
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SNU Open Repository and Archive

https://core.ac.uk/display/348680703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


1

보건학 석사 학위논문

Effect of host genome, microbiome and                   

envirome on metabolic profile

대사증후군 위험요인에 대한 유전체, 

마이크로바이옴 및 환경인자의 영향

2019년 6월

서울대학교 보건대학원

보건학과 보건학전공

이 윤 환



2

Abstract

Quantifying the associations of host 

genome, microbiome and envirome on 

metabolic profile 

Yunhwan Lee

Department of Public Health

Graduate School of Public Health

Seoul National University

Background

Metabolic syndrome is a well known risk factor for cardiovascular 

disease. Therefore better understanding of each component of metabolic 

syndrome is required. Metabolic syndrome results from genetics,

environmental factors, and the interaction between them. Many recent

studies have shown that microbiome composition also affects the 

development of metabolic syndrome. In this study, the main goal is to

identify and compare the associations of host genetic, metagenome, and 

environmental factors on metabolic syndrome components.
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Methods

Each data source was prepared through quality control and imputation 

process considering characteristics of each data. The effect of each data 

source was evaluated using the heritability estimation approach and the 

prediction model separately.

Results

In heritability estimation, we found that 5 of the 11 phenotypes are 

significantly associated with metagenome-wide similarity. Metagenome 

source also provided a more accurate estimation than the genetics at the 

same sample size. In the prediction model, the contribution of each source to 

the prediction accuracy varied for each phenotype.

Conclusion

Through various methods, we grasped the influence of host genetic, 

metagenome and environmental factors on each metabolic component and 

quantified the relative importance of each data source. If the sample size is 

increased and methods are developed considering the characteristics of each 

data source in a further study, the effect of each data will be confirmed more 

accurately.

Keywords: Host genetics, microbiome, environmental factors, metabolic

syndrome, heritability, prediction model

Student Number: 2017-28211
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INTRODUCTION

Metabolic syndrome (MetS) is defined as a combination of clinical 

conditions including abdominal obesity, high blood pressure, elevated 

fasting blood glucose, high triglyceride, and low concentration of HDL 

cholesterol. Having three or more of these risk factors will result in a 

diagnosis of metabolic syndrome. Patients with MetS are at 2 to 4-fold 

increased risk of stroke, a 3 to 4-fold increased risk of myocardial infarction 

(MI), and 2-fold risk of all-cause mortality compared to those without MetS 

regardless of a previous history of cardiovascular events [1]. It has 

constantly been a global health concern therefore proper understanding and 

management of MetS is essential.

The components of MetS are well-known to be a result of complex 

interactions of genetic and environmental factors. Conventional genome-

wide association studies (GWAS) have revealed that multiple genomic loci 

with small effects contribute to the development of metabolic risk factors. A 

number of environmental modifiers such as caloric intake and physical 

activity interact with genetic risk factors [2].

Recent studies have revealed that gut microbiota impacts host 

metabolism and implements an essential role in the etiology of metabolic 

disease such as obesity, insulin resistance, type 2 diabetes, and 

cardiovascular disease [3]. Notably, Wang et al. have identified and 

validated approximately 60,000 type 2 diabetes associated markers and 

constructed taxonomic species-level analyses [4].
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As discussed above, genome-wide association studies and 

metagenome-wide association studies highlighted that the development of 

many complex diseases including MetS can be resulted from host genetics, 

microbiome, the environment, and their interactions. However, the relative 

effect of host genetics and gut microbiome on MetS is not clear.

In this paper, we will identify the effects of host genetics, metagenome 

and environmental factors on MetS in two distinct approaches.

The first approach is to estimate variance for metabolic syndrome traits 

explained by all SNPs or all genus level. This analysis utilizes the GCTA 

tool [5], which was developed to measure the heritability of quantitative 

traits of the conceptually unrelated individuals using a relationship matrix 

representing the genetic similarity of individuals. We will similarly 

construct a metagenomic relationship matrix using the relative abundance of 

the genus level and estimate the proportion of phenotypic variation 

explained by metagenomic similarity between individuals. 

