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Abstract

We propose an efficient Stereographic Projection Neural Network (SPNet) for
learning representations of 3D objects. We first transform a 3D input volume into a
2D planar image using stereographic projection. We then present a shallow 2D con-
volutional neural network (CNN) to estimate the object category followed by view
ensemble, which combines the responses from multiple views of the object to further
enhance the predictions. Specifically, the proposed approach consists of four stages:
(1) Stereographic projection of a 3D object, (2) view-specific feature learning, (3) view
selection and (4) view ensemble. The proposed approach performs comparably to the
state-of-the-art methods while having substantially lower GPU memory as well as net-
work parameters. Despite its lightness, the experiments on 3D object classification and

shape retrievals demonstrate the high performance of the proposed method.

keywords: 3D object classification, 3D object retrieval, Stereographic Projection,
Convolutional Neural Network, View Ensemble, View Selection.

student number: 2017-27494
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Chapter 1

INTRODUCTION

In recent years, success of deep learning methods, in particular, convolutional neural
network (CNN), has urged rapid development in various computer vision applications
such as image classification, object detection, and super-resolution. Along with the
drastic advances in 2D computer vision, understanding 3D shapes and environment
have also attracted great attention.

Many traditional CNNs on 3D data simply extend the 2D convolutional operations
to 3D, for example, the work of Wu et al. [36] which extends 2D deep belief network
to 3D deep belief network, or the works of Maturana et al. [18] and Sedaghat et al.
[25] where they extend 2D convolutional kernels to 3D convolutional kernels. Further-
more, Brock et al. [5] and Wu [35] proposed to build deeper 3D CNNs following the
structures from inception-module, residual connections, and Generative Adversarial
Network (GAN) to improve the generalization capability. However, these methods are
based on 3D convolutions, thereby having high computational complexity and GPU
memory consumption.

An alternate approach is based on projected 2D views of the 3D object to exploit
established 2D CNN architectures. MVCNN [31] renders multiple 2D views of a 3D
object and use them as an input to 2D CNNs. Some other works [28, 26, 1] propose to

use the 2D panoramic views of a 3D shape. However, these methods can only observe

ey
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partial parts of the 3D object, failing to cover full 3D surfaces.

To address all these limitations, we introduce a novel 3D shape representation tech-
nique using stereographic mapping to project the full surfaces of a 3D object onto a
2D planar image. This 2D stereographic image becomes an input to our proposed shal-
low 2D CNN, thereby reducing substantial amount of network parameters and GPU
memory consumption compared to the state-of-the-art 3D convolution-based methods,
while achieving high accuracy.

By taking advantage of multiple projected views generated from a single 3D shape,
we propose view ensemble to combine predictions of most discriminative views, which
are sampled by our view selection network. On the contrary, Conventional methods
[31, 28, 33, 20, 34, 1] simply aggregate the responses of all multiple views via max or

average pooling.



Chapter 2

Related Work

In this section, we review recent deep learning methods for 3D feature learning. These
methods are categorized in term of different feature representations; (1) point cloud-
based representations, (2) 3D model-based representations, and (3) 2D and 2.5D image-

based representations.

2.1 Point cloud-based methods

While previous works often combine hand-crafted features or descriptors with a ma-
chine learning classifier [11, 32, 4, 9], the point cloud-based methods operate directly
on point clouds Fig. 2.1 in an end-to-end manner. In [6, 21, 16], the authors designed
novel neural network architectures suitable for handling unordered point sets in 3D.
Features based on point clouds often require spatial neighborhood queries, which

can be hard to deal for inputs with large numbers of points.
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2.2 3D model-based methods

Voxel-based methods learn 3D features from voxels which represent 3D shape by the
distribution of corresponding binary variables Fig. 2.2.

In 3D shapeNet [36], the authors proposed a method which learns global features
from voxelized 3D shapes based on the 3D convolutional restricted Boltzmann ma-
chine. Similarly, Maturana and Scherer [18] proposed VoxNet which integrates a vol-
umetric occupancy grid representation with a supervised 3D CNN. In a follow-up,
Sedaghat et al. [25] extended VoxNet by introducing auxiliary task. They proposed
to add orientation loss in addition to the general classification loss, in which the ar-
chitecture predicts both the pose and class of the object. Furuya et al. [10] proposed
Deep Local feature Aggregation Network (DLAN) which combines rotation-invariant
3D local features and their aggregation in a single architecture.

