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The Industrial Internet of Things (IIoT) has become a valuable data 

source for products and services based on advanced data analytics. 

However, evidence suggests that industries are suffering a significant 

loss of value creation from insufficient IIoT data sharing. We argue that 

the limited utilization of the Sensing as a Service business model is 

caused by the economic and technological characteristics of sensor data, 

and the corresponding absence of applicable digital rights management 

models. Therefore, we propose a combined property rights 

enforcement and pricing model to solve the IIoT data sharing incentive 

problem. 
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1 Introduction 

1.1  Background 

In 2011, the German government launched its Industrie 4.0 initiative to 

“drive digital manufacturing forward by increasing digitization and the 

interconnection of products, value chains and business models” (EU, 

2017). The fourth industrial revolution has now become widely 

accepted as the era in which technologies like cyber-physical systems 

and cognitive computing will enable a significant increase in operational 

efficiency and productivity (Lu, 2017). Similar to the way in which 

automation with programmable logic controllers and robotics 

represented a third industrial revolution in the late 1970s, the fourth 

industrial revolution is expected to bring smarter manufacturing, 

products and services (ibid.). 

 

Key characteristics of Industry 4.0 are often found to be digitization, 

connectivity and interoperability (ibid.). This can be interpreted as if the 

fourth industrial revolution essentially marks the beginning of an 

interconnection of the physical and digital worlds (Guth et al., 2016). 

Digitization of our environment has arguably been an ongoing process 

for at least the better part of the past century. Much of these efforts 

can be attributed to our desire to describe the world in a language that 

computers can understand in order to utilize their superior capabilities. 
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These superior capabilities become prevalent with technologies like big 

data analysis, which can increase functionality and quality in products 

and services by revealing patterns and correlations that were previously 

invisible (Golchha, 2015). Big data is also a key source for machine 

learning which is the heart of artificial intelligence (Liang et al., 2018). 

Indeed, advanced data analytics has recently been found to be the most 

pursued approach to technology innovation, which is yet another 

indication of data itself becoming an indispensable asset (Ringel et al., 

2018). 

 

Although vast amounts of digital information are already being 

collected and processed, fundamental Industry 4.0 prerequisites such 

as connectivity and interoperability have been lagging behind due to 

cybersecurity concerns and technological incompatibility in industrial 

environments (Kim & Chang, 2014). 

 

The EU Commission supports the theory that interoperability is one of 

the major barriers to a successful digital economy (Kerber & Schweitzer, 

2017). Therefore, projects like BIG IoT have received funding from the 

EU Horizon 2020 Research and Innovation Program to develop common 

interfaces to overcome this technological barrier (Bröring et al., 2017). 

Moreover, much like digital convergence in the telecommunication and 

media industry was enabled by technological change and convergence 

on common standards (Mueller 1999), a data-driven convergence of 
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information technology (IT) and operational technology (OT) is now 

emerging (Murray, Johnstone, & Valli, 2017). The IT/OT convergence 

may also contribute to close the remaining technology gap in the 

Industry 4.0 vision. 

 

However, the levels of information transparency as envisioned for 

Industry 4.0 cannot be achieved through physical connections and 

technological compatibility alone. Multiple studies have assessed the 

economic grounds and associated incentives for sharing digital 

information in the form of sensor data. For instance, the Sensing as a 

Service (S2aaS) business model was anticipated by De Cristofaro, Ding 

and Tsudik (2009) as an internet-connected sensor network offering 

commercial data access services. This model has later been covered in 

great detail by Zaslavsky, Perera and Georgakopoulos (2013), who link 

the concept to the Internet of Things paradigm. Central to the S2aaS 

business model is the concept of IoT data marketplaces (Mišura & Žagar, 

2016). The key motivation behind such marketplaces is to create 

platforms on which raw data streams from different connected devices, 

which otherwise may remain unexploited or stored in silos, can be 

traded for increased value creation (Perera, 2017a). 

 

As consensus has yet to be reached on the exact definition of IoT 

devices, we will consider IoT as physical or virtual sensors capable of 

exchanging data over the internet – wired or wirelessly. This definition 
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is inspired by Ashton (2009), who was the first to coin the IoT term in 

1999. Some scholars also include actuators under the IoT umbrella 

(Perera, 2017b), but we will limit our scope to only cover sensors as a 

part of the Sensing as a Service business model. 

 

The Internet of Things is one of the key frameworks supporting Industry 

4.0 (Khan et al., 2017). However, various definitions of IoT allow for 

many interpretations including personal devices and applications 

focusing on more user-centric convenience than significant gains in 

operational efficiency and productivity. Therefore, we will use the term 

Industrial Internet of Things (IIoT), which can be considered as a 

subcategory of IoT. Due to the lack of a widely accepted definition of 

IIoT, we will assign this term to what the EU Commission defines as 

machine-generated, non-personal raw data. The EU Commission 

describes such data as being “created without the direct intervention of 

a human by computer processes, applications or services, or by sensors 

processing information received from equipment, software or 

machinery, whether virtual or real” (Zech, 2017). Thus, we use the term 

“industrial” to emphasize the value propositions for various industries, 

although the actual data may be collected in non-industrial 

environments like in private, connected cars (Kerber & Frank, 2017). 

 

Thus, IIoT data may initially involve personal information originating 

from users and operators through applications like supply chain 
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optimization, asset tracking and monitoring, predictive maintenance 

and operational control systems (Lu, 2017). The EU General Data 

Protection Regulation (GDPR) defines personal data as “any information 

relating to an identified or identifiable natural person”. A natural person 

is further defined as “one who can be identified, directly or indirectly, in 

particular by reference to an identifier”. Therefore, with IIoT data, we 

have to assume that any initial personal data has been rendered non-

personal through sufficient anonymization. This means that we will not 

consider privacy concerns in this study. 

 

Prior research highlights many use-cases for data-driven applications 

across a wide range of industries and underlines the benefits in 

increased sharing of data as a non-rivalrous good (Lu, 2017; Marjani et 

al., 2017; Rafaeli & Raban, 2005). However, a recent communication by 

the EU Commission addressing ownership and access rights of non-

personal data, expresses concerns that current limitations in data 

sharing means that we are not taking full advantage of the emerging 

data-driven economy (Kerber, 2017). 

 

The EU communication has sparked a debate on the property rights of 

IIoT data as well as why privately held sensor data is not sufficiently 

shared (Richter & Slowinski, 2019). This study adds to that debate. 
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1.2  Problem Description 

Improved data availability for service providers and developers can 

represent promising opportunities for machine learning in artificial 

intelligence-powered applications (Golchha, 2015) or to extend 

capabilities of existing products and services (Perera, 2017b). In 

addition, it is expected that academics and research institutions can 

benefit from broadened access to real-time data (Milham et al., 2017). 

In more detail, information harvested by IIoT devices can enable a wide 

range of smart applications within domains like utility metering, 

logistics, supply chains, agriculture, power grids, traffic and building 

controls (Marjani et al., 2017) as well as an overall increase in 

manufacturing efficiency (Lu, 2017). 

 

Despite these business opportunities, the limited presence of data 

sharing through (I)IoT data marketplaces is evident (Kerber, 2017). 

While economic articles such as the one by Kerber (2017) suggest that 

the main barrier to increased data sharing is the lack of knowledge on 

how data can be exploited, we believe the rapid increase in production 

and use of (I)IoT data suggests otherwise. In addition, the current 

presence of online (I)IoT data marketplaces featuring common 

interfaces indicates that technological incompatibilities have already 

been overcome (Bröring et al., 2017). 
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Prior studies on S2aaS and (I)IoT data marketplaces pay little attention 

to fundamental prerequisites for any economic transaction, namely 

pricing, well-defined property rights and associated mechanisms to 

enforce them. On the other hand, the more economically oriented 

debate following the EU communication on data ownership does not 

seem to fully acknowledge the technological aspects of this issue. We 

believe the uncertainty and disagreements characterizing prior 

publications on this topic are caused by the lack of an interdisciplinary 

assessment in this domain. 

 

Although Kerber (2017) assumes that (I)IoT data streams can be 

classified as an excludable good, we argue that sustainable data sharing 

is actually inhibited by the current de facto non-excludable 

characteristics of IIoT data streams. This is not due to a lack of 

technological protection mechanisms, but because such techniques 

have yet to be incorporated in commercially viable digital rights 

management models for IIoT data. Thus, in the middle of the heated 

debate on who should be granted property rights to data, the critical 

function of enforcing these property rights seems to have been 

forgotten. No prior research has proposed a model for digital rights 

management that considers both the property rights enforcement and 

pricing of IIoT data. 
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1.3  Research Objective and Question 

Based on these shortcomings, our research objective is to combine the 

related and sometimes even conflicting elements of pricing strategies 

and property rights enforcement in one digital rights management 

model for IIoT data, and we ask how this combination can contribute to 

economically viable IIoT data trading. 

 

1.4  Methodology 

This study encompasses the key economic and associated technological 

mechanisms involved with trading IIoT data. The assessment of prior 

literature considers supply and demand, property rights allocation and 

enforcement, and economic characteristics of IIoT data streams as a 

tradable good. 

 

Based on the findings of our literature review, we complete the 

following steps to answer our research question: 

 

1. Requirements and relevant scenarios for digital rights 

management of IIoT data streams are identified: 

o The need for watermarking of IIoT data streams as a 

measure of property rights enforcement is supported. 

o The need for versioning of IIoT data streams as a 

measure of profit maximization is supported. 
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2. A watermarking technique is developed and combined with 

product versioning in a digital rights management model and 

used as basis for the economic analysis. 

