s z    

( ,  ,  ,x y zF F M   and  TB ), respectively.  

 

The next step is to derive the strain fields associated with stress fields 

( ) ( )zz zz s z    and ( ) ( )sz sz s z   . We begin with the case for out-of-plane 

loads. Using Eq. (A.1) and Eqs. (A.2–A.5), the strain components, ss

 , zz

 , and 

sz

  ( { ,  ,  ,  }z x y LF M M B  ) on the centerline (n=0) can be expressed as: 

 12( , ) ( ) ( )ss zzs z S s z      (A.10) 

 22( , ) ( ) ( )zz zzs z S s z      (A.11) 
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 622 ( , ) ( ) ( )sz zzs z S s z      (A.12) 

Because the deformed pattern or shape of the beam section is independent of the z-

axis, the strains in Eqs. (A.10-12) can be written by using the product of the 

functions ( ( )s s  and ( )z s ) of s and the functions ( ( )z ) of z as: 

 

( ,1) ( , 1) ( , 1)
( , 1) ( , 1)( ( ) ( ))

( , ) ( ) ( )s s
ss s

u s z
s z s z

s s

  
   

  
 

  
 

  (A.13) 

 

( ,2) ( , 2) ( , 2)
( , 2) ( , 2)( ( ) ( ))

( , ) ( ) ( )z z
zz z

u s z
s z s z

z z

  
   

  
 

  
 

  (A.14) 

 

( ,3) ( , 3) ( , 3)( ,4) ( , 4) ( , 4)

( , 3) ( , 3) ( , 4) ( , 4)

( ( ) ( )) ( ( ) ( ))
2 ( , )

              ( ) ( ) ( ) ( )

s sz z
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s z

u s zu s z
s z

z s z s

s z s z

    


   

   


   

  
   

   

 

 (A.15) 

In Eqs. (A.13-15), the displacement field, u

 , is defined as 

     ,u s z s z  

   . Instead of using the expression in Eq. (2.1), we introduce 

new symbols,  s  and  z , to express u  because  s  may not be the 

same as  s  unless  s ’s are independent to each other. To distinguish 

 s  from  s ,  s  will be called the cross-section deformation 

function in this chapter. The procedure used to obtain  s ’s from  s ’s is 

given in Chapter A.3. The symbols in u

  are redefined as (𝜁, 1) and (𝜁, 2) for 

those associated with the 
ss  and 

zz  terms to count the number of cross-section 

deformation modes to be considered. Likewise, symbols (𝜁, 3) and (𝜁, 4) are used 

to represent the cross-section deformation mode related to the shear strain. In the 



119 

subsequent discussion, mn in (𝜁, mn) will be called the mode number. 

If Eqs. (A.10) and (A.13) are compared, the following relations can be identified: 

 
( , 1) ( ) ( ) s zzs s ds      (A.16) 

 
( , 1)

12 ( ) ( )S z z    (A.17) 

Eq. (A.16) suggests that mode 1 has non-zero s-directional displacement. Because 

mode 1 represents distortion in the plane of the cross section, the n-directional 

displacement is also induced. The n-directional displacement can be found by 

considering the continuities in displacement, angle, and moment at the corners of 

the cross section once the s-directional displacement is determined. Because the 

procedure used to find the n-directional displacement is the same as that used in 

existing higher-order beam theory research [34, 39], the detailed procedure will not 

be repeated here. For convenience, the integration constant appearing in Eq. (A.16) 

is chosen so that 
( , 1)

s

  is orthogonal to the sectional shape functions associated 

with the four degrees of freedom ( ,  ,   ),x y zU U   . 

 

The comparison of Eqs. (A.11) and (A.14) yields the following relations for mode 

2: 

 
( , 2) ( ) ( )z zzs s     (A.18) 

 
( , 2)

22 ( ) ( )S z z     (A.19) 

As Eq. (A.18) shows, mode 2 involves the cross-sectional deformations occurring 
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in the z-direction.  

