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Abstract

Shark meat is consumed as a food source worldwide, especially in Asian 

countries. However, since sharks are apex predators in the ocean food chain, they 

are prone to bioaccumulation of heavy metals. More than 100 million sharks are 

caught annually for human consumption, and the safety of shark meat cannot be 

overemphasized. Here, we examined heavy metal concentration in the muscle 

tissue of 6 shark species including 3 migratory species (Carcharhinus brachyurus, 

Carcharhinus obscurus, and Isurus oxyrinchus) and 3 local species (Triakis 
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scyllium, Mustelus manazo, and Cephaloscyllium umbratile) from fish markets in 

Jeju Island, Republic of Korea. The concentrations of 11 heavy metals (Cr, Fe, Cu, 

Zn, As, Se, Cd, Sn, Sb, Pb, and Hg) and MeHg were analyzed. The result showed 

that the average concentrations of all metals, except for that of As, were below the 

regulatory maximum limits of many organizations, including the Codex standard. 

Hg and MeHg were significantly correlated with body length, body weight, and 

age, and the concentration of Hg was expected to exceed the limit in C. 

brachyurus with a body length or weight of over 130 cm or 25 kg, respectively. 

Our results indicate that shark meat can expose consumers to a high level of As 

and that copper sharks bigger than the predicted size should be avoided for 

excessive Hg. Considering these findings, a detailed guideline on consumption of 

meat of different shark species should be suggested based on further investigation.

                                                                       

Keywords: Shark meat, Heavy metal, Food safety, Bioaccumulation, 

Carcharhinus brachyurus
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Introduction

Shark meat has been used as a food source since the fourth century, and 

there was a drastic increase in its usage after World War I [1]. World shark capture 

production and shark meat trade amounts have increased continuously since 1950s, 

reaching the highest values on records in 2011 [2, 3]. Shark population thus has 

decreased due to unregulated shark fishing worldwide [4]. Currently, 28% of non-

data deficient shark species are endangered according to the International Union 

for the Conservation of Nature (IUCN) red list [5]. Although the capture amount 

has decreased since 2011, the reason is still unclear whether there has been a 

decrease in demand or a decrease in population [6]. Asia is a major contributor to 

the global chondrichthyan market. Indeed, Japan, China, Taiwan, Hong Kong, 

Singapore, Republic of Korea, Thailand, India, Indonesia, and Malaysia are all 

involved in the production, import, and export of shark meat [1]. Asian countries 

accounted for 59% of the global shark trade from 1976 to 2015; this percentage 

has increased to 63% in the last 15 years [3]. 
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In the Republic of Korea, ancient records on shark products as food 

sources or clinical medicines include Shinjeung-donggukyeojiseungram 

(新增東國輿地勝覽, Augmented Geographical Survey of Korea, 1481), 

Donguibogam (東醫寶鑑, Principles and Practices of Eastern Medicine, 1613), 

Jangjeon Ganchal (張瑱 簡札, Jangjeon’s letter, 1690), and Jasaneobo (玆山魚譜, 

Record of Fish in Heuksan Island, 1814), and shark meat continues to be a major 

food source at present. The amount of shark meat imported into Korea surged in 

the 1990s and has remained steady at over 20,000 tons since 2003. Moreover, the 

import value has increased, even after 2003, and was reported to be 85 million 

USD in 2015 [3]. This increase in demand can be explained by the routine intake 

of shark meat in Korea, both as a traditional dish in Gyeongsangbuk-do and as a 

general cuisine in the form of steamed meat, roasted meat, soup, and skewers in 

various provinces. 

Fish meat consumption has various advantages, including reducing the 

risk of cardiovascular disease and osteoporosis and facilitating the development of 

embryos via increased intake of long-chain n-3 fatty acids [7]. However, various 



3

environmental toxins including dioxin, polychlorinated biphenyls, and heavy 

metals can also be introduced into the body by consuming fish meat. Toxins can 

accumulate in the fish body via pollution sources such as industrial waste waters 

from mine and refinery [8-10]. Among various toxins, heavy metal accumulation 

is a critical parameter for establishing food safety of shark meat because of the 

multiple harmful effects of heavy metals. Fish meat is the main source of mercury 

(Hg), arsenic (As), copper (Cu), selenium (Se), lead (Pb), and cadmium (Cd) in 

diet. Many national and international organizations have developed regulatory 

maximum limits for different heavy metals to avoid damage to the body by fish 

consumption [11]. 

Shark is a representative apex predator of marine ecosystems and its meat 

has a higher risk of bioaccumulation of environmental toxins than other fish 

species [12]. Since shark meat has been used as an important food source for a 

long time, a large number of studies have been conducted on heavy metal 

concentration to ensure food safety [8, 9, 12-21]. The concentrations of various 

heavy metals have been measured at the level of species, habitat, environmental 
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conditions, and biological conditions (age, body length, body weight, etc.). Based 

on the accumulated information, the food safety of shark meat is being assessed. 

Among various heavy metal species, methylmercury (MeHg) especially 

shows a good absorption rate (90%) and long retention time (half-life: 70 days) in 

the human body. Excessive accumulation of MeHg can induce atrophy of the 

cerebral cortex, ataxia, hearing loss, decreased visual acuity, and increased 

incidence of cardiovascular diseases. The main source of MeHg in humans is fish 

meat intake because MeHg is biomagnified through the marine and freshwater 

food chain. Indeed, terrestrial animals typically have about 20 μg/kg MeHg, 

whereas large fish species, such as tuna or sharks, can have MeHg concentrations 

of up to 1 mg/kg [7, 22]. MeHg concentrations in fish depend on many factors, 

including the concentrations of water and sediments, the pH and redox potential 

of water, and the age, species, and size of fish [23]. Therefore, further studies are 

necessary to ensure the safety of fish meat consumption, especially meat from 

apex predators. 

Carcharhinus brachyurus (copper shark), making up 60% of the shark 
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species used in this study, are pelagic, oceanic, and highly migratory species that 

are distributed all over the coastal areas of tropical and temperate seas. They have 

been fished commercially in many countries worldwide including New Zealand, 

Australia, South Africa, Brazil, Uruguay, Argentina, Mexico, China, and Korea 

[24, 25]. They migrate to the north in the spring and summer and migrate back to 

the south in the fall and winter, reaching the sea around Jeju island from October 

to February. These sharks consume cephalopods, pelagic and benthic teleosts, and 

small elasmobranchs as their main food, staying at the top of the ocean food chain 

and are by-caught in the Jeju island mainly with Japanese amberjack (Seriola 

quinqueradiata), longtooth grouper (Epinephelus bruneus), and largehead hairtail 

(Trichiurus lepturus) [25, 26]. They are sold at wholesale fish markets, 

transported to other areas, and consumed by local people. Since they are being 

caught and consumed not only in Korea but also in all countries, the food safety of 

copper shark meat should be a concern. As they are the apex predators of the 

ocean food chain, the need for bioaccumulation analysis is particularly 

emphasized. 
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Accordingly, in this study, we evaluated the concentrations of heavy 

metals (Cr, Fe, Cu, Zn, As, Se, Cd, Sn, Sb, Pb, Hg, and MeHg) in six shark 

species including C. brachyurus captured at Jeju island (C. brachyurus, 

Carcharhinus obscurus, Isurus oxyrinchus, Triakis scyllium, Mustelus manazo, 

and Cephaloscyllium umbratile). We also examined correlations between metal 

concentrations and biological criteria including age, sex, total body length (TBL), 

body weight (BW), and habitat in C. brachyurus. With these results, we evaluated 

the safety of consuming the meat of these six shark species. 
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Materials & Methods

