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Abstract

Study on Attention-based LSTM
Model for Multivariate Time-series

Prediction

Yang Bai

Department of Computer Science & Engineering

The Graduate School

Seoul National University

Given previous observations of a multivariate time-series, how can we accurately

predict the future value of several steps ahead? With the continuous development

of sensor systems and computer systems, time-series prediction techniques are play-

ing more and more important roles in various fields, such as finance, energy, and

traffics. Many models have been proposed for time-series prediction tasks, such as

Autoregressive model, Vector Autoregressive model, and Recurrent Neural Networks

(RNNs). However, these models still have limitations like failure in modelling non-

linearity and long-term dependencies in time-series. Among all the proposed ap-

proaches, the Temporal Pattern Attention (TPA), which is an attention-based LSTM

model, achieves state-of-the-art performance on several real-worldmultivariate time-

series datasets.

In this thesis, we study three factors that effect the prediction performance of

TPA model, which are the Recurrent Neural Network RNN layer, the attention mech-
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anism, and the Convolutional Neural Network for temporal patter detection. For re-

current layer, we implement bi-directional LSTMs that can extract information from

the input sequence in both forward and backward directions. In addition, we design

two attention mechanisms, each of which assigns attention weights in different di-

rections. We study the effect of both attention mechanisms on TPA model. Finally,

to validate the Convolutional Neural Network (CNN) for temporal pattern detection,

we implement a TPA model without CNN. We test all of these factors using several

real-world time-series datasets from different fields.The experimental results indicate

the validity of these factors.

Keywords : Time-series, Attention mechanism, LSTM, Prediction

Student Number : 2017-22669
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Chapter 1

Introduction

Given previous observations of a multivariate time-series, how can we accu-

rately predict the future value of several steps ahead? Nowadays, the highly devel-

oped sensor systems and computer systems are generating massive time-series data

all the time, such as household electricity consumption, road occupancy rate, cur-

rency exchange rate, and solar power production. Sincemost of time-series data come

from practical fields, it is of great significance to predict these time-series. The accu-

rate prediction of time-series can help people better manage the resources, for ex-

ample, prediction of household electricity consumption can help the power supply

department to properly distribute the electrical load. Another example is that people

can make great profit by precisely predicting the stock prices and currency exchange

rates.

Time-series prediction and modelling is an important interdisciplinary research,

involvingComputer Science and Statistics. Traditional statistical predicting approaches

combine linear Autoregressive (AR) and moving average. However, since time-series

data often consist of complex non-linear patterns, these traditional approaches can-

not work well all the time. Therefore, the need for non-linear predicting approaches

arises.

In machine learning, the model can automatically learn the useful patterns (both

linear and non-linear) from data. However, even though traditional machine learning

models (e.g. support vector regression) can extract both linear and non-linear patterns
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in time-series, they fail to model the long-term dependencies through time steps.

Recently, deep learning models, especially the Recurrent Neural Networks (RNNs),

are widely used in time-series prediction tasks because of their ability to model the

long-term dependencies. Long Short-term Memory (LSTM) neural network is a kind

of RNN that has proven to be successful in processing time-series data. With an input

gate and a forget gate, an LSTM network can selectively memorize or forget historical

information in its memory cells, which makes modelling the long-term dependencies

possible.

Even though LSTM networks work well in time-series data, the attention mech-

anism can further improve their performance. The key idea of attention mechanism

is that it first assesses the previous states of RNN layers and selects the relevant ones,

then it extracts a context vector form these states. Because the context vector is a mix-

ture of previous relevant states, it could be used to improve the RNN performance.

Temporal Pattern Attention (TPA) model is a multivariate time-series predict-

ing model. With LSTM and attention mechanism, the TPA model can make satis-

fying prediction on multivariate time-series data. To our best knowledge, the TPA

model achieves state-of-the-art prediction accuracy in several real-world multivari-

ate time-series datasets. In this thesis, we introduce our study on Temporal Pattern

Attention model and determine the effects of three main components of TPA model.

More specifically, we study how recurrent neural network layer, attention mecha-

nism, and convolutional neural network for temporal pattern detection influence the

performance of TPAmodel.The contributions of this thesis are summarized as below:

1. We compare the effect of bi-directional LSTM and uni-directional LSTM layers

in the TPA model.

2. We implement two attention mechanisms, which are horizontal and vertical

2



attentions. We apply both attention mechanisms in TPA model and study their

differences.

3. We study the influence of convolutional neural network for temporal pattern

detection.

4. We did extensive experiments to validate the three aforementioned compo-

nents in TPA model. The experimental results show their effects.