3. The relationship between watermarking robustness and 

product versions is analytically analyzed by considering: 

i. Revenue maximization from versioning 

ii. Cost minimization of watermark recovery and 

authentication 

iii. Cost maximization of watermark attacks due to quality 

reduction 

4. Discussion of the results concludes the work. 

 

1.5  Contributions 

This study provides a novel approach to remedy the IIoT data sharing 

incentive problem by combining property rights enforcement and 

pricing strategy. 

 

The proposed model includes a simplistic watermarking mechanism for 

sensor data that features a strong relationship with IIoT data versioning. 

We also show how the so-called optimal quality gap can be quantified 

for property right holders to achieve profit maximization as an incentive 

to increase data sharing. 
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This approach extends the scope of prior literature on S2aaS and IIoT 

data marketplaces like Zaslavsky, Perera and Georgakopoulos (2013); 

Sheng et al. (2013); Mišura and Žagar (2016); and Perera (2017a, 2017b). 

The academic motivation behind this study is to close the gap between 

the aforementioned technologically oriented works and the more 

recent economic articles concerning the EU communication on the 

property rights of IIoT data (Richter & Slowinski, 2019). 

 

1.6  Structure 

The remainder of this study is organized as follows: a literature review 

on the S2aaS business model, IIoT data marketplaces and associated 

economic topics is presented in Chapter 2. In Chapter 3, we summarize 

the key takeaways from our literature review to support the proposed 

property rights enforcement and pricing model. We then introduce a 

digital watermarking technique as a core element for the proceeding 

economic analyses. In Chapter 4, we utilize our model in an analytical 

analysis to answer our research question. Chapter 5 summarizes our 

findings before potential shortcomings of the proposed model are 

covered in Chapter 6. 
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2 Literature Review 

2.1  Sensing as a Service 

Sensing as a Service emerges from the recent servitization paradigm in 

information technology (Duan et al., 2015). Centralization and 

increased availability of computing power in combination with 

improved infrastructure have fostered a wide range of cloud-oriented 

ICT services. The most prevalent concepts are Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) 

(Perera et al., 2014). This servitization paradigm is sometimes 

summarized as Everything as a Service (XaaS) and is largely driven by 

scalability, accessibility, pay-per-use pricing models and dynamic 

resource allocation (ibid.). Thus, cloud computing can offer the benefits 

from low initial investments, economies of scale and high-end services 

all at once. 

 

More recent contributions to the cloud computing service family 

include Sensing as a Service (S2aaS). This is a subcategory of Data as a 

Service that is shaped by the rapidly expanding ecosystem of (I)IoT 

devices and platforms. The idea is that billions of (I)IoT devices can 

provide new insights for value-added services through a multilateral 

content distribution model (Koutroumpis, Leiponen, & Thomas, 2017; 

Zaslavsky, Perera, & Georgakopoulos, 2012). 
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The novelty of Sensing as a Service is not necessarily in the provision of 

digital information. Such data markets have existed for some time 

(Muschalle et al., 2012). The distinction between S2aaS and other 

means of providing digital commodities as a service is mainly attributed 

to the raw and real-time properties of IIoT data streams (Mišura & Žagar, 

2016). In other words, the data marketplace we assess in this study 

facilitates exchange of data before value-added services like analytics, 

aggregation or combination of data have been provided. 

 

In a state-of-the-art literature review on economics and pricing models 

for (I)IoT, Luong et al. (2016) describe the general (I)IoT model shown in 

Figure 1. This model is also the basis of other comprehensive reviews in 

this domain like Yan, Zhang and Vasilakos (2014). The Sensing as a 

Service interface typically occurs between platform and data processing. 

In this way, providers of data analyses, applications and other services 

can access a broad selection of input data. 
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Figure 1 – The (I)IoT Model and Sensing as a Service 

 

Although a single data stream representing an unprocessed and simple 

physical factor may look worthless at first sight, the ability to sense the 

environment is allegedly an essential prerequisite for Industry 4.0 

technologies (Lu, 2017). When combining multiple IIoT data streams 

from the environment, a certain combination or collection may 

construct valuable information. Large collections of IIoT data can also 

be defined as big data, which is often characterized by its volume, 

velocity, variety, veracity and value (Jin et al., 2015). 

 

 

Sensing as a Service 
interface 

The (I)IoT Model 

Communications and 
networking 

Platform and data storage 

Devices and objects 

Data processing, 
applications and services 

Users and requesters 
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2.2  Economic Characteristics of IIoT Data 

There are arguably two main approaches to value creation with IIoT 

data (Liang et al., 2018): as an intermediate good for the creation of 

new or enhanced products and services, or as a final information good 

to support decision-making and optimize existing processes. In this 

section we will focus on the latter case and the unique properties of 

digital information goods. 

 

In information economics, information itself obtains its value from the 

increase in expected payoff or utility from making informed decisions. 

This can be shown as (Lawrence, 2012):  

 

𝑣(𝑥, 𝑦) 	= 	𝜋(𝑥, 𝑎+) 	− 	𝜋(𝑥, 𝑎-) 

 

where: 

π(x,a) is the profit function at state x with the decision a.  

ay is the decision made with information. 

a0 is the decision made without information.  

 

While some may be surprised to learn the quite recent appreciation of 

information in the form of raw sensor data as a valuable good, 

information economics and the power of knowledge in trading has long 

been appreciated by academics like Stigler (1961). More recently, we 

have seen the acknowledgement of timely information reaching new 
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levels. One example of competitive advantage obtained from 

milliseconds is underlined by Lewis (2014), who explains how high-

frequency traders have made billion-dollar investments in 

infrastructure to reduce latency in communication with stock 

exchanges. This example highlights an important distinction that needs 

to be made between static and streaming data as a tradeable good. 

 

A common characteristic of information in general is that determining 

its price is quite different from pricing physical goods due to the 

negligible marginal cost of (re)production and low transactional costs. 

As Shapiro and Varian (1998) proclaimed, “information is costly to 

produce but cheap to reproduce”. In many cases it can also be argued 

that information is easy to create but hard to trust and easy to spread 

but hard to control, but disruptive technologies like blockchain and 

smart contracts for implementing provenance and excludability may 

challenge the two latter conceptions (Missier et al., 2017; Ølnes, Ubacht, 

& Janssen, 2017; Özyilmaz, Doğan, & Yurdakul, 2018). 

 

Open data markets for static data like the former Microsoft Azure 

DataMarket have been around for years. Associated market structures 

and especially pricing models have therefore been covered in great 

detail in studies such as Muschalle et al. (2012) and Tang et al. (2013). 

However, the economic differences between static and streamed data 

introduce new challenges for data markets. Mišura, Krešimir and Žaga 
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(2016) emphasize the importance of freshness as well as the fact that a 

data stream is normally sold before it has been collected. This means 

that the actual contents and thus the potential value of the data stream 

may for both parties be highly uncertain at the time it is traded. 

Moreover, the generic nature of sensor data and its many use-cases can 

make it challenging to reveal the highly diverse willingness to pay 

amongst various consumers. 

 

In general, information can be considered a hybrid of public and private 

goods (Rafaeli & Raban, 2005). It can be relatively non-excludable and 

non-rivalrous unless technological protection measures prove 

otherwise. Like a trade secret, a raw data stream could entail sufficient 

incentives for non-disclosure, but the idea of the open marketplace is 

to monetize data that may be of value to others and thus exploit gains 

from trade in the market model. From the perspective of overall welfare 

maximization, a non-rivalrous good with close to zero marginal cost in 

production should be shared with any potential stakeholder (Kerber, 

2017). However, this approach is not likely to be in the interest of a 

private owner nor considered a fair distribution for the ones investing 

in data acquisition. It is also important to keep in mind that although 

data and information itself is non-rivalrous, the consequences of 

sharing it may cause rivalrous actions if the information can be used to 

win a zero-sum game. 
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That said, a major challenge in marketplaces for goods with close to 

zero marginal cost of reproduction, negligible transaction costs and no 

means of absolute protection is the threat of arbitrage (Pantelis & Aija, 

2013). A contract preventing a buyer from reproducing and distributing 

the same data stream is critical to maintain the data producer’s 

economic incentive to collect and share data. Otherwise, a malicious 

buyer could exploit the arbitrage opportunity and resell the data to 

multiple buyers at a lower price than the original good. We will look 

more closely into this aspect in our review of property rights of data. 

 

Another characteristic of markets for information is that they are 

known to not exhibit high degrees of transparency, which means that 

the good needs to be partially revealed before it can be fully evaluated 

by the consumer. This is obviously not an ideal situation for a close to 

non-excludable good. However, the importance of freshness in IIoT 

data streams may allow samples to be a fairly efficient way of signaling 

quality according to the concept described by Spence (1978). 

 

Apart from sampling, Mišura, Krešimir and Žaga (2016) propose two-

way credibility ratings as found in other platforms like eBay and Uber 

for signaling the quality of a data stream, its provider or consumer. That 

said, Richter and Slowinski (2019) underline the need for more 

elaborate trust mechanisms in scenarios where firms consider sharing 
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critical data than, for example, private consumers evaluating their 

driver in ride-hailing services like Uber.  

