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Abstract

Massive machine-type communications (mMTC) have been drawing a lot of atten-

tions because the number of MTC devices is expected to be increasing in the next gen-

eration (5G) communication systems with a variety of Internet-of-Things (IoT) appli-

cations. For effective uplink transmission in the mMTC, the grant-free non-orthogonal

multiple access (NOMA) scheme has been a promising solution to overcome high

signaling overhead and latency problems. Due to instant transmissions, active user de-

tection (AUD) is an important task for grant-free NOMA.

In the transmitter, data symbols are spread by user-specific spreading sequences.

However, the most research papers have focused on designing the effective detection

algorithms, but not given much attention to the transmitter design. In this disserta-

tion, the generation of spreading sequences via deep learning is proposed. With suf-

ficient training data, the proposed spreading sequences show the close performance

to the mathematically optimized sequences. In particular, we show the capabilities of

learning sequences by demonstrating that learned sequences can have different cross-

correlations depending on the activity probability of each user.

keywords: Massive machine-type communications, compressed sensing, non-

orthogonal multiple access, active user detection, deep learning, spreading sequence.

student number: 2017-21092
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Chapter 1

Introduction

Machine-type communications (MTC) is communications where MTC devices inter-

act with a server or other MTC devices without human interaction. Recently, with a

wide range of Internet-of-Things (IoT) applications such as manufacturing and health-

care, the number of MTC devices has been increasing. In accordance with this trend,

massive machine-type communications (mMTC) has been one of the services that In-

ternational Telecommunication Union (ITU) expects to be the main scenario in fifth

generation (5G) wireless systems [1]. The mMTC focuses on supporting uplink com-

munications with the massive number of MTC devices to the base station.

As the conventional multiple access schemes allocate orthogonal radio resources

to each user and use grant-based transmission, it is inappropriate for the mMTC. To

overcome high signaling overhead and latency problems, grant-free non-orthogonal

multiple access (NOMA) has been proposed [2]. In grant-free NOMA, MTC devices

or users transmit non-orthogonal signals without a complicated scheduling procedure.

Due to instant transmissions, the base station is not aware of the identification infor-

mation. Accordingly, efficient active user detection (AUD) before data detection is

necessary for the grant-free NOMA.

The compressed sensing techniques can help to detect active users because users

transmit data sporadically in mMTC. In other words, the transmitted signal can be
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modeled as a sparse vector. Thus, the AUD problem can be considered as the sparse

vector recovery problem which the compressed sensing mainly aims to solve. Recent

studies have worked on compressed sensing based active user detection schemes. In

[3], [4], correlation-based greedy algorithms are applied to detect active users. In ad-

dition, deep neural network (DNN)-based approaches have been proposed for sparse

vector recovery problem. In [5], the DNN structure which is based on the iterative hard

thresholding was proposed.

The most papers have focused on developing the effective detection algorithms, but

not given much attention to the transmitter design. As mentioned, each user is allocated

non-orthogonal radio resources. In other words, each symbol is spread by different

spreading sequences in the transmitter. In [3], [4], [5], the randomly generated spread-

ing sequences are used for convenience. On the other hand, the algorithms to choose

the optimal matrix have been proposed in the compressed sensing literature [6], [7].

The optimality condition is for designing the matrix having low-correlated columns.

However, the optimized sequences with the condition cannot guarantee optimality in

terms of the signal reconstruction performance. Furthermore, both the random and op-

timized sequences cannot reflect the side information of activity probabilities which

are the probabilities that users transmit symbols.

To overcome these drawbacks, we resort to deep learning (DL). In the recent

decade, DL has received a great deal of attention in domains such as natural language

processing and computer vision because DL can solve very complicated optimization

problems. In applications which are very difficult to characterize with mathematical

models, DL is powerful at modeling because neural networks can represent a variety

of functions when the parameters of neural networks are properly learned. It is very

difficult to find the mathematical model for optimizing the spreading sequences which

achieve the best AUD performance. Representing the entire system of the transmitter

and receiver with a DNN, we find the spreading sequences which are learned in the di-

rection of minimizing AUD error. In addition, the spreading sequences can be learned
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to involve the activity probabilities by data-driven fashion.

An aim of this dissertation is to propose a technique that generates user-specific

spreading sequences through DL. Existing compressed sensing-based active user de-

tection schemes use the random sequences or the optimized sequences with low cor-

relation on the transmitter. These sequences cannot guarantee the optimality in terms

of the AUD performance and reflect the activity probability of each user. To tackle

these challenges, we introduce a DNN as an alternative to represent the entire sys-

tem which consists of the signal spreading, channel, and the receiver. In the trans-

mitter, the spreading process can be replaced with a trainable neural layer. In the re-

ceiver, AUD is performed by fully-connected neural networks (FCNNs). After train-

ing, weight parameters in the transmitter is used as the learned spreading sequences.