 

By using Eqs. (A.12) and (A.15), one can find the cross-section deformation 

functions for modes 3 and 4 as follows: 

 
( , 3) ( ) ( )s zzs s     (A.20) 

 
( , 4) ( ) ( ) z zzs s ds      (A.21) 

 
( , 3) ( , 4)

62 ( ) ( ) ( )S z z z       (A.22) 

Modes 3 and 4 involve in-plane and out-of-plane deformations, respectively. The n-

directional deformation for mode 3 can be obtained by using the procedure 

described for mode 1. In the case of mode 4, Eq. (A.21) determines the cross-

section deformation function with only the z component. The integration constant 

value can be decided by imposing the continuity of displacement at the cross-

section corners in the same manner as in existing studies [34, 39], and by making 

( , 4)

z

  orthogonal to the sectional shape function associated with the axial 

deformation degree of freedom ( )zU  for convenience.  

 

The cross-section deformation functions derived by the procedure described above 

are explicitly given below and are graphically illustrated in Fig. A.3.  
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1 3 2 4
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n n n n

s s

b h
s s s s


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

   
  (A.23) 
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  (A.28) 

 

2 2
( , 4) ( , 4) ( , 4) ( , 4)

1 3 2 4( ) ( ) ( ),  ( ) ( )
2 8 4 2

x x x xM M M M

z z z z

s h bh hs
s s s s            (A.29) 

 

2 2
( , 1) ( , 1) ( , 1) ( , 1)

1 3 2 4

4 2 2 2 2 4
( , 1) ( , 1)

1 3 2

( , 1) ( , 1)

2 4

( ) ( ) ,  ( ) ( )
2 2 24

15 8 72 48
( ) ( ) ,

96

( ) ( )
2

y y y y

y y

y y

M M M M

s s s s

M M

n n

M M

n n

bs s b
s s s s

h b h h s s
s s

h

hs
s s

   

 

 


      

  
   

  

  (A.30) 

 
( , 2)
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z ed zz eds s    (A.31) 
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Note that the cross-section deformation functions of modes 1 and 2 are the same as 

those defined for isotropic materials, while the cross-section deformation functions 

of modes 3 and 4 are newly derived because of the non-zero 62S  term for 

anisotropic materials. Because 
( , 4)zF

z  cannot satisfy the axial edge continuity, 

making its actual occurrence difficult, we do not consider it as a cross-section 
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deformation function in this study. 

 

Let us now consider the case of in-plane loading. In this case, the in-plane loads 

cause shear stress ( )sz s  in the wall, as shown in Fig. A.4 

( { ,  ,  ,  }x y z TF F M B  ). For non-zero ( )sz s , one can find the following relations: 

 16( , ) ( ) ( )ss szs z S s z      (A.38) 

 26( , ) ( ) ( )zz szs z S s z      (A.39) 

 662 ( , ) ( ) ( )sz szs z S s z      (A.40) 

By using Eqs. (A.38-40) and the equations defining strains such as Eqs. (A.13-15), 

the following cross-section deformation functions can be defined in a manner 

similar to Eqs. (A.16-22). 

 
( , 1) ( ) ( ) s szs s ds      (A.41) 

 
( , 1)

16 ( ) ( )S z z    (A.42) 

 
( , 2) ( ) ( )z szs s     (A.43) 

 
( , 2)

26 ( ) ( )S z z     (A.44) 

 
( , 3) ( ) ( )s szs s     (A.45) 

 
( , 4) ( ) ( ) z szs s ds      (A.46) 

 
( , 3) ( , 4)

66 ( ) ( ) ( )S z z z       (A.47) 

