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Agarwood has been traditionally used to treat various human diseases, 

although its underlying pharmacological mechanism of action has not 

yet been fully elucidated. Recently, the potential of adiponectin 

regulators has received attention because they are associated with 

various human disease conditions such as obesity, type 2 diabetes, 

atherosclerosis, and cancer. The aim of this study was to evaluate 

whether Aquilaria malaccensis–derived agarwood altered adiponectin 

production during adipocyte formation in human BM-MSCs. A. 

malaccensis–derived agarwood methanol extract significantly induced 

adiponectin release during adipocyte formation in hBM-MSCs. 

Bioactivity-guided isolation of adiponectin secretion-promoting 

compounds from agarwood revealed phenylethylchromones as major 

active compounds and 6-methoxy -2- (2-phenylethyl) chromone and 

7-methoxy-2- (2-phenylethyl) chromone as the most potent 

compounds. In target deconvolution experiments, 

phenylethylchromones, were found to be present in notable quantities 

in A. malaccensis–derived agarwood, and shown to act as PPAR 

partial agonists. This result supports the hypothesis that the 

therapeutic effects of agarwood on metabolic diseases are associated 

with a PPAR-partial agonism-dependent adiponectin secretion 
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mechanism. Additionally, we demonstrated that phenylethylchromones 

can be exploited as a pharmacophore when designing a novel PPAR 

partial agonist. 
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Ⅰ. Introduction 

Agarwood is a secondary metabolite formed during plant defense 

responses against pathogen-induced injuries in the bark of Aquilaria 

species, which taxonomically belong to Thymelaeaceae.1 When trees 

of Aquilaria species are infected by various fungi or wounded by 

insects, animals or lightning strikes, resinous volatile organic 

compounds are synthesized to suppress further fungal growth or 

trigger the healing process at wounded sites.2 The habitats of Aquilaria 

species that produce agarwood are distributed in the tropical 

rainforests of Southeastern Asia. This fragrant resin-containing 

natural product has been widely used in conventional medicines in 

Asian countries, including China, India, Korea, and Japan, to relieve the 

symptoms of various diseases, such as gastrointestinal disorders, 

asthma, pain, and high fever.1 Agarwood extracts or agarwood-

derived compounds have been suggested to include the diverse 

potential therapeutic effects such as anti-diabetic,3 anti-cancer,3-5 

anti-allergic,6, 7 anti-nociceptive,8 and sedative activities.9, 10 

Adiponectin, also referred to as Acrp30/AdipoQ, is an 

adipocyte secreting protein hormone, involved with cellular 

metabolism. It has attracted therapeutic attention because of its 
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significant association with diverse diseases such as obesity, diabetes, 

atherosclerosis, and cancer.11- 13 Commonly, the serum AdipoQ levels 

in these patient populations are lower compared to those of a healthy 

population. In obese and diabetic patients, the serum ratio of 

adiponectin to leptin is lower than that of healthy individuals.14, 15 

Moreover, insulin sensitivity was improved when exogenous 

adiponectin was administered to diabetic mice.16, 17 Adiponectin also 

improved the pathogenic outcome of atherosclerosis in mice.18 The 

administration of adiponectin also inhibited pathogenic fibrosis in mice, 

inducing alcoholic and nonalcoholic fatty liver diseases.19 Because 

adiponectin has therapeutic potential in numerous human diseases, 

such as obesity, type 2 diabetes, atherosclerosis, and fatty liver, novel 

adiponectin secretion regulators are being actively sought for the 

development of new drugs.  

In mammalian adipocytes, adiponectin release is stimulated by 

the activation of peroxisome proliferator-activated receptor (PPAR) 

.11, 12 PPAR agonists, such as rosiglitazone and pioglitazone, 

significantly upregulate adiponectin production in 3T3-L1 

adipocytes.20 Adiponectin secretion can also be induced by PPAR, 

PPAR, glucocorticoid receptor (GR), GPR109A, liver X receptor (LXR), 
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and protein kinase D (PKD).21-24 However, it may be possible that these 

proteins indirectly trigger PPAR activation. Interestingly, aspirin, a 

major non-steroidal anti-inflammatory drug (NSAID), promotes 

adiponectin secretion during adipocyte differentiation in human bone 

marrow mesenchymal stem cells (hBM-MSCs), although its molecular 

targets responsible for promoting adiponectin secretion have not yet 

been clearly identified.25 Because numerous molecular mechanisms 

regulate adiponectin secretion,  it is advisable to use cell-based 

phenotype assays when screening and studying adiponectin 

secretagogues. Phenotypic assays for the discovery of adiponectin 

secreting modulators have been developed using 3T3-L1 

preadipocytes or hMSCs.26- 28 Because MSCs can give rise to cells of 

multiple differentiation lineages24, adipogenesis in a hMSCs-based 

assay system includes earlier differentiation processes such as the 

lineage commitment of MSCs to preadipocytes compared to that of 

murine preadipocyte cell lines. In this regard, phenotypic assays using 

hMSCs have more molecular target coverage for the discovery of 

novel adiponectin secretagogues. 

