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Abstract

With the increase of global economic activities and high energy demand, many

countries have concerns about air pollution. However, air quality prediction is a chal-

lenging issue due to the complex interaction of many factors. In this thesis, we propose

a deep generative model for spatio-temporal air quality prediction, entitled AQNet.

Unlike previous work, our model transforms air quality index data into 2D frames

(heat-map images) for effectively capturing spatial relations of air quality levels among

different areas. It then combines the spatial representation with temporal features of

critical factors such as meteorology and external air pollution sources. For prediction,

the model first generates heat-map images of future air quality levels, then aggregates

them into output values of corresponding areas. Based on the analyses of data, we

also assessed the impacts of critical factors on air quality prediction. To evaluate the

proposed method, we conducted experiments on two real-world air pollution datasets:

Seoul dataset and China 1-year dataset. For Seoul dataset, our method showed a 15.2%,

8.2% improvement in mean absolute error score for long-term predictions of PM2.5

and PM10, respectively compared to baselines and state-of-the-art methods. Also, our

method improved mean absolute error score of PM2.5 predictions by 20% compared to

the previous state-of-the-art results on China dataset.

keywords: Air Pollution Prediction, Deep Generative Models, Big Data Platform,

Spatio-Temporal Prediction

student number: 2017-20722
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Chapter 1

INTRODUCTION

1.1 Air Pollution Problem

Air pollution is rapidly becoming a pressing issue for many large cities due to the

rapid urbanization, along with concentrated economic activities. With the explosion of

the global population and the rapid growth of world energy consumption, it eventually

becomes a critical concern for many countries. These issues increase the need and de-

mand for an accurate citywide air pollution prediction model, which is important for

public health protection and government regulation. However, air quality (AQ) pre-

diction is a challenging problem due to the involvement of multiple factors, including

local pollutant emissions, coal power plants, dust activities, seasonal conditions, me-

teorology, terrain, and several other human activities according to [1][2]. Additionally,

determining the correlation of critical factors with AQ levels is difficult due to their

complex interactions. Besides, air quality relies not only on the temporal changes but

also the spatial relations within the investigated area. Furthermore, the lack of homo-

geneous datasets to adequately assess the impact of critical factors on AQ levels is

particularly apparent at the global scale.
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1.2 Overview of the Proposed Method

Our approach is a novel data-driven for AQ prediction based on temporal and spa-

tial properties of heterogeneous data sources. As mentioned earlier, local air quality is

governed by many critical factors. According to the WHO report in 2006 [3], PM2.5

(particulate matter has diameter ≤ 2.5µm) can travel from hundreds to thousands

of kilometers and remain suspended in the air for weeks. However, PM10 (particu-

late matter has diameter ≤ 10µm) can only disperse up to a few hundred kilometers

and persist for a period ranging from a few minutes to several days. Based on these

findings, we collected observational data (air pollutant concentrations, meteorology),

weather forecasts, and categorical features (time, date) of investigated cities. Time and

date information includes holidays, hours in a day, and months in a year which indi-

rectly reflect effects of transportation density or seasonal weather conditions. The air

pollutant concentrations (AQ data) comprise gaseous pollutants (NO2, SO2, CO, and

O3) and particulate matters (PM2.5 and PM10). Then, our model predicts two of the

most crucial factors, PM2.5 and PM10, which have chronic effects on human health

according to [4] [5].

In this thesis, we develop a deep generative model for spatio-temporal air qual-

ity prediction, entitled AQNet. The deep generative model consists of two essential

factors: a context vector and a generative process. First, a spatial transformation func-

tion converts the local AQ data into heat-map images to analyze spatial changes of air

quality. By using images, our model effectively captures spatial properties and rela-

tionships without explicitly modeling the spatio-temporal dynamics of PM2.5 or PM10

and other atmospheric factors. Next, it extracts valuable features from the heat-map

images by exploiting the spatial learning processes of MS-CNN layers. Secondly, the

model combines the spatial representation with temporal features of critical factors

into an encoded vector. This vector is then concatenated with the representation output

of a previous prediction image to provide a context vector for the next step of the gen-

erative process. By generating images, the model is forced to focus on spatial relations
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among areas and predict better for long-term AQ levels. Additionally, the deep gener-

ative model can combine information of various data sources with an increase in the

accuracy of predictions, while putting additional data sources to other baselines and

state-of-the-art methods degrades their correctness.