Following the analysis step discussed for the case of out-of-plane loads, the cross-
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section deformation functions for in-plane loads are derived below and are 

sketched in Fig. A.4.  
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Modes 3 and 4 represent the same cross-sectional deformations that occur in 

isotropic materials, while modes 1 and 2 depict the additional cross-sectional 

deformations occurring in anisotropic materials, because 16S  and 26S  are non-

zero in anisotropic materials. It is in the same context that modes 3 and 4 for out-
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of-plane loads occur only in composite materials. In Fig. A.4, 
( , 4)zM

z , 
( , 2)TB

z , 

( , 4)TB

z  are not defined for the same reason why 
( , 4)zF

z  was not defined. 
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A.3 Definition of sectional shape functions for degrees of 

freedom 

The sectional shape functions corresponding to the degrees of freedom used for 

higher-order beam analysis are depicted in Fig. A.5. The sectional shape functions 

are defined along the centerline of the walls of the beam cross section. In Fig. A.5, 

the eight sectional shape functions indicated by “Vlasov beam deformation 

configurations” are related to six rigid-body degrees of freedom for the box beam 

section, and two non-rigid-body degrees of freedom (warping W and distortion 𝜒). 

 

We choose the first eight degrees of freedom (
1  to 

8 ) as 

,  ,  ,  ,  ,  ,  ,x y z x y zU U U W    and   in order. (The symbol 
k  is used to denote 

the k-th degree of freedom.) They were used in the existing higher-order beam 

theory [34, 39] and Vlasov beam theory [11]. The corresponding sectional shape 

functions k

 (k=1, …, 8) are given below. They will be called the “Vlasov 

sectional shape functions.” 
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Additional degrees of freedom are associated with 
( , )nm

  derived in the previous 

sections. Referring to Figs. A.3-A.4, it appears that there may be 28 additional 

degrees of freedom altogether. However, they are not all independent of each other. 

If they were independent, 
( , )nm

  could be directly used as k

 . Therefore, a 

procedure that takes only the independent degrees of freedom must be considered. 

Furthermore, the resulting independent degrees of freedom must be also 

independent of the eight Vlasov degrees of freedom. Here, we will use the Gram-

Schmidt orthogonalization process as a means to select independent degrees of 

freedom. We note that 14 cross-section deformation functions shown in the 

columns of modes 1 and 2 in Fig. A.3 and modes 3 and 4 in Fig. A.4 also appear 
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for isotropic box beams. For this reason, they will be called the isotropic cross-

section deformation functions. On the other hand, the 14 cross-section deformation 

functions shown in the columns of modes 3 and 4 in Fig. A.3 and modes 1 and 2 in 

Fig. A.4 appear only for anisotropic box beams. Therefore, they will be called the 

anisotropic cross-section deformation functions. 

 

By applying the Gram–Schmidt process, one can identify the sectional shape 

function, k

 , which corresponds to the orthogonal degrees of freedom: 
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where k=9, 10, …, and the operator, < >, denotes the integration along the s-axis. 

For the isotropic cross-section deformation functions, it is found that there are only 

six independent degrees of freedom (
9  to 

14 ) and the corresponding isotropic 

sectional shape functions are shown in the second row of Fig. A.5. For the 

anisotropic cross-section deformation functions, it is found that eight additional 

independent degrees of freedom (
15  to 

22 ) exist and the corresponding 

anisotropic sectional shape functions are shown in the third row of Fig. A.5. 
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Aside from the degrees of freedom considered so far, sectional shape functions 

depicting only the bending deformation of the wall plate should be also included. 

The importance of wall bending deformations was addressed in previous studies on 

composite beam analysis [59, 78], and also in the vibration and joint analysis of the 

higher-order beam theory [38, 39]. The specific forms of the selected four sectional 

shape functions listed below are defined in [38], and they are shown in the last row 

of Fig. A.5. The corresponding degrees of freedom are denoted by 
23 –

26 .  
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Therefore, we have developed a higher-order beam theory using 26 degrees of 

freedom for the analysis of general composite thin-walled box beam.  
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A.4 Examples 

Here, we present the numerical results based on the proposed theory for composite 

thin-walled box beams with various conditions. The validity of the proposed theory 

is verified by comparing the present results with the results obtained by the S8R 

shell elements of ABAQUS [75]. Lower-order S4R elements (which also exhibit 

similar accuracy to S8R elements) may be used, but we used higher-order S8R 

elements because our beam elements are based on the Hermite interpolation 

scheme requiring quadratic functions. In Examples 1–2, the numerical results based 

on our theory for composite thin-walled box beams are checked with different 

numbers of elements, beam lengths, and thicknesses, respectively. The effect of the 

number of degrees of freedom is examined in Example 3. Example 4 considers 

composite thin-walled box beams composed of plies at arbitrary angles for which 

static and eigenvalue problems are solved. 