Sampling

Sharks were sampled at Moseulpo and Hallim fish markets in Jeju, Korea 

from October 2017 to December 2017, immediately after being released to the 

markets from fishing ships, targeting the ‘shark meats actually being sold at the 

fish markets’ as our sample population (Fig 1). For the Moseulpo fish market, a 

total of 19 sharks were by-caught from the sea area between Gapa island and 

Mara island by line fishing ships for Japanese amberjack (Seriola quinqueradiata), 

angling fishing ships for largehead hairtail (Trichiurus lepturus), and longline 

fishing ships for longtooth grouper (Epinephelus bruneus). All these 19 sharks 

were sampled immediately after being auctioned. For the Hallim fish market, 

sharks were by-caught by drift gillnets, and six of these sharks were sampled. 

Almost every shark brought to the markets during the sampling period was 

sampled to obtain the shark meat population actually consumed by the local 

people. All samples were numbered from SNU-MO-0001 to SNU-MO-0025 in 
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chronological order. The species of the sharks were determined with their features 

based on previous studies [27, 28]. Sharks were sampled and necropsied to 

determine their health statuses within 12 h of being caught. TBL, BW, and the 

girth right in front of the first dorsal fin were measured. The epaxial muscle and 

4–6 vertebrae were sampled at the level of the first dorsal fin. Muscles were 

sampled using a Whirl-Pak (Sigma-Aldrich, Germany) and kept frozen at -20  ℃

until analysis. Muscle tissues on the vertebrae were roughly removed, and all 

vertebral joints were disparted. The neural arch and transverse processes were 

removed from the centrums. Remnant tissue was removed after the centrums were 

immersed in commercial sodium hydroxide solution. Then the centrums were 

rinsed with water and dried for more than 72 h. 

Age determination

Completely dried centrums were embedded with EPOXY Resin (Pace 

Technologies, AZ, USA) and EPOXY Hardener (Pace Technologies). After 24 h 

of hardening, centrums were sectioned using an Isomet low-speed saw (Buehler, 
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IL, USA) with a diamond saw into 2-mm-thick pieces. Samples were then 

attached to slide glasses using 7036.20 Blanchard Wax (J.H. Young Company, NY, 

USA), and then the centrum pieces were ground using an AutoMet 250 grinder-

polisher (Buehler) with sandpaper until the slices were thinner than 200 µm. 

Samples were ground in two stages using different grinding papers (Carbimet 320 

grit and 600 grit) to minimize the surface scratch. The annulus on the corpus 

calcareum was measured on the slides independently by three researchers. 

Heavy metal concentration analysis

Total concentrations of 10 heavy metals (chromium [Cr], iron [Fe], 

copper [Cu], zinc [Zn], arsenic [As], selenium [Se], cadmium [Cd], tin [Sn], 

antimony [Sb], and lead [Pb]) were analyzed using inductively coupled plasma 

mass spectrometry (ICP-MS). Approximately 0.1 g of homogenized shark muscle 

in wet condition was completely disintegrated by adding 10 mL HNO3 and 

heating at 200  for 2 h. Samples were cooled to room temperature, deionized ℃

water was added to the digested samples, and the dilution factors were calculated 
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by measuring the final weight. ICP-MS was conducted with an Agilent 770x ICP-

MS (Agilent Technologies, CA, USA). Analysis was carried out in He mode with 

a low matrix concentration, and the CeO/Ce ratio was 0.9%. Certified reference 

materials (CRMs; VHG Labs, NH, USA) were used at a concentration of 0.1–100 

ppb for calibration (Pearson’s r > 0.999). Analysis results were presented in mg/kg, 

and the detection limit (DL) was 0.0001 mg/kg (KOPTRI, Seoul, Korea).

For total mercury analysis, shark muscle tissues were cut into 1-cm3

pieces and freeze-dried for 72 h using a freeze-dryer (FDU-1200; Eyela Co., 

Japan). The moisture composition ratio was calculated using the mass difference 

between before and after freeze-drying. Freeze-dried samples were homogenized 

thoroughly using a mortar, placed into conical tubes, and sealed with parafilm 

until use. For total mercury analysis, approximately 0.01 g of freeze-dried and 

homogenized shark muscle samples was weighed on a precision scale connected 

to a Milestone DMA-80 Direct Mercury Analyzer (Milestone, Bergamo, Italy) and 

analyzed. DOLT-5 (National Research Council Canada, Ottawa Ontario, Canada) 

was used as a CRM, and the average recovery of CRM was 103.7% (± 9.8%, n = 
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13). The DL measured by DMA-80 was 0.06 ng/g. Dry weight concentrations 

were converted into wet weight (WW) concentrations using the moisture 

composition ratio.

For methylmercury analysis, approximately 0.01 g freeze-dried and 

homogenized shark muscle sample and DOLT-5 CRM were weighed on a 

precision scale and placed in glass bottles that had been washed with 15% HCl 

(12 N) solution. After adding 5 mL of 25% KOH solution diluted with methanol, 

samples were incubated in an oven at 60  over 12 h. Samples were cooled to ℃

room temperature, and deionized water was added to the sample solution for 

dilution. Next, 200 mL of deionized water was added to the bubbler, and 1 mL 

acetate buffer (2.0 M) was added to adjust the pH to 4.9. Diluted sample solution 

and 0.1 mL of 1% tetraethylborate solution were added to the bubbler to produce 

volatile methylethylmercury. Volatile methylethylmercury was collected into a 

Tenax trap after 15 min of N2 gas purging and 15 min of incubation for ethylation 

to methylated Hg species. The traps were then dried with N2 gas for 9 min. Hg 

species were released from the Tenax trap following 30 s of heating, separated 
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into individual species using gas chromatography (GC), and detected by cold 

vapor atomic fluorescence spectroscopy (CVAFS) using a Brooks Rand Model III 

detector (Brooks Rand Instruments, WA, USA). The average recovery rate of 

CRM was 101.6% (± 8.1%, n = 9). Dry weight concentrations were converted to

WW concentrations using the moisture composition ratio. 

Statistical analysis

When non-detects that have a lower concentration than that of DL 

comprise less than 15% of the data, replacement with 1/2DL is suggested as one 

of the satisfactory methods for further analysis [29, 30], and based on this 

suggestion, many papers have used the 1/2DL substitution method for statistical 

analysis of data with non-detects [31-33]. Therefore, for a more detailed statistical 

analysis other than simple average comparison, 1/2DL was used as a substitute for 

non-detects, and only the heavy metals in which the non-detect portion was lower 

than 15% were analyzed (Fe, Cu, Zn, As, Se, Hg, and MeHg). In cases of 

biological data acquisition failure due to field situations, the related data were 
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excluded from statistical processing.

