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Abstract

Knowledge Distillation (KD) is a well-known method for transferring knowledge

from a teacher to a student model. In this thesis, we propose a new framework for

Knowledge Distillation by introducing a Layer-wise Progressive Teacher. In this regard,

we propose a method to create soft targets in different levels of complexity by obtaining

the probabilities from the intermediate layers of the teacher network. Our method is

specially designed for the cases that there is a large gap between the teacher and the

student which makes it harder for the student to mimic the teacher. In addition, we

proposed focalized teacher as a method to train a better teacher for the student. The

experimental results show that our method gets significantly better results in comparison

with existing knowledge distillation methods.

keywords: Knowledge Distillation, Transfer Learning, Image Classification

student number: 2017-28825
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Chapter 1

Introduction

1.1 Background

Emerge of Deep Learning and Convolutional Neural Networks provides a huge improve-

ment in different Computer Vision tasks. Although the early networks were very small,

only a few layers, new neural networks were continuously introduced to improve the

accuracy and new methods such as skip connections and regularization methods opened

the doors to train much larger neural networks. Currently, there are neural networks

with hundreds of layers which can improve the results of the target task. However, such

a large network needs a heavy amount of resources like memory and time which is not

possible to use in limited situations like mobile devices.

The above problem attracts the researcher to a new research direction for transferring

the knowledge of a larger network to a smaller one which is known as Transfer Learning.

Considering the larger network as the Teacher and the smaller network as the student, in

this work, we are focusing on one Knowledge Distillation as one of the general methods

to help the student. Transferring the knowledge from a cumbersome teacher model to a

smaller student with knowledge distillation (KD) is a well-known method to improve

the student accuracy. Knowledge distillation [9] is proposed to use the class probabilities

predicted by the teacher model as soft targets to provide more information and guide
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the student model. Born-again neural networks [5] shows that we can also use a student

with a network architecture same as the teacher in order to improve the model by

guiding itself. A simple view of Knowledge Distillation method is shown in Figure 1.1.

Recently, [6] proposed to use the middle layers of the teacher to transfer knowledge to

the middle layers of the student in a progressive setting. Several works adopt the idea

of knowledge distillation to improve different tasks such as object detection [2], model

compression [3, 18], super resolution [25], and data distillation [19].

Figure 1.1: Knowledge Distillation helps a student network to mimic the soft targets

provided by the teacher network.
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1.2 Motivation

The accuracy of the teacher model is crucial for providing reliable soft targets, however,

an ideal model can produce the final output with the probability equal to one, exactly

same as the ground truth, which does not provide us any additional information to help

the student model. Therefore, the differentiate between an accurate model and a good

teacher is important to get the best results from the student. Considering this point, TSD

method [22] uses top score difference in multiple generations to improve the quality of

the soft targets. The other drawback of a strong teacher is the gap between the teacher

and the student which makes it harder for the student to mimic the teacher’s output.

This problem is mentioned for the first time recently in [17] and the authors proposed

Teacher Assistants which act as mediator networks to solve the problem. In this method,

instead of transferring the knowledge of a teacher directly to a student, they transfer the

knowledge in multiple steps with using networks of intermediate sizes.

Figure 1.2: Teacher assistants are proposed to fill the gap between the teacher and the

student. (This figure is taken from the original paper [17].)
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Figure 1.3: Feature Matters is also trying to use the middle layers to transfer the

knowledge. (This figure is taken from the original paper [6].)

Although teacher assistants will improve the results, they need several training for

obtaining each TA. In addition, the information on the teacher will be lost during each

stage.

1.3 Proposed Method

In this work, first, we propose the focalized teacher in Chapter 3 to solve the high

confidency problem of the teacher network by exploiting the focal loss. However, as

the improvement are not enough, we propose the layer-wise progressive teacher to

use the middle layers of the teacher instead of the TAs in [17]. By doing so, not only

we do not need to train additional networks, we can exploit the consistency between

the layers to establish a multi-level learning method to further improve the results.

The intuition behind this is similar to the Curriculum Learning [1] which is a learning

paradigm in that the training samples are sorted in an easy to hard order to follow the

human’s training process. We also do more analysis on the effect of temperature for the

student and the teacher which enables us to remove the temperature of the student for

simplicity of the work. Our method is also different from [6] because we transfer the
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knowledge of the middle layers of the teacher to the final layer of the student with a

KD loss. Our method does not depend on finding appropriate layers of the student and

does not have any constraints on the features sizes. Finally, we evaluate the proposed

methods for Image Classification as a primary task in deep learning. For doing so, we

test our methods on MNIST [14], Cifar10, and CIFAR-100 [13] in different settings.