The second approach is to evaluate the prediction performance of each 

of the host genetic and metagenome, and to see how the performance 

improves when combining them. The prediction accuracy was evaluated by 

the coefficient of determination (��). 
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Figure 1. Study workflow
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METHODS

Data description

Genome 

This study was based on KARE cohort data. Initially, 10,004 

individuals were genotyped for 500,568 SNPs with the Affymetrix Genome-

Wide Human SNP array 5.0. For individual QC, we excluded individuals 

with low sex inconsistency, low call rate (call rate < 97%), outlying 

heterozygosity (heterozygosity rate > mean ± 3SD) and related individuals 

(IBS > 0.9). Then, we filtered SNPs with p-values for Hardy-Weinberg 

equilibrium (HWE) less than 10��, with genotype call rates less than 95%

or minor allele frequencies (MAF) less than 0.01, and 352,228 SNPs were 

left. The quality controlled data were imputed with Impute2 [6] using 1000 

Genomes data as a reference panel (total number of imputed SNPs were 

3,351,033).

Metagenome

Metagenome data were produced by isolating urine-based extracelluar 

vesicle (EV) from 3844 samples of the Ansan cohort. Metagenomic 

sequencing was performed using 16S ribosomal RNA gene. The trimmed 

sequence pair was merged using CASPER, and the merged reads were 

filtered by the Phred (Q) score as described by Bokulich. After filtering,

only reads with length between 350 bp and 550 bp were used, because the 

reads that do not satisfy this criterion are either errors or artifacts. To 
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identify chimeric sequences introduced by PCR or amplification, a 

reference-based chimera searching method was conducted using VSEARCH 

with the silva gold database. Next, the remaining reads were clustered into 

operational taxonomic units (OTUs) by open reference methods with 

EzBioCloud. The representative sequences in each OTU cluster were finally 

assigned taxonomy with UCLUST, along with the three 

databases(parallel_assign_taxonomy_uclust.py script on QIIME version 

1.9.1) under default parameters. Relative abundances of 77 genus were used 

as the main variable. Alpha and beta diversity calculations were also 

conducted in QIIME version 1.9.1.

Environment

There are many environmental factors available including physical 

activity, dietary habits, stress/sleep questionnaires, smoking and sleep. 

However, data such as stress/sleep questionnaire and medication were 

removed from the analysis since the quality of these data is not guaranteed.

Specifically, previous researches have showed that the percentage of 

energy from fat or carbohydrate is associated with metabolic syndrome and 

its components, such as elevated triglycerides and total cholesterol [7]. 

Therefore, dietary fat intake and dietary carbohydrate intake was 

categorized into quintiles with the percent from each nutrient by sex. 

All missing environmental variables were imputed by Miss-Forest R 

package [8].
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Metabolic profile

Metabolic traits used in the analysis were fasting glucose, 2 hour GTT 

glucose, HbA1C(%), insulin level, total cholesterol, HDL, triglyceride, SBP, 

DBP, waist-hip ratio and body mass index. All phenotypes were inverse-

normal transformed since some phenotypes seem to have skewed 

distribution. All missing phenotypes were imputed by Miss-Forest R-

package [8].

Statistical analysis

Heritability estimation

The LMM framework was used to identify the proportion of metabolic 

syndrome-related traits that could be estimated from host genetics or 

microbiome. The analysis above was conducted through the GCTA tool 

(Yang et al., 2011). The tool uses genomic relationship matrix using all 

observed genotypes among individuals and estimates the phenotypic 

variance explained by all genome-wide SNPs (ℎ� ) by the restricted 

maximum likelihood (REML) approach. The higher ℎ� value indicates that 

the phenotypic variance we are interested in is well explained by genetic 

architecture. 

The genomic relationship matrix (GRM) between individuals j and k 

can be estimated by following equation,
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            A�� =	
�

�
∑

���������(�������)

���(����)

�
���    (Yang et al. 2011)

where ��� is the genotype frequency for the ��� SNP of the ��� individual 

and �� is the population frequency of specific SNP allele.

Similarly, we experimented with various types of metagenomic 

relationship matrix (MRM) and estimated the phenotypic variance explained 

by microbiome variance component. We denoted phenotypic fraction of 

microbiome ℎ�
� in the context of ℎ�.