Sharma et al. [27] proposed a fully convolutional denoising auto-encoder to per-
form unsupervised global feature learning. In addition, 3D variational auto-encoders
and generative adversarial networks have been adopted by Brock et al. [5] and Wu
et al. [35], respectively. Furthermore, recent works[34, 22] exploit the sparsity of 3D
input using the octree data structure to reduce the computational complexity and speed

up the learning of global features.
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2.3 2D/2.5D image-based methods

Image-based methods have been considered as one of the fundamental approaches in
3D object classification Fig.2.3. Light Field descriptor (LFD)[8] by Chen et al. used
multiple views around a 3D shape, and evaluates the dissimilarity between two shapes
by comparing the corresponding two view sets in a greedy way instead of learning
global features by combining multi-view information. Bai et al. [3] used a similar
approach but using the Hausdorff distance between the corresponding view sets to
measure the similarity between two 3D shapes.

Su et al. [31] proposed a CNN architecture that aggregates information from mul-
tiple views rendered from a 3D object which achieves higher recognition performance
compared to single view based architectures. By decomposing each view sequence into
a set of view pairs, Johns et al. [14] classified each pair independently and learned an
object classifier by weighting the contribution of each pair, which allows 3D shape
recognition over arbitrary camera viewpoint. To perform pooling more efficiently,
Wang et al. [33] proposed a dominant set clustering technique where pooling is per-
formed in each cluster individually. Kanezaki et al. [15] proposed RotationNet which
takes multi-view images of an object and jointly estimates its object category and
poses. RotationNet learns viewpoint labels in an unsupervised manner. Moreover, it
learns view-specific feature representations shared across classes to boost the perfor-

mance.
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As an alternative approach, Gomez-Donoso et al. [12] proposed LonchaNet which
uses three orthogonal slices from 3D point cloud as an input to three independent
GoogleNet networks, each network learning specific features for each slice. Cohen
et al. [7] in Spherical CNNs proposed a definition for the spherical cross-correlation
that is both expressive and rotation-equivariant. The spherical correlation satisfies a
generalized Fourier theorem, which allows to compute it efficiently using a generalized
Fast Fourier Transform (FFT) algorithm. Papadakis et al. [19] proposed PANORAMA
that uses a set of panoramic views of a 3D object which describe the position and
orientation of the object’s surface in 3D space. 2D Discrete Fourier Transform and the
2D Discrete Wavelet Transform are computed for each view. Shi et al. in DeepPano
[28], projected each 3D shape into a panoramic view around its principal axis and
used a CNN for learning the representations from these views. To make the learned
representations invariant to the rotation around the principal axis a row-wise max-
pooling layer is applied between the convolution and fully-connected layers. to achieve
better feature descriptor for a 3D object in the training phase, Sfikas et al. [1] use three
panoramic views corresponding to the major axes and taking average pooling over

feature descriptor of each view for the training of an ensemble of CNNss.



Chapter 3

Proposed Stereographic Projection Network

In this section, we provide details of our proposed approach. We first describe how to
transform a 3D object into a 2D planar image using stereographic projection. Then,
we give the detailed description of the proposed shallow 2D CNN architecture, SPNet,

followed by the procedures for view selection and view ensemble.

3.1 Stereographic Representation

Stereographic projection is a mapping that projects a 2D manifold onto a 2D plane.
Such a technique is well developed in the field of Topology and Geography to project
surface of the earth to a 2D planar map [30]. Since then, various projection functions
have been proposed to improve the quality of mapping. In this work, we explore differ-
ent types of projection functions showing that stereographic projection preserves the
more detailed surface structure of a 3D object.