Multivariate analysis of variance (MANOVA) was used to determine 

whether species, sex, and habitat affect heavy metal concentrations. Since 

MANOVA analysis assumes both multivariate normality and homogeneity of 

variance-covariance matrix of residuals and the raw data did not satisfy the 

assumptions (Table 1), multivariate Box-Cox transformation was performed using 

estimated transformation parameters (Table 2) [34]. Since the transformation was 

applied to practical situations, estimated power parameters were replaced by 

simple power parameters, i.e., 0, ±0.25, and ±0.5. The Box-Cox family requires 

the responses to be strictly positive. Transformation was performed using the 

powerTransform function in Car version 3.0-2 package in R [35]. is the power 

parameter in the following equation.

Shapiro-Wilk test for marginally normality test, Bartlett’s test for 

homogeneity of variance-covariance matrix assumption check, Mardia’s 
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multivariate normality (MVN) test, and Henze-Zirkler’s MVN test for jointly 

normality tests were performed using statistical package R [35]. MVN tests were 

performed with MVN package version 5.5 in R [36]. Normal Q-Q plots were also 

generated to check normality. Since the assumptions were satisfactory after proper 

transformation (Table 3, 4), MANOVA was conducted with car package version 

3.0-2 in R. Data of C. umbratile was excluded when MANOVA was performed 

for species due to the small sample number (sample number was only one). 

Multivariate regression (MVR) was also performed to confirm whether 

there is any significant correlation between age, BW, girth, TBL and each heavy 

metal concentration using the lm function in R. To satisfy the fundamental 

assumptions of multivariate linear regression, the raw data were transformed 

using multivariate Box-Cox transformation for each covariate: age, BW, TBL, and 

girth. All responsible variables were tested with Shapiro-Wilk test, Bartlett’s test, 

Mardia’s MVN test, and Henze-Zirkler’s MVN test, and we confirmed that they 

satisfy the assumptions.

To elucidate the correlations among parameters, excluding species 
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differences, MANOVA and MVR were conducted using data from C. brachyurus

only. Pearson’s coefficients and p values were also calculated using R to confirm 

statistical significance [35]. Based on the results from MVR showing significant 

correlation between heavy metal concentration and biological parameters of C. 

brachyurus, linear and polynomial regressions were used and compared to each 

other to identify a more, well-fitting model using OriginPro 8.5 (OriginLab 

Corporation, Northampton, USA). 
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Results

Characteristics of the sampled sharks

In total, 25 sharks of six species were collected over a 3-month period. C. 

brachyurus (copper shark), C. obscurus (dusky shark), and I. oxyrinchus (shortfin 

mako) were by-caught by line fishing, angling fishing, and longline fishing in the 

Moseulpo sea, and T. scyllium (banded houndshark), M. manazo (starspotted 

smooth-hound), and C. umbratile (blotchy swell shark) were by-caught by drift 

gillnets in the Hallim sea area. We could not collect some of the biological data 

due to circumstantial causes. Collected biological data are summarized in Table 5

by species, and all the raw data are recorded in the Table 6. Because sharks longer 

than 2 m are difficult to draw back to land when by-caught, sharks distributed in 

fish markets are generally less than 2 m in length. Indeed, the sharks collected for 

this investigation were all shorter than 2 m. Thus, for shark species that often have 

mature lengths of over 2 m, including C. brachyurus, C. obscurus, and I. 

oxyrinchus, only juvenile sharks were collected. As a result of age estimation 



17

using vertebral section, all sharks were found to be younger than 7 years old 

(Table 5). Based on this information, the sampled batch was not a true 

representation of C. brachyurus, C. obscurus, and I. oxyrinchus. However, since 

the collected specimens were subsamples of sharks that are actually consumed by 

the local people, this batch was a good representation of shark meat as a food 

material, which is the target sample population of this research. Moreover, since 

these three species (C. brachyurus, C. obscurus, and I. oxyrinchus) show seasonal 

migration and can be consumed in other countries on their migration route, the 

importance of their food safety becomes greater.

Average heavy metal concentrations 

The average moisture composition ratio was 74.6%, and the dry weight 

concentrations were converted to WW concentration using this value. The average 

concentrations of the 11 metals and MeHg in all 25 sharks are indicated in Table 7

and showed the following decreasing order: Fe > As > Zn > Cu > Se > Hg > 

MeHg > Cr > Pb > Sn > Sb > Cd. The average concentrations of Cr, Sn, and Pb 
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were the highest in C. obscurus, whereas the average concentrations of Fe, Cu, 

and Hg were the highest in I. oxyrinchus. As and Se concentrations were the 

highest in M. manazo and T. scyllium, respectively. Zn and Sb were the highest in 

C. umbratile. For Hg, I. oxyrinchus had the highest concentration (0.27 mg/kg) 

followed by C. obscurus, C. brachyurus, C. umbratile, T. scyllium, and M. manazo. 

The Cd concentration was under the DL (0.0001 mg/kg) in all 25 sharks, similar 

to previous studies showing that most of the absorbed Cd were stored in the liver 

and that only a small amount was stored in the muscle in sharks [12, 13]. 

Correlations between heavy metal concentrations and biological information

After the Box-Cox transformation, all the data satisfied the multivariate 

normality assumption and homogeneity of variance-covariance matrix assumption, 

except for only 6 cases (Table 3). Even though a few samples tested non-normal 

or had a slight inequality of variance, MANOVA test could be performed since it 

is fairly robust for deviations from multivariate normality and homogeneity of 

variance-covariance. 



19

MANOVA of Fe, Cu, Zn, As, Se, Hg, and MeHg concentrations for the 25 

sharks showed that the concentrations of these heavy metals were significantly 

associated with species (multivariate significance = 0.024; Table 8). Specifically, 

Zn and As concentrations were significantly correlated with species.

In the case of As, it showed a significant correlation not only with species 

but also with habitat and family (Fig 2A, 2B). The concentration of As differed 

between benthic and pelagic sharks according to habitat-based classification. T. 

scyllium, M. manazo, and C. umbratile are benthic sharks, whereas C. brachyurus, 

C. obscurus, and I. oxyrinchus are pelagic sharks (Fig 2B). As concentrations 

were significantly higher in benthic sharks (p < 0.05), and the pattern was similar 

to that of a previous study showing higher concentrations of As in bottom-feeding 

fish than in other bony fish [22]. Difference in As concentration was also found 

according to phylogenetic families, i.e., Carcharhinidae (C. brachyurus and C. 

obscurus), Isuridae (I. oxyrinchus), and Triakidae (T. scyllium and M. manazo; Fig 

2A), presenting significantly different concentrations (p < 0.05) among the three 

groups. In particular, As was the highest in Triakidae. Since Triakidae sharks 
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studied in this study are all benthic sharks, these results can be interpreted in the 

same context. 