In a preliminary screen of various natural products, we found 

that the methanol extract of an agarwood formed in A. malaccensis 
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enhanced adiponectin production during adipocyte differentiation in 

hBM-MSCs. Because an A. malaccensis–derived agarwood methanol 

extracts increased adiponectin production, pharmacological 

mechanisms that explain the traditional uses of an agarwood in diverse 

human metabolic and inflammatory conditions may be associated with 

its adiponectin secretion-promoting activity. In view of this, we 

performed a bioactivity-guided isolation study of adiponectin 

secretion–inducing compounds using A. malaccensis–derived 

agarwood. 
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Ⅱ. Materials and Methods 

1. Collection of agarwood materials.  

Agarwood chips of A. malaccensis were purchased from Industrial 

Plantation Co. (Vientiane, Laos) in January 2010. A voucher specimen 

(AM-2010-01) was deposited at the herbarium of the Natural Products 

Research Institute, Seoul National University (Seoul, Korea). 

2. Collection of agarwood extractions and isolated compounds.  

Dr. Chi Thanh Ma from Prof. Jeong Hill Park’s lab provided the 

extractions and purified compounds of A. malaccensis, as well as the 

structure of the fifteen phenylethylchromone compounds. 

3. Cell culture and differentiation.  

The hBM-MSCs were obtained from Lonza (Walkersville, MD, USA) 

and cultured in Dulbecco Modified Eagle’s Medium (DMEM; glucose 1 

g/L) with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin 

(Invitrogen, Carlsbad, CA, USA). When maintaining hBM-MSCs in 

culture, media was replaced every 2nd or 3rd day during cell 

differentiation. hBM-MSC differentiate upon exposure to the growth 

medium that is: DMEM with 4.5 g/L of glucose and supplemented with 
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10% FBS, 10 g/mL insulin, 0.5 M dexamethasone, and 0.5 mM IBMX. 

Dexamethasone, insulin, IBMX, glibenclamide, pioglitazone, and other 

chemicals were purchased from Sigma–Aldrich.  

4. Oil Red O and Hematoxylin staining 

The level of adipocyte differentiation in hBM-MSCs was measured 

using an Oil Red O (ORO, Sigma-Aldrich) staining method. Cells were 

washed twice with phosphate-buffered saline (PBS) and then fixed 

with 10% formalin in PBS (pH 7.4) for 30 min. Fixed cells were washed 

with 60% isopropanol and dried completely. Lipid droplets were 

stained with 0.2% ORO reagent in 60% isopropanol for 10 min at 25 C, 

and then were washed with tap water four times. To stain cell nuclei, 

slides were incubated with hematoxylin reagent for 1 min and then 

washed three times with tap water. Differentiated cells were observed 

and photographed using an Eclipse TS100 inverted microscope (Nikon 

Co., Tokyo, Japan).  

5. Adiponectin measurements: Enzyme-linked immunosorbent assay 

(ELISA) 

For quantitative measurements of adiponectin in cell culture 

supernatants, a QuantikineTM immunoassay kit (R&D Systems, 
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Minneapolis, MN, USA) was used, and adiponectin concentrations were 

determined according to the manufacturer’s instructions  

6. Nuclear receptor (NR) assays.  

The TR-FRET-based NR binding assay was performed using 

LanthascreenTM competitive binding assay kits (Invitrogen) to analyze 

the binding of phenylethylchrome compounds to GR, PPAR, PPAR, 

and PPARδ.  The LanthascreenTM coactivator assay kits were used as 

manufacturer’s instructions to determine the receptor activation of 

LXR. All assay measurements were performed using a CLARIOstar 

(BMG LABTECH, Ortenberg, Germany) according to the 

manufacturer’s instructions. 

7. Total RNA isolation and quantitative real-time PCR (q-RT-PCR). 

Total RNA from hBM-MSCs was harvested using TrizolTM (Invitrogen). 

RNA concentrations were determined spectrophotometrically at 260 

and 280 nm using an Epoch Microplate Spectrophotometer (BioTeK, 

Winooski, VT, USA). A total of 2 μg RNA from each sample was 

reverse transcribed into cDNA using a Maxima First Strand cDNA 

Synthesis Kit for q-RT-PCR (Thermo ScientificTM, Waltham, MA, USA). 