 

2.2.1 Property Rights of Data 

According to the Coase Theorem, given well-defined property rights and 

sufficiently low transaction and bargaining costs, an open market will 

lead to the most efficient and mutually beneficial outcome (Coase, 

1960). Thus, the main goal of the legal system is to assign these property 

rights and enforce contract law. This is however not always straight-

forward for digital goods. 

 

There are two general positions that can be taken when discussing data 

ownership. One side is driven by increased openness through wide 

contributions of data assigned to the public domain similar to the open-

source ideology. This can for instance be achieved through mandatory 

transparency from a regulatory point of view. The other side is seeking 

exclusive property rights and thus private incentives for data creation 

from profit maximization through the market solution. Due to our focus 

on the sustainability of the S2aaS business model, this study will focus 

on the latter position. 

 

The European Union has gained attention for driving discussions on 

data governance (Zech, 2017). In 1996, the Database Directive 

established copyright protection for databases (EU, 1996). A 
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communication released in 2017 addresses ownership and access rights 

of non-personal data in relation to the European data economy (Zech, 

2017), and the GDPR gave EU residents the right of personal data 

portability in 2018 (De Hert et al., 2018). Therefore, we will approach 

the S2aaS business model from the perspective of the European Union, 

which seems to be taking the lead on data regulations. Although we will 

not pursue novel judicial interpretations of data ownership legislations 

in this chapter, we will highlight certain aspects of EU law and other 

scholars that are relevant to our research objective. 

 

The EU Copyright Directive is often cited in discussions on the property 

rights of intangible or digital goods. Therefore, we will first assess the 

applicability of copyright law and other means of absolute protection of 

non-personal raw data streams. The digital age has certainly challenged 

the enforcement of copyright law by enabling highly efficient 

reproduction, dissemination and storage of digital information (Peters, 

2006). As the main goal of copyright law is to stimulate creative activity, 

the challenge is to balance owners’ ability to trade and distribute the 

work digitally while also preventing infringers from doing the same 

(ibid.). 

 

At the European level, non-personal data may in general qualify for 

absolute protection under the law of copyright (EU, 2006), sui generis 

database right (EU, 1996) or the trade secret directive (EU, 2016). Data 
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expressing literary or artistic works may obtain copyright protection (EU, 

2006). We consider such creative elements to be unlikely to occur in 

IIoT data as covered by this study. Moreover, the database right, which 

is an acquis of the copyright law, applies to databases that “by reason 

of the selection or arrangement of their contents, constitute the author's 

own intellectual creation” (EU, 1996). However, copyright protection 

does not extend to the actual contents of such databases (EU, 1996). 

Hence, data streams from IIoT devices cannot be individually protected 

under copyright nor database right law. Lastly, trade secrets must have 

commercial value and be subject to measures aimed at keeping them 

secret in order to be protected under EU law (EU, 2016). As the S2aaS 

business model implies making IIoT data streams available on a 

marketplace, we consider trade secret protection to also be irrelevant 

for this purpose. 

 

Therefore, if legally binding property rights are to be obtained for non-

personal IIoT data streams, protection must in most cases be sought 

through general civil law concepts like contract law. This conclusion is 

in line with prior assessments of data provenance by Koutroumpis, 

Leiponen and Thomas (2017) as well as a legal analysis on exclusive 

rights of data by Wiebe (2016). 

 

Legally binding contracts, which in the EU are based on the Principles of 

European Contract Law (PECL), can for example be in the form of an 
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agreement reserving certain rights of the information being exchanged. 

A contract may represent an adequate solution in certain use cases but 

poses some obvious shortcomings when compared to automatically 

granted protection like copyright. For instance, a contract must first 

fulfill the basic requirements of legal enforceability which involves 

obtaining acceptance by all parties. This could in some cases require the 

traded information to be revealed before the contract is legally binding 

due to low level of transparency of digital assets. Moreover, the 

doctrine of privity of contract is another common principle 

differentiating contract law from copyright law in an unfavorable way 

for data owners. Privity means that the rights or obligations of a 

contract are only binding to the parties signing the contract. This implies 

that contract law would normally not prevent a third party from 

redistributing a data stream against the will of the original creator. 

 

The lack of absolute protection of IIoT data from non-personal sensors 

is in line with the general consensus of factual information not being 

copyrightable. Despite the challenges this may introduce for IIoT data 

owners, the principle is arguably still reasonable as the converse would 

naturally pose a major hindrance to most activities in science, media, 

culture and more. However, in a commission staff working document 

on the free flow of data and emerging issues of the European data 

economy, the EU has proposed a data producer’s right where the 

“owner or long-term user of a device” or “persons or entities that 
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operate sensor-equipped machines, tools or devices at their own 

economic risk” would be granted the property right for machine-

generated, non-personal raw data (Zech, 2017). 

 

In an economic article discussing the above-mentioned EU 

communication, Kerber (2017) summarizes the intentions of the EU 

Commission as facilitating increased data creation and sharing through 

reduced transaction costs for trading and licensing. The plan is to 

achieve this by establishing the producer’s right as well as what may 

become a mandatory access right to what we in this study define as IIoT 

data. However, Kerber (2017) argues that it is not necessary with a 

producer’s right because the situation would be no different from 

today’s solution where a party will have de facto rights to data. Property 

rights can still be licensed out with a contract regardless of any exclusive 

rights. Kerber (2017) emphasizes that this is only the case if the data is 

in fact excludable through proper technological measures, which is a 

disputed matter as argued in this study. 

 

On the other hand, Kerber (2017) is more positive to the proposed 

mandatory data access right because it may relieve the monopolistic 

control and unequal bargaining power that exclusive or de facto 

property rights are likely to cause. For instance, non-rivalrous, privately 

held data could be accessed in the public interest. Also, certain 

mandatory access rights could prove helpful in complex multi-
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stakeholder situations such as the example of connected cars which we 

will return to later. Nevertheless, regulations such as the producer’s 

right could, if enacted, answer a relevant question of data ownership in 

industrial scenarios where machine suppliers collect data from their 

products to provide additional services to its users or in other ways 

monetize such data. 

 

Although the proposed producer’s right is initially exclusive, it is so as 

codified information – that is, not on the semantic level. The EU 

Commission is thus still within the principles behind non-copyrightable 

factual information. However, a recurring question in copyright 

disputes is the level of commonality between original works and 

infringing copies. Such uncertainties could therefore also arise with data 

streams protected under a producer’s right, which is likely to introduce 

many peculiar claims; for instance, how many similarities must an 

allegedly replicated data stream share with the original stream for it to 

infringe the producer’s right? That said, only a limited number of studies 

have been conducted in this domain and future research should explore 

consequences of a data producer’s right in more detail (Kerber & Frank, 

2017). 

 

2.2.2 Licensing of IIoT Data 

As we have seen, distributed digital content can be regulated by law 

with absolute rights such as copyright, or through a civil contract. Any 
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granted rights of use are normally described in a product license. Such 

license terms are often incorporated as a semantic component of a 

Digital Rights Management system, called Rights Expression Languages 

(Nadah, de Rosnay, & Bachimont, 2007). 

 

From the perspective of IIoT data and other use-cases where the final 

product is likely to be composed of data from heterogeneously 

distributed sources, a challenge arises when composite licenses 

compliant with all their sub-licenses are to be described. A typical 

example of this is when a digital product is a result of multiple data 

streams from different sources. This is known as the license attribution 

stacking problem. In this regard, Governatori et al. (2013) have 

proposed an automated framework for composing such licenses based 

on deontic logic. Standardized licensing terms that are machine-

readable also facilitate automated trading in marketplaces for digital 

goods. 

 

According to an online catalog for data and analysis, www.data.world, 

these are the common license types for published data sets: public 

domain, attribution, share-alike, non-commercial, database only, and 

no derivates. Data is dedicated to the public domain by waving all rights 

to the extent allowed by law. An attribution license means that one 

must give credit to the creator and indicate if any changes have been 

made. ‘Share-alike’ means that the user is obligated to distribute any 
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transformation or derivate works under the same license as the original 

work. A non-commercial license requires the user to not exploit the 

contents for commercial purposes. ‘Database only’ specifies that the 

license only applies to the database and not the contents, and ‘no 

derivates’ prevents any work being derived from the contents. Non-

profit organizations such as Creative Commons have released copyright 

license models to the public in order to simplify the legal aspects related 

to reserving and waiving copyrights. The final license is often a 

combination of the above-mentioned types, such as Attribution-Non-

Commercial. 

 

In this study, we will consider the profit maximization approach to data 

sharing through the IIoT data marketplace, and we will therefore not 

consider open data nor other works assigned to the public domain. 

 

2.3  IIoT Data Marketplaces 

Open marketplace platforms for IIoT data have been proposed to 

increase utilization of the vast amounts of collected data across 

different industries and is believed to serve as a core function in the 

S2aaS business model (Mišura & Žagar, 2016). However, the concept is 

fairly new, and only a few studies have been published on this topic 

(Kerber, 2017). 

 



 
 

26 

The purpose of IIoT data marketplaces is to match buyers and sellers 

and to facilitate the exchange of a digital good technologically, 

financially and formally. Given a critical mass of participants, a platform 

for data exchange is expected to reduce the transaction costs for both 

parties involved in the trade. This includes the search and information 

costs, bargaining costs and enforcement costs (Richter & Slowinski, 

2019). Based on the works by Mišura and Žagar (2016) and Parera 

(2017a and b), we have composed a proposed model of possible 

interactions between agents in IIoT data marketplaces in Figure 2. 