To construct the stereographic representation of a 3D object, we first normalize the
3D object such that a unit sphere can fully cover it. We then translate the origin of the
sphere to the center of the object assuming that the orientation of the object is aligned.
For each point p on the surface of the object, we denote e as a unit vector from the

origin o to the point p as shown in Fig. 3.1(a). By assuming that the poles are aligned

10



with the z-axis, image coordinates in 2D mapped image can be determined by different

types of projection functions as follow:

UV Projection [30]:
A
v=0.5— ?,
T
Kavrayskiy VII Projection [30]:
3x /1 10}
u=24/z -
2V3 s
v =9,

Eckert IV Projection [30]:

u:QAMLSan’
61

v= \/?(2 — /4 —3sin|g|),

Cassini Projection [30]:

u = 2arcsin(cos ¢ sin ),

tan ¢
Ccos A

)7

v = arctan 2(

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

where, A\ = arctan 2(e,, e,) and ¢ = arcsin e, refer to the longitude and the latitude,

respectively.

After determining the UV coordinates of the 3D object in the 2D mapped image,

we set a value of each pixel with the distance of the corresponding point p from the

origin in the 3D object as shown in Fig. 3.1(a). We discretize the 2D image to have a

size of 128 x 128. As shown in Fig. 3.1(b)-(h). We note that the stereographic represen-

tations of 3D object preserve more details about the shape of the 3D object compared

to other approaches such as panorama [28, 26, 1], slice [12], and multi-view [31, 15]

representations.

11
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Figure 3.1: 2D representation of surface of 3D object. (a) 3D mesh model with a point

p at the surface and its corresponding unit vector e from the origin 0. (b) (e) different
types of stereographic projection functions. (f) Panoramic view [28, 26, 1]. (g) Depth-
map [3, 14]. (h) Slice-based projection [12].
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3.2 Network Architecture

We propose SPNet, a very shallow 2D CNN which consists of 4 convolutional layers
and two fully connected layers. For each convolutional layer, we use a convolutional
kernel of size 3x3 followed by tanh non-linearity and 2x2 max-pooling layers except
for the last convolutional layer where we use global average pooling in place of max-
pooling. Each side of inputs to all convolutional layers is zero-padded by 1 pixel to
keep the feature map size unchanged. We also propose to add dropout after every
layer except for the last fully connected layer to prevent over-fitting and for better
generalization capability. The number of feature maps of our convolutional layers is

24, 32, 48, and 64, respectively. Details of the model are shown in Fig. 3.2.

13
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Figure 3.2: Illustration of proposed SPNet, a shallow 2D convolutional neural network

architecture. a; ; denotes the output from the last fully connected layer.
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3.3 View Selection

To construct multiple view stereographic representations from a 3D object, we aug-
ment the data with azimuth and elevation rotations. We first rotate the object along the
gravity axis, each rotated 45° intervals. We further generate more views through ele-
vation rotations with 45° intervals. Both angles are sampled uniformly from [0, 360°]
to generate N = 64 views in total in Fig. 3.4. Let us denote generated views of the
object x; as {v; }é\le where 7 refers to the instance of the 3D object and j refers to the
rotated instance of the corresponding 3D object.

All views v; ; are fed into the trained SPNet in Fig. 3.2 to extract the view-specific
feature response maps a; j. All NV view-specific features are then passed through a
one-by-one convolutional layer to perform weighted-average over all view-specific
features. The output is then used as a final prediction score map. The overall process
of view selection is visualized in Fig. 3.3. The one-by-one convolutional layer in our
view selection learns the importance of each view-specific features, thereby indicating
the degree of contributions of each view to the final prediction. Once our view selec-
tion converges, we select M most discriminative views {v; j }jj‘il where M < N by

observing the highest weight values in the one-by-one convolutional kernel.

15
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Figure 3.3: Illustration of view selection and view ensemble. Both view selection and
view ensemble adopt the same architecture but with different numbers of views to train
each model. a; ; is the output of SPNet for the corresponding view v; ;. Darker colors
on the view-specific features a; ; and on the weights of the one-by-one convolutional
layer denote higher values. Red boxes on the weights of the one-by-one convolutional

kernel indicate the selected views.
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Figure 3.4: Illustration of UV-mapping for 64 different views of a chair. § and ¢ indi-

cate the rotation angle around the Z-axis and Y-axis, respectively.
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3.4 View Ensemble

Many recent works [23, 13, 17] have shown that the use of ensemble technique pro-

vides a significant boost to the classification performance. Thus, we also exploit the

weighted-average over predictions of M selected views {v; j jj\il.
We train our view ensemble model in Fig. 3.3 by using only the selected most

important M views {v} j j]\il. Moreover, we examine different types of aggregation
for the predictions of M selected views:

Max-pooling:

37 = maxc{af; . (39)
Avg-pooling:
| M
0= 3 2 (3.10)
7j=1
Weighted-average:
M
g =) _wiai, 3.11)
j=1

Where, §j; denotes the estimate of the object category label for each object ;.