The experimental results show that the proposed multi-level method can improve the

results in comparison with the other distillation methods.

1.4 Datasets

MNIST. [14] consists of a training set of 60000 examples and a test set of 10000

examples of handwritten digits with size 28 × 28. All of the samples are black and

white images and are a subset of a larget set available from NIST.

Figure 1.4: A subset of images in MNIST dataset
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Cifar10 and Cifar100. [13], each of them consists of 50,000 training and 10,000

testing 32× 32 RGB images. Cifar10 has 10 different classes airplanes, cars, birds, cats,

deer, dogs, frogs, horses, ships, and trucks. Cifar100 is similar to Cifar10 except with

100 classes which are groupd in 20 superclasses such as fish, flowers, insects, trees, and

people.

Figure 1.5: A subset of images in Cifar10 and Cifar100 datasets

6



Chapter 2

Related Work

2.1 Theory of Transfer Learning

There are a large number of researches attempted to transfer knowledge from a teacher

model to a student model. [20] proposed FitNets, a two-stage strategy to train networks

by providing hint from the teacher’s middle layers. After that, Knowledge Distillation

(KD) [9] leverage the predictions of a larger model as the soft targets to better training

of a smaller model. This was a good start for other works to improve transferred

knowledge. [5] used knowledge distillation on a student with an architecture same as

the teacher to improve the performance of similar networks. They also got benefits from

the embedding of several teachers with same architecture. [22] shows the importance of

the secondary information for the student and proposed the top score difference which

considers a specific number of semantically reasonable classes for each image as a

hyperparameter. However, this parameter could be hard to estimate in more complex

datasets and also it could be varied for different classes. More recently, [6] proposed

to transfer the knowledge from the middle layers of the teacher to the middle layers

of the student in a stage-by-stage method, Figure 1.3. This method is very similar to

the first paper which is mentioned above, FitNets, but the difference is that this work

uses a multi-stage method to mimic the features of the teacher. [17] mentioned the

7



gap problem between the teacher and the student by proposing the teacher assistants,

Figure 1.2. Finally, although the distilled knowledge from the softmax layer is not the

only way for transferring the knowledge from a teacher to a student, it could be still

helpful besides the other information. For example, [24] proposed activation-based and

gradient-based attention to transfer more information from a teacher to a student and

they show that knowledge distillation will still help to improve the results further.

2.2 Applications

In addition to the above literature, there are also several other works which use KD

to help other tasks. In this regard, [2] improved the efficiency and the accuracy of an

object detector by transferring the knowledge from a powerful teacher in case of the

model architecture or the input data resolution to a weaker student. They also proposed

Bounded Regression Loss for the bounding-box regression as a method to transfer the

knowledge of a teacher for a regressions task. The proposed loss function encourages

the student until it achieves the teacher’s accuracy and reduces the pushing after that.

Figure 2.1: Improving object detection using knowledge distillation. The authors (This

figure is taken from the original paper [2].)

In single image super-resolution, [25] proposed to use the knowledge of a teacher

to get a good initialization for the importance of different pixels of an image. The

pixels can then be used to train the student network in an easy-to-complex paradigm. In
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network compression, [18] proposed quantized distillation to compress a network in

terms of depth by using knowledge distillation.

quantize quantize quantize
SGD step

distil
SGD step

distil
SGD step

distil

model quantized
model

teacher model quantized
model

teacher model quantized
model

teacher

Figure 2.2: Multi-step network quantization using knowledge distillation. The authors

(This figure is taken from the original paper [18].)

Finally, inspired by knowledge distillation, [19, 21] use the knowledge of a trained

network for semi-supervised learning. [21] suggests that we can use the ensembling of

the outputs from the previous iterations as teachers to predict the labels of the unlabeled

images for new iterations. However, [19] makes it easier by proposing four steps data

distillation to tackle omni-supervised learning. They generate annotations for unlabeled

data with multiple transformations by using a trained model on a labeled dataset and

then retrain the model on the union of these two datasets to improve the accuracy.

model A

model B

model C

image ensemble

student model predict

Model Distillation

student model predict

ensembleimage

transform A model A

transform B

transform C

Data Distillation

model A

model A

Figure 2.3: A schematic of data distillation proposed for semi-supervised learning. The

authors (This figure is taken from the original paper [19].)
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Chapter 3