 

 

Figure 2 – Potential interactions in IIoT data marketplaces 

 

Data owners are the economic agents who have obtained the property 

rights of the data stream. As we have learned so far, these property 

rights are not necessarily well-defined. The data owner can connect any 

data source in its possession directly to an IIoT data marketplace 

platform given sufficient compatibility and ease of use. However, in the 

case where a sensor is not already in place, so-called senser agents may 

Platform 1 Platform 2 Platform n 

Data Owners 

Publishers Service Providers Sensers 

Private Sector Public Sector 
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offer their services in the form of sensor hardware and platform 

integration installed on the data owner’s property or assets. A publisher 

is an agent who is specializing in integration of existing sensor 

applications to IIoT data marketplaces. This agent is typically enabling 

interoperability through development of custom APIs. The platform 

agents are hosting IIoT data marketplaces and may create strategic 

alliances and share their data offerings. 

 

In more detail, the marketplace platform can take on responsibilities 

such as data validation, classification, combination, aggregation, 

transaction history and payments (Koutroumpis, Leiponen, & Thomas, 

2017). Due to the potential volume and variety of data, other important 

tasks for a marketplace platform is syntactic and semantic vocabulary 

management and indexing to allow for search-based discovery of data 

streams (Bröring et al., 2017). That said, the core functionality may turn 

out to be the creation of trust through reduction of information 

asymmetry as this is believed to represent a fundamental precondition 

for sharing data (Richter & Slowinski, 2019). 

 

On the consumer side, we have service providers utilizing the great 

variety of data streams to enhance their existing services or to develop 

new ones. These services are subsequently consumed by end-users, but 

some end-users may also consume raw data streams from the 

marketplace themselves, such as insurance companies collecting data 
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from clients’ cars (Kerber & Frank, 2017). In other words, there are both 

direct and indirect consumers of IIoT data streams. 

 

Despite the promising future of the S2aaS business model and the 

apparent presence of relevant technology, the current IIoT data 

marketplaces still seem to be in their infancy (Kerber, 2017; Richter & 

Slowinski, 2019). A search for active and open marketplaces currently 

promoting sales of (I)IoT or real-time data underlines the early stages of 

this business model. All (I)IoT data marketplaces discovered in this study 

were launched in 2018 and half of the platforms are emphasizing the 

fact that the platform is still under development. Nonetheless, these 

marketplaces address what has previously been found to be a lack of 

providers of dynamic data sources (Liang et al., 2018). 

 

The marketplaces listed in Table 1 were discovered by investigating the 

top 100 Google search results for keywords “iot data marketplace”, 

“sensing as a service marketplace”, “data stream marketplace”, “real-

time data marketplace” and “buy and sell iot data”. The search was 

performed in April 2019 with Private Browsing activated in Safari on 

macOS Mojave from South Korea. Industry-specific platforms as well as 

marketplaces primarily focusing on static data sets are not included. 
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Table 1 – Current (I)IoT data marketplaces 

Name URL Status Launched 

IOTA Data Marketplace data.iota.org Operational (PoC) 2018 

Terbine terbine.io Operational (Beta) 2018 

databroker dao databrokerdao.com Operational 2018 

SynchroniCity  iot-data-marketplace.com Operational (Piloting) 2018 

Streamr streamr.com Operational 2018 

 

A noteworthy observation from this insight is that most marketplaces 

offer data that is already assigned to the public domain or that 

otherwise features public characteristics. Such data streams are 

typically representing weather data, traffic conditions, public 

transportation and environmental data such as air pollution and water 

quality. Hence, the absence of privately held data is prominent. 

Moreover, three of the discovered marketplaces utilize a 

cryptocurrency as a medium of exchange and distributed ledgers for 

transaction records. 

 

Another notable project that is currently under development is BIG IoT 

which attempts to facilitate (I)IoT platform integration through a 

common interface and data sharing in a marketplace. BIG IoT aims to 

overcome the technological barriers to interoperability and unified data 

management across (I)IoT platforms, ecosystems and other data 

sources (Bröring et al., 2017).  
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2.3.1 Use-cases and Value Propositions 

In an outlook on the value and pricing of big data, Pantelis and Aija 

(2013) argue that the decisive factors for exchanging data are quality, 

price and consumers’ willingness to pay – just like with most other 

intangible goods. However, in addition to featuring negligible marginal 

cost of production, (I)IoT data is in many cases a byproduct of another 

process (Pantelis & Aija, 2013). Thus, there are few fixed costs to 

consider for data producers in IIoT data markets except from any 

opportunity costs associated with not sharing the data. We will now 

shift our attention to value propositions from IIoT data sharing and take 

a closer look at specific use-cases and associated data sources. 

 

Smart devices often include a wide range of sensors to feed control 

systems with close to real-time information that enables the more 

intelligent functionality. Machines, products and their users primarily 

trigger data collection for operational purposes, but this data can also 

have a secondary value, as we will see in this section.  

 

For further insights on this topic, we will use a connected car as an 

example. A modern car is equipped with advanced sensors feeding 

information to internal controls like advanced driver assistance systems 

as well as the driver itself (Kerber & Frank, 2017). The collected data can 

contain information on driving behavior, location and navigation, the 

surroundings of the car, weather data, driving conditions, etc. However, 
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in line with the motivation behind S2aaS and IIoT data marketplaces, 

connected cars can also share this data with third parties. Such 

stakeholders may be car manufacturers, owners, component suppliers, 

repair service providers, the government, insurance companies, other 

financial institutions and more (ibid.). 

 

The imagined use-cases for data harvested from connected cars are 

many. Some examples are performance analysis, predictive 

maintenance, auto part supply chain optimization, emergency 

assistance, traffic monitoring, road condition alerts, road quality 

reporting, tailor-made insurance pricing, weather forecasting and 

various smart city applications. A more novel use-case is the collection 

of data for training neural networks for autonomous vehicles as 

presented by Tesla Motors. 

 

As explained by Liang et al. (2018), IIoT data streams can be reutilized 

for either more informed decision-making or the development of new 

or enhanced technology. The above-mentioned use-cases are spread 

across both categories. Liang et al. (2018) also cite several studies 

showing how commercial value is created from related use-cases. Thus, 

there is little doubt that there are real economic incentives for trading 

IIoT data. 
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Although this study will not assess current policy evaluations regarding 

who should be entitled to the ownership of IIoT data, it is worth 

mentioning that the connected car example is a central scenario in the 

EU commission’s discussions on this topic (Kerber & Frank, 2017). The 

debatable question in that regard is for instance whether the car 

manufacturer or car owner should be granted exclusive property rights, 

and whether any other parties should be granted default access rights 

for the greater good. Considering that there might be multiple 

stakeholders involved in both the collection and utilization of data 

streams, the associated market scenarios could pose complex data 

governance issues (Kerber & Frank, 2017). 

 

Kerber and Frank (2017) also emphasize that the ideal outcome of the 

connected car scenario is strongly affected by how the data is made 

available – that is, if the car is connected to a marketplace platform, to 

the manufacturer’s ecosystem or accessible as a source for multiple 

stakeholders. This discussion is closely related to the treatment of 

personal data, but according to the scope of this study we will ignore 

this fact and assume that all data has been sufficiently anonymized. 

 

For instance, the car manufacturer may have obvious interests in 

utilizing car data in its service provision and product development, 

reselling it to other service providers for additional revenue streams, or 

keeping it undisclosed to protect its competitive edge (Kerber & Frank, 
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2017). Property rights of this data are typically obtained through a 

contract between the car owner and manufacturer to clear up any legal 

uncertainties, but many car manufacturers are today in de facto control 

of the data due to technological barriers (Kerber, 2017). In future IIoT 

applications, it is envisioned that consumers are explicitly awarded for 

giving up data. For instance, car owners may expect access to free or 

improved services, or other financial benefits, as proposed by Perera 

(2017a), if they choose to share certain data streams. 

 

The open market solution implies that it is the agent being able to 

create the most value who will eventually obtain control of the data 

regardless of how property rights are initially distributed (Kerber & 

Frank, 2017). Although the car manufacturer may technically or 

contractually prevent the car connecting to an open marketplace, the 

manufacturers that choose to limit such access would in theory only be 

better off if that is the most effective solution overall. Otherwise, they 

may eventually not sell any cars. This is, however, a theoretical scenario 

that is not very likely unless car buyers are perfectly rational, all cars 

have perfect substitutes and all agents have perfect information.  

 

That said, Kerber (2017) argues that producer’s rights as proposed by 

the EU Commission would not remedy market failures because the 

rights are likely to be bargained away in contracts. Thus, unequal 

bargaining powers would remain, and this could endanger both 



 
 

34 

competition and innovation through hold-up problems and 

monopolistic behavior. 

 

2.3.2 Market Structures and Pricing Models 

Although IIoT data streams have many theoretical use cases and 

potential value propositions, we must turn to prior research to 

investigate how and in which market structures IIoT data streams can 

be part of commercially viable business models. 