TaqMan Universal Master Mix II and q-RT-PCR primer sets (Applied 

Biosystems, Foster City, CA, USA) were used to determine the 
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transcript levels of PPARG (Hs00234592_m1), and FABP4 

(Hs00609791_m1). The housekeeping gene Human glyceraldehyde-

3-phosphate dehydrogenase (GAPDH, 4333764F) was used to 

normalize sample variations. All q-RT-PCR was performed with an 

Applied Biosystems 7500 Real-Time PCR System (Applied 

Biosystems). Relative gene expression levels were quantified using 

equations from a mathematical model developed by Pfaffl.55 

8. Molecular docking model study. Molecular docking models of 

phenylethylchromones to PPAR-LBD were generated using both 

AutoDock Vina 1.1.2 software (The Scripps Research Institute, La Jolla, 

CA, USA) and Accelrys Discovery Studio (Dassault Systems, BIODIVA 

Corporation, San Diego, CA, USA). The protein structural coordinates 

of PPAR were obtained from the Protein Data Bank (PDB code number 

5TWO) for the rivoglitazone-bound structure.40 The crystal structure 

was prepared for docking by removing the native ligand from PPAR-

LBD, followed by the addition of polar hydrogens using MGLTools 

1.5.6 (The Scripps Research Institute). The center and size of the grid 

box (docking space) was calculated and confined by a rivoglitazone 

space. We focused on key amino acid residues of the three important 

branches of PPAR-LBD for successful docking.41 Docking success 
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was analyzed based on the lowest affinity value or free energy score. 

9. Statistical analysis. Statistical analyses were performed with 

RStudio® for Windows (RStudio Inc., Boston, MA, USA). Means ± 

standard deviation (SD) were used to describe experimental values (n 

= 3 or 4). Statistical significance was calculated using one-way 

analysis of variance (ANOVA) analysis and post-hoc tests. Pearson’s 

correlation was used to measure the correlation coefficient. P-values 

of less than 0.05 and 0.01 were regarded as statistically significant. 
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Ⅲ. Results 

 

1. Bioactivity-guided isolation of adiponectin secretion-

promoting activity from A. malaccensis–derived agarwood chips.  

The methanol extract, diethyl ether (Et2O), ethyl acetate (EtOAc), and 

n-butanol of A. malaccensis–derived agarwood chips was provided by 

Chi Thanh Ma from Jeong Hil Park’s lab (Fig. 1A). To set the nontoxic 

range concentration before adipogenesis experiment was performed, 

the concentration to cause cell death and the concentration to release 

inflammatory cytokines were measured at 1 ppm to 30 ppm of 

agarwood extracts using CCK-8 and PGE2 ELISA(Fig.1B). 

Adiponectin production efficacy during adipocyte differentiation in 

hBM-MSCs of organic solvent and aqueous fractions were evaluated 

by adding 10 g/ml of each extract to the adipogenesis-inducing 

medium (IDX medium), that included insulin, dexamethasone, and 3-

isobutyl-1-methylxanthine (IBMX) (Fig. 1C). The methanol, Et2O, and 

EtOAc extracts of agarwood chips enhanced adiponectin production by 

68.0%, 153.3%, and 61.5%, respectively, compared to that by the IDX 
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control. The effect of 10 g/ml Et2O extract on adiponectin production 

and lipid droplet formation during adipocyte differentiation in hBM-

MSCs was as potent as that of 300 M aspirin although it was lower 

than those of glibenclamide and pioglitazone. 

  

  



19 

 

A 

 

 

 

B  

 

 

 

  

Agarwood chips (9 Kg)

MeOH ext. (864 g)

Et2O ext. Aqueous ext.

EtOAc ext. Aqueous ext.

n-BuOH ext. Aqueous ext.

A

0

50

100

150

200

250

300

D
M

EM

A
q

M
 T

 3
0

u
M

A
q

M
 T

 1
0

u
M

A
q

M
 T

 3
u

M
A

q
M

 T
 1

u
M

Et
2

O
 3

0
u

M
Et

2
O

 1
0

u
M

Et
2

O
 3

u
M

Et
2

O
 1

u
M

Et
O

A
c 

3
0

u
M

Et
O

A
c 

1
0

u
M

Et
O

A
c 

3
u

M
Et

O
A

c 
1

u
M

W
a 

3
0

u
M

W
a 

1
0

u
M

W
a 

3
u

M
W

a 
1

u
M

B
u

O
H

 3
0

u
M

B
u

O
H

 1
0

u
M

B
u

O
H

 3
u

M
B

u
O

H
 1

u
M

Et
2

O
 F

R
 7

 1
0u

M
Et

2
O

 F
R

 7
 3

u
M

Et
2

O
 F

R
 7

 1
u

M
Et

2
O

 F
R

 7
 0

.3
u

M

Et
2

O
 F

R
 8

 1
0u

M
Et

2
O

 F
R

 8
 3

u
M

Et
2

O
 F

R
 8

 1
u

M
Et

2
O

 F
R

 8
 0

.3
u

M

N
o
rm

a
li
ze

d
 P

G
E

2
v
a
lu

e
 

(D
M

E
M

=
1
0
0
)