In the case of Zn, the concentration was the highest in Carcharhinidae 

sharks (Fig 2A). The concentration decreased in the order of Carcharhinidae, 

Isuridae, and Triakidae, and this resembles the pattern of Zn concentration 

appearing higher in pelagic sharks than in benthic sharks. This is also due to the 

fact that Carcharhinidae and Isuridae are pelagic sharks. 

Other heavy metals also showed concentration differences according to 

habitat. In the case of Hg, the average concentration in benthic sharks was 0.14 

mg/kg, which was 44% lower than that in pelagic sharks (0.25 mg/kg). The MeHg 

concentration in benthic sharks (0.08 mg/kg) was 53% lower than that in pelagic 

sharks (0.17 mg/kg). This is consistent with a previous study showing different 

Hg and MeHg accumulation pattern between pelagic and benthic food chains [37]. 

Additionally, the average concentrations of Cu, Zn, Sn, and Pb were higher in 

pelagic sharks, whereas the average concentrations of Fe and As were higher in 

benthic sharks. 
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In the MVR analysis to confirm the correlation between continuous 

variables (age, BW, girth, and TBL) and heavy metal concentrations, Hg and 

MeHg were found to be significantly and positively correlated with BW, girth, and 

TBL (Table 9, Fig 3A, 3B, 3F, 3G, 3J, 3K). A significant positive correlation also 

existed between Zn and girth, Fe and girth, and Fe and TBL. The correlation 

between Zn and girth is comparable with that of a previous study; as in the case of 

the teleost fish Poecilia reticulata, it is known that Zn concentration is maintained 

at a certain level in the body of these fish [38].

Se showed a significant correlation with girth and TBL, and was the only 

heavy metal that showed a negative correlation (Fig 3E, 3I). This pattern is 

different from those of previous studies showing that Se has positive correlation 

with TBL in some tropical fishes or even that Se does not have any correlation 

with TBL in various fish species including shortfin mako [39, 40].

Correlations between heavy metal concentrations and biological information in C. 

brachyurus
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The results of MANOVA in C. brachyurus (n = 15) showed that BW and 

TBL are significantly correlated with both Hg and MeHg (p < 0.05; Table 8, Fig

3L, 3M, 3N, 3O). To find a regression model that explains the correlations better, 

adjusted R2 values of polynomial and linear regressions were compared, and 

polynomial regression was concluded as a more, well-fitting model (Fig 4A, 4B). 

According to this regression model, Hg concentration in this species decreases 

from birth to a certain point in their life, and then increases with time. This model 

gives strength to the existence of growth dilution of Hg in C. brachyurus. The 

slight decrease in Hg concentration at the early stage of growth can be deduced 

from the effect of growth dilution in young individuals [17, 41]. Polynomial 

regression of Hg concentrations according to girth and age also demonstrated 

positive relationships (Fig 4D, 4E). 

Based on this information, we speculated that Hg and MeHg 

concentrations were all under the regulatory maximum limits because of the 

sampled sharks’ ages and sizes. Prediction intervals of the regulatory maximum 

limit of Hg (0.4 mg/kg) calculated using the regression lines of BW and TBL were 
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as follows: BW, 25.3–31.4 kg; TBL, 130.8–174.0 kg. These two criteria are easy 

to confirm in the field and can be checked before a shark is sold at a local market 

in order to avoid consumption of shark meat having Hg concentrations over the 

limit value. 

Hg and MeHg concentrations showed strong positive linear correlations 

(Pearson’s r = 0.990; Fig 4C), and the average MeHg/Hg ratio was 61.5% ± 8.3% 

(min–max: 46.3–83.3%), similar to previous reports [18, 19]. I. oxyrinchus had 

the highest MeHg/Hg ratio (66.6%), and T. scyllium had the lowest MeHg/Hg 

ratio (55.8%).

Heavy metal concentration differences according to sex in C. brachyurus 

were analyzed. Fe, Cu, and Hg were high in males, whereas Zn, As, and Se were 

high in females. In particular, Cu and As showed significant differences (p < 0.1; 

Fig 4F). It is known that Cu concentration in some teleost fish is higher in females 

than in males due to the metabolic activity difference, and a similar mechanism 

can be considered for C. brachyurus in further studies [42].

By taking a closer look at the Cu concentration values, SNU-MO-0012 
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was a particularly noticeable case. This shark was by-caught right after birth, 

having the umbilical cord still attached and its intestine filled with meconium only. 

This shark’s Cu concentration was obviously the highest among all C. brachyurus, 

and the cumulative percentage was 99.9%. Although the reason for this high Cu 

concentration in younger individuals is unknown, this phenomenon is similar to 

that observed in humans. Indeed, human babies show peak Cu concentrations 

right after birth, with a subsequent decrease to one-tenth the initial level beginning 

after 13 weeks of age [43, 44]. Consistent with this, the Cu concentration in SNU-

MO-0012 (8.91 mg/kg) was almost 10 times that of the other 14 C. brachyurus 

sharks (0.92 mg/kg). This tendency was consistent with a previous study showing 

that Cu concentration decreases during a shark’s growth period and increases 

again after their maturation [8, 45]. A similar tendency was also found in marine 

mammals whose Cu concentrations decreased with their growth [46, 47]. 

Pb concentrations showed a positive linear relationship with weight 

(Pearson’s r = 0.729, p < 0.05), as confirmed by linear regression analysis. A 

positive relationship was also observed for all 25 sharks (Pearson’s r = 0.578, p < 
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0.05), in contrast to previous studies demonstrating that there was a negative 

relationship between fish body weight or size and Pb concentration [48, 49].

The correlation matrix of the 11 heavy metals in C. brachyurus showed 

significant relationships between Fe and Cr (Pearson’s r = 0.538, p < 0.01), Sn and 

Pb (Pearson’s r = 0.437, p < 0.05), and Hg and Pb (Pearson’s r = 0.752, p < 0.001). 

However, the reason for these correlations is still unknown. In contrast, unlike the 

known positive correlation between Se and Hg concentration in fish muscle, Se 

and Hg concentrations in C. brachyurus were not significantly correlated 

(Pearson’s r = 0.04) [14, 50]. This pattern did not change when the correlation was 

analyzed with all the 25 sharks collected (Pearson’s r = 0.02).
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Discussion

Regulatory limit of heavy metal concentration 

Heavy metal concentration is one of the important criteria that should be 

confirmed for food safety. Various institutions and governments have suggested 

regulatory maximum limits for different heavy metals in fish (or predatory fish) 

meat. To confirm the safety of shark meat as a food product, heavy metal 

concentrations from this study were compared with the regulatory maximum 

limits from eight international regulatory bodies and one domestic (Korean) food 

regulatory body (Table 10). 