Focalized Teacher

3.1 Overview

In this chapter, we propose a simple method by using the weighted outputs for the

final loss of the teacher. The idea is based on the focal loss [15] which is first proposed

to solve the class imbalance problem between the foreground and the background in

dense object detection task. Focal loss decreases the weights of easy examples and

focuses on the harder ones in which the hardness of an example is determined by the

output certainty of the network for that example. We noticed the side effect of this

procedure is that as the network focuses on the harder examples, the force on the easy

examples to have probabilities equal to one will decrease in comparison with the normal

classification loss functions. We benefit from this effect to produce a teacher with milder

supervision signal. In addition to the mentioned point, the other problem in KD is that

the predicted classes of a teacher network are not necessarily correct even in the training

data. In the case of semi-supervised learning, [19] mentioned this problem by proposing

to create batch sets consist of both the original and the new labeled images to have true

labels in every iteration. In the case of fully supervised learning, we show that we can

swap the probability of the true class with the highest probability of the predicted soft

target to generate a completely valid training set.
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3.2 Label Correction

We should notice that the produced labels of the teacher network do not always predict

the correct class for the images. Especially, in the case of using the soft targets as the

only labels for the training, it leads to an upper bound for the student accuracy based

on the teacher accuracy. This forces us to provide a strong teacher who needs more

effort to manage. For removing this upper bound, [9] proposed to use an additional

loss function which is the cross-entropy with the one-hot vectors of the correct labels

which needs to determine the weight of each loss. However, we show that we can easily

switch the logits of the largest probability and the probability of the correct label of an

image without harming the general distribution which is provided by the soft targets.

By doing so, all of the predicted classes are true and the teacher accuracy is equal to

100 percent. Figure 3.1 shows some of the samples with false predictions in which the

label correction can help to have better soft targets.
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Figure 3.1: Some of the output probabilities of the teacher with wrong predicted classes

for MNIST. The green color shows the ground truth class. The x-axis is the classes

and the y-axis is the predicted probabilities. We also use T = 2 in here for better

visualization of the probabilities.
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3.3 Focalized Teacher

The other issue in the common knowledge distillation framework is that the teacher

network does not have any constraint to produce better labels for the student and the

only goal is to train a more accurate network as much as possible. Therefore, training of

the teacher with a regular classification loss function, like cross-entropy, could produce

very high confidence outputs for the true class which makes the probability of the other

classes very small. Although increasing the temperature can provide larger probabilities,

these probabilities come from very small numbers which contain a higher amount of

noise. To overcome this problem, we propose using a weighing method to make the

teacher less sensitive to the high confidence examples. We use the focal loss [15] which

is first proposed to solve the class imbalance problem in object detection. However,

we show that we can also use it to produce better soft targets. More formally, we use

(1− p) as a weighing factor for the cross-entropy loss as it is shown in the following

equation.

L(p) = −(1− p)γlog(p) (3.1)

In the above equation, p is the probability of the true class which is predicted with

the network and γ is the focusing parameter as in [15]. The normal cross-entropy can

be obtained by setting γ = 1 and increasing the gamma causes more focussing on

the harder examples. Intuitively, with using this weighing, an image with an output

probability of 0.99 have almost 100 times smaller loss than an image with an output

probability of 0.9. By doing this, we create a delay for the network to focus on the

producing high confidence outputs as far as harder examples exist. Figure 3.2 shows

the effect of this weighing to produce softer targets.
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Dataset with weighing without weighing

CIFAR-10 71.68 70.08

MNIST 98.97 99.04

Table 3.1: The accuracy of the teachers with and without weighing.

3.4 Experimental Results

This section describes the details of the experimental results of our method. We use

MNIST [14] and CIFAR-10 [13] to evaluate each part. For each dataset, the teacher

networks are trained with all of the training samples to get the best results and the

student networks are trained with only 500 images in CIFAR-10 and 1000 images in

MNIST to emphasize on the effect of the distilled knowledge. For the teacher network,

our model consists of two convolutional layers with the kernel size of 3× 3, followed

by two fully connected layers of size 128 and 10 for the final softmax. We also used a

max-pooling layer after each convolutional layer. The student architecture is the same

as the teacher except for the size of the first fully connected which is 64. For the first

experiment, we show the effect of weighing on the soft targets. Therefore, we use

focal loss for the weighing function and following [15], γ is set equal to 2 in all of the

experiments. The comparison of the teacher’s accuracy on the test data is shown in

Table 3.1. In the MNIST dataset, most of the images are very easy for the network and

focusing on the harder ones will help the network for getting better accuracy. However,

Cifar-10 is much harder and most of the images contains useful information to train the

teacher network. On the training set, the teacher with and without weighing respectively

achieved 72.03 and 74.37 on Cifar-10 and 99.15 and 99.23 on MNIST. Figure 3.2 shows

the effect of the weighing on the output probabilities of the training set of the MNIST.