30 10 3 1 30 10 3 1 30 10 3 1 30 10 3 1 30 10 3 1 30 10 3 0.3 30 10 3 0.3

AqM T Et2O EtOAc Wa BuOH Et2O fr.7 Et2O fr.8

-

0

50

100

150

200

250

300

D
M

EM

M
eO

H
 T

 3
0

M
eO

H
 T

 1
0

M
eO

H
 T

 3
M

eO
H

 T
 1

Et
2

O
 3

0
Et

2
O

 1
0

Et
2

O
 3

Et
2

O
 1

Et
O

A
c 

30
Et

O
A

c 
10

Et
O

A
c 

3
Et

O
A

c 
1

W
a 

3
0

W
a 

1
0

W
a 

3
W

a 
1

B
u

O
H

 3
0

B
u

O
H

 1
0

B
u

O
H

 3
B

u
O

H
 1

Et
2

O
 F

R
 7

 1
0

Et
2

O
 F

R
 7

 3
Et

2
O

 F
R

 7
 1

Et
2

O
 F

R
 7

 0
.3

Et
2

O
 F

R
 8

 1
0

Et
2

O
 F

R
 8

 3
Et

2
O

 F
R

 8
 1

Et
2

O
 F

R
 8

 0
.3

N
o
rm

a
li
ze

d
 C

C
K
 v

a
lu

e
 

(D
M

E
M

=
1
0
0
)

30 10 3 1 30 10 3 1 30 10 3 1 30 10 3 1 30 10 3 1 30 10 3 0.3 30 10 3 0.3

AqM T Et2O EtOAc Wa BuOH Et2O fr.7 Et2O fr.8

-



20 
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D 

 

Figure 1. Effects of A. malaccensis-derived agarwood extracts on adiponectin 

production during adipocyte formation in hBM-MSCs. (A) A brief extraction 

scheme of diethylether (Et2O), ethylacetate (EtOAc), and n-butanol (BuOH) 

of agarwood chips provided by Dr. Chi Thanh Ma. (B) CCK-8 and PGE2 ELISA 

were performed at 1 ppm to 30 ppm to set the nontoxic range concentration 

before adipogenesis experiment was performed. (C) Organic solvent extracts 

were co-treated with hBM-MSCs when adipocyte differentiation was induced 

with an IDX medium. On the third day of the differentiation process, 

adipogenic media containing the extracts were replaced. On the fifth day, 

adiponectin levels of cell culture supernatants were quantified using 
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Adiponectin ELISA. (C) Oil red O staining was performed to visualize lipid 

droplets that formed during adipogenesis in hBM-MSCs. Values represent 

means ± SD (n = 3); * p ≤ 0.05 and ** p ≤ 0.01. 
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Therefore, the Et2O and EtOAc extracts were further 

fractionated by silica gel column chromoatography (Fig. 2C). Among 

the seven fractionated Et2O samples, fractions 2, 3, and 4 significantly 

increased adiponectin production unlike the IDX control (Fig. 2A–B). 

In EtOAc extracts, EtOAc fractions 2 and 5 showed adiponectin 

secretion-promoting activity during adipocyte differentiation in hBM-

MSCs. From the bioactive Et2O and EtOAc fractions, a novel 5,6-

dihyroxy-2-(2-phenylethyl)chromone (4) and 14 known compounds 

(1-3, 5-15) were purified by using semi-quantitative preparative 

liquid column (LC) chromatography (Fig. 2C). The structure of 

compounds were elucidated by Chi Thanh Ma(Fig. 2D). 
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Figure 2. Bioactivity-guided isolation of adiponectin-promoting compounds 

from agarwood chips derived from A. malaccensis. (A and B) Et2O and EtOAc 

extracts exhibiting increased adiponectin production were fractionated using 

silica gel column chromatography (cc) and the fractionated extracts were co-
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cultured with hBM-MSCs during adipocyte formation. On the third day of the 

adipogenesis induction process, media were replaced. On the fifth day of the 

process, On the fifth day, adiponectin levels of cell culture supernatants were 

quantified using Adiponectin ELISA. (C) Adiponectin secretion-promoting 

compounds were purified by applying the bioactive Et2O and EtOAc fractions 

to column chromatography by Dr. Chi Thanh Ma, and the chemical structure 

of bioactive compounds were elucidated as phenylethylchromones (D). Values 

represent means ± SD (n = 3); * p ≤ 0.05 and ** p ≤ 0.01. 
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2.  Chemical structure determination of adiponectin secretion-

