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Abstract

Massive machine-type communications (mMTC) have been drawing a lot of atten-
tions because the number of MTC devices is expected to be increasing in the next gen-
eration (5G) communication systems with a variety of Internet-of-Things (IoT) appli-
cations. For effective uplink transmission in the mMTC, the grant-free non-orthogonal
multiple access (NOMA) scheme has been a promising solution to overcome high
signaling overhead and latency problems. Due to instant transmissions, active user de-
tection (AUD) is an important task for grant-free NOMA.

In the transmitter, data symbols are spread by user-specific spreading sequences.
However, the most research papers have focused on designing the effective detection
algorithms, but not given much attention to the transmitter design. In this disserta-
tion, the generation of spreading sequences via deep learning is proposed. With suf-
ficient training data, the proposed spreading sequences show the close performance
to the mathematically optimized sequences. In particular, we show the capabilities of
learning sequences by demonstrating that learned sequences can have different cross-

correlations depending on the activity probability of each user.

keywords: Massive machine-type communications, compressed sensing, non-

orthogonal multiple access, active user detection, deep learning, spreading sequence.

student number: 2017-21092
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Chapter 1

Introduction

Machine-type communications (MTC) is communications where MTC devices inter-
act with a server or other MTC devices without human interaction. Recently, with a
wide range of Internet-of-Things (IoT) applications such as manufacturing and health-
care, the number of MTC devices has been increasing. In accordance with this trend,
massive machine-type communications (mMTC) has been one of the services that In-
ternational Telecommunication Union (ITU) expects to be the main scenario in fifth
generation (5G) wireless systems [1]. The mMTC focuses on supporting uplink com-
munications with the massive number of MTC devices to the base station.

As the conventional multiple access schemes allocate orthogonal radio resources
to each user and use grant-based transmission, it is inappropriate for the mMTC. To
overcome high signaling overhead and latency problems, grant-free non-orthogonal
multiple access (NOMA) has been proposed [2]. In grant-free NOMA, MTC devices
or users transmit non-orthogonal signals without a complicated scheduling procedure.
Due to instant transmissions, the base station is not aware of the identification infor-
mation. Accordingly, efficient active user detection (AUD) before data detection is
necessary for the grant-free NOMA.

The compressed sensing techniques can help to detect active users because users

transmit data sporadically in mMTC. In other words, the transmitted signal can be



modeled as a sparse vector. Thus, the AUD problem can be considered as the sparse
vector recovery problem which the compressed sensing mainly aims to solve. Recent
studies have worked on compressed sensing based active user detection schemes. In
[3], [4], correlation-based greedy algorithms are applied to detect active users. In ad-
dition, deep neural network (DNN)-based approaches have been proposed for sparse
vector recovery problem. In [5], the DNN structure which is based on the iterative hard
thresholding was proposed.

The most papers have focused on developing the effective detection algorithms, but
not given much attention to the transmitter design. As mentioned, each user is allocated
non-orthogonal radio resources. In other words, each symbol is spread by different
spreading sequences in the transmitter. In [3], [4], [5], the randomly generated spread-
ing sequences are used for convenience. On the other hand, the algorithms to choose
the optimal matrix have been proposed in the compressed sensing literature [6], [7].
The optimality condition is for designing the matrix having low-correlated columns.
However, the optimized sequences with the condition cannot guarantee optimality in
terms of the signal reconstruction performance. Furthermore, both the random and op-
timized sequences cannot reflect the side information of activity probabilities which
are the probabilities that users transmit symbols.

To overcome these drawbacks, we resort to deep learning (DL). In the recent
decade, DL has received a great deal of attention in domains such as natural language
processing and computer vision because DL can solve very complicated optimization
problems. In applications which are very difficult to characterize with mathematical
models, DL is powerful at modeling because neural networks can represent a variety
of functions when the parameters of neural networks are properly learned. It is very
difficult to find the mathematical model for optimizing the spreading sequences which
achieve the best AUD performance. Representing the entire system of the transmitter
and receiver with a DNN, we find the spreading sequences which are learned in the di-

rection of minimizing AUD error. In addition, the spreading sequences can be learned



to involve the activity probabilities by data-driven fashion.