We use the above teachers to improve student accuracy. Due to the point that the ideal

temperature of the teacher without weighing could be higher than the other one, for

each experiment, we trained the student with temperatures from 2 to 6 and get the best

13
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Figure 3.2: The true class output probabilities of the teachers for MNIST training set

(a) with and (b) without the weighing part. For better representation of the differences,

we use T equal to 2 in here.

temperature for each one for a better comparison. We also repeat each experiment four

times and report the median of them. The results are shown in Table 3.2.

The baselines are trained with a simple cross-entropy loss. As you can see, the

effect of the label correction in CIFAR-10 is about half of the improvement which is

higher than the MNIST. It’s due to the high accuracy of the teachers in MNIST. Also

weighing is more helpful in the MNIST dataset because of the high number of easy

examples. However, both parts improve the results in both datasets which demonstrates

the effectiveness of the proposed method. For more analysis, we calculate the variance
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Figure 3.3: The variance of the results for CIFAR-10 within each temperature. The

results of the trained models with soft targets of the proposed teacher have smaller

variance in all temperatures.

Dataset Baseline KD [9] WKD WKDC

CIFAR-10 39.66 44.68 44.75 44.81

MNIST 90.98 92.36 92.81 92.96

Table 3.2: Comparison of the accuracy of the students. KD mean knowledge distillation,

W means with weighing, and C means with the label correction part.

of the experimental results for each temperature which are shown in Figure 3.3. The

figure shows that the results of the proposed method have less variance which can be

interpreted as less noisiness in the classes with small values in the soft targets.

15



Chapter 4

Layer-wise Progressive Knowledge Distillation

4.1 Background and Notations

Knowledge Distillation [9] is proposed to transfer the knowledge of a trained teacher

network to a student network. The teacher acts as a function to convert the given one-hot

ground truth labels or hard targets of a dataset to probability distributions named as

soft targets. Soft targets can help the student network by reducing the variance in the

gradients of the training and also providing more information to the network. Formally,

consider y as the ground truth label, z as the logits of the student, and v as the logits of

the teacher, following [9], the knowledge distillation loss LKD is as follows:

LKD = H(σ(v/T ), σ(z/T )), (4.1)

where σ is a softmax function, T is temperature, and H is a cross entropy function.

σ(v/T ) is the soft target in contrast with the ground truth labels which we call hard

targets. The loss function LKD is equal to the conventional cross entropy when T = 1,

and it will encourage the student to pay more attention to the smaller probabilities as T

increases.

In general, in addition to LKD, a cross-entropy loss with the ground truth labels is

also used to modify the soft targets [9, 17, 26]. Therefore, the total loss for the student
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Figure 4.1: The proposed method provides easier soft targets by converting the feature

spaces of the middle layers to probabilities. Therefore, instead of using just the final

outputs of the teacher similar to the conventional methods on knowledge distillation,

we can manage a multi-level learning for the student network.

is as follows.

Ltotal = (1− λ)H(y, z) + λT 2 × LKD, (4.2)

where T 2 is multiplied to balance the relative contribution of the loss functions as much

as possible [9].

4.2 Layer-wise Knowledge Distillation

To the best of our knowledge, all the works on knowledge distillation until now use

only the softmax outputs of the final layer of the teacher as the soft targets to guide the

student network. However, these probabilities obtained from the highest level of features

at the end of the network could be very hard to learn for the student as demonstrated in

[17]. In this section, we show how we can avoid the hardness of the final outputs of the

teacher by using the hidden information of the intermediate layers.
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Let x and cj denote training data and the j-th class, respectively. Now, for a teacher

network with the embedding function fl(.) of the l-th layer, to obtain the logits, we first

create the class prototypes plj by

plj =
1

|cj |
∑
x∈cj

fl(x), (4.3)

where |cj | represents the cardinality of cj . Then, the logits vl of the l-th layer of the

teacher with respect to an training sample x can be determined by the cosine similarity

between the corresponding feature vector fl(x) and each class prototype such that

vl : vl(j) =
fl(x) · plj
||fl(x)|| ||plj ||

. (4.4)

The reason why we choose the cosine similarity for calculating the logits is that it

empirically gives the best results than others, including the Euclidean distance (more

details in 4.4.2).