 

In terms of assigning value to data, Fricker and Maksimov (2017) 

reviewed studies on pricing mechanisms for both static and streamed 

data and concluded that there is actually no consolidated 

understanding of how such data products can be priced. Not all 

reviewed studies considered the open marketplace approach, but 

interestingly, they were all assuming market structures characterized by 

monopoly, duopoly or monopsony. Moreover, pricing models surveyed 

by Fricker and Maksimov (2017) had different aims and varied from 

profit to social welfare maximization as well as internal consistency and 

fairness – where internal consistency means that the pricing function is 

monotonic, and fairness suggests that there is a fair trade-off between 

price and quality. In terms of pricing attributes, usage, quality, cost, 

views, and customer profiles were proposed (Fricker & Maksimov, 

2017). 
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As emphasized by many scholars, IIoT data streams can construct big 

data and can thus be utilized for associated analyses. Therefore, we 

include the assessment by Pantelis and Aija (2013) on value and pricing 

of big data in the case of online marketplaces for reference. Pantelis and 

Aija (2013) apply the mode of data ownership to categorize data from 

an economic perspective. The authors argue that in a market with open 

or public data, which would suggest strong competition due to the 

nearly free availability of such data, neoclassical economic theory 

suggests that the price will be approaching marginal cost of production. 

In the case of digital information, we know that marginal cost of 

(re)production is close to zero. Hence, data markets with open or public 

data are unlikely to be sustainable (ibid.). Therefore, only privately held, 

digital goods with a certain degree of differentiation are expected to be 

commercially viable in an open marketplace. Pantelis and Aija (2013) 

classify such goods as being mainly private with well-defined and 

exclusive property rights. In the case of a sustainable market scenario 

with monopolistic power through data differentiation, Pantelis and Aija 

(2013) underline that profit maximization is reached through price 

discrimination with mechanisms such as versioning, market 

segmentation and personalized pricing. 

 

In a more recent study on data trading, Liang et al. (2018) assessed the 

full lifecycle of data trading through a comprehensive literature review. 

The authors concluded that there is no easy way to quantify the value 
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of data due to the vast amount of use-cases. Thus, the theory of 

screening will be important as the seller is likely to suffer from imperfect 

information because the data application is unknown (Stiglitz, 1975).  

 

As for pricing strategies in data markets, Liang et al. (2018) found that 

data packages, pay-per-use, flat rate, dynamic, two-part tariff and 

freemium models are all relevant. Liang et al. (2018) separate pricing 

models into three different categories: economic-based pricing, game 

theory-based pricing and auctioning. The first category contains typical 

variants of models like cost-based and consumer perceived value-based 

pricing, while the second category includes models like non-cooperative, 

Stackelberg and Bargaining games. Relevant auction models are 

forward and reverse one-sided, double, sealed-bid and combinatorial 

auctions. However, the authors emphasize that it is eventually the 

market structure that will have the greatest influence on price 

determination. Liang et al. (2018) also found that common techniques 

for price differentiation of data is versioning through different levels of 

precision and frequency. 

 

2.4  Digital Rights Management for IIoT 

The volatility, regulatory uncertainty and unique economic 

characteristics surrounding IIoT data streams raise a need for suitable 

protection mechanisms with respect to obtaining provenance and 

enforcing property rights. In this regard, the digital age has taught us 
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the importance of digital rights management to prevent digital goods 

from being copied, shared and stolen (Liang et al., 2018). This chapter 

will provide insight into prior works on technological protection 

mechanisms for data streams. 

 

Central techniques in digital rights management are encryption, 

watermarks and digital signatures. The portability and reproducibility of 

digital goods make these measures essential to provide security, access 

control, usage control, license management and payment fulfillment 

(Liang et al., 2018). In their literature review on this topic, Liang et al. 

(2018) categorized digital rights management into three types: 

software-based, where unauthorized use is typically prevented with 

encryption and user authentication; multimedia-based, where 

encryption and watermarking are designed to prevent malicious 

reproduction; and unstructured data-based management, which is 

what applies in the context of IIoT data streams (Panah et al., 2016). 

 

As explained by Liang et al. (2018), digital rights management of 

unstructured data is considered to be more challenging than for 

software and multimedia because replication and tampering is 

technically difficult to control. This is because data streams function as 

carriers of information without a pre-defined application, which makes 

fulfillment of licensing terms rely heavily on trust and moral obligations. 

Regardless of any encryption mechanism for secure transportation and 
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user authentication for access control, the information contained in the 

data stream must eventually be revealed to the consumer, which in turn 

enables virtually effortless reproduction. This is a clear distinction from 

digital media files carrying images, music and video where the 

perceived value is largely driven by its analogue consumption by 

humans. 

 

Digital watermarks are often implemented to enforce copyrights of 

digital media (Cox et al., 2002). For instance, invisible watermarks can 

be implemented in audio files at frequencies outside the human hearing 

range, or in middle-frequency parts of images through techniques even 

sustaining various forms of processing and cropping (Hsu & Wu, 1999). 

Such watermarks can, for example, contain information about the 

original buyer. If this fingerprint is carried with any illicit copy of the 

original work, the malicious agent behind the breach of contract bears 

a significant risk of being revealed due to the embedded traceability. 

Thus, digital watermarks can serve as an effective barrier to illegal 

reproduction and redistribution of digital works (Chen & Wornell, 2001). 

 

However, unlike images and audio files, digital watermarks in IIoT data 

streams would necessarily impose a notable difference in the good. A 

single number can simply not hold more information than its intrinsic 

numerical value unless the value itself or its metadata is altered. The 

difference between more traditional digital content and IIoT data 
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streams can thus be attributed to the fact that we do not necessarily 

know the actual use-case or mode of consumption for the latter good. 

This is why IIoT data streams need to be offered in an open and generic 

format. In other words, if we did not know that music was to be 

consumed by human ears, we may not have implemented watermarks 

at frequencies outside the human hearing range. 

 

In a review of state-of-the-art techniques for digital watermarking, 

Panah et al. (2016) summarize five popular methods: low-bit encoding, 

spread spectrum, statistical watermarking, angle coding, and dither 

modulation. Low-bit encoding techniques like alternation of the least 

significant bit (LSB) are both simple and common, but often vulnerable 

to manipulations. In spread spectrum watermarking, information is 

spread across multiple data samples to better withstand detection and 

removal. Statistical watermarking embeds information by modifying 

the statistical characteristics of data. Angle coding is often of complex 

form and encodes information within the angle between variables. 

Lastly, dither modulation is the class on which we will focus in this study 

due to its applicability on data streams. This class contains methods like 

Quantization Index Modulation (Chen & Wornell, 2001) and applies 

perturbation over multiple data points to embed a watermark. 

 

All digital watermarking techniques face a trade-off between three 

conflicting goals: maximizing rate of information imbedding, minimizing 
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distortion of the original data, and maximizing the robustness against 

attacks (ibid.). This is in line with the key properties of digital 

watermarks: invisibility, capacity, robustness, and security (Panah et al., 

2016). The two latter properties are sometimes used interchangeably. 

Cox et al. (2002) assign the security property to the ability to withstand 

intentional attempts to prevent watermark detection, while robustness 

covers the ability to survive more innocent operations that may still 

compromise the watermark. We will use the term robustness to 

describe both of these properties. When considering robustness in 

designing digital watermarking techniques, it is common to design 

based on either security through obscurity or Kerckhoff’s principle from 

cryptography, which assumes that the encryption technology or 

technique is known, but not the secret key (Panah et al., 2016). 

 

Attacks against digital watermarking can be classified into four main 

categories (Voloshynovskiy et al., 2001): removal attacks, where 

information is sufficiently damaged; geometric attacks, targeting the 

watermark detection mechanism; cryptographic attacks, where the 

watermark is decoded and then removed or distorted; and protocol 

attacks, aiming to alter the watermark information.  

 

In terms of watermarking theory and its classification of data types, the 

IIoT data streams we are assessing in this study are classified as non-

media or unstructured in the form of streamed, complex data. Panah et 
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al. (2016) underline that the unstructured characteristics of IIoT data 

streams imply that, for example, relational database watermarking 

techniques are not necessarily applicable. So-called non-media 

watermarking is a relatively new sub-domain of watermarking and 

limited studies have been conducted on this topic (Panah et al., 2016). 

That said, there are more use-cases for watermarking of data generated 

by sensor networks than we cover in the scope of this study. Some 

examples are in-network data aggregation and secure query processing, 

but these applications are mostly relevant before data is made available 

on a marketplace. 

 

For the purpose of implementing provenance in IIoT data, which is the 

history of data ownership that is central to the watermarking needs 

expressed in this study, Panah et al. (2016) highlight two main 

approaches: embedding through alteration of less significant bits in 

data samples, or in variable time delays between data samples. 

However, the latter technique is arguably not an ideal approach 

because time stamps may in many cases express critical information 

that should not be modified (ibid.). Therefore, we will focus on bit 

alteration instead of data point or time stamp alteration in this study. 

This is based on an assumption that time stamp reliability is considered 

more valuable than data point accuracy. 
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Sion, Atallah and Prabhaka (2006) were reputedly the first to propose a 

technique for watermarking sensor data streams for the purpose of 

embedding provenance. As a basis for their work, the authors assumed 

that if value is found in a data stream, it is likely to be tied to the order 

and accuracy of the data points. Thus, watermarking techniques for 

data streams should not alter this information in any significant manner. 

Their study was motivated by the potential threat of malicious agents 

reselling data streams in secondary markets. The authors also 

emphasize the unfortunate feature of sensor data in that, despite its 

scientific usefulness, the provenance is easily disconnected from its 

content. Sion, Atallah and Prabhaka (2006) developed a technique that 

implements watermarks through alteration of more significant bits in 

selected extremes of the data stream. This method proved resilience to 

transforms such as sampling, summarization, random alterations, and 

combined transforms. 