 

Example 1 

This example considers the effects of the interpolation for finite element 

calculations. The geometric dimensions and material properties for the analysis of 

the beam are as follows: L=1000 mm, b=100 mm, h=50 mm, and t=3 mm, 
LE = 

141.96 GPa, 
TE = 9.79 GPa, 

LTG = 6 GPa, and 
LT = 0.42. The beam has six 

plies with the same thickness and is stacked at 
3[0 / 45 ]  . One side of the 

composite thin-walled box beam is fixed and the opposite side is subjected to a 
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bending moment (1 Nm) or a torsional load (1 Nm). The number of axial elements 

was changed for the linear and Hermite interpolations, and the numerical results 

were compared with those obtained using ABAQUS shell elements. Figures A.6 (a) 

and (b) show the errors of the bending and torsional rotations at the beam end by 

the bending and torsional moments, respectively. For the present higher-order beam 

theory analysis, 26 degrees of freedom were used for the sectional shape functions 

 

In the case where the Hermite interpolation is used, the error becomes within 1-2% 

even if only ten finite elements are used. When 20 or more elements are used, 

nearly convergent results are obtained. However, in a case where linear 

interpolation is used, the error reduces to below 2% when more than 50 elements 

are used. Furthermore, the relative error obtained by the linear interpolation 

appears to be always larger than that obtained by the Hermite interpolation; it is 

larger by more than 1%. The error obtained by the linear interpolation may be 

inevitable because some of the strain energy caused by plate bending cannot be 

properly represented by the linear interpolation; in Eq. (2.6), the n-directional 

displacement is differentiated twice in the z coordinate. Therefore, shall hereafter 

employ the Hermite interpolation. In addition, 40 elements are used in the axial 

direction to ensure convergence. 

 

Example 2 

The aim of Example 2 is to show that the present results are sufficiently accurate 
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and comparable with the shell results. Specifically, we vary the length and 

thickness of the composite thin-walled box beams, and the geometric data, material 

properties, ply lamination, boundary conditions, and loading conditions (except 

length and thickness) are the same as in Example 1. Tables A.1 and A.2 show 

bending and torsional rotations at the end, while increasing the thickness of the 

member from 1.5-9 mm with the beam length fixed at 1000 mm. As the member 

becomes thicker, the analysis error becomes larger overall. However, even if the 

thickness reaches 9 mm, an error no greater than 2.5% occurs. Therefore, the 

proposed theory is found to be valid for the thin-walled aspect ratio assumed in this 

study. 

 

In Tables A.3 and A.4, the length of the beam was reduced from 2000 mm to 250 

mm with the beam thickness fixed at 6 mm, and bending and torsional rotations 

were observed at the beam end. The shorter the length of the member, the larger the 

analysis error. However, even if the beam length is 250 mm, the error is within 

2.5%, so it is clear that our higher-order beam theory for composite thin-walled 

box beams is valid for the beam aspect ratio assumed in this study. 

 

Example 3 

In this example, we will investigate the effect of the number of sectional 

deformation degrees of freedom used for analysis. All conditions except beam 

thickness and ply angle are shown in Example 1. The ply is a single ply with a 
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thickness of 6 mm and an angle of 30°. Figure A.7 (a) plots the axial variation of 

the three-dimensional displacements at the point where s is b/2 at the center of wall 

2, when the beam is subjected to the bending moment. Figure A.7 (b) shows the 

three-dimensional displacements at the point where s is b/2 at the center of wall 4. 

Figure A.8 presents the results when the torsional moment is imposed at the beam 

end. The numerical studies in Figs. A.7-A.8 suggest that the composite thin-walled 

box beam stiffness cannot be correctly evaluated if only the lowest eight degrees of 

freedom (which are used in the Vlasov beam theory) are used. When 18 degrees of 

freedom are used, excluding the anisotropic plane-stress related deformation 

degrees of freedom 
15 22( )  , the results become closer to the shell results. 