The rest of this thesis is organized as follows. In Section 2, we introduce pre-

liminaries. In Section 3, we formally define the multivariate time-series prediction

problem, and then describe our study details. Experimental results are presented in

Section 4. After discussing related works in Section 5, we conclude in Section 6.
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Chapter 2

Preliminaries

In this section, we explain the preliminaries, that is, Long Short-term Memory,

attention mechanism, and Temporal Pattern Attention model.

2.1 Long Short-term Memory

Long Short-termMemory (LSTM) is a variant of Recurrent Neural Network that

can model long-term dependencies. In the LSTM cell, an input gate, a forget gate, and

an output gate can control the passing of information, which can capture long-term

Figure 1: LSTM cell
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dependencies along time. Figure 1 shows the structure of an LSTM cell. In an LSTM

cell, at each time step t, hidden state ht ∈ Rm
is updated by current input data at the

same time step xt ∈ Rd
, the hidden state at the previous time step ht−1

, the input

gate it, the forget gate f t, the output gate ot, and a memory cell ct. The updating

equations are given as follows:

it = σ(Wix
t +Uih

t−1 + bi)

f t = σ(Wfx
t +Ufh

t−1 + bf )

ot = σ(Wox
t +Uoh

t−1 + bo)

ct = f t ⊙ ct−1 + it ⊙ tanh(Wcx
t +Uch

t−1 + bc)

ht = ot ⊙ tanh(ct)

(2.1)

where theweights and bias to be computed during training process areWi,Wo,Wf ,Wc ∈

Rm×d
,Ui, Uo, Uf , Uc ∈ Rm×m

, and bi, bo, bf , bc ∈ Rm×1
.The symbol ”⊙” is element-

wise multiplication of two vectors (Hadamard product). The symbol ”σ” is element-

wise logistic sigmoid activation function. tanh is element-wise hyperbolic tangent

activation function.

2.2 Typical Attention Mechanism

The typical attention mechanism selectively extracts information from the pre-

vious hidden states [1]. More specifically, in an RNN, given the previous hidden states

H = {h1,h2, ...,ht−1} and the current hidden state ht
, a context vector vt

is com-

puted as a weighted sum of each column hi
in H, which represents the information

relevant to the current step. Then, vt
can be further combined with present hidden

state ht
to compute the prediction.
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Figure 2: Typical attention mechanism: for each hidden state hi
, we first compute its

relevance value with ht
, then put the relevance value through a softmax function

and get its attention weight αi
. Finally, we calculate the weighted sum of all hidden

states, which is the context vector vt
.

Assume a scoring function f : Rm × Rm → R, which evaluates the relevance

between two input vectors, the following formula can calculate the context vector vt
:

αi =
exp(f(hi,ht))∑t−1
j=1 exp(f(h

j ,ht))

vt =
t−1∑
i=1

αihi

(2.2)

2.3 Temporal Pattern Attention Model

Figure 3: Temporal Pattern Attention Model.
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To our best knowledge, Temporal Pattern Attention [2] (TPA) model is the state-

of-the-art model for multivariate time-series prediction. As shown in Figure 3, the

TPA model consists of four parts: an LSTM layer, a Convolutional Neural Network

for temporal pattern detection, a temporal pattern attention mechanism, and three

fully-connected layers for regression. The workflow of TPA model can be described

as four steps:

Step 1. At time step t, the LSTM layer computes the hidden state ht
for the current

observation xt
.

Step 2. Given w previous hidden states H = {ht−w,ht−w+1, ...,ht−1}, where hi ∈

Rm
, the convolutional layer extracts temporal patterns from the hidden states

by applying CNN filters on the row vectors ofH. Specifically, we have k filters

Ci ∈ R1×w
, where w is size of the window. Convolutional operations yield

HC ∈ Rm×k
, where HC

i,j represents the convolutional value of the i-th row

vector and the j-th filter [2]. Formally, this operation is given by

HC
i,j =

w∑
l=1

Hi,(t−w−1+l)Cj,l.

Step 3. A temporal pattern attention mechanism is applied to the CNN outputHC
. The

model computes the weighted sum of row vectors ofHC
, instead of computing

weighted sum of columns as typical attention mechanism does. Defined below

is the scoring function f : Rk × Rm → R that evaluates relevance:

f(HC
i ,h

t) = (HC
i )

TWah
t

whereHC
i is the i-th row vector ofHC

, andWa ∈ Rk×m
is a trainable matrix.
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The attention weight αi
is calculated by

αi = sigmoid(f(HC
i ,h

t)).