As the relationship matrix, a covariance matrix was constructed using 

inverse normal transformed-relative abundance for each genus. 

Metagenomic relationship matrix was calculated as M =	
��′

�
, 

where ��� in matrix X is the inverse-normal transformed abundance of ���

genera in individual �	and � is the total number of genus.

Thus, it is similar to the genomic relationship, indicating the similarity 

between individuals according to the abundance of specific genus. In 

addition, we also considered a covariance matrix by encoding 

absence/presence indicator (0 or 1) of relative abundance. To adopt the best 

fitting model among the MRMs, the differences in the Akaike information 

criterion (∆AIC) between null model (without metagenomic component) 

and full model was compared. The AIC defined as 2v- 2ln(likelihood), 

where v is the number of variance components.
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Smoking and drinking, physical activity, and nutrient intake were also 

contained in the model as covariates, and the variance explained by them 

was notated ℎ�
� .

Prediction model

We applied a prediction model as another way of comparing host 

genome and urine microbiome without bias. We considered two methods: a 

polygenic risk score and penalized regression according to data sources.

Data source Model Method

Basic features Y ~age + sex Linear regression

Basic + Nutrient Y ~age + sex + nutrient intake Linear regression

Basic + Genome Y ~age + sex + nutrient intake 

+ PRS

Adding polygenic risk 

score to linear regression

Basic + Metagenome Y ~age + sex + nutrient intake 

+ genus

Shrinkage method

(Ridge, Lasso, E-net)

Basic + Genome + 

Metagenome

Y ~age + sex + nutrient intake 

+ PRS + genus

Combining PRS and 

ridge coefficients of 

genus

Table 1. Prediction model

All of the metabolic traits were used as outcome. For prediction 

scheme, we applied 10-fold cross validation and all samples were randomly 

split into 10-folds. Each fold total samples were data source. In each fold, 



14

train data was used to obtain GWAS SNP effect or shrinkage coefficients of 

genus and test data was used to evaluate total performance. Prediction 

performances were evaluated by coefficient of determination (��).

Polygenic Risk Score

Calculation of polygenic risk score (PRS) consists of two procedures. 

Once each SNP effect size was estimated by conventional linear regression 

in GWAS, then individual’s risk score was calculated by computing the sum 

of risk alleles, weighted by the effect size on the specific phenotype. 

However, SNPs located within the same genomic region are in 

linkage disequilibrium (LD) and including these SNPs in the model 

alleviates the prediction performance. So we used the clumping method, 

which aims to select SNPs so that the most associated SNP in the same 

region remains in the risk profile.

Penalized regression

Penalized regression allows to construct a linear regression model that 

is penalized, for having too many factors in the model, by adding a 

constraint as called in the equation. The consequence of adding this penalty

is to shrink the coefficient values towards zero. This reduces the effect of 

less informative variables on the phenotype, and there are methods such as 

Ridge, Lasso and E-net depending on the penalty term. 
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RESULTS

In this study we evaluated the effects of host genetics, metagenome, 

and environmental factors on metabolic traits via two distinct approaches: 

variance estimation and prediction model. The analysis included 3,248 

individuals with genome, metagenome, and environmental factors available. 

Since large numbers of samples were lost due to the metagenome data 

source, the same analysis was applied to the data of 8,476 individuals 

having genome and environmental factors. Table 2 shows that the 

distributions of 8,476 samples and 3,248 samples are approximately similar.

Matched Samples

(N=3248)

Total Population

(N=8476)

Age 48.9 ± 7.7 52.0 ± 8.8

Sex

Male 1655(51.0%) 4486 (52.9%)

  Female 1593 (49.0%) 3990 (47.1%)

Fasting Glucose 87.4 ± 20.4 87.6 ± 21.9

HbA1C(%) 5.7 ± 0.8 5.7	± 0.8

Total cholesterol 190.9 ± 36.5 191.8 ± 35.8

Triglyceride 159.3 ± 100.8 161.2 ± 103.5

HDL cholesterol 45.2 ± 10.4 44.7 ± 10.1
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Body Mass Index 24.5 ± 3.2 24.6 ± 3.1