promoting compounds in diethyl ether fractions from A. malaccensis–

derived agarwood 

When fifteen purified phenylethylchromone compounds from 

the bioactive Et2O fractions 2, 3, and 4 were analyzed for adiponectin 

secretion promoting activity in the hBM-MSC differentiation model, 12 

compounds at 30 M were active and reasonably increased adiponectin 

secretion during adipocyte differentiation in hBM-MSCs compared to 

that induced by the IDX control (Fig. 3A). However, compounds 9, 11, 

and 12, did not alter adiponectin production in hBM-MSCs. Among 12 

bioactive compounds, the concentration-dependent effects of the top 

four bioactive compounds were measured (Fig. 3B). To calculate 

effective concentration 50 (EC50) values, pioglitazone, a clinically 

available PPAR agonist, was used as a reference agonist to determine 

the 100% response value. In dose-response curve analysis, EC50 

values of compounds 1, 2, and 3 were 25.27, 16.18, and 20.26 M, 

respectively. Compound 4 significantly enhanced adiponectin 

production by 1.95-fold compared to that of the negative control. 

However, the adiponectin secretion-promoting efficacy of 4 by 60 M 

was 48% of the maximal pioglitazone-induced response (Fig. 3B). 
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Figure 3. Adiponectin secretion-promoting activity of phenylethylchromone 

compounds purified from A. malaccensis–derived agarwood during adipocyte 

formation in hBM-MSCs. (A) Phenylethychromone compounds (30M) were 

added to IDX medium when adipogenesis was induced in hBM-MSCs. On the 

third day of the differentiation process, adipogenic media with the 

phenylethylchromone compounds were replaced. On the fifth day, cell culture 

supernatants were harvested and adiponectin concentrations were measured. 

(B) The concentration dependency of phenylethylchromine compounds 1, 2, 

3, and 4 on adiponectin secretion-promoting activity was determined. Values 

represent means ± SD (n = 3); * p ≤ 0.05 and ** p ≤ 0.01. 
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3. Target identification of adiponectin secretion-promoting 

phenylethylchromones in the A. malaccensis–derived agarwood. 

 Adiponectin secretion during adipocyte differentiation in hBM-

MSCs is primarily regulated by the activation of nuclear hormone 

receptors, such as GR, PPAR, PPAR, PPAR, and LXR.24, 38 Chromone 

compounds 1, 2, and 3 were measured for the ability to directly bind 

to GR, PPAR, PPAR, PPAR, or LXR. In a time-resolved fluorescence 

resonance energy transfer (TR-FRET)-based receptor binding assay, 

compounds 1, 2, and 3 significantly replaced the binding of the labeled 

PPAR ligand by 37.7%, 52.8%, and 50.3%, respectively (Fig. 4A). 

Phenylethylchromone compounds 1, 2, and 3 does not influence GR, 

PPAR, PPAR, or LXR. Next, we measured the PPAR binding 

activity of the fifteen chromone compounds isolated from the A. 

malaccensis–derived agarwood and found that 12 compounds showed 

significant PPAR binding activity (Fig 4B). In the Pearson correlation 

analysis between the level of competitive binding to PPAR and 

adiponectin secretion-promoting activity at 30 M of chromone 

compounds, the r2 value was 0.73 (p < 0.01) (Fig. 4C). Regarding the 

correlation coefficient, the adiponectin secretion-promoting activity of 

chromone compounds isolated from A. malaccensis–derived agarwood 
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was reasonably associated with PPAR binding affinity. Next, we 

analyzed the concentration-dependent PPAR binding activity of 

chromone compounds 1, 2, 3, and 4, as they showed potency for both 

adiponectin secretion-promoting activity and receptor binding unlike 

the other chromone derivatives. Compounds 1, 2, and 3 bound PPAR 

in a concentration-dependently with Ki values for 1, 2, and 3 of 54.0, 

18.1, and 14.9 M, respectively; however, these compounds were not 

as potent as the clinically available PPAR agonist pioglitazone (Ki = 

0.062 M) or a PPAR binding sulfonylurea antidiabetic drug 

glibenclamide (Ki = 0.66 M) (Fig. 4D).39 The value for compound 4 

was incalculable because it replaced only 41.1% of the labeled PPAR 

ligand binding at 60 M, which was the highest concentration tested in 

the TR-FRET-based concentration-dependency assay. Both the 

correlation coefficient and dose-response results supported that 

chromone compounds participated in the release of adiponectin during 

adipocyte differentiation in hBM-MSCs via a PPAR dependent 

mechanism. 
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Figure 4. PPAR binding activity of adiponectin secretion-promoting 