Unlike the typical attention mechanism which obtains αi
via softmax func-

tion, the temporal pattern attention mechanism uses sigmoid function instead.

By using sigmoid function, the attention mechanism can find more than one

useful variables for forecasting [2]. Finally, the context vector vt ∈ Rk
is com-

puted as the weighted sum of row vectors ofHC
:

vt =

m∑
i=1

αiHC
i

Step 4. Given hidden state ht
and context vector vt

, the final prediction is calculated

by three fully-connected layers:

h′t = Whh
t +Wvv

t

yt+p = Wh′h′t

where ht,h′t ∈ Rm
, Wh ∈ Rm×m

, Wv ∈ Rm×k
, Wh′ ∈ Rd×m

, and yt+p ∈

Rd
.

According to the paper [2], the TPA model achieved state-of-the-art perfor-

mance on several multivariate time-series. However, we are interested in which com-

ponent of TPAmodel can really contribute to its good performance.Therefore, we de-

sign several variants of TPA, to help further analyse the performance of TPA model.
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Chapter 3

Study on Temporal Pattern Attention
Model

In this section, we describe our ablation study on Temporal Pattern Attention

Model. Before introducing our study details, we first give a formal definition of the

multivariate time-series prediction problem in Section 3.1. After presenting the overview

of our study in Section 3.2, we describe the recurrent neural network layer in Sec-

tion 3.3. Then we introduce two different attention mechanisms in Section 3.4. Fi-

nally, we describe the TPA model without CNN for temporal pattern detection in

Section 3.5.

3.1 Problem Definition

In this thesis, we are interested in multivariate time-series prediction. Formally,

given time-series data X = {x1,x2, ...,xt} in time order, where xi ∈ Rd
represents

the observed values at time step i, the task is to predict the value of xt+p ∈ Rd
,

where p ≥ 1 is a fixed horizon of prediction. We denote the corresponding predic-

tion as yt+p
, and the groundtruth value as ŷt+p = xt+p

. In this thesis, given all the

observations, we use only the current observation xt
and previous w observations

{xt−w,xt−w+1, ...,xt−2,xt−1} to predict xt+p
. This is based on the assumption that

only the observations inside the window are useful for prediction, which is a common

practice [3, 4].
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3.2 Overview

In this thesis, we study the effects of three components in the TPA model: re-

current neural network layers (Step 1 in Section 2.3), attention mechanism (Step 3 in

Section 2.3), and Convolutional Neural Network (CNN) for temporal pattern detection

(Step 2 in Section 2.3). Given historical observations {xt−w,xt−w+1, ...,xt−1,xt}, the

recurrent neural network layer generates hidden states for each time step. For this

recurrent layer, we will study the effect of bi-directional LSTM layer compared with

uni-directional LSTM layer, which is used in the original TPA model. Then we com-

pare the typical attention mechanism with the attention mechanism proposed in TPA

model. The main difference between these two attention mechanisms is the direction

of attention. Finally, the CNN for temporal pattern detection is studied to determine

its validity.

3.3 Recurrent Neural Network Layer

Figure 4: Bi-directional LSTM layer.
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For the recurrent neural network layer, we wonder if a bi-directional LSTM layer

could improve the performance than the uni-directional LSTM layer used in the orig-

inal TPA model. The uni-directional LSTM layer is only able to access the previous

context of each specific time step. However, time-series data have strong temporal

dependencies along time, which makes it meaningful to consider the future context.

Therefore, it is natural to replace the uni-directional LSTM with bi-directional LSTM.

As shown in Figure 4, a bi-directional LSTM layer is able to process the sequence data

in two directions including forward and backward ways with two separate LSTM

layers. Then the hidden states of both LSTM layers will be concatenated to form the

output of bi-directional LSTM layer. Eq. (3.1) defines the updating equations of the

forward LSTM layer:

→
it = σ(

→
Wi x

t+
→
Ui

→
ht−1 +

→
bi)

→
f t = σ(

→
Wf xt+

→
Uf

→
ht−1 +

→
bf )

→
ot = σ(

→
Wo x

t+
→
Uo

→
ht−1 +

→
bo)

→
ct =

→
f t ⊙

→
ct−1 +

→
it ⊙tanh(

→
Wc x

t+
→
Uc

→
ht−1 +

→
bc)

→
ht =

→
ot ⊙tanh(

→
ct)

(3.1)
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Eq. (3.2) defines the updating equations of the backward LSTM layer:

←
it = σ(

←
Wi x

t+
←
Ui

←
ht+1 +

←
bi)

←
f t = σ(

←
Wf xt+

←
Uf

←
ht+1 +

←
bf )

←
ot = σ(

←
Wo x

t+
←
Uo

←
ht+1 +

←
bo)

←
ct =

←
f t ⊙

←
ct+1 +

←
it ⊙tanh(

←
Wc x

t+
←
Uc

←
ht+1 +

←
bc)

←
ht =

←
ot ⊙tanh(

←
ct)

(3.2)

Finally, the complete bi-directional LSTM hidden state ht
is the concatenated vector

of the outputs of forward and backward LSTM layers as follows:

ht = [
→
ht ·

←
ht] (3.3)

where ht ∈ R2m
, obviously.

3.4 Vertical v.s. Horizontal Attention Mechanism

Given previous hidden states H = {ht−w,ht−w+1, ...,ht−2,ht−1} from the re-

current layer, there are two methods to compute the context vector:

1)Method 1 is assigning attention weights to each column ofH as Bahdanau et

al. [1] did.

2) Method 2 is assigning attention weights to each row instead, similar to the

TPA model in Section 2.3.

The first method achieved great success in NLP tasks because it managed to

find the most relevant word to the current output. Moreover, in NLP tasks, each time

step only contains a single piece of information, which shows the first method to

12



its best advantage. However, for multivariate time-series prediction tasks, there are

more than one variable in each time step, making information in one time step more

complicated. Therefore, the second method is proposed to extract the dependencies

among multiple variables. To work out which method works better in multivariate

time-series prediction, we implemented both of these two attention mechanisms in

our study.

For the sake of convenience, we call the first method ”vertical attention” be-

cause it vertically assigns attention weights to columns. Correspondingly, we call the

second method ”horizontal attention”.

Vertical Attention assigns the attention weights to each column ofH and com-

putes the weighted sum of columns as the context vector. Here we adopt the same

type of scoring function as TPA attention:

f(hi,ht) = (hi)TWvh
t

whereWv is a trainable matrix.

Horizontal Attention assigns attention weights to each row of hidden states

H and then computes the weighted sum of rows:

f(Hj ,h
t) = (Hj)

TWhh
t

whereHj is the j-th row vector ofH and Wh is a trainable matrix.

For both vertical and horizontal attention mechanisms, we also use sigmoid

function to compute attentionweights as in TPAmodel.Then,we compute theweighted

sum of columns or rows to obtain the context vector vt
. It should be noted that, in

the experiments, we only use one of these two mechanisms at a time.

13



3.5 Temporal PatternAttentionModelwithoutCNN

Figure 5: Temporal Pattern Attention model without Convolutional Neural Network

for temporal pattern detection.

To determine the validity of Convolutional Neural Network (CNN) for temporal

pattern detection, we implement a TPA model without the CNN layer. The original

TPA model inputs the previous hidden statesH in to a CNN layer and gets a feature

mapHC
, then it applies attention ontoHC

, as shown in Figure 3. However, to study

the effect of CNN, we implement a TPA model without CNN, where the attention

mechanism is directly applied to the previous hidden statesH, as shown in Figure 5.
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Chapter 4

Experiments

We present experimental results to answer the following questions:

• Q1. (Overall performance) How do the TPA model and its variants perform

on the datasets? (Section 4.2)

• Q2. (Effects of bi-directional LSTM) In TPAmodel, does bi-directional LSTM

improve the prediction accuracy? (Section 4.3)

• Q3. (Effects of CNN for temporal pattern detection) Compared with TPA

without CNN, does the CNN for temporal pattern detection in TPA model im-

prove the prediction accuracy? (Section 4.4)

• Q4. (Which attention direction is better) In TPA model, which attention

direction is better, horizontal or vertical? (Section 4.5)

4.1 Experimental Setup

Evaluation Metrics. We use Root Relative Squared Error (RSE) as evaluation

metric for our experiments:

RSE =

√∑T
t=1

∑d
i=1(y

t+p
i − ŷt+p

i )2√∑T
t=1

∑d
i=1(ŷ

t+p
i −mean(Ŷi))2

where yt+p
i and ŷt+p

i are the i-th variable of prediction and groundtruth value, re-

spectively, andmean(Ŷi) is themean value of all the i-th variables in the groundtruth
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data. Smaller RSE indicates better performance since it means the predicted value is

closer to the real value.

Datasets.Weconduct experiments on four real-world datasets, which are among

energy, traffic, and economic fields [2].