We have tested these three ensemble methods empirically and found that by learn-
ing the weights {w;" j]\il of the one-by-one convolutional layer properly, the weighted-
average produces superior performance over the max-pooling and the average-pooling

[31, 28, 33, 20, 34, 1], as shown in Table 4.3.

18
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Chapter 4

Experimental Evaluation

4.1 Datasets

We have evaluated our method on the two subsets of the Princeton ModelNet large-
scale 3D CAD model dataset [36] and the ShpeNet Core5S5, a subset of the ShapeNet
dataset [24].

ModelNet-10 includes ten categories of 3991 and 908 models into training, and
testing partitions, respectively. The dataset provides objects of same orientations.

ModelNet-40 contains 12,311 CAD models split into 40 categories that provides
objects of same orientations. The training and testing subsets consist of 9843 and 2468
models, respectively.

ShapeNet Core55 contains 51,300 3D models in 55 categories and several subcate-
gories. Two versions of ShapeNet CoreS55 exist (a) consistently aligned 3D models and
(b) models that are perturbed by random rotations. This dataset split into three subsets
of 70%, 10% and 20% for training, validation, and testing respectively. We trained and
evaluated our 3D retrieval method on the training set and test set of the aligned 3D

models, respectively.

20



4.2 Training

The baseline architecture of our CNN is shown in Fig. 3.2 which is smaller than the
VGG-M network architecture that MVCNN [31] used. Table 4.1 shows the comparison
of classification accuracy on the ModelNet-10 [36] of our baseline architecture and
some famous Convolutional Neural Network architectures. To train SPNet, we used

SGD optimizer with a learning rate of 0.01.

Table 4.1: Classification accuracy on ModelNet-10 with various network architectures

for a single view

Architectures SPNet (ours) VGG-16 ResNet-32 ResNet-50 ResNet-101

Accuracy 93.39% 83.92% 91.19% 92.18% 91.41%

4.3 Choice of Stereographic Projection

We have evaluated several stereographic projection models for the 3D classification
task including UV, Kavrayskiy VII, Eckert IV, and Cassini [30]. Table 4.2 shows the
test results on ModelNet-10 [36], where we can clearly observe that the UV-mapping
outperforms the others. Since the UV-mapping is proven to be the best, we will use

this mapping function in all subsequent experiments.

21



Table 4.2: Classification accuracy on ModelNet-10 with various mapping functions

mapping function accuracy
UV [30] 93.39%
Kavrayskiy VII [30] 93.17%
Eckert IV [30] 89.76%
Cassini [30] 92.51%
Depth-map (YZ-plane) 85.02%

Panorama (around Z-axis) 92.07%

22



4.4 Test on View Selection Schemes

We consider three view selection setups for the ensemble of the multi-view 2D stereo-

graphic representation to demonstrate the preferences of our view selection approach.

Case (i): Major axes

In this case, we set the viewpoints along three axes, x-axis, y-axis, and z-axis. The
objects have same orientation namely that the viewpoint is along the x-axis. To obtain
the two other viewpoints, each time we rotate the objects by § = 90° and ¢ = 90°

around z-axis and y-axis, respectively.

Case (ii): 12 MVCNN

In this case, we fix z-axis as the rotation axis. We place the viewpoints at ¢ = 30°
from the ground plane and each time rotate the objects by § = 30° around the z-axis

to obtain 12 views for the object.