Finally, the soft target is obtained by applying softmax function over the produced

logits vl. Note that since the distribution of the intermediate logits that are resulted

in by the cosine similarity in Eq. (4.4), it is quite different from those of the final

outputs of the teacher and the student as well. We observe that vl produces very smooth

probabilities with small variances among different classes. Therefore, to match the

distributions of intermediate soft target and the student output for proper knowledge

distillation, it is crucial to differentiate the teacher’s temperature and the student’s

temperature, when it comes to the intermediate layers. In this regard, we separate the

temperature T in Eq. (4.1) into two different temperatures Tt and Ts for the teacher

and the student, respectively. So, we have new layer-wise knowledge distillation loss as

follows:

L′KD = H(σ(vl/Tt), σ(z/Ts)). (4.5)

Note that Tt determines the entropy of the soft targets, while Ts only controls the

sharpness of the final output distribution. Therefore, as we show in the later sections,

we expect that Tt plays the principal role in the final performance of the distilled model.
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4.3 Progressive Teacher

Inspired by humans who can learn different levels of understanding from observation of

a phenomenon, the soft targets of different layers could be also considered as different

levels of supervision. This concept is also similar to the Curriculum Learning [1] in

which the network starts training from easier samples and considers harder samples

gradually. However, instead of adding harder samples, the samples are fixed in our case

and we just improve the accuracy of the labels.

For the layer-wise progressive knowledge distillation, we first select a set of m

layers of the teacher. Then, we get the logits of those layers and use them to construct

a progressive teacher. These logits can be obtained by Eq. (4.4) for the intermediate

layers or directly from the last layer of the network.

Now, we train the network with the following loss function:

Lp = L′KD(vdα×me, z) = H(σ(vdα×me/Tt), σ(z/Ts)), (4.6)

where, d·e denotes ceiling function, and α is the age of the model that is the ratio of

the current epoch to the total number of epochs for the training, which is between 0

and 1. Therefore, knowledge distillation starts from layer 1 and moves to higher layers

progressively as training goes on. We also remove the cross-entropy loss of the ground

truth which is in Eq. (4.2) for preventing from any constraint on the student to follow

the teacher. Instead, as Algorithm 1 shows, we can train the student network on the
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ground truth labels after learning from all the teacher’s layers as an additional step.

Algorithm 1: Layer-wise Progressive Knowledge Distillation (LPKD)
Data: A set of m layers of the teacher, mapping functions fl(.) to convert from

the image space to the feature space of lth layer, and the student network

S.

for 1 ≤ l ≤ m do

if l not equal to the final layer then

Compute the class prototypes with Eq. (4.3);

Obtain the logits vl for the training images x and the ground truth labels

y based on the cosine similarity using Eq. (4.4);

else
Obtain the logits vl directly from the final output of the network.

end

Update the student network S using the logits vl and the outputs of the

student network z with L′KD(vl, z) as the loss function;

end

Update the student network S using the labels y with cross entropy loss function;

4.4 Experimental Results

In this section, we first introduce the experimental settings, such as the teacher, the stu-

dent models, and the datasets. In Section 4.4.1, we discuss the effect of the temperatures

in Eq. (4.5). After that, we show the results of knowledge distillation based on a single

intermediate layer in Section 4.4.3, the progressive method in Section 4.4.4. Finally, we

compare our method with the existing knowledge distillation methods in Section 4.4.5.

Datasets. For the evaluation of our method, we followed the experimental settings

of [17]. We perform a set of experiments on image classification with two standard

datasets CIFAR-10 and CIFAR-100 [13], each of them consists of 50,000 training and

10,000 testing 32× 32 RGB images. As a preprocessing step on both CIFAR-10 and
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CIFAR-100, we transformed images into ones with zero means. We also used horizontal

flipping for the data augmentation.

Training. For the implementation, we used Keras [4] framework and we used

Adam optimizer [12] for 200 epochs. The learning rate is selected between 0.001 and

0.01 based on the model and decreased after 80,120, 160, and 180 by factors of 0.5,

0.1, 0.05, and 0.001. The precision of hyperparameter tuner is 5, 1/5, and 0.1 for the

temperatures of the final layers, temperatures of the intermediate layers, and the lambdas,

respectively. We used the Neural Network Intelligence optimization toolkit [16] to find

the best parameters for each experiment. The reported results are the maximum among

three trainings with different random seeds.