To prove the efficacy of the proposed method, we performed experiments on real-

world air pollution datasets. Experiments were first conducted on Seoul dataset, and

then the model robustness was evaluated using China 1-year dataset. For Seoul dataset,

we compared our model’s results with baselines and state-of-the-art methods in hourly

(up to 24 hours) and long-term (e.g., 1st day, 2nd day) predictions. Our method showed

15.2%, 8.2% improvement of the mean absolute error for long-term predictions of

PM2.5 and PM10 compared with other methods on Seoul dataset. The small size of

China dataset is a big obstacle for deep learning models. To overcome this issue, we

applied a transfer learning method that uses the pre-trained weights of Seoul dataset

for China dataset. As a result, our method improved the mean absolute error of PM2.5

predictions by 20% compared to the previous method. We also conducted an experi-

ment to train our model on China data from scratch, and the results were 11% better

than the previous method on the mean absolute error.

Based on real-world datasets, we assessed the impact of critical factors on AQ

prediction. We conducted various experiments on all combinations of data sources,

including local AQ data, air pollution data of neighboring countries, and the meteo-

rological data. For instance, to assess the impact of weather conditions on AQ levels,

the model was trained to predict future AQ levels using only meteorological data. The

experimental results revealed that the local PM2.5 levels directly rely on the meteo-

rological conditions and the PM2.5 variations of neighboring countries, while PM10

levels are more localized and less sensitive to these factors.
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1.3 Contributions

Our contributions are summarized as follows:

• We propose a deep generative model for spatio-temporal air quality prediction,

entitled AQNet. The model considers both spatial relations of air quality levels

among areas and temporal features of various critical factors.

• Our model transforms AQ data into heat-map images for efficiently capturing

spatial changes of AQ levels among areas. To predict future AQ levels, the model

first generates heat-map images, then aggregates pixels into output values for

corresponding areas.

• Based on the analyses of data, we assess the impacts of critical factors on the air

quality prediction.

• On Seoul dataset, our method has 15.2%, 8.2% improvement of the mean ab-

solute error on long-term predictions of PM2.5 and PM10 compared to previous

baselines and state-of-the-art methods. On China 1-year dataset, we improve the

mean absolute error of PM2.5 predictions 20% compared to the previous work.
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Chapter 2

RELATED WORK

2.1 Spatio-Temporal Prediction

The spatio-temporal prediction has been prevalent in many domains, especially ur-

ban problems such as air pollution, traffic congestion, weather nowcasting, crowd flow

prediction, to name a few. In terms of precipitation nowcasting, Shi et al., 2015 [6] pro-

posed a model that updates traditional FC-LSTM by replacing matrix multiplication

with convolution operation to predict future precipitation based on historical precipi-

tation radar images. Donahue et al., 2015 [7] proposed LRCNs, a class of architectures

for visual recognition and description, which combined convolutional layers and long-

range temporal (CNN-LSTM). Our work is similar to LRCNs in terms of the order of

learning processes, in that the model first captures spatial relations, then feeds spatial

representation output to the temporal module. In traffic domain, Yu et al., 2017 [8]

and Li et al., 2017 [9] proposed spatio-temporal models for speed forecasting. Yao et

al., 2018 [10] proposed a CNN-LSTM model for taxi demand prediction. In crowd

flow prediction, Zhang et al. [11] proposed a deep spatio-temporal method based on

convolutional residual networks. Among these methods, CNNs were widely used for

learning and tracking spatial representation, while LSTMs were usually used for pro-

cessing time series sequence. LSTMs were also the backbone of numerous time-series
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problems in many domains such as natural language processing [12] [13], stock predic-

tion [14], to name a few. In air pollution research, not many methods applied original

CNNs due to the spatial sparsity of monitoring data. Some works took into account

exact locations of stations and applied derivative versions of CNNs such as graph con-

volutional networks [15] or diffusion convolution networks [16] for spatio-temporal

prediction. In this thesis, we propose an efficient way of transforming local AQ data

into heat-map images and make use of CNN-LSTMs for spatio-temporal air pollution

prediction.