The regulatory limits of As, Cd, Sn, Sb, Pb, Hg, and MeHg concentrations 

are directly compared in Table 10. Because Hg and MeHg concentrations are 

important criteria for determining food safety, various regulatory bodies have 

presented maximum regulatory levels, and most have reported 1 mg/kg as the 

limit value [51-57]; however, the Japanese Health Authority has suggested stricter 

reference value, allowing up to 0.4 mg/kg total Hg and 0.3 mg/kg MeHg [58]. 
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Even with the most stringent standards, the average concentration of Hg and 

MeHg in all 25 sharks was below the limit value. Almost all 25 sharks showed 

lower concentrations of Hg and MeHg than the regulatory maximum limits, 

except for two sharks that had the longest TBL and largest BW (SNU-MO-0006 

and SNU-MO-0001). These two sharks had Hg concentrations of 268% and 102% 

of the maximum limit concentrations, respectively, and both were C. brachyurus 

species. Furthermore, only one shark (SNU-MO-0006), which had the longest 

TBL and largest BW, exceeded the limit for the MeHg concentration (297% of the 

limit value). In contrast, the As concentrations of all shark species, except for I. 

oxyrinchus, exceeded the regulatory limit value. The average concentration was 

less than the regulatory limit in I. oxyrinchus, but was fairly close to the limit 

value. The Average As concentration in all 25 sharks was 7.71 mg/kg, which was 

more than twice the regulatory level. The concentrations of other heavy metals 

(Sb, Pb, Cd, and Sn) were within the safe range in all 25 sharks. 

For Cr, Cu, Zn, and Se, the regulatory maximum limits were indicated in 

mg/day; thus, the measured concentrations were converted to mean daily intake 
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amounts of heavy metals from shark meat (mg/day) by multiplying the average 

amount of seafood ingested by Koreans (79.6 g/day) for each concentration, and 

these values were then compared with the regulatory limits [59]. The 

concentrations of all four heavy metals were under the regulatory maximum limits 

for all shark species (Table 10).

Food safety of shark meat and the need for shark meat consumption guideline

Shark meat is concluded as not safe to be used as a food source due to the 

Hg, MeHg, and As concentrations, even though concentrations of Cr, Cu, Zn, Se, 

Cd, Sn, Sb, and Pb were lower than the regulatory limits (Table 10). 

Hg toxicity due to overexposure results in serious clinical problems 

including neurotoxicity, cardiovascular toxicity, and embryotoxicity in pregnancy, 

of which Minamata disease is representative. MeHg is one of the organic Hg 

species and it causes secondary structural change to DNA and RNA and also 

protein structural change by binding to thiol groups [23]. Since MeHg has a good 
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absorption rate (90%) and long retention time, caution should be exercised when 

consuming fish meat. According to various regulations for food safety, as 

discussed above, almost every shark showed Hg and MeHg concentration 

belonging to the safety zone, except for 2 and 1 individual sharks, respectively. 

Even though Hg concentration itself seldom exceeded the regulatory 

limits in this study, shark meat consumption should still be considered carefully 

due to various reasons. Previous studies found that combined exposure to Hg and 

other heavy metals including Al, Cu, Pb, Cd, and Mn poses a synergetic health 

risk and that shark meat consumption can easily expose an individual to this 

health risk [61, 62]. Furthermore, excess Hg concentration can be predicted in a 

copper shark with over 25 kg BW and 130 cm TBL based on the positive 

relationship found in this study. Since meat from a copper shark over the predicted 

size will not be appropriate as a food source, the predicted value can be used as a 

guideline for consumers to choose more safe copper shark meat and for using 

different shark species as meat. Since Hg concentration also differs from organ to 

organ, and shark liver, fin, and intestine are also used as food sources, guidelines 
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for different organs should also be prepared [9, 20].

The need for a more detailed guideline for shark meat safety also exists 

for As, which showed excess concentration in almost every shark examined. 

Arsenic toxicity results in various manifestations such as skin lesions, chronic 

lung diseases, liver diseases, and vascular diseases. In addition, since As inhibits

mitochondrial respiration, which leads to oxidative stress and successive cell 

injury, death, and even cancer, its excessive accumulation must be avoided [63]. 

In this study, As showed significantly higher concentration in benthic sharks than 

in pelagic sharks, and in fact, all shark species except I. oxyrinchus showed 

regulatory limit exceedance. As the concentration of As varies according to the 

habitat and species, it is necessary to study the As concentration on the basis of a 

more diversified shark species and propose a guideline to prevent excessive 

accumulation through shark meat ingestion. 
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Fig 1. Sampling location in Jeju Island. Nineteen sharks were sampled from the Moseulpo fish market (30, 

Hamohanggu-ro, Daejeong-eup, Seogwipo-si, Jeju-do 63506, Republic of Korea) and 6 sharks were from the Hallim fish 

market (141-3, Hallimhaean-ro, Hallim-eup, Jeju-si, Jeju-do 63032, Republic of Korea).
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Fig 2. Average heavy metal concentration comparison by family and habitat. Data under the DL were substituted 

with half the DL. Error bars indicate standard errors. *: p < 0.05; Pelagic sharks: C. brachyurus, C. obscurus, I. 

oxyrinchus; benthic sharks: T. scyllium, M. manazo, C. umbratile. Carcharhinidae: C. brachyurus, C. obscurus; 

Triakidae: T. scyllium, M. manazo; Isuridae: I. oxyrinchus. 
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Fig 3. Multivariate regression graph. A – K: Multivariate linear regression 

between BW, TBL, girth and heavy metal concentrations in every 25 sharks. L –

O: Multivariate linear regression between BW, TBL and heavy metal 

concentrations in C. brachyurus. All A – O showed significant correlation 

(p<0.05). 
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Fig 4. Heavy metal concentration analysis in C. brachyurus. A, B, D, E: Correlation between Hg concentration and 

body weight (BW), total body length (TBL), girth, and age in C. brachyurus (p < 0.05 in all four cases). Blue lines show 

the 95% prediction interval for the regression line, and blue dotted lines indicate the regulatory maximum limits of Hg 

and MeHg (0.4 and 0.3 mg/kg, respectively). C: Correlation between the concentrations of Hg and MeHg in C. 

brachyurus (Pearson’s r = 0.990, p < 0.05). F: Average heavy metal concentration comparison between male and female 

C. brachyurus. Error bars indicate standard errors, and the spots beyond the error bars indicate significance at p < 0.1. 
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Table 1. Shapiro-Wilk test & Bartlett’s test results before transformation. Normality assumption and homogeneity 

of variance-covariance assumption are not all satisfied. All values were rounded to the fourth decimal place.

Tests Variables Fe Cu Zn As Se Hg MeHg

All sharks

Shapiro-Wilk test

Species 0.0471 0.0002 0.0003 0.0057 7.53e-08 1.36e-06 1.17e-07

Sex 0.0019 4.30e-07 0.0110 0.0326 3.79e-07 3.70e-06 4.89e-07

Habitat 0.0028 3.95e-06 9.75e-05 0.0792 6.59e-08 1.21e-06 9.85e-08

Bartlett’s test

Species 0.3350 0.0116 0.0173 0.0550 0.0132 0.0201 0.0038

Sex 0.8099 0.7985 0.0278 0.9001 0.0001 0.0018 0.0001

Habitat 0.4903 0.0003 0.8884 0.1638 0.0171 0.0013 0.0001

Carcharhinus brachyurus

Shapiro-Wilk test Sex 0.0069 0.0017 0.1142 0.3260 5.66e-05 0.0068 0.0010

Bartlett’s test Sex 0.6372 3.06e-07 0.0074 0.0395 0.0170 0.0033 0.0004
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Table 2. Estimated transformation parameters for multivariate Box-Cox transformation. Variables were replaced 

by a simple power transformation after estimation.