 

Chong, Skalka and Vaughan (2010) were the first to propose a self-

identifying watermarking technique which utilizes check bits as 

metadata encoded into insignificant bits of data points, while the actual 

provenance marks are encoded into more significant bits. This approach 

achieves some degree of redundancy and shows better robustness to 

truncation and rounding. This study was the first to show encoding of 

provenance in streamed data in the form of positive and negative 
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integers, decimal numbers and low-entropy datasets (Panah et al., 

2016). 

 

Except from interpacket delay-based methods as designed by Sultana, 

Shehab and Bertino (2012), and sequence altering methods as designed 

by Xiao et al. (2010), forward reference searches with Google Scholar 

from the original works of Sion, Atallah and Prabhaka (2006) and Chong, 

Skalka and Vaughan (2010) do not reveal any novel bit altering- or 

quantization-based techniques designed for IIoT data streams except 

for those covered in this review. Table 2 summarizes the main IIoT data 

stream watermarking techniques we have identified and their potential 

shortcomings with respect to the scope of this study. 

 

Table 2 – Main watermarking techniques for IIoT data 

Method Weakness Reference 

LSB embedding in 

selected extremes. 

Limited generality and invisibility. Sion, Atallah and Prabhaka (2006) 

Metadata and LSB 

embedding. 

Insignificant bits can be attacked 

with limited loss of value. 

Chong, Skalka and Vaughan (2010) 

Data point sequence 

alternation. 

The sequence of data points is 

considered to be critical for many 

applications. 

Xiao et al. (2010) 

Variable interpacket 

delay. 

Interpacket delays are considered to 

be critical for many applications and 

are often fixed. 

Sultana, Shehab and Bertino (2012) 
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3 Model 

In this chapter, we develop the basis of a digital rights management 

model for IIoT data streams in order to assess our research objective. 

The digital rights management model will consist of a mechanism for 

property rights enforcement in combination with a sustainable pricing 

scheme for IIoT data. 

 

IIoT data streams are, in general, not protected by copyright, and 

property rights must therefore be sought through contract law. Unless 

a data stream can be traced back to the initial buyer, only moral 

obligations would prevent buyers from breaching the contract that we 

assume disallows redistribution of data. Moreover, the barrier for 

malicious agents is weakened by the negligible marginal cost of 

(re)production of IIoT data streams. And, to make the matter worse, 

buyers in secondary markets are unlikely to be legally pursued for illicit 

redistribution due to privity of contract, which will add to the 

competition in secondary markets and make the price of the data 

stream approach its negligible marginal cost of (re)production. 

 

Therefore, the property rights enforcement method will be designed to 

implement traceability in data streams to the point where contract 

infringement becomes economically unattractive. 
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3.1  Assumptions 

We have seen in our literature review that IIoT data streams are 

vulnerable to arbitrage due to the challenges involved in enforcing 

property rights (Mišura & Žagar, 2016). This effect is assumed to harm 

the data owner and will therefore act as a barrier to data sharing. We 

will not consider the specific license model in use, but we assume the 

data is privately held, and that the original owner seeks profit 

maximization by maintaining its monopolistic power in an IIoT data 

marketplace. This means that the owner has an interest in preventing 

buyers from reproducing and distributing the data stream in secondary 

markets unless those buyers are authorized to do so. 

 

The IIoT data covered by the scope of this study is machine-generated, 

non-personal data consisting of time-stamped real numbers. An 

example of such a data stream can be the speed of a connected car, 

which is part of core functionality needed to safely operate the vehicle 

in addition to being of potential interest to others. For instance, 

developers of autonomous driving systems may utilize this information 

in combination with other variables in their software development. On 

the other hand, the same data stream can also be valuable to insurance 

companies in case of an accident or for personalized pricing schemes 

based on driving behavior. However, it is natural to assume that the 

insurance company prefers a lower level of precision compared to the 

software developer if the data stream is made available at a lower price 
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through product versioning. Another aspect of this multi-stakeholder 

scenario is that the perceived value of the data stream will increase if it 

can be authenticated – that is, a mechanism where the originality of the 

data stream can be confirmed through its watermark. 

 

We will therefore utilize so-called quality discrimination by applying 

versioning of the data stream as a measure to maximize profit as 

supported by prior literature (Liang et al., 2018). Regarding the 

perceived value of the data stream, we will assume that utility is 

expressed as a linear function of quality. And because use-cases of the 

same data stream may vary between different stakeholders as well as 

often not being known to the seller, we generalize quality to be 

described as the precision of the data stream. Hence, the perceived 

value of a data stream can be expressed as a linear function of the 

number of digits precision per data point in the stream. The precision 

level is the only factor of quality considered due to the potential 

elimination of certain use-cases caused by interpacket delay-based 

watermarking or the complete removal of certain data points. 

Therefore, we also assume that any attacks on watermarks attempt to 

maintain as much as possible of the original data stream and thus its 

quality and value. 

 

As we only consider non-personal, machine-generated sensor data in 

this study, we assume that such data streams are a byproduct of 
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operating a product or process, and that there are only marginal 

additional costs, which are negligible, involved with producing or 

making the data available for sale – except for costs associated with 

enforcing property rights. In other words, the profit maximizing 

objective is aligned with revenue maximization. 

 

3.2  Watermarking Technique 

To embed provenance in IIoT data streams, we apply a digital 

watermarking technique based on alternation of less significant digits. 

Based on the review by Panah et al. (2016), we argue that this is the 

most relevant technological protection measure for this purpose. 

However, as opposed to prior works by Sion, Atallah and Prabhaka 

(2006) and Chong, Skalka and Vaughan (2010), we put additional 

emphasis on simplicity and the ability for the watermarking technique 

to provide product versioning and thus support associated pricing 

models. These requirements are motivated by our line of argument that 

there is a need for viable property rights enforcement and pricing 

models to facilitate increased IIoT data sharing. In addition, the 

technique is designed with respect to achieving the three main goals of 

digital watermarking: maximizing rate of information imbedding; 

minimizing distortion of the original data; and maximizing the 

robustness against attacks (Chen & Wornell, 2001). The watermarking 

principles applied in this study are inspired by the concepts of 

Quantization Index Modulation (ibid.). 
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3.2.1 Function 

We propose a watermarking technique based on rounding operations. 

Rounding operations are normally applied with the purpose of 

approximating a fractional decimal number by a number with fewer 

digits but can also be applied to reduce the accuracy of integers. In 

computer science, this operation may typically be applied when 

compressing a data stream from double-precision (64-bit) to single-

precision (32-bit). However, in our model, rounding can also be utilized 

for both watermarking and for reducing precision for the purpose of 

product versioning. 

 

Tie-breaking rules are needed when rounding a decimal or digit that is 

exactly halfway between preceding integers. That is, if 9.5 should be 

rounded to 9 or 10. If it was not for fractions equal to 0.5, all round-off 

errors would be symmetric by always rounding to the nearest integer. 

The default rounding mode in the technical standard for floating-point 

arithmetic IEEE 754 is “round half to even”. This means that a midway 

floating point will be rounded to the nearest even integer value. In other 

words, 9.5 is rounded to 10 and 8.5 is rounded to 8. This method has no 

positive/negative bias and no bias toward/away from zero and will 

minimize the sum of expected errors. A similar tie-break rounding 

convention is “round half to odd”. As with “round half to even”, this rule 

also features the absence of positive/negative bias and bias 

toward/away from zero. 
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The proposed watermarking technique is named Deterministic 

Alternation Between Integer Tie-breaks (DABIT). DABIT implements a 

seemingly invisible repeating watermark in IIoT data streams consisting 

of any real number with or without fractions consisting of two or more 

digits. The method works by altering between “round half to even” and 

“round half to odd” operations according to a predefined sequence for 

every encountered tie-break. The embedded watermark can, for 

example, represent a 64-bit binary code identifying the initial buyer of 

the data stream. A “round half to even” tie-break operation expresses 

a binary 1, and a “round half to odd” operation expresses a binary 0. In 

this way, DABIT enables close to non-biased watermarking of data 

streams with a negligible loss of precision and accuracy. By comparing 

a DABIT-encoded data stream with the unwatermarked time series, 

every case of a tie-break rounding will express a piece of the watermark. 

Thus, the full data stream does not necessarily need to be kept as 

reference. The watermark embedding sequence is conceptualized as a 

Python function in Figure 3, in which the precision of each data point of 

the data stream x is reduced by one digit: 
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Figure 3 – Generic example of the watermarking process 

 

Note: Python’s built-in round() function uses the default rule “round 

half to even” in accordance with IEEE 754. Thus, round(x[t]) gives the 

same result as the custom function RoundHalfToEven(x[t]), but the 

latter is used for clarity in the watermark embedding process. 

 

3.2.2 Example 

Table 3 illustrates how an example of the first four bits (1001) of a 

repeating 64-bit watermark can be embedded in combination with 

product versioning. The Value column contains the original, 

unwatermarked data stream with its corresponding time stamps in the 
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left-most column. For every new pricing tier and thus quality level, the 

precision of each data point is reduced by one digit. In every instance 

where the reduction in precision involves a tie-break rounding 

operation, “round half to even” and “round half to odd” are used 

deterministically according to the bit sequence of the predefined 

watermark. When the bit to embed is 1, “round half to even” is applied 

and vice versa. 