2.2 Air Pollution

Air pollution problem has received considerable attention from numerous researchers

across diverse subjects. In the area of environmental science, researchers tried to iden-

tify the root cause of air pollution and the correlation with critical factors. These re-

searches approached classical methods such as Gaussian models [17] [18] or SVR

[19], but they were difficult to apply to real-time forecasting systems. The data defi-

ciency of various sources, including meteorology, transportation, industrial activities,

and AQ data, made this problem even more challenging for traditional methods. There-

fore, these methods were difficult to provide reliable forecasts, especially in real-time.

We instead approached a data-driven method to predict the two most concerned objects

(PM2.5 and PM10).

Data-driven models aggregate numerous data sources to provide accurate predic-

tion results. The advent of deep learning and big data facilitates the ubiquity of data-

driven approaches for AQ prediction. Zheng et al. proposed [20] and [21], which were

the very first research applying big data techniques for AQ inference. However, the

methods proposed in these papers were also based on basic machine learning methods

such as feature extraction and ensemble models. Besides that, spatio-temporal deep

learning models for AQ prediction focused on predicting AQ levels of monitoring sta-

6



tions based on weighted networks [22] [23]. These works are similar to us in terms of

feature embedding for meteorological conditions, time encoding, and AQ data. How-

ever, they did not assess the exact influence of critical factors on short-to-long-term

AQ levels. Our approach addresses this problem and predicts short-to-long-term AQ

levels. It integrates the spatio-temporal features of heterogeneous data sources to not

only give superior results but also assess the impacts of critical factors on AQ levels.

7



Chapter 3

OVERVIEW

3.1 System Architecture

Figure 3.1: Offline learning system. We train all data combinations and manually select

corresponding components.

Our system consists of two modes, offline learning and online learning sharing mul-

tiple components. As depicted in Fig. 3.1, offline learning mode comprises four com-

ponents, including the real-time data processing, model training, in-memory storage

engine, and a front-end application. We can implement and update components sepa-

rately since each one of them is independent of others. Fig. 3.2 shows that the online

learning structure is only different from the offline mode in the model execution com-

ponent, the gradient method, and the visualization method. We elaborate our prediction

model in Chapter 5, and the user interfaces in Section 3.2. In this session, we focus on
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explaining data sources and the system flow.

Figure 3.2: Online learning and real-time prediction system. The system selects the

execution model corresponding to data availability.

First, the system processes data from multiple sources into tensors, then feed them

to designed models for training and testing. All models are implemented in Tensorflow.

In the offline phase, the models are trained for a few hours and saved the best-learned

weights. These weights are reloaded later during the online prediction period. The pre-

dictive system generates results for both particulate matter PM2.5 and PM10. A public

web server is developed in CherryPy for receiving RESTful requests from clients via

a web application. After receiving a request, the system activates a real-time data pro-

cessing component, then sends an execution signal to the predictive model. Finally,

prediction results are sent back to the client in JSON format for displaying.

Next, In-memory Storage Engine, an essential component of our platform, pro-

vides compression, loading, storing, and computing operators for data processing,

models management. Air Quality Forecasting system includes heterogeneous data

streams demanding a great computing potential. Furthermore, time series data streams,

including million records collecting every millisecond cause big troubles for conven-

tional storage systems. Besides that, to provide reliable forecasts in online learning

mode, the system needs to automatically select the most appropriate and accurate
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model depending on currently available data. The system is trained with numerous

models based on multiple data combinations. Fig. 3.2 presents three data streams

that create seven possible data combinations corresponding to seven different mod-

els. However, it raises concerns for pre-trained weights and models management. In-

memory storage engine provides powerful tools to satisfy these mentioned demands.