Networks. As in [17], we used two types of networks named by Plain and ResNet [7]

with different sizes. The Plain CNN consists of simple convolutional layers followed by

batch normalization [10] and ReLU activation. We use two networks for the Plain type;

Plain2, the student model that is composed of just 2 convolutional layers, a max-pooling

after each one and a fully connected layer at the end, and Plain10, the teacher model

that has 10 convolutional layers and two fully connected layers at the end. The max-

poolings are after the 2nd, 4th, 6th, and the 10th layers. These two networks are shown

in Figure 4.1. For the test of more complex networks, we used the original structure

of ResNet with 8 blocks as the student and ResNet with 110 blocks as the teacher. We

also use Resnet26 and Resnet14 as the teacher and the student, respectively, to compare

our method with the others. For all experiments on the intermediate layers, we got the

output of the layer after the activation function.

4.4.1 Temperature Analysis

Following Section 4.2, we first analyze the effect of each temperature Tt and Ts on the

final accuracy of the distilled model. For doing so, we trained a teacher with architecture

Plain10 for the plain version and Resnet110 for the Resnet version. We used the final

outputs of these teachers and L′KD in Eq. (4.5) to train Plain2 and Resnet8 with 4
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Figure 4.2: The accuracy of the student model by using different temperatures for the

teacher and the student. The values in the legends and the X-axis indicate students’ tem-

peratures and the teachers’ temperatures, respectively. Gray lines are fitted polynomial

functions of degree 2 and show the trends.

different temperatures from 1 to 10 for Ts, and 6 different temperatures from 1 to 20

for Tt.

Figure 4.2 shows the test results. In all experiments, we observe that the teacher’s

temperature Tt has the principal effect on the knowledge distillation performance. It is

because the teacher’s temperature will directly affect the soft targets and controls the

attention of the student to match smaller logits. If the soft target’s distribution is fixed,

however, the student network can adapt to that distribution during the training procedure

based on the value of Ts. This makes Ts only responsible for determining the student’s

output distribution after training. Based on these results, we empirically fixed Ts to be 1

for a smaller search space of hyperparameters, without sacrificing performance.
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4.4.2 Distance Metric

In this part, we compare the results of the intermediate layers with three metrics; Cosine

Similarity, Euclidean distance, and Correlation. For each one, we follow a same process

like Eq. (4.3) and Eq. (4.4) to obtain the logits and we consider the maximum value

among the logits as the predicted class.

Table 4.1: Comparison of the accuracy of different layers of the Plain10 based on the

selected metric on CIFAR-10.

Metric Conv7 Conv8 Conv9 Conv10 FC1

Cosine 84.24 87.22 87.28 88.19 88.23

Euclidean 80.87 82.1 84.93 84.87 87.32

Correlation 84.32 87.22 87.33 88.11 88.19

Table 4.2: Comparison of the accuracy of different layers of the Plain10 based on the

selected metric on CIFAR-100.

Metric Conv7 Conv8 Conv9 Conv10 FC1

Cosine 51.01 53.53 55.39 55.89 59.98

Euclidean 50.34 52.88 54.88 52.97 57.9

Correlation 50.99 53.47 55.81 55.62 59.56

The results are shown in Table 4.1 for CIFAR-10 and Table 4.2 for CIFAR-100.

For both datasets, the Euclidean distance got the worst results and comparing the

Correlation and Cosine similarity we can conclude that subtracting the means after

activations is not necessarily required. Therefore, we just using the Cosine similarity in

this work.
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4.4.3 Distilled Knowledge from an intermediate layer

To validate and compare the quality of the transferred knowledge from each layer

of the teacher, we used the last 4 convolutional layers of the Plain10 in addition to

the two fully connected layers at the end of the network. The training and the test

accuracy of each layer of Plain10 and the ResNet models are shown in Figure 4.3.

Considering the accuracy of the teacher’s layers is important especially in the case of

more complex networks like Resnet in which some of the middle layers could contain

very limited information due to the skip connections. However, there should be a flow

of the information during the layers of the network which give us a subset of layers

with increasing accuracy.

In order to train the student network Plain2, we used the normal output probabilities

and Eq. (4.2) for the final FC layer. For the intermediate layers, we used feature to logits

of Section 4.2 and the Eq. (4.5) as the loss function. The results are shown in Table 4.3.

Table 4.3: Comparison of the knowledge distillation performance with using different

layers of the teacher.