However, there are still several errors that cannot be overcome, especially near the 

loaded end. In the case where all 26 proposed degrees of freedom are used, the 

results are confirmed to be almost the same as those of the shell analysis, which 

supports the validity of this theory. 

 

Example 4 

In this example, a composite thin-walled box beam stacked with randomly oriented 

plies is analyzed. The beam is stacked with six plies, [35°/-55°/-10°/80°/-55°/35°], 

while the other conditions are set the same as in Example 3. Figure A.9 (a) plots the 

three-dimensional displacement at the point where s=0 at the center of wall 1, when 

the beam is subjected to the bending moment. Figure A.9 (b) plots the stress 
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distribution in the outermost ply at the point where s=b/40 of wall 1. For this 

example, we used 80 higher-order beam elements to calculate the local stress at 

both ends in more detail. Figures A.10 (a) and (b) show the results for the torsional 

moment loading case; the three-dimensional displacement and stress are plotted at 

the same positions as in Fig. A.9. From the results in Figs. A.9-A.10, it is 

confirmed that our higher-order beam theory for composite thin-walled box beams 

yields results that are sufficiently close to those predicted by the shell theory. 

 

Finally, the free vibration analysis of the same beam is carried out (  = 1445 

kg/m3). The results obtained by the proposed higher-order beam theory shown in 

Fig. A.11 (b) agree with those by the ABAQUS shell analysis in Fig. A.11 (a); an 

average error of 1.41% and the maximum error of 3.88% are calculated for the 

lowest five modes.   
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Table A.1 Bending rotation predicted for various beam thickness by the proposed 

higher-order beam approach at the tip of composite box beam, and the relative 

errors with respect to the shell calculation 

t (mm) 1.5 3 6 9 

Shell (rad) 5.78821E-05 2.91095E-05 1.47031E-05 9.88165E-06 

Proposed (rad) 5.77853E-05 2.90613E-05 1.46776E-05 9.86274E-06 

Error (%) 0.167280 0.165633 0.173209 0.191329 
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Table A.2 Torsional rotation predicted for various beam thicknesses by the 

proposed higher-order beam approach at the tip of composite box beam, and the 

relative errors with respect to the shell calculation 

t (mm) 1.5 3 6 9 

Shell (rad) 3.22447E-04 1.15693E-04 4.83773E-05 2.99818E-05 

Proposed (rad) 3.20281E-04 1.14559E-04 4.76448E-05 2.92764E-05 

Error (%) 0.671719 0.980271 1.51413 2.35280 
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Table A.3 Bending rotation predicted for various lengths by the proposed higher-

order beam approach at the tip of composite box beam, and the relative errors with 

respect to the shell calculation 

L (mm) 2000 1000 500 250 

Shell (rad) 5.82165.E-05 2.91095.E-05 1.45561.E-05 7.27937.E-06 

Proposed (rad) 5.81263.E-05 2.90613.E-05 1.45280.E-05 7.26105.E-06 

Error (%) 0.154917 0.165633 0.193074 0.251618 
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Table A.4 Torsional rotation predicted for various lengths by the proposed higher-

order beam approach at the tip of composite box beam, and the relative errors with 

respect to the shell calculation 

L (mm) 2000 1000 500 250 

Shell (rad) 2.05565.E-04 1.15693.E-04 6.89469.E-05 3.20396.E-05 

Proposed (rad) 2.04162.E-04 1.14559.E-04 6.80058.E-05 3.12696.E-05 

Error (%) 0.682461 0.980271 1.36495 2.40344 
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Fig. A.1 The coordinate system used for the analysis of the composite thin-walled 

box beam and the detail geomety parameters 
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Fig. A.2 Schematic to explain the process to derive the displacement field 

associated with My 
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Fig. A.3 Derived cross-section deformation functions associated with out-of-plane 

loads 
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Fig. A.4 Derived cross-section deformation functions associated with in-plane 

loads 
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Fig. A.5 Sectional shape functions for the degrees of freedom employed in the 