An aim of this dissertation is to propose a technique that generates user-specific
spreading sequences through DL. Existing compressed sensing-based active user de-
tection schemes use the random sequences or the optimized sequences with low cor-
relation on the transmitter. These sequences cannot guarantee the optimality in terms
of the AUD performance and reflect the activity probability of each user. To tackle
these challenges, we introduce a DNN as an alternative to represent the entire sys-
tem which consists of the signal spreading, channel, and the receiver. In the trans-
mitter, the spreading process can be replaced with a trainable neural layer. In the re-
ceiver, AUD is performed by fully-connected neural networks (FCNNs). After train-
ing, weight parameters in the transmitter is used as the learned spreading sequences.
Through end-to-end training, spreading sequences can be learned to achieve the best
AUD performance. From numerical experiments, we interpret what the proposed se-
quences learned and show the difference with the optimized sequences. We show that
the proposed sequences outperforms the random sequences. In the system with hetero-
geneous activities, the proposed sequences shows slightly better performance in com-
parison with the optimized sequences in the high signal-to-noise ratio (SNR) regime.
Further, we show that the proposed sequences can be automatically learned to reflect
the activity probabilities so that sequences have different cross-correlations depending
on the activity probabilities.

The rest of the dissertation is organized as follows. Chapter 2 describes the system
model. In Chapter 3, we discuss the design of spreading sequences using DL in details.
In Chapter 4, we represent the numerical results and discuss interpretation. We finally
conclude our paper in Chapter 5.

Notation: Boldface lower and upper-case characters represent column vectors and

matrices, respectively. For a vector x, z; denotes its ith element. and x 7 its transpose.



Chapter 2

System Model

We consider the uplink transmission from N MTC devices or users with the base
station. Traffic has an unpredictable and sporadic pattern, making the symbol vector
X = [x1,29, + , X N}T eCNa sparse vector. We assume that users are synchronized
in time, meaning that all users transmit symbols and switch activity in the same time
slot basis. Active users transmit just a single symbol in one time slot. In the transmitter,
each symbol is spread by user-specific spreading sequences s,, = [s1, 52, -+ , sy’ €
RM for n-th user, which the base station knows and uses to distinguish users. In this

setup, the received signal at the base station can be formulated as

N
y=> sizi+w=8x+w, 2.1
=1

where S = [sy, 9, --sy| € RM* is the spreading matrix having columns of the
corresponding spreading sequences and x is the symbol vector from all users. We as-
sume that each symbol is uniformly chosen from a finite Alphabet .4 which includes
zero for inactive users. User activity follows the i.i.d. Bernoulli distribution with an
activity probability of p,,. w is the additive Gaussian noise vector with the noise vari-
ance o2, and fading channels are neglected for simplicity. In the mMTC scenarios, the
number of resources M is smaller than the number of users N. The signals s;x; are

non-orthogonal and the system becomes under-determined. Although it is not possible



to find the solution of the under-determined system through the general ways such as
linear least squares or minimum mean square error methods, the compressed sensing
theorems say that x can be reconstructed from y under the condition that x is sparse

enough [8].



Chapter 3

Design of Spreading Sequences using Deep Learning

3.1 Entire Network Structure of the System

In this section, we explain the generation of spreading sequences using DNN. In or-
der to generate the spreading sequences, the transmitter and the receiver are merged
into a neural network structure. Through an end-to-end training, weight parameters of
the entire system are optimized simultaneously to minimize the loss function which is
the AUD error. As an advantage of this autoencoder structure, the AUD performance
is directly used in the generation of the spreading sequences. The stochastic gradi-
ent descent (SGD) is used to minimize the loss function and the weight parameters
in the transmitter are also updated in the direction of minimizing the loss function. In
addition, the spreading sequences can learn activity probabilities by exploiting those
statistics information which is implicit in training data samples. The brief block dia-
gram of the entire system is illustrated in Fig. 3.1.