Dataset NOKD Conv7 Conv8 Conv9 Conv10 FC1 FC2(KD)

CIFAR-100 44.39 46.2 47.68 48.61 48.37 49.68 49.54

CIFAR-10 73.00 73.99 74.12 74.62 74.3 74.13 74.06

Not only the intermediate layers can guide the student properly, they even can

surpass the result which comes by guiding of the final layer. In addition, considering

the accuracy of the teacher’s layers in CIFAR-100, the teacher’s accuracy gradually

improved specifically in layers Conv8, Conv9, FC1, and FC2 which is reflected in the

student’s accuracy until layer FC1. The result of the student for layer FC2 is lower

which could be due to the trade-off between the accuracy and the complexity of the

teacher. The results on CIFAR-10 is also similar but the layers’ accuracies are saturated

in earlier layers.
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Figure 4.3: The train and the test accuracy from the different layers of Plain10 and

ResNet models.
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We note that the distributions that are obtained from the cosine similarity are

very smooth with small probabilities. Figure 4.4 shows the histogram of the output

probabilities for the predicted class of the validation data on CIFAR-100 and the Plain10

model. These are very different from the distribution of the final layer which comes

directly from the network’s output.

Figure 4.4: Histogram of the highest probabilities for each sample for different layers of

Plain10. The pink line indicates the probability with the maximum number of samples

in each layer.

Considering only the intermediate layers (Conv7, Conv8, and FC1), the position

of the pink line, which means the probability that highest number of samples are

predicted the output with this probability, is moved from around 0.011 to 0.013 which
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demonstrates sharper distributions in higher layers.

4.4.4 Progressive Teacher

Training in a progressive way can help the student by preparing the network for harder

labels in each step. In this regard, the training of the proposed method consists of three

parts according to Algorithm 1; in the first part, we use the intermediate layers in a

selected set of the layers to train the student network with the same temperature for all

of them, the second part uses the soft targets from the final layer with a new temperature,

and the third part is cross-entropy with the original labels. Each training part follows

the same setting in the case of epochs and we found the best learning rate for each part.

Following the above settings, we first trained Plain2 (Resnet8) model as the student

with the soft targets of only one intermediate layer and the final layer of the teacher,

Plain10 (Resnet110).

Table 4.4: The accuracy of Plain2 learned by different intermediate layers in addition to

the final outputs of Plain10.

Dataset Conv7 Conv8 Conv9 Conv10 FC1

CIFAR-100 52.6 52.86 52.75 53.23 52.81

CIFAR-10 75.22 74.83 74.54 74.52 74.47

Table 4.5: The accuracy of Resnet8 learned by different intermediate layers in addition

to the final outputs of Resnet110.

Dataset Conv105 Conv106 Conv107 Conv108 Conv109

CIFAR-100 60.89.6 60.72 61.29 61.24 60.95

Conv79 Conv81 Conv105 Conv107 Conv109

CIFAR-10 87.39 87.79 87.5 87.34 87.44
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According to the results which are shown in Table 4.4 and Table 4.5, the best

accuracy is achieved from the intermediate layers which are almost in the middle of the

final layer of the teacher and the KD version of the student in terms of accuracy. This is

similar to the results of finding the best teacher assistant in [17].

We also provide the results of the proposed layer-wise progressive knowledge

distillation method with more than one intermediate layer in Table 4.6. For the baselines,

we trained the networks with the cross-entropy loss of the ground truth labels, KD

is the networks which are trained with the loss of both soft targets of the final layers

and the ground truth labels Ltotal, described in Eq. (4.2). LPKD is our progressive

method with the soft targets of the intermediate layers in addition to the soft targets

of the final layer and the ground truth labels at the end. For the Plain version, we just

use two intermediate layers Conv7 and Conv10 for CIFAR-100 and Conv7 and Conv9

for CIFAR-10. These layers are selected based on their accuracy and the intuition

behind the previous experiment. In the Resnet version, the gap between the teacher

and the student is larger which requires more intermediate layers. Therefore, we select

four intermediate layers instead of the two in the Plain version, and following the

same reasoning as the Plain version and the results of each layer, we selected the

Conv75,77,79,81 for CIFAR-10 and Conv103,105,107,109 for CIFAR-100.

Table 4.6: Comparison of Plain2 and Resnet8 accuracies trained with ground truth

labels, KD, and our method with Resnet110 as the teacher.

Model Dataset Baseline KD LPKD

Plain
CIFAR-100 44.39 49.54 53.3

CIFAR-10 73.00 74.06 75.49

Resnet
CIFAR-100 57.97 60.98 61.56

CIFAR-10 85.68 87.47 88.28

Although LPKD requires more training time than the conventional knowledge
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distillation, it achieves a significant improvement in the accuracy.