• Solar Energy: the solar power production records in the year of 2006, which

is sampled every 10 minutes from 137 PV plants in Alabama State, US.

• Traffic: a collection of 48 months (2015-2016) hourly data from the California

Department of Transportation. The data describes the road occupancy rates

(between 0 and 1) measured by different sensors on San Francisco Bay area

free ways.

• Electricity: the electricity consumption in kWh that was recorded every 15

minutes from 2012 to 2014, for 321 clients.

• Exchange Rate: the collection of the daily exchange rates of eight countries

including Australia, British, Canada, Switzerland, China, Japan, New Zealand,

and Singapore, from 1990 to 2016.

The detailed information of datasets is shown in Table 1.We separate each dataset

into three parts: training set, validate set, and testing set. The training set takes the

first 60% of the whole dataset.The validate set takes the middle 20%. Finally, the test-

ing set takes the last 20% of the dataset. Further more, to validate the performance

decrease along prediction time, we conduct experiments on prediction horizon of 3,

6, 12, and 24 steps ahead.

Competitors. First, we choose two statistical models, which are Autoregressive

(AR) model and Vector Autoregressive (VAR) model, as the baseline. Then, to validate

1https://www.nrel.gov/grid/solar-power-data.html
2http://pems.dot.ca.gov
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Table 1: Dataset statistics.

dataset # of records # of attributes Sampling Spacing Data Size

Solar Energy
1

52,560 137 10 minutes 172M

Traffic
2

17,544 862 1 hour 130M

Electricity
3

26,304 321 1 hour 91M

Exchange Rate 7,588 8 1 day 534K

the three components of TPA, we implement all possible combinations as competi-

tors. In total, there are eight TPA-based models, including the original TPA model

and its seven variants. The description of each model are as below:

• AR: standard autoregressive model, which is the classic uni-variate time-series

predicting model.

• VAR: vector autoregressive model, which is a variant of AR model and is able

to predict multivariate time-series.

• TPA-h: the original Temporal Pattern Attention model with CNN layer, using

uni-directional LSTM and horizontal attention.

• TPA-v: TPA model with CNN layer, using uni-directional LSTM and vertical

attention.

• Uni-w/oCNN-h: TPA model without CNN layer, using uni-directional LSTM

and horizontal attention.

• Uni-w/oCNN-v: TPA model without CNN layer, using uni-directional LSTM

and vertical attention.

• Bi-TPA-h: TPA model with CNN layer, using bi-directional LSTM and horizon-

tal attention.

• Bi-TPA-v: TPA model with CNN layer, using bi-directional LSTM and vertical
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attention.

• Bi-w/oCNN-h: TPA model without CNN layer, using bi-directional LSTM and

horizontal attention.

• Bi-w/oCNN-v: TPA model without CNN layer, using bi-directional LSTM and

vertical attention.

Because the ARmodel is a uni-variate time-series model, we train one ARmodel

for each variable in the time-series.

Parameter Settings and Model Training. Here we present the model setup

and parameter settings of TPA model and all its variants. On Solar Energy, Traffic,

and Electricity datasets, the window size w is 24, the number of hidden units m for

a single LSTM layer is 25 or 45, and the learning rate is 10−3. On Exchange Rate

dataset, the window size, number of hidden units, and learning rate are 30, 6, and

3 · 10−3. We set the CNN filter number as 32 for all the TPA-based models. Lastly, we

use the Mean Absolute Error (MAE) as the loss function for all of these models:

loss =
1

n

n∑
t=1

d∑
i=1

|yt+p
i − ŷt+p

i |.

We use Adam optimizer with a decay rate of 0.995 to train each model for 100 epochs.

4.2 Performance Comparison (Q1)

Table 2 shows the Root Relative Squared Error (RSE) of all the competitors on

four real-world datasets for all prediction horizons. We highlight the best results for

all the 16 experiments (4 datasets ×4 horizons) in bold face in the table. Among all

the experiments, the TPA-based models consistently outperform the baseline mod-

els with two exceptions: TPA-based models achieve 14 best results while AR and
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Table 2: Prediction errors of Temporal Pattern Attention model and its variants in

terms of RSE. Lower RSE is preferred. Bold text indicates the lowest RSE error.