Variables Fe Cu Zn As Se Hg MeHg

All sharks

Species 0.25 0.25 -0.5 0.25 0 -0.25 -0.25

Sex 0.25 0.25 -0.25 0.25 0 -0.25 -0.25

Habitat 0.25 0.25 -0.25 0.25 0 -0.25 -0.25

Copper shark

Sex 0.25 0.25 -0.25 -0.5 -0.25 -0.25 -0.25
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Table 3. Shapiro-Wilk test & Bartlett’s test results after transformation. Normality assumption and homogeneity of 

variance-covariance assumption are satisfied. Even though a few samples tested as non-normal or with slightly inequality 

of variance, MANOVA is fairly robust to deviations from normality and homoscedasticity. All values were rounded to the 

fourth decimal place.

Tests Variables Fe Cu Zn As Se Hg MeHg

All sharks

Shapiro-Wilk test

Species 0.3826 0.1606 0.7947 0.0834 0.1242 0.5626 0.1920

Sex 0.0552 0.0146 0.7230 0.8371 0.3933 0.7866 0.8764

Habitat 0.2087 0.0543 0.4147 0.7111 0.2549 0.8392 0.7926

Bartlett’s test

Species 0.5023 0.2628 0.3190 0.0747 0.0709 0.2261 0.0977

Sex 0.9543 0.2969 0.2167 0.5445 0.2032 0.5087 0.5299

Habitat 0.2759 0.0427 0.5710 0.9488 0.0982 0.0918 0.0156

Carcharhinus brachyurus

Shapiro-Wilk test Sex 0.4399 0.0189 0.7540 0.2873 0.8022 0.7862 0.8913

Bartlett’s test Sex 0.1741 0.0001 0.0464 0.3743 0.5555 0.3750 0.3957
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Table 4. Mardia’s multivariate normality (MVN) test & Henze-Zirkler’s MVN test after transformation.

Multivariate normality is satisfied. All values were rounded to the third decimal place.

Variables
Mardia’s MVN test (result (p value)) Henze-Zirkler’s MVN test

Mardia skewness Mardia kurtosis

All sharks

Species Yes (0.284) Yes (0.963) Yes (0.401)

Sex Yes (0.705) Yes (0.365) Yes (0.367)

Habitat Yes (0.951) Yes (0.183) Yes (0.669)

Carcharhinus brachyurus

Sex Yes (0.772) Yes (0.093) Yes (0.293)
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Table 5. Total body length, body weight, age, and sampling location of sampled sharks. Data not available were 

excluded from the mean and standard deviation calculation. Missing value proportions of total body length, body weight, 

and age are 4%, 32%, and 24%, respectively. Sharks on the first year after birth were counted as 0 years old. All average 

and standard deviation values were rounded to the second decimal place.

Species n
Mean ± SD (Min-Max)

Sampling location
Total body length (cm) Body weight (kg) Age (yr)

Carcharhinus brachyurus 15
124.02 ± 32.70

(68-190)

15.33 ± 12.06

(4.5-45)

2.64 ± 1.86

(0-7)
Moseulpo fish market

Carcharhinus obscurus 2
116.00 ± 2.83

(114-118)

8.45 ± 0.78

(7.9-9)

0.0 ± 0.0

(0-0)
Moseulpo fish market

Isurus oxyrinchus 2
123.50 ± 19.09

(110-137)

12.60 ± 7.21

(7.5-17.7)

1.0 ± 0.0

(1-1)
Moseulpo fish market

Triakis scyllium 3
70.00 ± 3.77

(66.5-74)

1.70 ± 0.00

(1.7-1.7)

2.0 ± 0.0

(2-2)
Hallim fish market

Mustelus manazo 2
68.00 ± 22.63

(84-52)

0.50 ± 0.00

(0.5-0.5)

2.0 ± 0.0

(2-2)
Hallim fish market

Cephaloscyllium 

umbratile
1 63.0 - - Hallim fish market
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Table 6. Heavy metal concentrations and biological data of the sampled sharks. Concentrations under detection limit 

(DL) are marked as <DL. All concentrations are WW concentrations. M: Moseulpo; H: Hallim; F: female; M: male; P: 

pelagic; B: benthic

ID Species

Loca

-tion

Heavy metal concentration (mg/kg, WW) Biologic data

Cr Fe Cu Zn As Se Cd Sn Sb Pb THg MeHg Age

TBL 

(cm)

BW 

(kg)

Girth 

(cm)

Sex

Habi-

tat

SNU-

MO-0001

Carcharhinus 

brachyurus

M < DL 26.7147 0.5546 22.8517 15.1225 0.5799 < DL < DL < DL 0.0761 0.4089 0.2425 4 147 - 67 F P

SNU-

MO-0002

Carcharhinus 

brachyurus

M < DL 4.6736 0.3288 4.4662 11.1706 3.2649 < DL < DL < DL 0.0835 0.2944 0.2026 0 100.5 - 42 F P

SNU-

MO-0003

Carcharhinus 

brachyurus

M < DL < DL 0.8858 7.1427 5.4523 0.6352 < DL 0.2082 < DL 0.06 0.0665 0.0337 2 87 - 38 F P

SNU-

MO-0004

Carcharhinus 

brachyurus

M < DL 8.2137 0.4604 13.7624 10.4339 0.519 < DL 0.0351 < DL 0.0195 0.0963 0.0598 2 114 9 50.5 F P

SNU-

MO-0005

Carcharhinus 

brachyurus

M < DL 0.9725 0.5482 8.7583 10.3842 0.576 < DL < DL < DL 0.0217 0.1105 0.0692 3 109.8 8.5 45 F P

SNU-

MO-0006

Carcharhinus 

brachyurus

M 0.1648 11.1677 1.0163 7.3183 6.7375 0.31 < DL 0.0314 < DL 0.1962 1.0706 0.8921 - 190 45 - M P

SNU-

MO-0007

Isurus 

oxyrinchus

M < DL 12.2207 7.7498 4.3619 1.3043 0.4194 < DL 0.0165 < DL 0.0429 0.2215 0.1322 1 110 7.5 54 F P
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SNU-