In the transmitter, the modulated symbol vector x are spread by the spreading ma-
trix S. Instead of using the deterministic spreading, we consider spreading as a train-
able mapping function from the symbol vector x to the transmitted vector Sx. We call
the hidden layer the spreading layer. The spreading layer can be denoted as f(x; S)

with the trainable weight parameters S. In the channel layer, the transmitted signal



is affected by Gaussian noise. Finally, the symbol vector x is reconstructed from the
received signal y in the receiver. AUD also can be considered as a mapping function
from the received signal y to the support prediction vector Qg = [87, 55, - -+, &%,
where §/, € (0,1). We call the hidden layers which detect active users the AUD layer.
After AUD, inactive positions of the symbol vector x can be neglected and the sys-
tem becomes over-determined. The actual data symbols are reconstructed by solving
a least squares problem. In this work, we consider only up to the AUD, not the data

detection for simplicity.

3.2 Spreading Layer

In uplink NOMA, users are distinguished by employing user-specific spreading se-
quences. Basically, the spreading processing is a linear mapping function from x to

Sx. As a primitive approach, we propose a single neural layer as
f(x; Sp) = Spx, (3.1)

where Sy is weight parameters. Because the neural layer does not have the non-linear
activation and the bias parameter, the mapping function is linear in the same way as
the conventional spreading is. The learned weights Sy are taken and used as spreading

sequences after training.

3.3 Active User Detection Layer

The goal is to generate the spreading sequences to minimize AUD error. The learning
of the spreading sequences should directly relate to the AUD performance. Therefore,
we need to replace the active user detector with a neural network so that the gradient
of loss function (AUD error) can be backpropagated to the spreading layer during

training.



The AUD layer finds the non-zero positions of the symbol vector x, given the
noisy received signal y. The non-zero positions are denoted by the support vector 2.
To estimate the support vector €2 is a mapping function which outputs the probabilities
of users being active. To this end, we use a fully-connected neural network (FCNN)
as the probabilistic detector: g : y — Qpreq € (0, 1)V, Using sigmoid activation after
the last hidden layer, the output of AUD layer is squashed as a vector in the range (0, 1).
In addition, as inferring whether users are active or inactive can be considered as multi-
label classification, the binary cross entropy is a natural choice for the loss function.
The weight parameters 6 of the entire neural network are determined by solving the

following optimization.

N
rrgn;Ln, (3.2)
Ly, = — (0, log(d;,) + (1 — 6,) log(1 — &7,)), (3.3)

where L, is the binary cross entropy of n-th user and 4/, are d,, are the elements of the
predicted support vector £2,,,..4 and the true support vector {2, respectively.

It is important to use the improved structure for sparse vector recovery because the
performance of the simple FCNN structure is not satisfactory. Various neural network
structures have been proposed for sparsity enforcing problem. We introduce and im-
prove the structure based on the iterative hard thresholding network (IHT-net) [5]. The
original IHT is basically an iterative algorithm which refines the sparse signal estimate

as updating the following step iteratively,
2D = H (T — T®)a® + &7y, (3.4)

where @ is the system matrix and H}, is the nonlinear thresholding operation. In IHT-
net, iterations are unfolded and each step is considered as a neural network layer which

does not share weight parameters as the following expression

) = ReLu[\I/(t)x(t) + F(t)y]; (3-5)



where thresholding is replaced with a rectified linear unit (ReLu) activation and W(*)
and I'® are trainable weights of ¢-th layer. In [5], IHT-net shows improved perfor-
mance compared to IHT. Based on IHT-net, we modified the architecture by expanding
the width of each layer into 5 times N for effective sparse vector reconstruction and

adding batch normalization layers. The structure of AUD layer is illustrated in Fig.3.2.
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Chapter 4

Simulation Results

4.1 Simulation Setup

As a simulation setup, we simulate the uplink of the mMTC system with N = 64 users
and M = 32 dimensional spreading sequences. Each spreading sequence is scaled as
|lsn|lo = 1. As a first step, the activity probability p,, is set to be constant for all users.
We also consider the practical system with users having different activity probabilities,
which is called the system with heterogeneous activities. Data symbols of active users
are modulated with binary phase shift keying (BPSK).