 

Table 3 – Example of watermarking of an IIoT data stream 

Time Value Tier 1 DABIT Tier 2 DABIT Tier 3 DABIT Tier 4 DABIT 

t 43.846 43.85 - 43.8 1 44 - 40 - 

t+1 43.525 43.52 1 43.5 - 44 1 40 - 

t+2 42.947 42.95 - 42.9 0 43 - 40 - 

t+3 42.493 42.49 - 42.5 - 43 0 40 - 

t+4 43.065 43.07 0 43.1 - 43 - 40 - 

t+5 43.715 43.71 0 43.7 - 44 - 40 - 

t+6 44.150 44.15 - 44.1 0 44 - 40 - 

t+7 44.519 44.52 - 44.5 - 45 0 40 1 

t+8 44.655 44.66 1 44.7 - 45 - 50 0 

t+9 45.152 45.15 - 45.2 1 45 - 50 0 

t+10 45.301 45.30 - 45.3 - 45 - 40 1 

t+11 45.527 45.53 - 45.5 - 46 1 50 - 

 

In this way, the watermark will only be visible to the party having access 

to two adjacent data streams for comparison. 

 

3.2.3 Robustness 

In this chapter, we will discuss the robustness of DABIT against potential 

geometric, removal, cryptographic, and protocol attacks in scenarios 
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we find relevant for IIoT data streams. Although a wide range of 

sophisticated attacks are possible, we do emphasize our assumptions of 

value being associated with the quality of the data stream. Therefore, 

any attacks reducing the accuracy or removing proof of authenticity are 

expected to drastically reduce the value of the data stream. 

 

We argue that the robustness of DABIT against geometric attacks 

targeting the watermark detection mechanism is relatively strong. This 

is due to the rigorous relationship between the original data stream and 

the watermarked version in terms of both time stamps and the order of 

data points. Hence, in case time stamps were tampered with in a 

geometric attack, a more advanced watermark detection mechanism 

may still recognize the order of data points as a reference to where the 

watermark is embedded. Altering the order of data points will increase 

the difficulty of watermark detection, but this operation is considered 

to result in a higher quality loss compared to other attack strategies. 

 

Given that the unwatermarked data stream is not known and the value 

of the least significant digit is unpredictable, the DABIT watermark is 

arguably invisible to a malicious agent. However, the technique is 

potentially vulnerable to cryptographic and subsequent protocol 

attacks if different agents buy the same data stream with the purpose 

of averaging them or otherwise compare each data point to detect and 

possibly alter the watermark. That said, this is arguably the case of all 
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watermarking methods. A certain level of protection against such 

attacks can be achieved by utilizing strategic watermarks, but the actual 

composition of the watermark lies outside the scope of this study. 

 

Lastly, removal attacks are seemingly the most relevant threat against 

DABIT because this approach can be conducted in a similar manner to 

the watermark implementation and product versioning itself. Thus, this 

mode of attack is in line with our assumption of minor noise in data 

points generally resulting in the lowest perceived quality reduction of 

IIoT data streams. We will not consider removal attacks such as 

averaging adjacent data points, which would harm the update  

frequency, nor the complete removal of selected data points, which 

would not be a viable approach for attacking an invisible watermark. 

Instead, we identify relevant removal attacks as being rounding, 

truncation or adding noise to the data stream. Common for these three 

removal attacks is their aim to reduce the quality of the data stream in 

an unbiased manner while maintaining other quality attributes such as 

frequency and time stamps. To simplify the assessment of these attacks, 

we combine these three attack modes in a common operation of 

reducing precision with rounding. We allow for this simplification 

because the least significant digit of a DABIT watermarked data stream 

will be equally distorted regardless of whether rounding, truncation or 

random noise is being applied.  
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One of the key features of DABIT that helps withstanding the 

aforementioned removal attacks is that even if the rounding operation 

is only applied to the least significant digit, the embedded watermark 

will occasionally affect more significant digits. Given a uniform 

distribution of least significant digits between 0–9, every 100th rounding 

operation is expected to impact the second least significant digit. Every 

1,000th rounding operation will impact the third least significant digit 

and so on. This effect makes the watermark fairly robust against attacks 

on less significant digits, but it also illustrates the exponentially 

increasing difficulty to recover the watermark for every decimal being 

attacked by a malicious agent. 

 

3.3  Economic Reasoning 

The economic motivation behind applying digital watermarking is to 

embed provenance in IIoT data streams. The ability to recover this 

watermark at a later point is an important tool to fight malicious agents 

in the marketplace, as well as providing true consumers with a method 

for verifying authenticity of their data stream.  

 

The perceived risk associated with illicit redistribution of IIoT data 

streams increases significantly when knowing that a data stream 

includes traceability back to its initial buyer. In this situation, malicious 

agents attempting to illicitly redistribute a data stream face two options: 

to trust their buyer and any subsequent buyers to never reveal the data 
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stream; or to attack the watermark in an attempt to remove the traces 

leading back to them. The first option is not considered to be rational 

due to the portable nature of data streams. Therefore, we will focus on 

the direct and indirect costs of attacking the watermark in our analysis. 

 

Lastly, product versioning will also help prevent illicit redistribution of 

data streams in secondary markets. Offering the original data stream at 

a lower price and precision level will eliminate some incentives for 

malicious agents attempting to resell attacked, lower-priced versions 

because they must compete with authentic substitutes. Such authentic, 

lower-priced versions target consumers that are not willing to pay for 

the higher-priced options while also supporting the market price 

through product differentiation. 

 

3.3.1 The Quality Gap 

With the introduced quality discriminating approach, it becomes 

essential to identify the optimal quality gap between two product 

versions, as illustrated in Figure 4. In this chapter, we will explain how 

the optimal quality gap can be expressed by producers’ and consumers’ 

cost functions. 
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Figure 4 – The quality gap in product versioning 

 

Figure 4 also illustrates the general assumption of consumers’ 

willingness to pay for quality. Consumers requiring high quality will 

prefer the higher-priced option while consumers with less interest in 

data precision will resort to the lower-priced option or an attacked 

version of this in the secondary market. Therefore, the market price 

difference can express utility as a function of quality. The reason why 

we do not suggest additional levels of quality is that any levels of quality 

lower than version B would not be able to compete with attacked 

versions of A, which would have higher quality in the secondary market. 

 

In terms of identifying the optimal quality gap, we argue that it pays off 

for the data owner to pursue watermark reconstruction of illegally 

distributed data streams until the costs of these efforts increase 

consumers’ perceived loss of value due to quality reduction from 

version A 

version B 

quality 

price 

«quality gap» 
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watermark attacks. This is because any costs of pursuing malicious 

agents that exceed consumers’ combined willingness to pay for the 

quality difference between the true and the illicit good cannot be 

expected to be recovered. When these two cost functions are in 

equilibrium, the property rights holder is indifferent between pursuing 

malicious agents through watermark reconstruction and offering an 

authentic substitute of the illicit good on the marketplace, hence 

version B in Figure 4. This authentic good can match the precision level 

of illicit goods and still provide greater value due to its authenticity. 

 

3.3.2 Cost of Watermarking (CoW) 

We define cost of watermarking to consist of two main factors: 

embedding and reconstruction costs. These costs are faced by the 

property rights holder. Embedding is the cost of implementing the 

watermark through a rounding operation, which we define as a linear 

cost function expressed by a cost parameter ρ and the number of 

rounding operations x per data point.  

 

Reconstruction costs are expressed as an exponential function of cost 

parameter a and the number of digits x that have been attacked by a 

malicious agent – in other words, the number of rounding operations 

applied per data point by the attacker. The exponential property is 

attributed to the exponentially increasing size of data that needs to be 
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available and collected in order to detect traces of the watermark for 

every digit of precision that has been attacked. 

 

𝐶𝑜𝑊	 = 	𝜌	𝑥	 × 	𝑎	105 

 

where: 

x is the number of digits processed 

ρ is the per digit cost of watermarking (rounding) operation 

a is the per data point cost of watermark reconstruction 

 

3.3.3 Cost of Attacking (CoA) 

Malicious agents are facing two main factors in their cost function: the 

actual attack operation; and the resulting loss of value of the data 

stream due to the reduced quality. 

 

Costs associated with performing the attack are considered to be 

equivalent to the initial watermark embedding process because we 

assume this to be performed as a rounding operation that reduces the 

precision level of the data stream. The cost of quality reduction is the 

consumer-perceived loss of quality of the data stream caused by an 

attack of the watermark. Due to the invisibility of the watermark, the 

attack is assumed to obscure or remove one digit per level of strength, 

x. According to our general assumption of a linear utility function of 

quality, this cost function is also linear. 
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𝐶𝑜𝐴	 = 	𝜌	𝑥	 × 	𝑏	𝑥 

 

where: 

x is the number of digits processed 

ρ is the per digit cost of attacking (rounding) operation 

b is the perceived loss of value per reduced precision level 
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4 Analytical Analysis 

4.1  Equilibrium Between CoW and CoA 

To identify the optimal quality gap and thus versioning strategy for the 

described scenario, we determine the equilibrium between the cost of 

watermarking and the cost of attacking. This equilibrium will identify 

the quality level at which product version B should be introduced to 

support the market value of product version A. The graph below 

indicates where this equilibrium can be found. The x-axis expresses the 

number of digits attacked by malicious agents in order to remove the 

watermark and thus the number of digits that drive the cost of the 

watermark reconstruction process. The cost of attack (CoA) increases 

linearly with the wasted quality and associated loss of consumers’ 

willingness to pay per attacked digit. The cost of watermarking (CoW), 

which is largely driven by the reconstruction of watermarks in pursuit 

of malicious agents, increases exponentially with the number of 

attacked digits due to the nature of the watermark technique as 

described for its robustness properties. As argued in our economic 

reasoning, these two cost functions are equal at the optimal “quality 

gap” between product version A and B. 
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As illustrated in Figure 5, one equilibrium can occur before there is a 

full-digit “quality gap”, thus when no DABIT watermark should be added. 