MO-0008

Carcharhinus 

obscurus

M < DL 2.2459 0.1323 5.3205 8.0156 0.3169 < DL < DL < DL 0.0383 0.2713 0.1639 0 114 7.9 52 M P

SNU-

MO-0009

Carcharhinus 

obscurus

M 0.7492 23.0075 5.3178 10.9969 7.6799 0.3731 < DL 0.1822 < DL 0.1293 0.2400 0.1667 0 118 9 54 F P

SNU-

MO-0010

Isurus 

oxyrinchus

M < DL 14.7325 1.1469 2.0948 2.8112 0.2931 < DL 0.1302 < DL 0.0687 0.3266 0.2399 - 137 17.7 - M P

SNU-

MO-0011

Cephaloscylliu

m umbratile

H 0.1588 5.657 0.5731 13.5636 8.0886 0.2401 < DL < DL 0.0774 0.0697 0.1806 0.1094 - 63 - - M B

SNU-

MO-0012

Carcharhinus 

brachyurus

M 0.0032 2.9276 8.9158 4.4975 4.0259 0.7248 < DL 0.0063 0.0443 0.0063 0.1720 0.1111 0 68 1.65 25 M P

SNU-

MO-0013

Carcharhinus 

brachyurus

M 0.083 3.2612 1.0627 13.8818 6.9973 0.2159 < DL 0.0199 0.0465 0.0166 0.1491 0.0748 3 143 19.5 60 F P

SNU-

MO-0014

Carcharhinus 

brachyurus

M < DL 6.9166 < DL 4.157 4.5788 0.1288 < DL 0.0354 < DL 0.0354 0.0983 0.0628 1 92 4.5 - M P

SNU-

MO-0015

Carcharhinus

brachyurus

M 0.011 20.6689 3.6917 5.0847 5.8473 0.1613 < DL 0.044 < DL 0.0403 0.1168 0.0620 2 118 9.2 47.5 M P

SNU-

MO-0016

Carcharhinus 

brachyurus

M 0.103 3.1122 0.5187 2.3799 4.9429 0.0687 < DL < DL < DL 0.0038 0.1166 0.072 2 121 12 51 F P

SNU-

MO-0017

Carcharhinus 

brachyurus

M < DL 7.3542 0.7387 3.6387 3.924 0.0841 < DL 0.0037 < DL < DL 0.3739 0.208 7 165 26 69 M P

SNU-

MO-0018

Carcharhinus 

brachyurus

M 0.0425 2.0243 0.2477 2.1765 4.4131 0.1557 < DL < DL < DL < DL 0.1532 0.102 3 140 16.6 56.5 F P
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SNU-

MO-0019

Carcharhinus 

brachyurus

M 0.5674 12.8523 1.1071 3.609 5.6972 0.2719 < DL < DL < DL < DL 0.2367 0.117 5 - - 57.5 - P

SNU-

MO-0020

Mustelus 

manazo

H 0.1247 4.0576 0.6725 2.0363 15.0213 0.4496 < DL < DL < DL 0.0113 0.1481 0.089 2 84 - 25.5 F B

SNU-

MO-0021

Triakis 

scyllium

H 0.7698 25.4804 0.2694 4.1184 8.718 0.7621 < DL < DL < DL 0.0231 0.1481 0.086 2 74 1.7 26.5 M B

SNU-

MO-0022

Mustelus 

manazo

H 0.0138 < DL 0.1797 2.149 20.1565 0.3731 < DL < DL < DL < DL 0.0922 0.066 - 52 0.5 16.5 M B

SNU-

MO-0023

Carcharhinus 

brachyurus

M 0.0676 12.3939 0.823 4.938 4.9718 0.0789 < DL < DL < DL 0.0188 0.2139 0.131 3 141 16.7 56 F P

SNU-

MO-0024

Triakis 

scyllium

H 0.1701 3.3286 0.1314 2.9768 7.9794 0.4523 < DL < DL < DL 0.0232 0.1382 0.087 - 69.5 - 26 M B

SNU-

MO-0025

Triakis 

scyllium

H < DL 1.1079 0.1443 3.1325 8.2584 0.7061 < DL < DL < DL < DL 0.1052 0.049 - 66.5 - 26.5 M B
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Table 7. Average concentrations (mg/kg WW) of 11 metals and methyl mercury in six shark species. Values under 

DL were substituted with half the value for statistical analysis. All values were rounded to the second decimal place. 

Species n
Metal concentration (Mean ± standard deviation)

Cr Fe Cu Zn As Se Cd Sn Sb Pb Hg MeHg

Carcharhinus

brachyurus
15

0.07 ± 

0.15

8.22 ± 

7.54

1.39 ± 

2.25

7.24 ±

5.62

6.98 ± 

3.29

0.52 ± 

0.79

0.00 ± 

0.00

0.03 ± 

0.05

0.01 ± 

0.02

0.04 ± 

0.05

0.25 ± 

0.25

0.16 ± 

0.21

Carcharhinus 

obscurus
2

0.37 ± 

0.53

12.63 ± 

14.68

2.73 ± 

3.67

8.16 ± 

4.01

7.85 ± 

0.24

0.35 ± 

0.04

0.00 ± 

0.00

0.09 ± 

0.13

0.00 ± 

0.00

0.08 ± 

0.06

0.26 ± 

0.02

0.17 ± 

0.00

Isurus 

oxyrinchus
2

0.00 ± 

0.00

13.48 ± 

1.78

4.45 ± 

4.67

3.23 ± 

1.60

2.06 ± 

1.07

0.36 ± 

0.09

0.00 ± 

0.00

0.07 ± 

0.08

0.00 ± 

0.00

0.06 ± 

0.02

0.27 ± 

0.07

0.19 ± 

0.08

Triakis 

scyllium
3

0.31 ± 

0.40

9.97 ± 

13.48

0.18 ± 

0.08

3.41 ± 

0.62

8.32 ± 

0.37

0.64 ± 

0.17

0.00 ± 

0.00

0.00 ± 

0.00

0.00 ± 

0.00

0.02 ± 

0.01

0.13 ± 

0.02

0.07 ± 

0.02

Mustelus 

manazo
2

0.07 ± 

0.08

2.03 ± 

2.87

0.43 ± 

0.35

2.09 ± 

0.08

17.59 ± 

3.63

0.41 ± 

0.05

0.00 ± 

0.00

0.00 ± 

0.00

0.00 ± 

0.00

0.01 ± 

0.01

0.12 ± 

0.04

0.08 ± 

0.02

Cephaloscylli-

um umbratile
1 0.16 5.66 0.57 13.56 8.09 0.24 0.00 0.00 0.08 0.07 0.18 0.11

Total 25
0.12 ± 

0.23

8.60 ± 

8.08

1.49 ± 

2.37

6.37 ± 

5.06

7.71 ± 

4.25

0.49 ± 

0.62

0.00 ± 

0.00

0.03 ± 

0.06

0.01 ± 

0.02

0.04 ± 

0.05

0.21 ± 

0.20

0.13 ± 

0.16
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Table 8. MANOVA test. Multivariate significance (MVS) was calculated by analyzing Fe, Cu, Zn, As, Se, Hg, and 

MeHg based on the criteria of species, sex, and habitat of sharks. For C. brachyurus, MANOVA could be performed by 

incorporating sex. All values were rounded to the third decimal place. ***: p < 0.001; **: p < 0.01; *: p < 0.05.