Dataset Model 3-step 6-step 12-step 24-step

Solar Energy

AR 0.24321 0.37872 0.58656 0.85142

VAR 0.20350 0.29649 0.47860 0.72920
TPA-h 0.19999 0.29586 0.48533 0.75626

TPA-v 0.19898 0.30423 0.48106 0.78049

Uni-w/oCNN-h 0.1999 0.3024 0.47913 0.78948

Uni-w/oCNN-v 0.2014 0.30049 0.47405 0.78182

Bi-TPA-h 0.21058 0.32031 0.4947 0.77706

Bi-TPA-v 0.21005 0.32126 0.50073 0.78129

Bi-w/oCNN-h 0.2099 0.31968 0.48786 0.76237

Bi-w/oCNN-v 0.21076 0.32011 0.49943 0.77555

Traffic

AR 0.58702 0.61196 0.61470 0.62161

VAR 1.25123 0.93693 0.92429 0.94611

TPA-h 0.48528 0.50002 0.50795 0.53725

TPA-v 0.48447 0.53205 0.51381 0.53183

Uni-w/oCNN-h 0.48417 0.53879 0.50668 0.53684

Uni-w/oCNN-v 0.508 0.49994 0.51362 0.53787

Bi-TPA-h 0.47022 0.4993 0.4955 0.52747

Bi-TPA-v 0.47527 0.50287 0.49718 0.51593

Bi-w/oCNN-h 0.47922 0.50914 0.50374 0.51287
Bi-w/oCNN-v 0.47767 0.4969 0.49367 0.51686

Electricity

AR 0.08932 0.09830 0.10211 0.10387

VAR 0.67934 0.32611 0.34705 0.28077

TPA-h 0.09073 0.0952 0.10416 0.102

TPA-v 0.0919 0.09485 0.101 0.10052

Uni-w/oCNN-h 0.09285 0.09901 0.10001 0.10253

Uni-w/oCNN-v 0.09012 0.09677 0.10267 0.10114

Bi-TPA-h 0.09504 0.09718 0.102 0.09953
Bi-TPA-v 0.09057 0.09828 0.10029 0.10318

Bi-w/oCNN-h 0.09339 0.09666 0.10062 0.10044

Bi-w/oCNN-v 0.09307 0.09841 0.09794 0.10066

Exchange Rate

AR 0.01737 0.02430 0.03402 0.04591

VAR 0.01848 0.02748 0.04247 0.06732

TPA-h 0.01836 0.02528 0.03364 0.05921

TPA-v 0.01813 0.02523 0.03342 0.04775

Uni-w/oCNN-h 0.01776 0.02506 0.03581 0.05151

Uni-w/oCNN-v 0.01725 0.0281 0.03398 0.05276

Bi-TPA-h 0.01733 0.02413 0.03441 0.04682

Bi-TPA-v 0.01726 0.02547 0.03474 0.04394
Bi-w/oCNN-h 0.01736 0.0241 0.0344 0.04398

Bi-w/oCNN-v 0.01792 0.02411 0.03384 0.04683
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VAR give 2 best results in total. Even though AR and VAR models achieve best ac-

curacy on two experiments, the TPA-based models can still give comparable results.

Moreover, the experimental results show that TPA-based models have robust perfor-

mance on datasets of different sizes with different numbers of variables. To be more

specific, TPA-based models can handle datasets of size from 534KB to 172MB, and

they also can handle a wide range of number of variables, from 8 to 862. This indi-

cates the superiority of TPA-based models on multivariate time-series. In addition,

the original TPA model, namely TPA-h, only achieves one best result, meaning that

we can achieve further improvements. We will discuss three possible improvements

in following sections, that is, bi-directional LSTM layer, CNN for temporal pattern

detection, and two attention mechanisms.

4.3 Effects of Bi-directional LSTM (Q2)

To determine whether bi-directional LSTM could improve the prediction accu-

racy, we divide the aforementioned eight TPA-based models into four pairs and com-

pare their performance on the four datasets. The only difference between each pair

of models is whether the bi-directional LSTM or uni-directional LSTM layer is used.

For each model on one dataset, we calculate the averaged RSE of its four prediction

horizons as follows:

mean(RSE) =
1

4
(RSE3−step +RSE6−step +RSE12−step +RSE24−step)

Then we compare the averaged RSEs of each pair of models. In Section 4.4 and Sec-

tion 4.5, we will also use this averaged RSE for comparison and we will not repeat

this later.
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(a) Solar Energy (b) Traffic

(c) Electricity (d) Exchange Rate

Figure 6: Effects of uni-directional LSTM vs bi-directional LSTM. In each sub-figure,

we compare the averaged RSEs of four pairs of model on a dataset. The purple his-

tograms represent models using uni-directional LSTM and the yellow histograms use

bi-directional LSTM. The y axis in each sub-figure is averaged RSE while x axis rep-

resent model pairs. Lower histogram means higher accuracy.