In order to compare the proposed sequences, we use the Gaussian random se-
quences and the optimized sequences [7]. As a performance measure, we use the ac-
tivity error rate (AER) which considers both missed detections and false alarms. AER
is defined as

4.1)

AER =1 _ P (Qtrue N Qpred) )

Qprue U Qpred

As a training procedure, the symbol is randomly generated and the noise is also
randomly generated and added to the transmitted signal. While there is no obvious
theoretical research about SNR where training should be trained, we have observed
the model trained at SNRs between 15 and 20 dB led to the good performance across

wide ranges of SNR at testing. We used 480,000 different samples with 40 epochs for

12



training, 60,000 samples for validation, and 60,000 samples for testing with batch size
200. We adopted Adam optimizer for SGD optimization. We reduced the learning rate

by 10 times after 10 epochs, starting from 0.01.

4.2 Simulation Results and Interpretation

Fig. 4.1 shows the AER performance when p,, is 0.06. The model was trained at SNR
of 15 dB. The random sequences perform worse than both the optimized and proposed
sequences because the randomly generated spreading matrix have highly correlated
columns. We observe that the proposed spreading sequences performs close to the
optimized sequences.

In Fig. 4.2, we show the AER performance with the activity probability p,, which
varies from 0.01 to 0.1 with fixed SNR of 15 dB. The model was trained at SNR
of 15 dB. We observe that as p,, increases, the AER performance is degraded for all
schemes. Note that while AUD with the proposed sequences shows close performance
to the AUD with the optimized sequences, the proposed sequences achieves the slightly
worse performance when p;, is low.

For understanding the behavior of sequences, we show the histograms of absolute
cross-correlation of sequences in Fig. 4.3, 4.4, and 4.5. Additionally, table. 4.1 shows
the average and maximum absolute cross-correlations of different cases. Absolute
cross-correlation between sequences for ith and jth users is defined as p; j = ‘sszj‘
with ¢ # j. Itis seen from the histograms and table that the random sequences have the
relatively high average and maximum cross-correlations compared to the other cases.
We observe that the optimized sequences are the result of minimizing the maximum
cross-correlation. On the contrary, It is interesting to note that learning the sequences
leads to the effect of minimizing average cross-correlation. We can interpret that se-
quences having low average cross-correlation lead to close performance to the opti-

mized sequences, even with moderately high maximum cross-correlation.

13



Thus far we have used the constant p,, for all users in comparing AER performance
of the proposed sequences. Here, we ask if the learning of sequences can provide
activity-specific sequences and improve AER performance when users have different
Pn, namely the system with heterogeneous activities. We show that the AER perfor-
mance under the system with different p,, in Fig. 4.6. The models were trained at SNR
which was between 15 and 20 dB for each batch. p,, of each user is determined by the
uniform distribution on the interval [0.01, 0.25] for case 1 and [0.01, 0.15] for case 2.
We observe that the proposed sequences achieve about 100% gain over the coneven-
tional sequences(optimized sequences) in case 1 and 40% gain in case 2 at SNR of
20 dB. We can interpret that the distribution yieding large deviation between activities
leads to more performance gain when using proposed sequences. In Fig. 4.7, we plot
the average cross-correlation of each user, which is defined as

N

1
Hiavg = 37— > Isis;] withi . “.2)
i=1

Note that the frequently active users are assigned sequences with low cross-correlation
against other sequences. This result implies that the sequences learned the implicit

statistic of training data.
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Figure 4.5:
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Benchmarks Havg Hmaz
RANDOM SEQUENCES | 0.1407 | 0.5562
OPTIMIZED SEQUENCES | 0.1176 | 0.1515
PROPOSED SEQUENCES | 0.1162 | 0.2211
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Chapter 5

Conclusion

In this dissertation, a DL-aided spreading sequence design technique was proposed to
support the uplink transmission of massive number of MTC devices for mMTC. DL
enables the end-to-end learning of the entire system and the generation of sequences
is able to directly exploit the AUD performance. In particular, we have shown that the
spreading sequences can be generated depending on the activity probability p,,. For
the system with uniformly distributed activity probabilities, small gain was achieved in
high SNR regime only. Nevertheless, it suggests that DL can be an alternative method
of generating spreading sequences for mMTC. There are open problems for further
analysis of the capabilities of the learning of sequences. First off, other activity patterns
or distributions should be analyzed to achieve more gain in the wide range of SNRs.
Besides, the architecture of the spreading layer can be improved because a simple

linear layer was deployed in this work.
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