4.4.5 Comparison with other KD methods

Regarding the various knowledge distillation based methods in the literature, we fol-

lowed [17] to compare our method with the previous ones. Following the same settings,

we used the numbers in [17, 8] which is shown in Table 4.7. FT [20] proposed to use

the intermediate features in both networks. AT [24] uses activation and gradient-based

spatial attention maps. FSP [23] generates the flow of solution procedure matrix and the

student is trained to make a similar matrix. BSS [8] uses boundary supporting sample to

focusing on transfer the decision boundary to the student. MTL [26] proposed mutual

learning which trains both the teacher and the student in an interactive method in which

each of the networks guides the other one. RCO [11] also trains both networks simul-

taneously but the direction is just from the teacher to the student. Finally, TAKD [17]

trains teacher assistant networks as a bridge to transfer knowledge from the teacher to

the student.

For our result, we used the provided code of [17] in Pytorch and trained ResNet26

as the teacher for 320 epochs. For training the student, we first used the last three layers

before softmax of the teacher as the intermediate layers, followed by the soft targets of

the softmax layer and ground truth labels. Training each set of labels for 80 epochs, the

whole training procedure takes 400 epochs in total. Although the number of training

epochs is higher from the one mentioned in [17], we should mention that our method

does not depend on the training of any external network and therefore the comparison

could be considered as fair. We also implemented the RCO method in [11] by using

the same teacher as ours and training the student 80 epochs for each step similar to

our method. We used 80 and 64 epochs as the gap in RCO and the higher accuracy is

reported in the table. Our proposed method achieved better results in comparison with

all the previous methods. The most closed results with our are for TAKD and RCO. For

the TAKD, the reason is that as it is shown in [5, 17], when the Teacher Assistant is
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similar to the teacher, the accuracy of the TA could be higher than the Teacher after

knowledge distillation. Therefore, in this experiment, not only the gap between the

ResNet14 and ResNet26 is very small, ResNet20 as the TA can get higher accuracy

than the teacher which helps TAKD to further improve the result. This shows itself

when we use ResNet8 as the student and the gap will be increased which causes smaller

improvement in the results of TAKD. In the comparison of our method with RCO, both

use a progressive method and the results are close, but the intermediate epochs of the

teacher could be in different local optimums and produce different distributions which

can cause misguiding for the student during training.
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Chapter 5

Concolusion

5.1 Summary of the Thesis

In this work, we focus on a well-known method of transfer learning in convolutional

neural networks known as Knowledge Distillation. In this regard, first, we had a review

on the literature of the topic by describing different methods, and then we propose the

two methods Focalized Teacher and Layer-wise Progressive Knowledge Distillation to

improve the results. The principal contribution of this work is in the second method

which contains of three part and got better results in comparison with the previous

knowledge distillation methods. We also did several experiments on two datasets

Cifar10 and Cifar100 to show the effectiveness of each part independently.

5.2 Future Works

Curriculum Learning and Progressive methods showed promising results in several

works. In our method, we use a direct approach to use the logits of the middle layers

and switching between them. However, the more advanced method can be helpful to

improve the final accuracy of the student. For example, instead of switching between

the layers for all samples together, one idea is to switch for each sample independently.
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Figure 5.1: Progressive Knowledge Distillation based on the Teacher Assistants could

be also a good way for training the student.

The ideas of our method can also be extended to other works, for example, from the

aspect of progressive learning, we can also use the teacher assistants instead of the

layers to create the progress.

5.2.1 Progressive Teacher Assistant based Knowledge Distillation

Teacher Assistants was proposed to fill the gap between the teacher and the student.

However, after completing the procedure by training the student with the soft targets of

the smallest teacher assistant, we can use the progressive method on teacher assistants

again to reach the teacher’s soft target. The idea is shown in Figure 5.1. Although

this method needs an exhausting training procedure, it could much better result in

comparison with the original TAKD.
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초록

지식 증류 (Knowledge Distillation, KD)는 교사로부터 학생 모델로 지식을 전

달하는잘알려진방법입니다.본논문에서는계층적진보적교사 (Layer-wise Pro-

gressive Teacher)를 도입하여 지식 증류를위한 새로운 틀을 제안하고자한다. 이와

관련하여 우리는 교사의 중간 계층에서 확률을 구함으로써 서로 다른 경도 수준에

서부드러운목표를만드는방법을제안합니다.우리의방법은교사와학생사이에

큰차이가있어학생이교사를모방하는것을더어렵게하는경우를위해특별히고

안되었습니다. 우리는 또한 학생의 온도를 제거하고 교사의 온도를 유지하는 것이

좋습니다. 실험 결과는 기존의 증류법과 비교할 때 우리의 방법이 훨씬 더 우수한

결과를얻음을보여줍니다.

주요어:이미지분류,이적학습,지식증류

학번: 2017-28825
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