Figure 6 shows the effect of bi-directional LSTM layers. The purple histograms

in the figure represent models using uni-directional LSTM and the yellow histograms

use bi-directional LSTM. For the Traffic and Exchange Rate datasets, the figure clearly

shows that using bi-directional LSTM layer indeed improves the prediction accuracy

for all horizons. But the experimental results cannot indicate which kind of LSTM

layer is more suitable for Electricity dataset as both uni-directional and bi-directional

LSTM layers achieve better performance twice. Finally, sub-figure 6(a) shows that the

bi-directional LSTM layer cannot improve the performance on Solar Energy dataset
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at all. We give a possible explanation that bi-directional LSTM layer has too many

parameters, which causes over-fitting on the training set, thus gives poor perfor-

mance on the test set. In summary, we suggest that given a specific dataset, both

uni-directional LSTM layer and bi-directional LSTM layer should be tested to deter-

mine which one works better on this dataset.

4.4 Effects of CNN for Temporal Pattern Detection
(Q3)

(a) Solar Energy (b) Traffic

(c) Electricity (d) Exchange Rate

Figure 7: Effects of TPAmodel vs TPAmodel without CNN for temporal pattern detec-

tion. The green histograms represent models using CNN for temporal pattern detec-

tion and the red histograms do not use CNN.The y axis in each sub-figure is averaged
RSE while x axis represent model pairs. Lower histogram means higher accuracy.
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To determine whether the CNN for temporal pattern detection could improve

the prediction accuracy, we compare another four pairs of TPA-based models. In

each pair of models, the only difference is whether the hidden states will be input

through CNN layer for temporal pattern detection. The green histograms represent

models using CNN for temporal pattern detection and the red histograms do not use

CNN. As shown in Figure 7, TPA-based models with CNN achieve seven better re-

sults while TPA-based models without CNN win nine times. The CNN for temporal

pattern detection has no obvious superiority on any dataset, which means the CNN

layer could not be that effective. Our explanation is that the CNN layer limits the

performance of attention mechanism, because a CNN layer computes the weighted

sum of neighboring data, which will make the characteristics of each time step (for

vertical attention) or variable (for horizontal attention) blurred. Data obscured by

CNN makes it harder for attention mechanisms to find useful information, thus limit

the model’s performance. However, in the TPA-based models without CNN, the at-

tention mechanism is directly applied to the hidden states, where the data is never

mixed up with each other. Therefore, the attention mechanism can distinguish the

useful information more easily. Finally, we conclude that the CNN for temporal pat-

tern detection should be carefully used because it could possibly limit the effect of

attention mechanism.

4.5 Which Attention Direction Is Better (Q4)

To determine which attention direction is more suitable for multivariate time-

series prediction tasks, we again divide the eight TPA-based models into four pairs

and compare their averaged RSEs. As shown in Figure 8, the blue histograms rep-

resent models using horizontal attention mechanism and the orange histograms use
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(a) Solar Energy (b) Traffic

(c) Electricity (d) Exchange Rate

Figure 8: Effects of horizontal attention vs vertical attention. The blue histograms

represent models using horizontal attention mechanism and the orange histograms

use vertical attention mechanism.The y axis in each sub-figure is averaged RSE while

x axis represent model pairs. Lower histogram means higher accuracy.

vertical attention mechanism. The only difference between each pair of models is

whether the horizontal attention or vertical attention is used. From the figures, the

horizontal attention mechanism achieve six better performance while vertical atten-

tion mechanism wins 10 times. In sub-figure 8(a), horizontal attention outperforms

vertical attention for three times, which means horizontal attention is preferred on

Solar Energy dataset. However, in sub-figure 8(b) and sub-figure 8(c), vertical atten-

tion mechanism achieves most better performance with only one exception. So the

vertical attention is more suitable on these two datasets. Finally, in sub-figure 8(d), the

horizontal and vertical attention have same performance, both win twice. In conclu-
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sion, for a specific dataset, both horizontal and vertical attention mechanisms should

be tested to develop a good prediction model.
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Chapter 5

Related Works

Many approaches have been proposed to predict the time-series data. Traditional

statistical models, such as Autoregressive (AR) model and Autoregression Integrated

Moving Average (ARIMA), have been proved to be effective in time-series prediction.

Massimiliano Marcellino et al.[5] used an AR model to predict macroeconomic time-

series. J. Contreras et al.[6] used an ARIMA model to predict electricity prices, which

had good performance. Igor Melnyk et al.[7] used a Vector Autoregressive model

to predict multivariate time-series. However, all of the aforementioned models can

only model the linear patterns in time-series. None of these models can capture non-

linearity in time-series data.