Through end-to-end training, spreading sequences can be learned to achieve the best

AUD performance. From numerical experiments, we interpret what the proposed se-

quences learned and show the difference with the optimized sequences. We show that

the proposed sequences outperforms the random sequences. In the system with hetero-

geneous activities, the proposed sequences shows slightly better performance in com-

parison with the optimized sequences in the high signal-to-noise ratio (SNR) regime.

Further, we show that the proposed sequences can be automatically learned to reflect

the activity probabilities so that sequences have different cross-correlations depending

on the activity probabilities.

The rest of the dissertation is organized as follows. Chapter 2 describes the system

model. In Chapter 3, we discuss the design of spreading sequences using DL in details.

In Chapter 4, we represent the numerical results and discuss interpretation. We finally

conclude our paper in Chapter 5.

Notation: Boldface lower and upper-case characters represent column vectors and

matrices, respectively. For a vector x, xi denotes its ith element. and xT its transpose.
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Chapter 2

System Model

We consider the uplink transmission from N MTC devices or users with the base

station. Traffic has an unpredictable and sporadic pattern, making the symbol vector

x = [x1, x2, · · · , xN ]T ∈ CN a sparse vector. We assume that users are synchronized

in time, meaning that all users transmit symbols and switch activity in the same time

slot basis. Active users transmit just a single symbol in one time slot. In the transmitter,

each symbol is spread by user-specific spreading sequences sn = [s1, s2, · · · , sM ]T ∈

RM for n-th user, which the base station knows and uses to distinguish users. In this

setup, the received signal at the base station can be formulated as

y =
N∑
i=1

sixi + w = S x + w, (2.1)

where S = [s1, s2, · · · sN ] ∈ RM×N is the spreading matrix having columns of the

corresponding spreading sequences and x is the symbol vector from all users. We as-

sume that each symbol is uniformly chosen from a finite Alphabet A which includes

zero for inactive users. User activity follows the i.i.d. Bernoulli distribution with an

activity probability of pn. w is the additive Gaussian noise vector with the noise vari-

ance σ2w and fading channels are neglected for simplicity. In the mMTC scenarios, the

number of resources M is smaller than the number of users N. The signals sixi are

non-orthogonal and the system becomes under-determined. Although it is not possible

4



to find the solution of the under-determined system through the general ways such as

linear least squares or minimum mean square error methods, the compressed sensing

theorems say that x can be reconstructed from y under the condition that x is sparse

enough [8].
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Chapter 3

Design of Spreading Sequences using Deep Learning

3.1 Entire Network Structure of the System

In this section, we explain the generation of spreading sequences using DNN. In or-

der to generate the spreading sequences, the transmitter and the receiver are merged

into a neural network structure. Through an end-to-end training, weight parameters of

the entire system are optimized simultaneously to minimize the loss function which is

the AUD error. As an advantage of this autoencoder structure, the AUD performance

is directly used in the generation of the spreading sequences. The stochastic gradi-

ent descent (SGD) is used to minimize the loss function and the weight parameters

in the transmitter are also updated in the direction of minimizing the loss function. In

addition, the spreading sequences can learn activity probabilities by exploiting those

statistics information which is implicit in training data samples. The brief block dia-

gram of the entire system is illustrated in Fig. 3.1.

In the transmitter, the modulated symbol vector x are spread by the spreading ma-

trix S. Instead of using the deterministic spreading, we consider spreading as a train-

able mapping function from the symbol vector x to the transmitted vector Sx. We call

the hidden layer the spreading layer. The spreading layer can be denoted as f(x ; S)

with the trainable weight parameters S. In the channel layer, the transmitted signal
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is affected by Gaussian noise. Finally, the symbol vector x is reconstructed from the

received signal y in the receiver. AUD also can be considered as a mapping function

from the received signal y to the support prediction vector Ωpred = [δ′1, δ
′
2, · · · , δ′N ]T ,

where δ′n ∈ (0, 1). We call the hidden layers which detect active users the AUD layer.

After AUD, inactive positions of the symbol vector x can be neglected and the sys-

tem becomes over-determined. The actual data symbols are reconstructed by solving

a least squares problem. In this work, we consider only up to the AUD, not the data

detection for simplicity.

3.2 Spreading Layer

In uplink NOMA, users are distinguished by employing user-specific spreading se-

quences. Basically, the spreading processing is a linear mapping function from x to

Sx. As a primitive approach, we propose a single neural layer as

f(x ; Sθ) = Sθx, (3.1)

where Sθ is weight parameters. Because the neural layer does not have the non-linear

activation and the bias parameter, the mapping function is linear in the same way as

the conventional spreading is. The learned weights Sθ are taken and used as spreading

sequences after training.