phenylethylchromone compounds. (A) TR-FRET competitive binding assays 

with phenylethylchromone compounds 1–3 used as ligand for GR, PPAR, 

PPAR, and PPAR were performed. The receptor co-activation analysis for 

LXR was determined as described in the Experimental section (B) TR-

FRET-based competitive binding activities of phenylethylchromones were 

determined. (C) Pearson’s correlation coefficient (r2) between the PPAR 

binding affinities and relative adiponectin secretion-promoting activities of 

phenylethylchromone compounds was calculated. (D) Ki values for 

compounds 1–3 based on the Cheng and Prusoff equation. Values represent 

means ± SD (n = 3); * p ≤ 0.05 and ** p ≤ 0.01. 
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4.Molecular docking simulation study to identify interactions of 

phenylethylchromone compounds 2 and 3 with the ligand-binding 

domain of PPAR 

 To further understand the binding mode of 

phenylethylchromone compounds 2 and 3 to the PPAR ligand binding 

domain (LBD), molecular docking experiments were performed using 

the crystal structure, the rivoglitazone-bound structure of PPAR(PDB 

code 5TWO).40 The docking models of compounds 2 and 3 to the 

PPAR-LBD were compared to that of pioglitazone, a full PPAR 

agonist (Fig. 5). The binding free energy of the pioglitazone docking 

model was –9.1 kcal/mol and the CDOCKER energy for pioglitazone 

was –39.0 kcal/mol (Fig. 5A). Similar to the rivoglitazone–bound 

5TWO crystal structure, pioglitazone adopts a horseshoe-shaped 

binding conformation that is, centered around helix 3 (H3) of the 

PPAR-LBD (Fig. 5A). In Autodock Vina analysis, the free energy 

scores of optimized docking models for compounds 2 and 3 were –8.5 

and –8.4 kcal/mol, respectively (Fig. 4B–C). The CDOCKER free 

energy levels for compounds 2 and 3 were –28.3 kcal/mol and –26.4 

kcal/mol, respectively.  

The ligand binding pocket (LBP) of PPAR has been described 
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to have three branches that give rise to a Y-shaped cavity with the 

potential to accommodate chemically diverse endogenous or 

exogenous ligands.41 Ligand interactions with the first branch that 

consists of H3, H5, H11, and H12 are hydrophilic and those with the 

second branch contributed by H3, H6, H7, and the -sheet region are 

generally hydrophobic. Helices H2, H3, and H5, as well as a part of 

the -sheet region form the third branch exhibit both hydrophilic and 

hydrophobic regions.41, 42 Pioglitazone forms hydrogen bonds and 

hydrophobic interactions with various amino acid residues, such as 

isoleucine (Ile) 262 (near –loop), lysine (Lys) 263 (–loop), cysteine 

(Cys) 285 (H3), phenylalanine (Phe) 287 (H3), arginine (Arg) 288 (H3), 

histidine (His) 323 (H5), leucine (Leu) 330 (H5), Ile341 (-sheet s3), 

and tyrosine (Tyr) 473 (H12) in both the hydrophilic and hydrophobic 

branches of PPAR-ligand-binding pocket (LBP) (Fig. 5A). The 

docking model showed that the thiazolidinedione group of pioglitazone 

and tyrosine (Tyr) 473 residue in H12 formed a –sulfur interaction as 

well as hydrogen bonding. Ligand interactions with Tyr473 (H12) are 

known to induce the stabilization of the coactivator protein interaction 

surface of PPAR, which is known as the activation function-2 (AF-2) 

surface and is important in the recruitment of transcriptional 
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coactivators.40, 43 In contrast to the pioglitazone-PPAR-LBD docking 

model, compounds 2 and 3 did not interact with Tyr473 in H12. The 

docking models with the lowest favorable free energy level showed 

that compounds 2 and 3 occupy the hydrophobic PPAR-LBP (Fig. 5B–

C). In the internal hydrophobic LBP, compounds 2 and 3 form hydrogen 

bonds with serine 289 residue in H3 and also assume hydrophobic 

interactions with Cys285 (H3), alanine (Ala) 292 (H3), Ile326 (H5), 

Leu330 (H5), and Ile341 (s3). This result indicated that compounds 2 

and 3 occupied the region between H3 and the -sheet where most of 

PPAR partial agonists are found to occupy in ligand-PPAR LBD 

structures.28, 42, 44 
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Figure 5. Molecular docking simulation of the interaction between adiponectin 

secretion-promoting phenylethylchromone compounds and PPAR-LBD. 

Molecular docking simulations of pioglitazone (A), 2 (B), and 3 (C) docked to 

the structure of PPAR-LBD (PDB 5TWO) were performed using AutoDock 

Vina version 1.1.2. Free energy scores were calculated using both the 

Autodock Vina and Accelrys Discovery Studio software. Helix numbering 

follows the convention used for PPAR-LBD.40, 41 

A 
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5.Experimental validation of phenylethylchromone compounds 2 and 3 

as PPAR partial agonists.  