Variables MVS
Metals

Fe Cu Zn As Se Hg MeHg

All sharks

Species 0.024* 0.346 0.261 0.045* 0.001*** 0.740 0.471 0.452

Sex 0.909 0.933 0.372 0.216 0.762 0.689 0.582 0.581

Habitat 0.240 0.459 0.208 0.234 0.016* 0.474 0.313 0.451

Carcharhinus brachyurus

Sex 0.289 0.264 0.395 0.452 0.069 0.489 0.334 0.337
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Table 9. Multivariate regression (MVR). MVR was analyzed and p values were calculated on Fe, Cu, Zn, As, Se, Hg, 

and MeHg on the criteria of age, BW, girth, and TBL. For C. brachyurus, MVR was also performed by incorporating the 

same biological criteria. All values were rounded to the third decimal place. ***: p < 0.001; **: p < 0.01; *: p < 0.05.

Variables Fe Cu Zn As Se Hg MeHg

All sharks

Age 0.681 0.522 0.912 0.932 0.058 0.374 0.653

BW 0.400 0.966 0.617 0.435 0.140 0.001** 0.002**

Girth 0.032* 0.166 0.031* 0.091 0.029* 0.008** 0.017*

TBL 0.033* 0.478 0.276 0.151 0.043* 0.001*** 0.001**

Carcharhinus brachyurus

Age 0.384 0.837 0.954 0.718 0.123 0.122 0.230

BW 0.554 0.571 0.879 0.721 0.173 0.002** 0.005**

Girth 0.079 0.245 0.828 0.702 0.071 0.074 0.131

TBL 0.092 0.937 0.333 0.707 0.160 0.009** 0.011*
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Table 10. Regulatory maximum limits of metals in shark meat. The regulatory maximum limits and mean heavy 

metal concentrations of As, Cd, Sn, Sb, Pb, Hg, and MeHg are shown in mg/kg. For Cr, Cu, Zn, and Se, the regulatory 

maximum limits and mean daily heavy metal intake amounts from shark meat are shown in mg/day. The regulatory limit 

of Fe has not been specified. Red box: mean value exceeding the regulatory maximum limit. Yellow box: data that 

exceed the regulatory maximum limit but the mean value does not. Green box: every data is under the regulatory 

maximum limit. a: DOH [54]; b: DOH [53]; c: CODEX [52]; d: SCF [60]; e: FAO [56]; f: JECFA [57]; g: EU [55]; h: 

KFDA [51]; i: UNEP [58].

Species
Metal concentration comparison with regulatory maximum limits

Cr Cu Zn As Se Cd Sn Sb Pb Hg MeHg

Regulatory 

maximum limits
0.25d 0.5d 25d 3b 0.3d

0.05~

1b,e~h
50b 0.15b

0.2~

2a~c,e~h

0.4~

1e~g,i

0.3~

1a~c,h,i

Carcharhinus brachyurus 0.01 0.12 0.51 6.98 0.04 0.00 0.03 0.01 0.04 0.25 0.16

Carcharhinus obscurus 0.03 0.22 0.65 7.85 0.03 0.00 0.09 0.00 0.08 0.26 0.17

Isurus oxyrinchus 0.00 0.35 0.26 2.06 0.03 0.00 0.07 0.00 0.06 0.27 0.19

Triakis scyllium 0.02 0.01 0.27 8.32 0.05 0.00 0.00 0.00 0.02 0.13 0.07

Mustelus manazo 0.01 0.03 0.17 17.59 0.03 0.00 0.00 0.00 0.01 0.12 0.08

Cephaloscyllium umbratile 0.01 0.05 1.08 8.09 0.02 0.00 0.00 0.08 0.07 0.18 0.11
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Summary

Sharks are vulnerable to bioaccumulation of various substances including 

heavy metals since they are apex predators. In this study, five shark species 

showed As concentrations that exceeded the regulatory maximum limit, whereas 

almost all Hg and MeHg concentrations were below the regulatory limits. This 

was likely because the sampled sharks were juveniles, and Hg and MeHg levels 

showed strong positive correlations with TBL, BW, and age. Because a C. 

brachyurus individual of over 25 kg in BW or 130 cm in TBL is likely to have Hg 

concentrations exceeding the regulatory maximum limit, avoiding consumption of 

such adult C. brachyurus can reduce the risk of Hg toxicity. The average 

concentrations of other heavy metals (Cr, Fe, Cu, Zn, Se, Cd, Sn, Sb, and Pb) 

were all in the safe range. Despite this, caution should be exercised when 

consuming shark meat owing to the As, Hg and MeHg concentrations. Since shark 

meat is being consumed globally, especially in Asian countries, detailed 

guidelines should further be prepared for safe consumption based on extensive 

studies of heavy metals in different shark species. 
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국문 초록

제주도 연근해 상어육의 중금속 농도

및 식품안전성

김 상 화

서울대학교 대학원 수의학과 수의병인생물학 및 예방수의학

전공

(지도교수: 박 세 창)

상어고기는 아시아를 필두로 하여 전 세계 다양한 국가에서

식용자원으로 이용되어 왔다. 그러나, 이들은 해양생태계의

최상위층에 존재하는 포식자이기 때문에 중금속 생물축적에 취약하다.

인간의 소비를 위해 연간 1억마리 이상의 상어가 포획되고 있는

만큼, 상어고기의 안전성 판단은 중요한 과제이다. 본 연구에서는

한국 제주도 연근해에 서식하는 6종 (이주성 상어 3종: Carcharhinus 

brachyurus, Carcharhinus obscurus, Isurus oxyrinchus; 정착성 상어 3종:

Triakis scyllium, Mustelus manazo, Cephaloscyllium umbratile) 상어
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근육조직의 중금속 농도를 분석하였다. 총 11종의 중금속 (Cr, Fe, Cu, 

Zn, As, Se, Cd, Sn, Sb, Pb, Hg) 및 MeHg의 농도를 ICP-MS, DMA, GC 

및 CVAFS를 이용하여 확인하고 국제식품규격위원회를 포함하여

다양한 기관에서 제시하고 있는 최대규제치 값과 비교하였다. 그

결과 As를 제외한 모든 중금속의 평균 농도는 규제치 이하인 것으로

나타났다. 그 중 Hg와 MeHg는 체장, 체중 및 나이와 유의미한 양의

상관관계를 보였으며, C. brachyurus 종의 경우 체장 130cm, 체중

25kg 이상인 개체에서는 높은 확률로 Hg 농도가 규제치를 초과할

것으로 계산되었다. 본 연구 결과 상어고기를 소비할 경우

소비자들은 높은 농도의 As에 노출될 수 있으며, 예측된 크기보다

큰 C. brachyurus유래 고기를 소비하는 경우 또한 높은 농도의

Hg에 노출될 수 있음이 확인되었다. 추가적인 연구를 통해 다양한

상어고기의 소비 시 적용할 세밀한 규제 및 가이드라인을 설정해야

할 필요성이 제시된다.

핵심어: 상어고기, 중금속, 식품안전성, 생물축적, Carcharhinus 

brachyurus

학번: 2016-26230
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