3.3 Active User Detection Layer

The goal is to generate the spreading sequences to minimize AUD error. The learning

of the spreading sequences should directly relate to the AUD performance. Therefore,

we need to replace the active user detector with a neural network so that the gradient

of loss function (AUD error) can be backpropagated to the spreading layer during

training.
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The AUD layer finds the non-zero positions of the symbol vector x, given the

noisy received signal y. The non-zero positions are denoted by the support vector Ω.

To estimate the support vector Ω is a mapping function which outputs the probabilities

of users being active. To this end, we use a fully-connected neural network (FCNN)

as the probabilistic detector: g : y→ Ωpred ∈ (0, 1)N . Using sigmoid activation after

the last hidden layer, the output of AUD layer is squashed as a vector in the range (0, 1).

In addition, as inferring whether users are active or inactive can be considered as multi-

label classification, the binary cross entropy is a natural choice for the loss function.

The weight parameters θ of the entire neural network are determined by solving the

following optimization.

min
θ

N∑
n=1

Ln, (3.2)

Ln = −
(
δn log(δ′n) + (1− δn) log(1− δ′n)

)
, (3.3)

where Ln is the binary cross entropy of n-th user and δ′n are δn are the elements of the

predicted support vector Ωpred and the true support vector Ωtrue respectively.

It is important to use the improved structure for sparse vector recovery because the

performance of the simple FCNN structure is not satisfactory. Various neural network

structures have been proposed for sparsity enforcing problem. We introduce and im-

prove the structure based on the iterative hard thresholding network (IHT-net) [5]. The

original IHT is basically an iterative algorithm which refines the sparse signal estimate

as updating the following step iteratively,

x(t+1) = Hk[(I − ΦTΦ)x(t) + ΦT y], (3.4)

where Φ is the system matrix and Hk is the nonlinear thresholding operation. In IHT-

net, iterations are unfolded and each step is considered as a neural network layer which

does not share weight parameters as the following expression

x(t+1) = ReLu[Ψ(t)x(t) + Γ(t)y], (3.5)
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where thresholding is replaced with a rectified linear unit (ReLu) activation and Ψ(t)

and Γ(t) are trainable weights of t-th layer. In [5], IHT-net shows improved perfor-

mance compared to IHT. Based on IHT-net, we modified the architecture by expanding

the width of each layer into 5 times N for effective sparse vector reconstruction and

adding batch normalization layers. The structure of AUD layer is illustrated in Fig.3.2.
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Figure 3.1: The brief structure of the entire neural networks.
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Figure 3.2: The structure of active user detector.
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Chapter 4

Simulation Results

4.1 Simulation Setup

As a simulation setup, we simulate the uplink of the mMTC system with N = 64 users

and M = 32 dimensional spreading sequences. Each spreading sequence is scaled as

‖sn‖2 = 1. As a first step, the activity probability pn is set to be constant for all users.

We also consider the practical system with users having different activity probabilities,

which is called the system with heterogeneous activities. Data symbols of active users

are modulated with binary phase shift keying (BPSK).

In order to compare the proposed sequences, we use the Gaussian random se-

quences and the optimized sequences [7]. As a performance measure, we use the ac-

tivity error rate (AER) which considers both missed detections and false alarms. AER

is defined as

AER =1− P
(

Ωtrue ∩Ωpred

Ωtrue ∪Ωpred

)
. (4.1)

As a training procedure, the symbol is randomly generated and the noise is also

randomly generated and added to the transmitted signal. While there is no obvious

theoretical research about SNR where training should be trained, we have observed

the model trained at SNRs between 15 and 20 dB led to the good performance across

wide ranges of SNR at testing. We used 480,000 different samples with 40 epochs for
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training, 60,000 samples for validation, and 60,000 samples for testing with batch size

200. We adopted Adam optimizer for SGD optimization. We reduced the learning rate

by 10 times after 10 epochs, starting from 0.01.

4.2 Simulation Results and Interpretation

Fig. 4.1 shows the AER performance when pn is 0.06. The model was trained at SNR

of 15 dB. The random sequences perform worse than both the optimized and proposed

sequences because the randomly generated spreading matrix have highly correlated

columns. We observe that the proposed spreading sequences performs close to the

optimized sequences.

In Fig. 4.2, we show the AER performance with the activity probability pn which

varies from 0.01 to 0.1 with fixed SNR of 15 dB. The model was trained at SNR

of 15 dB. We observe that as pn increases, the AER performance is degraded for all

schemes. Note that while AUD with the proposed sequences shows close performance

to the AUD with the optimized sequences, the proposed sequences achieves the slightly

worse performance when pn is low.