In recent years, machine learning models work well in diverse fields. The ma-

chine learning models, such as support vector machine (SVM), random forest (RF),

and gradient boostingmachines (GBM), achieved fulfilling performance in time-series

prediction also. Kyoung-jae Kim et al. and Francis E.H Tay et al.[8, 9] proved the ef-

fectiveness of SVM in financial time-series, respectively. A.Lahouar et al.[10] forecast

the electrical load using a random forest model. Hristos Tyralis et al.[11] used ran-

dom forest method to select variables in time-series prediction. Souhaib Ben Taieb et

al.[12] proposed a GBM approach to forecast power load. Yanru Zhang et al.[13] im-

proved performance in traffic time-series prediction with a GBMmodel. Even though

the machine learning models show their effectiveness in time-series prediction, they

still have shortcomings. Like ARmodel, the SVMmodel is a linear approach, which is
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not able to handle time-series with complex non-linearity. The RF and GBM models

can model the non-linearity well, but they fail to handle the temporal dependencies

through time steps.

Artificial Neural Networks (ANNs) are another type of popular model in time-

series prediction nowadays. Arezou et al.[14] built an autoencoder-based model for

time-series prediction. Yi-Shian Lee et al.[15] proposed a model combining ARIMA

and neural networks to predict time-series. Among many kinds of ANNs, Recur-

rent Neural Networks (RNNs)[16, 17, 18] have shown its flexibility in capturing the

non-linear patterns. Traditional RNNs, however, suffer from the problem of vanish-

ing gradients[19] and thus have difficulty in capturing long-term dependencies. Re-

cently, Long Short-term Memory (LSTM) neural networks[20] and the Gated Recur-

rent Unit (GRU)[21] have overcome this limitation and achieved great success in vari-

ous applications, e.g., neural machine translation[1], speech recognition[22], and im-

age processing[23]. Therefore, it is natural to consider LSTM-based models for time-

series prediction. Shuai Zheng et al., Malhotra et al., and Jie Liu et al.[24, 25, 26]

have proposed LSTM-based models for time-series prediction and achieved good re-

sults in Prognosis and Health Management (PHM) applications. Yang Guo et al.[27]

proposed a Convolutional LSTM model, which can predict multi-sensor time-series

well. In practice, however, LSTM and GRU cannot memorize very long-term depen-

dencies due to training instability and the limited length context vector[1]. In time-

series analysis, this could be a concern since we usually expect to make predictions

based on a relatively long time-series. To resolve this issue, Bahdanau et al.[1] pro-

posed an attention-based encoder-decoder network, which employed an attention

mechanism to select parts of hidden states across all the time steps. Recently, Yang et

al.[28] proposed a hierarchical attention network, which used two layers of attention
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mechanism to select relevant encoder hidden states of all time steps. Since attention

mechanism has achieved great success in Natural Language Processing (NLP), peo-

ple are curious about how attention-based LSTM models will perform in time-series

prediction tasks. Shih et al.[2] proposed a multivariate time-series model combined

with attention mechanism and convolutional filters, which achieved state-of-the-art

performance in several real-world datasets. Shih’s paper piques our interest and mo-

tivates us to undertake our study.
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Chapter 6

Conclusion

Temporal Pattern Attention (TPA) model is the state-of-the-art model for multi-

variate time-series prediction tasks, consisting of a recurrent neural network (RNN)

layer, a convolutional neural network (CNN) for temporal pattern detection, an atten-

tionmechanism, and several fully-connected layers. In this thesis, we study the effects

of three main components in the TPA model: the RNN layer, the CNN for temporal

pattern detection, and the attention mechanism. To carry out the ablation study, we

implement seven variants of Temporal Pattern Attention model and conduct experi-

ments on four real-world multivariate time-series datasets. Our experimental results

indicate the effects of these three components: 1) using bi-directional LSTM as RNN

layer could improve the model performance on some datasets but degrades the per-

formance on a few other datasets. 2) CNN for temporal pattern detection may limit

the performance of attention mechanism because CNN could blur the neighboring

data, making it hard for attention mechanism to extract useful information. 3) Both

horizontal and vertical attentionmechanisms have different performance on different

datasets, thus to develop a good prediction model on a specific dataset, both attention

mechanisms should be surveyed. Our findings point to the need for further studies

on why TPA-based models with bi-directional LSTM perform bad on Solar Energy

dataset and modelling the dependencies among multiple variables.
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