 Although the docking model implied the PPAR partial agonism 

of phenylethylchromones, experimental validation was needed. To 

validate the docking model-predicted PPAR partial agonism, 

pioglitazone was co-administered with compounds 2 or 3 during 

adipocyte differentiation in hBM-MSCs. By definition, a partial agonist 

plays a role as an antagonist against a full agonist.45 When adiponectin 

production was measured in hBM-MSCs, compounds 2 and 3 

functionally antagonized the effects of pioglitazone on adiponectin 

production during adipocyte differentiation, demonstrating that these 

adiponectin secretion-promoting chromone compounds are PPAR 

partial agonists (Fig. 6A–B). Because compounds 2 and 3 enhanced 

adiponectin production simultaneously antagonizing the effect of a 

PPAR full agonist, phenylethylchromones can be classified as a PPAR 

partial agonist. 

In addition to efficacy of adiponectin production, we also 

elucidated whether phenylethylchromone compounds 2 and 3 

antagonized the pioglitazone-activated transcriptional changes during 

adipocyte differentiation in hBM-MSCs. The transcriptional changes 
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of the genes encoding PPAR and fatty acid binding protein 4 (FABP4) 

showed that the pioglitazone-activated upregulation of mRNA levels 

of both PPAR and FABP4 was reasonably attenuated by the co-

administration of compound 2 or 3, further supporting the role of 

compounds 2 and 3 as a PPAR partial agonists (Fig. 6C–D). Therefore, 

phenylethylchromone compounds purified from A. malaccensis–

derived agarwood influenced adiponectin secretion during adipocyte 

differentiation in hBM-MSCs through PPAR partial agonism.  

Thiazolidinedione (TZD) PPAR full agonists such as 

rosiglitazone, troglitazone, and pioglitazone are PPAR full agonists 

that can improve insulin sensitivity. The adverse ourcomes of TZD 

PPAR full agonists that ultimately led to market withdrawal include 

weight gain, renal fluid retention, hepatitis, and an increased risk of 

cardiovascular events.46-48 Fatty acids and prostanoids, major 

endogenous PPAR ligand candidates, have a far weaker agonistic 

activity than TZD PPAR full agonists. Therefore, selective PPAR 

modulators that are as potent as endogenous ligands have been 

suggested as a potential therapeutic drug that may exhibit reduced 

adverse effects.47 In this regard, the adiponectin secretion-promoting 

phenylethylchormones identified from A. malaccensis–derived 
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agarwood provide a pharmacophore for selective PPAR modulators, 

which could mitigate or avoid the adverse outcomes of therapeutic 

PPAR full agonists. 
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Figure 6. Experimental validation of the PPAR partial agonism of 

phenylethylchromone compounds 2 and 3. hBM-MSCs were differentiated in 

IDX media, and incubated with phenylethylchromone compounds 2 (A) and 3 

(B) in the presence of pioglitazone. On the third day of the induction process, 

adipogenic media containing the compounds were replaced. On the fifth day, 
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cell culture supernatants were harvested and adiponectin levels in 

supernatants were measured by ELISA. Additionally, on day 3, total RNA was 

extracted and q-RT-PCR was performed for PPAR and FABP4 (C); GAPDH 

was used as an internal control. Values represent means ± SD (n = 3); * p ≤ 

0.05 and ** p ≤ 0.01. 
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Ⅳ. Discussion 

The purpose of this study was to investigate the possible mechanism 

of adiponectin secretion as a mechanism of action that could explain 

various pharmacological and physiological activities of agarwood. 

Agarwood is a part of the wood in which the plant secreted at the bark 

to restore physical damage to plants of Aquilaria Malaccensis. A. 

malaccensis–derived agarwood has been used in conventional 

medicine to alleviate diverse disease conditions, although the 

pharmacological mechanisms for its therapeutic effects have not yet 

been fully elucidated49. Adiponectin secreted from adipose tissue is 

known to be involved with the regulation of biometal homeostasis and 

antiinflammatory responses. Serum adiponectin levels are relatively 

low in patients with metabolic diseases, in diverse human diseases, 

including diabetes, atherosclerosis, and cancers.50 Therefore, 

adiponectin is considered to be one of the diagnostic biomarkers of 

metabolic disease, and the substances promoting adiponectin secretion 

have been studied as candidates for the treatment of metabolic 

diseases. In this study, we found that A. malaccensis–derived 

agarwood methanol extract induced adiponectin expression and 

secretion during adipocyte differentiation in hBM-MSCs. This finding 
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indicates that the diverse therapeutic potentials of traditional medicine 

agarwood can be partially explained by an adiponectin-associated 

mechanism.  