Case (iii): View Selection

Our view selection method which learns the view’s influence by a one-by-one con-
volutional layer. We used the method on 64 different rotations by rotating the objects
around z-axis and y-axis and then selected the views with the highest influence.
We compared the classification accuracy for these three view setup on the ModelNet-

10 [36] with our view ensemble neural network architecture named SPNet_VE. Ta-
ble 4.3 shows the comparison of classification accuracy on the ModelNet-10 [36] of
plain and ensemble with the Max-pooling, Avg-pooling, and one-by-one convolutional
layer as a weighted-average over the score features of the multi-view 2D representa-
tions. From these results, we observe that our learned weighted averaging of 5 views
gives the best performance over other schemes, so that we use this ensemble model for

our experiments.

23



Table 4.3: Classification accuracy on ModelNet-10 with various view selection

schemes

View setup #views Max-pool Avg-pool one-by-one conv
Plain 1 93.39% 93.39% 93.39%
Major axes 3 95.15% 95.59% 96.26%
MVCNN 12 91.63% 92.51% 92.40%

1 93.39% 93.39% 93.39%
95.82% 96.15% 96.15%
95.59% 95.59% 96.26%
View Selection 95.15% 95.48% 96.58%

94.05% 95.93% 97.25%

AN U B~ W

94.16% 95.15% 97.03%
64  90.64% 91.74% 91.52%

24



4.5 3D Object Classification

We have first evaluated our baseline method SPNet in classification on both ModelNet-
10 [36] and ModelNet-40 [36]. The performance of our model is measured by the
average binary categorical accuracy.

We have compared our method with recent sate-of-the-art methods including 3D
ShapeNet [36], GIFT [3], DeepPano [28], Multi-view Convolutional Neural Networks
(MVCNN) [31], Geometry Image descriptor [29]. In addition to above methods the
results are extended to include the following voxel based methods: ORION [25], 3D-
GAN [35], VoxNet [18], O-CNN [34] and OctNet [22]. Table 4.4 summarizes the
comparative results of classification on ModelNet-10 and ModelNet-40 in terms of
GPU memory usage and the number of parameters during the training phase, and clas-
sification accuracy.

We note that in our approach, the view-ensemble model (SPNet_VE) boosts signif-
icant performance improvement over the baseline model (SPNet) by 3.9% and 4.0%
on ModelNet-10 and ModelNet-40, respectively. Moreover, SPNet_VE achieved com-
parable results to those of the state-of-the-arts RotationNet [15], while requiring much
less memory (2%) and network parameters (0.2%), respectively. Note also that there
is a large gap between the average (94.82%) and maximum (98.46%) accuracy of
the RotationNet [15] which shows this method is not stable while our method showed

consistent performances (97.25%) for each trial of training process.
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Table 4.4: Classification results and comparison to state-of-the-art methods on

ModelNet-10 and ModelNet-40. Also the number of parameters and GPU memory

usage. VE indicates view ensemble

InputModality

Method

GPU memory Parameters

ModelNet

class 10 class 40

PointNet [6] - 3.5M - 89.2%
Point Clouds
PointNet++ [21] - - - 91.9%
ShapeNet [36] 60.5MB I5SM  83.50% 77.00%
LightNet [2] 2MB 0.3M  93.39% 86.90%
ORION [25] 4.5MB 091IM 93.80% -
VRN [5] 129MB 1I8M  93.60% 91.33%
3D Volume VoxNet [18] 4.5MB 09M  92.00% 83.00%
FusionNet [2] 548MB 118M  93.10% 90.80%
3D-GAN [35] 56MB 11IM  91.00% 83.30%
OctNet [22] - - 90.42% -
O-CNN [34] - - - 90.6%
Spherical CNNs [7] - 1.4M - -
Others
LonchaNet [12] - ISM 9437% -
MVCNN [31] 331MB 42M - 90.10%
2D Represen. MVCNN-MultiRes [20] - 180M - 91.40%
RotationNet [15] 731MB 42M  98.46% 97.37%
DeepPano [28] 9.8MB 327TM  85.45% 77.63%
PANORAMA-NN [26] 6.77MB 2.86M  91.10% 90.70%
PANORAMA-ENN [1] 42MB 8.6M  96.85% 95.56%
2.5D Represen. GIFT [3] - - 92.35% 83.10%
Pairwise [14] - 42M  92.80% 90.70%
SPNet (ours) 3MB 86K  93.39% 88.61%
SPNet_VE (ours) 15MB 86K
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4.6 Shape Retrieval