A second equilibrium between the two cost functions CoW and CoA can 

occur at a greater optimal “quality gap” between product version A and 

B.  

 

The following equation expresses all equilibria between the two cost 

functions and thus the ideal product versioning strategy for the 

described scenario: 

 

 

 

decimals attacked  
(quality reduction) 

1 

cost of watermarking (CoW) 
(assuming DABIT watermarking) 

cost of attacking (CoA)  
(assuming linear utility) 

equilibrium with versioning 

equilibrium with  
no versioning 

optimal quality gap  
between product A and B 
 

cost 

Figure 5 – Equilibrium between CoA and CoW 
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𝐶𝑜𝑊	 = 	𝐶𝑜𝐴 

 

𝜌	𝑥	 × 	𝑎	105 	= 	𝜌	𝑥	 × 	𝑏	𝑥 

 

As we assume the costs of rounding operations for the property holder 

and the malicious agent to be the same, these two factors cancel each 

other out and we are left with the costs of pursuing reconstruction of 

watermarks in attacked primary products, and the perceived loss of 

value due to reduced quality from watermark attacks: 

 

𝑎	105 	= 	𝑏	𝑥 

 

4.2  Determining the Optimal Quality Gap 

The resulting function y below describes the ideal ratio between cost 

parameters a and b at different quality gaps x between product versions 

A and B. We name this function the quality gap function: 

 

𝑦	 = 	
𝑎
𝑏 	= 	

𝑥
105 

 

If the cost parameters are known, the optimal quality gap between the 

two product versions can be determined with the quality gap curve 

plotted in Figure 6. 
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Figure 6 – The quality gap curve 

 

We can see from the quality gap curve that the cost ratio y must be 

lower than 0.1 for the ideal quality gap to be higher than one digit. This 

is discovered by tracing a horizontal line from any given cost ratio y and 

observe for which values of x the line intersects with the quality gap 

curve. Below is an example of how the ideal quality gap is located if the 

cost ratio y = 0.02: 

 

𝑦	 = 	
𝑎
𝑏 	= 	

𝑥
105 = 0.02 

 

where 

a is the per data point cost of watermark reconstruction 

b is the perceived loss of value per reduced precision level 

x is the quality gap between product versions A and B 
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Figure 7 – Practical use of the quality gap curve 

 

The quality gap curve illustrates the two equilibria between cost 

functions CoW and CoA, but we ignore the equilibrium occurring at less 

than a one-digit optimal quality gap between product versions. The 

second optimal quality gap for the suggested cost ratio occurs at 

approximately x = 2, hence at a two-digit quality gap. 

 

4.3  Applicability of the Quality Gap Function 

To further investigate the applicability of the quality gap function for 

the scenario covered by this study, we calculate the first derivative of y 

with respect to x: 

 

𝑑𝑦
𝑑𝑥	 

=	
𝑑
𝑑𝑥	;

𝑥
105< 

=
𝑑
𝑑𝑥	[𝑥] 	 ∙ 	10

5 	− 	𝑥	 ∙ 	 𝑑𝑑𝑥 	[10
5]

(105)@  

=
105 	−	 ln(10) 	 ∙ 	𝑥	 ∙ 	105

10@5  
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=
1
105 −

ln(10) 	 ∙ 	𝑥
105  

=	−	
ln(10) 	 ∙ 	𝑥	 − 	1

105 	 

 

We then find the critical point: 

 

𝑑𝑦
𝑑𝑥 	= 	−	

ln(10) 	 ∙ 	𝑥	 − 	1
105 = 	0 

𝑥	 = 	
1

ln(10) 	≈ 	0.43 

 

From Figure 6 as well as the mathematical properties of the quality gap 

function, we see that x ≈ 0.43 is a global maximum. Thus, the quality 

gap function is applicable for cost factor ratios in the interval (0, 0.43]. 

We also appreciate that the limit of the quality gap function y as x 

approaches infinity is 0. In other words, as consumers’ willingness to 

pay for precision (b) grows relatively larger than the per data point cost 

of watermark reconstruction (a), the ideal quality gap approaches 

infinity. That said, the actual quality gap is practically limited by the 

number of digits per data point of the data stream. 
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5 Conclusion 

There is little doubt that the use-cases for shared data streams are 

many and that the resulting advancements in operational efficiency and 

productivity are likely to be in the public interest. However, it seems like 

our private interests and lack of trust are currently preventing us from 

taking full advantage of this opportunity. It is natural to assume that our 

past experience with digital media piracy may be a decisive factor in this 

regard. This is why we proclaim that digital rights management models 

have become more relevant than ever before. 

 

5.1  Summary 

Our economic analysis shows how a simple technique for implementing 

provenance through digital watermarking in data streams can create a 

basis for more commercially viable IIoT data marketplaces. The key 

takeaway of this study is the relationship between perceived value of 

data streams and the efforts associated with enforcing property rights, 

and how this relationship can be utilized in profit-maximizing pricing 

strategies. 

 

5.2  Discussion 

The combined property rights enforcement and pricing model shows 

that there is in fact an equilibrium on the quality scale between these 

opposing forces, which is also the ideal entry point for the product 
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versioning strategy. However, this equilibrium may not exist for all 

watermarking techniques and is dependent upon the cost functions of 

embedding and reconstruction of watermarks. This emphasizes that 

there might be more considerations to be made when assessing 

watermarking techniques for IIoT data streams than just technological 

features alone. 

 

Although the practical use-cases of this model will require further 

research and more rigorous testing, we have answered our research 

question and shown how digital watermarking and product versioning 

can contribute to economically viable IIoT data trading. The proposed 

model can also increase trust and ensure data owners a greater part of 

the revenue stream from their data despite the presence of malicious 

agents in the marketplace. 

 

Moreover, we believe an online data stream authentication service can 

provide additional value to the proposed digital rights management 

model. We have mainly focused on the use of watermarks to legally 

pursue malicious agents when illicit data streams are discovered in 

secondary markets, but another relevant value-proposition is for 

consumers who would like to verify the authenticity and quality level of 

their data streams. 

 

 



 
 

68 

6 Limitations and Future Research 

As a complete digital watermarking mechanism requires more 

sophisticated functionality, which lies outside the scope of this study, 

the main purpose of the described technology is to illustrate how 

property enforcement can be combined with pricing strategies in the 

pursuit of economically viable IIoT data sharing.  

 

As for the quality gap function, we assume that the willingness to pay 

for quality is known in order to identify the ideal product versioning 

strategy. However, due to the wide spectrum of use-cases for data, it 

can be a challenging task to reveal the consumer’s willingness to pay. 

 

Moreover, the watermarking technique DABIT features some obvious 

shortcomings in that it requires a minimum quality loss of one-digit 

precision in order to be implemented, and each data point must carry 

more digits than the optimal quality gap. Moreover, all watermarked 

data points need to be kept for reference for watermark detection, and 

the technique is not robust against time stamp manipulation, 

aggregation, and the averaging of multiple data streams. Lastly, DABIT 

requires careful consideration during distribution in order for data 

streams that are adjacent in quality to not reveal in which data points 

the watermark has been embedded.  

 



 
 

69 

Although we argue that DABIT addresses shortcomings of alternative 

watermarking techniques, a common denominator for this study and 

prior works is the general approach and lack of specific use-cases. Thus, 

future research should attempt to combine successful features of 

existing models into novel watermarking frameworks designed for 

more specific scenarios that are relevant for IIoT data sharing. Such 

frameworks should also be considered and compared in combination 

with different pricing strategies. 
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Abstract (Korean) 

초    록 
 
 

산업용 사물 인터넷 (IIoT) 데이터가 제품과 서비스를 위한 중요한 

고급 데이터 소스로 여겨지고 있지만, 여전히 수 많은 기업들은 

불충분한 산업용 사물 인터넷 데이터 공유 시스템으로 인하여 

고충을 겪고 있다. 방대한 분량의 산업용 데이터가 제대로 거래되지 

못하고 있으며, 이는 데이터의 커다란 가치 손실로 이어지고 있다. 

본 연구에서는 서비스로서의 센싱 (Sensing as a Service) 비지니스 

모델이 한정적으로 적용되고 있는 원인이 해당 정보의 경제적, 

기술적 특징들을 반영하는 디지털 권리 시스템의 부재에 

기인한다고 보고 있다. 따라서 본 연구에서는 산업용 사물 인터넷  

데이터에 대한 지적재산권 집행 시스템과 데이터 가격산정 모델을 

제안하여 산업용 사물 인터넷 데이터 공유 인센티브 문제를 

해결하고자 한다.  
 
주요어 : 4 차산업혁명, 산업용 사물인터넷, 서비스로서의 센싱, 
산업용 사물인터넷 데이터 거래, 디지털 권리 관리, 디지털 
워터마크 
 
학  번 : 2017-21456 
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