Higher-order Beam Theory for composite thin-walled box beams 
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Fig. A.6 Numerical results for Example 1 in Appendix A to examine the effects of 

the linear and Hermite finite element interpolation functions. The composite box 

beam is subjected to (a) bending moment and (b) torsional moment 
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Fig. A.7 Numerical results for Example 3 in Appendix A in a single-layer 

composite thin-walled box beam under bending moment. Three-dimensional 

displacements at s=b/2 at the center of (a) wall 2 and (b) wall 4 
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Fig. A.8 Numerical results for Example 3 in Appendix A in a single-layer 

composite thin-walled box beam under torsional moment. Three-dimensional 

displacements at s=b/2 at the center of (a) wall 2 and (b) wall 4 
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Fig. A.9 Static analysis results for Example 4 in Appendix A considering bending 

moment loading. (a) Three-dimensional displacement at s=0 at the center of wall 1 

and (b) stress at s=b/40 at the outermost ply of wall 1 
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Fig. A.10 Static analysis results for Example 4 in Appendix A considering 

torsional moment loading. (a) Three-dimensional displacement at s=0 at the center 

of wall 1 and (b) stress at s=b/40 at the outermost ply of wall 1 
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Fig. A.11 Free vibration analysis results for Example 4 in Appendix A. (a) 

ABAQUS shell results and (b) the present higher-order beam theory results 
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ABSTRACT (KOREAN) 

 

데이터 분석 기반 

복합소재 박판 보의 유한요소 모델 개발 

 
신 동 일 

서울대학교 대학원 

기계항공공학부 

 

일 차원 유한요소를 가지고 박판 보의 거동을 해석하기 위해서는 보의 

단면에서 발생하는 복잡한 단면 변형을 고려해야 한다. 보 단면에서의 

국부적인 변형들을 기술하는 형상 함수들의 엄밀한 정의는 복합소재로 

만들어진 박판 보를 해석할 때 더욱 중요해진다. 등방성 물질로 구성된 

보에서는 고려되지 않는 이방성 특성과 적층 특성들이 보의 단면에서 발

생하는 변형을 더 복합하게 만들기 때문이다. 이 논문에서는 복합소재 

박판 보를 다루기 위한 형상 함수들을 정의하고, 이를 활용하여 기존에 

등방성 물질로 구성된 박판 보 해석에 한정되어 있었던 고차 보 이론 연

구를 확장한다. 

 

본 연구에서는 데이터 분석 기반 접근을 통하여 일반적인 플라이 각도 
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및 적층 순서를 포괄하는 다양한 단면의 복합소재 박판 보 해석에 필요

한 형상 함수들을 구하였다. 복합소재 박판 보의 쉘 모델 기반 해석 결

과들을 통하여 단면 변형들을 대표하는 빅 데이터를 확보하고, 이에 대

한 주성분 분석을 수행하여 형상 함수들을 정의하였다. 제안하는 방법론

을 통하여 기존의 복합소재 박판 보 해석 연구들에서 요구하였던 보 단

면 형상에 대한 특정 기구학적 가정 없이 형상 함수들을 식별할 수 있었

다. 또한, 형상 함수들이 특정 플라이 각도나 적층 순서에 제한되지 않고 

일관되도록 정의할 수 있었다. 

 

복합소재 박판 보 해석으로 확장한 고차 보 요소들은 확보한 데이터 분

석 기반의 형상 함수들을 기반으로 정의되었으며, 제안한 보 요소를 활

용하여 다양한 조건에서의 복합소재 박판 보의 정적, 진동 및 좌굴 해석

을 수행하였다. 본 논문에서는 다양한 수치 예제들을 통해, 제안하는 일 

차원 보 해석 모델이 기존의 이차원 쉘 해석 모델들에 준하는 해석을 수

행할 수 있음을 입증하였다. 제안하는 연구는 복합소재 박판 보 해석 모

델을 요구하는 다양한 산업 분야에 활용될 것으로 기대된다. 

 

주요어: 적층판, 이방성, 박판 보, 단면 변형, 데이터 기반 해석, 유한요소

법 

학 번 : 2013-22493 
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