We have evaluated the view ensemble version, SPNet_VE with the learned five views
for the 3D object retrieval task under three datasets, ModeNet-10 [36], ModelNet-40
[36] and ShepeNet Core 55 [24] by three different metrics.

mean Average Precision

Average Precision compute the average value of the precision p(k) over the recall r
that is the area under the precision-recall curve. For a finite number samples the area

is a finite sum over every position in the ranked sequence of the samples:
n
AP =" P(k)Ar(k) (4.1)
k=1

where n is the number of retrieved samples, P (k) is the precision at level k in the list,
and Ar(k) is the change in recall from level £ — 1 to k.
The mean Average Precision for () number of queries is the mean of the defined

average precision score for each query.

mAP = M (4.2)
Q
F-score
F' — score is the weighted harmonic mean of precision and recall:
P 2 X precision X recall 4.3)

precision + recall
Discounted Cumulative Gain

DCG uses a graded relevance scale of samples from the result set to evaluate the
usefulness, or gain, of a sample based on its position in the result list. The DCG at the

position p is defined as:

rel

p
D =Ny 4.4
CGy ; logy (i + 1) @4
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Since result set may vary in size among different queries or systems, to com-
pare performances the normalized version of DCG uses an ideal DCG. Therefore,
it sorts documents of a result list by relevance, producing an ideal DCG at position p

(IDCG)), which normalizes the score:

DCG
NDCG, = 155 é’p. (4.5)

The average over the N DC'G values for all queries obtains a measure of the average
performance.

Table 4.6 shows the results of our retrieval experiment on the test sets of ModelNet-
10 and ModelNet-40 with mean Average Precision (mAP) in comparison with other
state-of-the-art methods.

We used the learned global features of our ensemble network before the last tanh
activation function. Then, we applied the function to create the best feature descriptors
for all 3D objects. We sorted the most relevant 3D objects for each query from the
test set by using both L; and L distance metrics. Our SPNet_VE with L; achieved
the best performance on ModelNet-10 and the second best on ModelNet-40. Further-
more, in Table 4.5 we evaluated SPNet_VE with different metrics on both ModelNet-
10 and ModelNet-40 datasets. Note that the complexity of our model is much lighter
than PANORAMA-ENN [1]; only 36% and 1% of the memory and parameters of
PANORAMA-ENN are used, respectively.
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Table 4.5: Retrieval results measured in F' — score, mean Average Precision (mAP)

and Normalized Discounted Gain (N DC'G) on the ModelNet-10 and ModelNet-40

Micro-averaged

Macro-averaged

Dataset Distance metrics
F-score mAP NDCG F-score mAP NDCG
L1 96.19% 94.20% 98.40% 95.90% 93.91% 98.30%
ModlelNet-10
L2 95.85% 92.94% 96.94% 95.43% 92.45% 96.94%
L1 90.64% 85.21% 94.70% 83.42% 75.48% 89.37%
ModlelNet-40
L2 90.00% 84.68% 94.10% 82.23% 73.99% 88.34%

Table 4.6: Comparison of retrieval results measured in mean Average Precision

(mAP) on the ModelNet-10 and ModelNet-40 datasets

Method GPU memory Parameters ModelNet(mAP)

class 10 class 40
MVCNN [31] 331MB 42M - 79.5%
Geometry Image [29] - - 749% 51.3%
GIFT [3] - - 91.12% 81.94%
DeepPano [28] 9.8MB 327TM  84.18% 76.81%
3D ShapeNets [36] - - 68.3% 49.2%
PANORAMA-ENN [1]  42MB 8.6M  93.28% 86.34%
SPNet_VE (L2) 15MB 86K  92.94% 84.68%
SPNet_VE (L1) 15MB 86K  94.20% 85.21%

29



Ranked Retrievals

o
=
o
=

<

G

AR K A REDY
gy vuiwa-0

Figure 4.1: Retrieval examples by the proposed SPNet_VE on the test set of the
ModelNet-10 dataset. The first column illustrates the queries and the remaining
columns show the corresponding retrieved models in rank order. Retrieved objects

with blue and red colors are queries and failure cases, respectively.