For understanding the behavior of sequences, we show the histograms of absolute

cross-correlation of sequences in Fig. 4.3, 4.4, and 4.5. Additionally, table. 4.1 shows

the average and maximum absolute cross-correlations of different cases. Absolute

cross-correlation between sequences for ith and jth users is defined as µi,j =
∣∣sTi sj∣∣

with i 6= j. It is seen from the histograms and table that the random sequences have the

relatively high average and maximum cross-correlations compared to the other cases.

We observe that the optimized sequences are the result of minimizing the maximum

cross-correlation. On the contrary, It is interesting to note that learning the sequences

leads to the effect of minimizing average cross-correlation. We can interpret that se-

quences having low average cross-correlation lead to close performance to the opti-

mized sequences, even with moderately high maximum cross-correlation.
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Thus far we have used the constant pn for all users in comparing AER performance

of the proposed sequences. Here, we ask if the learning of sequences can provide

activity-specific sequences and improve AER performance when users have different

pn, namely the system with heterogeneous activities. We show that the AER perfor-

mance under the system with different pn in Fig. 4.6. The models were trained at SNR

which was between 15 and 20 dB for each batch. pn of each user is determined by the

uniform distribution on the interval [0.01, 0.25] for case 1 and [0.01, 0.15] for case 2.

We observe that the proposed sequences achieve about 100% gain over the coneven-

tional sequences(optimized sequences) in case 1 and 40% gain in case 2 at SNR of

20 dB. We can interpret that the distribution yieding large deviation between activities

leads to more performance gain when using proposed sequences. In Fig. 4.7, we plot

the average cross-correlation of each user, which is defined as

µi,avg =
1

N − 1

N∑
j=1

∣∣sTi sj
∣∣ with i 6= j . (4.2)

Note that the frequently active users are assigned sequences with low cross-correlation

against other sequences. This result implies that the sequences learned the implicit

statistic of training data.
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Figure 4.1: AER as a function of SNR (dB).
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Figure 4.3: Histogram of the absolute cross-correlation between the random sequences.

Figure 4.4: Histogram of the absolute cross-correlation between the optimized se-

quences.

16



Figure 4.5: Histogram of the absolute cross-correlation between the proposed se-

quences.

Table 4.1: Average and maximum cross-correlations

Benchmarks µavg µmax

RANDOM SEQUENCES 0.1407 0.5562

OPTIMIZED SEQUENCES 0.1176 0.1515

PROPOSED SEQUENCES 0.1162 0.2211
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Figure 4.7: Average cross-correlations with heterogeneous activities.
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Chapter 5

Conclusion

In this dissertation, a DL-aided spreading sequence design technique was proposed to

support the uplink transmission of massive number of MTC devices for mMTC. DL

enables the end-to-end learning of the entire system and the generation of sequences

is able to directly exploit the AUD performance. In particular, we have shown that the

spreading sequences can be generated depending on the activity probability pn. For

the system with uniformly distributed activity probabilities, small gain was achieved in

high SNR regime only. Nevertheless, it suggests that DL can be an alternative method

of generating spreading sequences for mMTC. There are open problems for further

analysis of the capabilities of the learning of sequences. First off, other activity patterns

or distributions should be analyzed to achieve more gain in the wide range of SNRs.

Besides, the architecture of the spreading layer can be improved because a simple

linear layer was deployed in this work.
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초록

5세대이동통신에서사물통신기기들의수가폭발적으로증가할것이라예상되

면서, 대규모 사물 통신(massive machine-type communications, mMTC)은 많은 관

심을 받고있다. 효과적인 상향링크를 위해서 최근 무허가 방식의 비직교 다중접속

(non-orthogonal multiple access, NOMA) 기술이 높은 신호 오버헤드와 지연 시간

문제를 해결하기 위한 대안으로 주목받고 있다. 특히 무허가 비직교 다중접속에서

는 스케쥴링 없이 즉각적인 전송이 이루어지기 때문에 활성 기기 검출(active user

detection, AUD)이중요한문제가된다.

대규모 사물 통신의 상향링크에서 송신기는 데이터 심볼에 기기마다 다른 확

산코드(spreading sequence)를이용해데이터를확산해서보낸다.그러나대부분의

기존 연구들은 수신기의 검출 알고리즘 연구에 치우쳐져 있고 송신기에서 어떠한

확산 코드를 설계해서 보내야 하는지는 미흡했다. 본 논문에서는 딥러닝을 기반으

로확산코드를설계하는기법을제안한다.충분한학습데이터을이용해서학습된

확산코드는수학적으로상관관계가최적화된확산코드와비슷한활성기기검출

성능을보여주었다.특히기기들이서로다른활성확률을가지는환경에서는확산

코드가활성확률에따라서로다른상호상관관계을가지도록학습되고,높은 SNR

에서약 1.4배에서 2배의성능의향상을보여준다.

주요어: 대규모 사물 통신, 압축 센싱, 비직교 다중접속, 활성 기기 검출, 딥러닝,

확산코드

학번: 2017-21092
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