Waist Hip ratio 0.9 ± 0.1 0.9 ± 0.1

Waist Circumference 83.7 ± 8.7 82.5 ± 8.8

Table 2. Baseline characteristics

Variance estimation

We first investigated how well metabolic traits can be inferred from the 

perspective of the microbiome as compared to host genetics. Prior to 

comparing host genetics and microbiome, we evaluated metagenomics two 

different metagenomics relationship matrices based on ∆AIC . Table 3

compares the differences in the AIC between null model and full model. The 

MRM_INT with an inverse-normal transformation of the relative abundance 

shows a better fit across all phenotypes although estimated variance is lower 

than MRM_raw.

Phenotype MRM_INT MRM_raw

ℎ�
� (s.d) ∆AIC ℎ�

� (s.d) ∆AIC

Fasting Glucose 4.12(0.012) 63.262 15.36(0.039) 54.966

HBA1C% 0.6(0.007) -1.050 2.83(0.027) -1.096

Total Cholesterol 4.95(0.013) 110.582 15.45(0.03) 92.360

Diastolic BP <0.01 - <0.01 -
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Systolic BP <0.01 - <0.01 -

Triglycerides 0.1 -2.000 1.31(0.02) -1.264

HDL 2.15(0.008) 28.104 7.74(0.029) 23.194

BMI 0.001 -2.004 0.001 -2.068

WHR 7.75(0.005) 254.762 25.4(0.044) 238.798

Waist
circumference

4.44(0.123) 87.950 16.3(0.06) 80.245

Table 3. Comparison of MRM matrix

Table 4 shows the phenotypic variance explained by each data source and 

their significance level. We found that 5 of the 11 phenotypes were 

significantly associated with microbiome composition after adjusting for 

age, sex and several environments, with ℎ�
� values of 4.1% for fasting 

glucose, 5.0 % for total cholesterol, 2.1% for HDL, 7.75% for WHR, 4.85% 

for waist circumference. 

On the other hand, only 3 out of the 11 phenotypes were significantly 

associated with genetic architecture, with 19.33 % for 2 hours-GTT insulin, 

10.55 % for DBP, 16.91% for Triglyceride. In addition, most phenotypes 

showed much lower heritability values than those already presented in 

previous researches. We have therefore suggested the heritability of the 

8,476 KARE samples available for genome data and have confirmed that the 

heritability estimates are significantly improved when the sample size 



18

increased. For example, total cholesterol which is known to show 14-50% of 

heritability was 11% in 3,248 samples versus 16.5% in 8,476 samples. 

It has also been confirmed that the estimation by microbiome data source 

was more accurate and reliable across most phenotypes given the same 

sample size.

The effect of the environmental factors estimated via the fixed effect was 

about 1% over the entire 11 phenotypes. 
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Table 4. Variance explained by each data source

Prediction accuracy

Next, we made prediction model with a combination of data sources. We 

empirically identified that BLUP – based SNP selection and penalized 

regression did not improve the prediction performance in genome data. 

Therefore, the prediction performance of the genome data was evaluated 

using the PRS constructed with the SNP effect of GWAS result.

Genome
(N=3248)

Genome
(N=8476)

Metagenome
(N=3248)

Environ
ment

(N=3248)

ℎ� P-value ℎ� P-value ℎ�
� P-value ℎ�

�

Fasting 
Glucose

7.63 0.18 11.66 5.49E-06 4.11 3.33E-16 0.21

HBA1C 2.62 0.3 7.85 7.26E-04 0.6 0.16 0.02

2H-GTT 
Insulin

19.33 0.008 11.09 5.08E-06 0.3 0.39 0.02

Total 
cholesterol

11.28 0.07 16.47 1.25E-10 4.95 0.00E00 0.02

DBP 10.55 4.37E-02 13.42 3.4E-07 <0.01 0.5 0.53

SBP 4.96 0.21 10.32 2.45E-06 <0.01 0.5 0.22

Triglyceride 16.91 0.016 17.96 3.14E-10 0.1 0.29 0.16

HDL 9.92 0.12 12.67 3.07E-06 2.15 2.04E-08 0.39

BMI 3.06 0.3 13.60 7.17E-08 <0.01 0.5 0.02

Waist-Hip 
Ratio

5.67 0.23 11.24 1.38E-05 7.75 0.00E00 1.69

Waist 
circumference

<0.01 0.49 5.6 0.003 4.85 0.00E 0.94
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The prediction accuracy from metagenome data were evaluated through 

ridge regression because there was little difference between penalized 

models (ridge, LASSO, E-net). 