M=
30 Pt



Table 4.7: Retrieval results measured in F' — score, mean Average Precision (mAP)
and Normalized Discounted Gain (N DC'G) on the normalized ShapeNet Core55. VE

indicates View Ensemble

Method Micro-averaged Macro-averaged

F-score mAP NDCG F-score mAP NDCG

Kanezaki 79.8% 77.2% 86.5% 59.0% 58.3% 65.6%

Zhou 76.7% 72.2% 82.7% 58.1% 57.5% 65.7%
Tatsuma 77.2% 74.9% 82.8% 51.9% 49.6% 55.9%
FUruya 71.2% 66.3% 76.2% 50.5% 47.7% 56.3%
Thermos 69.2% 62.2% 73.2% 48.4% 41.8% 50.2%
Deng 479% 54.0% 65.4% 16.6% 33.9% 40.4%
Li 282% 19.9% 33.0% 19.7% 25.5% 37.7%
Mk 25.3% 19.2% 27.7% 25.8% 23.2% 33.7%

SHREC16-Su 76.4% 73.5% 81.5% 57.5% 56.6% 64.0%
SHREC16-Bai 68.9% 64.0% 76.5% 45.4% 44.7% 54.8%
SPNet_VE 789% 69.2% 89.0% 53.5% 39.2% 69.5%

31



Table 4.7 shows our results of the retrieval experiment on the large-scale normal-
ized ShapeNet Core55 dataset. We tested our ensemble model by F' — score, mean
Average Precision (mAP) and Normalized Discounted Gain (N DCG) metrics in
comparison to [3, 10]. The Macro-averaged is an unweighted average over the en-
tire dataset while the Micro-averaged gives an average over category. The proposed
method outperformed the other methods by N DC'G metric on both the Macro and
Micro averaged.

Fig. 4.1 shows some of the retrieval cases on the test set of the ModelNet-10. The
first column in the figure illustrates the queries and the remaining columns illustrate
the corresponding retrieved objects in rank order. The red models indicate that the
retrieved objects are in a wrong class with the queries. In other cases, the queries and
the retrieved objects have the same classes. For instance, in the class of the dresser,
the retrieved objects are so similar to the query while they are from different classes.
The reason for these failure cases is that some objects from two different classes are
hard to distinguish. Note that our approach does not have any failure cases in the class
of Chair and Toilet of the ModelNet-10. Fig. 4.2 shows the confusion matrix for all
3D objects on the test set of ModelNet-10. The similarity is measured by L1 distance.

Therefore, so lower values indicate higher similarities between pairs of objects.
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4.7 Implementation

We have evaluated the proposed method SPNet on an Intel (R) Core (TM) i5 @ 3.4GHz
CPU system, with 32GB RAM and NVIDIA (R) GTX 1080 Ti GPU with 12GB RAM.
The system was developed in Python 3.5.2, and the network was implemented using
TensorFlow-1.4.0 via CUDA instruction set on the GPU. The runtime of our SPNet

and the prepossessing per each object are 2.5ms and 120ms, respectively.
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Chapter 5

Conclusions

We proposed a novel ensemble architecture to learn 3D object descriptors based on the
Convolutional Neural Networks. We used stereographic transformation to project 3D
objects into a 2D planar followed by 2D CNNss to give confidence scores for multiple
views. A one-by-one convolutional layer learns the importance of each view and se-
lects the best views ordinary. To improve the performance, we proposed an ensemble
CNN which combines the responses from the chosen views by weighted-averaging
with learned weights. We evaluated our network on two large-scale datasets, Model-
Net, and ShapeNet Core55. We showed that the performance of the proposed method
for the classification task is par to those of the state-of-the-art approaches, while out-
performs most existing works in the retrieval task. Moreover, our proposed model is
most efficient regarding GPU memory usage and the number of parameters compared
to existing networks.

In the future works, the ensemble neural network can be extended. Moreover, The
datasets that we used do not contain texture and color information. The one channel
2D plane represented by our stereographic representation could be extended to more

channels if this information existed.
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