In the bioactivity-guided isolation of adiponectin 

secretagogues, phenylethylchromones were identified as active 

compounds in A. malaccensis–derived agarwood extract. Among 

chromone compounds, 6-methoxy-2-(2-phenylethyl)chromone (2) 

and 7-methoxy-2-(2-phenylethyl)chromone (3) were potent as 

adiponectin secretion-promoting agents and were identified as PPAR 

partial agonists. Chromones are widely found in various natural 

products and are well-known to exhibit numerous pharmacological 

activities, such as anti-microbial, anti-inflammatory, anti-oxidant, 

immunomodulatory, wound healing, and anti-cancer effects.51-53 In the 

field of medicinal chemistry, chromones are regarded as a privileged 

scaffold because the form diverse associations with many approved 

drugs, such as the anti-allergic cromolyn and anti-asthmatic 

prankalukast.52 This study demonstrated that phenylethylchromones 

enhanced adiponectin expression and secretion via PPAR partial 

agonism. Phenylethylchromones are present in notable quantities in A. 

malaccensis–derived agarwood, suggesting that the effects of 
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agarwood on metabolic diseases are associated with a PPAR-related 

mechanism. Therapeutic advantages of PPAR partial agonists have 

been proposed from the standpoint of limiting adverse effects 

compared to those of full PPAR agonists, such as rosiglitazone and 

pioglitazone.47, 48 Therefore, the adiponectin secretion-promoting 

phenylethylchromones found in A. malaccensis–derived agarwood 

provide important drug discovery insights in to the design of novel 

PPAR partial agonists. 
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국문요약(국문초록) 

침향의 페닐에틸크로몬 유도체의 

아디포넥틴 분비 촉진 활성 기전 

규명 

 

침향(Agarwood)은 말라켄시스 종(Aquilaria malaccensis)의 식물이 물

리적 손상을 복구하기 위해 체내에서 분비한 수지가 침착된 목재 부분이

다. 침향은 동아시아에서 민간요법으로 소화불량, 기관지천식, 염증, 고

열, 알러지 질환 등의 다양한 질병 치료제로서 사용되었지만, 약물학적 

기전은 밝혀지지 않은 천연물이다. 지방조직에서 분비되는 아디포넥틴은 

생체대사 항상성 조절 및 항염증 반응에 관여하며, 대사성 질환의 진단 

바이오 마커 중 하나로 여겨지고 있다. 비만, 제2형 당뇨병, 지방간염, 

암 등 대사성 질환을 가진 환자에서 혈중 아디포넥틴 농도는 정상인보다 

상대적으로 낮다고 알려져 있으며, 아디포넥틴 분비를 촉진하는 물질이 

대사성 질환의 치료 후보물질로 연구되고 있다. 본 연구는 침향의 다양

한 약물학적 생리활성을 설명할 수 있는 작용기전으로 아디포넥틴 분비 
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조절제로서의 가능성을 규명한 것이다. 골수유래 중간엽줄기세포의 지방 

분화 과정을 이용한 아디포넥틴 생합성 측정 모델에서 침향의 메탄올 추

출물이 대조군에 비해 아디포넥틴 분비 촉진 활성이 있음을 확인하였다. 

침향 추출물로부터 효능이 있는 단일 화합물을 찾기 위한 생리활성유도

분획법(bioactivity-guided fractionation) 연구를 통해 크로몬 계열의 페

닐에틸크로몬, 6-메톡시-2-(2-페닐에틸)크로몬, 그리고 7-메톡시-2-

(2-페닐에틸)크로몬이 중간엽줄기세포 지방분화 과정 중, 아디포넥틴 분

비 촉진 효과가 있음을 규명하였다. 페닐에틸크로몬 유도체의 아디포넥

틴 분비 촉진 효과와 관련된 분자 타겟을 탐색한 결과, 페닐에틸크로몬 

유도체들이 페록시솜증식체활성화수용체-감마(PPARγ)에 직접 결합하는 

것을 규명하였다. PPARγ 효능약인 피오글리타존과의 경쟁적 약물 반응 

실험을 통해 페닐에틸크로몬 유도체들은 PPARγ 부분효능약으로 작용함

을 증명하였다. 본 연구는 침향의 다양한 생리활성을 설명할 수 있는 작

용기전으로서 아디포넥틴 분비 촉진 효과가 연관되어 있고, 이를 설명할 

수 있는 분자기전으로 페닐에틸크로몬 유도체들이 PPARγ에 부분효능약

으로 작용함을 증명하였다. 본 연구에서 발견한 침향 유래 화합물들은 

저아디포넥틴혈증(hypoadiponectinemia)과 연관된 다양한 대사성질환의 

증상을 개선하는 치료제로서의 가능성이 기대된다. 
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주요어: 아디포넥틴, 지방분화, 침향, 사람의 중간엽줄기세포, 페록시솜증

식체활성화수용체, 표현형기반평가 
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