Basic model includes age (continuous) and sex (binary) as common 

covariates. The prediction accuracy using the metagenome data source was 

much higher in 4 out of 11 phenotypes. Phenotypes such as DBP and BMI 

showed low accuracy regardless of which data source was used. 

We also confirmed that the prediction accuracy improves when host 

genetic and metagenome data are used simultaneously. 
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Figure 2. Phenotype prediction accuracy
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Figure 3. Contribution to prediction
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DISCUSSION

In this study we integrated data sources with different features and 

applied various statistical techniques to provide further understanding of 

metabolic syndrome components. Through various experiments, we have 

provided some meaningful implications.

First, we identified that the association of each data source differs

according to metabolic syndrome components. Notably, In the WHR and 

waist circumference, which is an indicator of obesity, prediction 

performance from microbiome was much higher than other data sources and 

the relative importance was also the largest. However, there may be a bias in 

this result since human microbiome has variability and constantly interacts 

with multiple environmental factors. Human microbiome affects and is 

affected by environmental factors.

In the components related to diabetes and dyslipidemia, the 

performance of each data source was different in components with similar 

metabolic characteristics. For example, the contribution of microbiome 

source was the highest in fasting glucose, while the contribution of host 

genome was highest in HbA1C. This difference may be due to the polygenic 

risk score, which is the prediction method for host genome. Because it only 

includes SNPs that satisfy specific p-value thresholds, SNPs with small 

effect were not considered. However, since we have confirmed that the 

performance of PRS and BLUP method is not different in 3000 sample size, 
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if more sufficient sample is obtained in the further studies, more accurate 

performance of genome will be possible.

In some components, we confirmed that the microbiome data source 

has a more accurate and informative effect than that of the genome data 

source. We also confirmed that the results were reliable by confirming that 

the relative effects of genome and microbiome on metabolic traits are 

consistent when applying different approaches.

We have also verified that the quality of urine-based metagenomics

sequencing data is maintained to some extent by confirming that the urine-

based data in this study had a similar result to gut microbiome. Generally, 

stool samples are widely used to identify the association between phenotype 

and gut microbiome. In previous literature performing analogous analysis 

scheme to ours, the microbiome data source showed better predictability

than host genome in Waist-Hip ratio (WHR), waist-circumference and 

fasting glucose. Our study also showed that the prediction performance of 

microbiome source to those phenotypes was superior to host genome. 

The limitation of this study is that the effects of metagenome data 

source are confounded by several unobserved environmental factors. It is 

known that host genome also influences the composition of microbiome 

although its association is still debating. Therefore, the heritability estimated 

from the microbiome source should be interpreted as the meaning of 

association rather than causality.

In real world, changes in metabolic profiles are also affected by 
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complex interactions between the host genome, microbiome and the 

environment, but these interactions have not been considered due to the 

limitations of statistical modeling. Therefore we have shown the 

associations of each data source with a simple assumption that there is no 

interaction between each data source.

In addition, due to the nature of the urine based EV, the renal function 

has a influence on the microbiome composition. However, we have partially 

confirmed that the difference in microbiome composition due to renal 

function is not large.

Many studies show that a genetic predictor alone will always have 

limited predicted power and is not of diagnostic value [9]. However, 

predictive power will increase if non-genetic risk factors are combined with 

the genetic predictors [10]. We empirically verified that combining host 

genome and metagenome data improves prediction ability of metabolic 

syndrome components. If more sample sizes are available and methods that 

reflect the characteristics of each data source are developed, it will provide a 

better understanding of metabolic syndrome and help improve the 

predictability through the lens of precision medicine.
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