3.2 User Interface

To visualize real-time air quality forecasts, we create a web application based on Angu-

larJS 4 and LeafletJs as depicted in Fig. 3.3. The application shows the prediction map

of 25 districts in Seoul, hourly (up to 24h) and daily (up to 7 days) averaged values of

the city for two most concerned AQIs PM2.5 and PM10. The left box shows the selected

forecast of 25 districts of the city navigated via two blue buttons at the bottom. Besides

that, it also presents historical air quality variations of neighbor areas. The color bar

uses in Fig. 3.3 based on standard AQI scale as shown in the bottom right corner. The

system automatically sends updating a Restful request to get the latest forecasts every

one hour or at the loading time.

Figure 3.3: Our application for real-time air quality prediction. We instantly access

heterogeneous data sources and provide real-time predictions.
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Chapter 4

DATA MANAGEMENT

4.1 Real-time Data Collecting

The biggest obstacle to air pollution research is a lack of reliable data resources. Even

though some organizations publish historical records of particulate matters, they focus

on only (PM2.5) while lacking information about other gas pollutants. Meteorology is

also a significant impact on air pollution in multiple urban cities, but it is not easy to

collect reliable historical data. We implement a real-time system that can instantly col-

lect periodic meteorological data (1h, 3h), hourly air pollution information including

standard pollutants of Seoul, and particulate matter 2.5 information of Beijing, Shan-

dong, Shenyang. Our collected data for Seoul city consists of specific information of

25 districts. Elaborately, we collect meteorology data of two websites, including World

Weather Online and Seoul autonomous weather system (aws). We gather China par-

ticulate matter 2.5 data from US Embassy portal and Berkeley Earth website, and the

Seoul air pollutant data from the government CleanAir and AirKorea website. All col-

lected data are ten years in length from 2008 to 2018 except the Shandong PM12.5

which comes from Berkeley earth and is only from May 2014. We implement the real-

time data collecting system in Python 2.7.

11



4.2 Data Collection

Seoul Air Pollution Dataset. This dataset was collected from multiple public sources

of the Seoul Government and consisted of real-time data of 25 districts averaged over

39 measurement stations across the city from 2008. AQ data include hourly obser-

vations of gaseous pollutants (NO2, SO2, CO2, O3) and particulate matters (PM2.5,

PM10). We then normalized input vectors using the min-max scale. To reduce the ex-

ecution time, we pre-processed AQ data of an investigated area into heat-map images

using a spatial transformation function, which is addressed in Section 5.3. We used

data only from 2014 to 2018 for training, testing, and validating. We trained our model

from 2014 to 2016 and used 2017, 2018 data as the validation set and test set.

Neighboring Areas Air Pollution Data. The air quality variations of Seoul are the re-

sults of both local and external air pollution sources. In the scope of this research,

we consider the air pollution sources of some cities in China (Beijing, Shandong,

Shenyang) as an external factor, which affects Seoul AQ levels. We only used PM2.5

data of these cities published in the US Embassy website and Berkeley Earth website

as the representation of their air pollution levels due to the lack of available public

sources. All data were shifted one hour (+1h) to match the timestamp of the Seoul

dataset (Seoul GMT +9).

Meteorological Data. We consider meteorology as a critical factor for future AQ lev-

els and collected a long period meteorological data in Seoul and neighboring cities

from two different sources. First, we crawled weather forecast data of all cities (Seoul,

Beijing, Shenyang, and Shandong) from WorldWeatherOnline.com. Second, we ob-

tained meteorological observational data of all areas in Seoul from the Seoul Govern-

ment’s autonomous weather system website. Both data sources include standard me-

teorological information such as wind speed, wind direction, humidity, temperature,

and precipitation. The range of data in each city was different due to the availability of

publishing sources. Therefore, Seoul’s data were crawled from 2008, while the other

cities’ data were collected from 2009. Next, we matched the timestamp of meteoro-

12



logical data with other data sources.

Additional Information. Air pollution is also associated with many other factors, in-

cluding local transportation and seasonal features, for which data are either unavailable

or difficult to obtain, especially from Chinese sources. Therefore, we added categori-

cal features such as months in a year, hours in a day, and a binary holiday flag to input

vectors. For example, the month-in-year feature can indirectly show the seasonal fea-

tures, while hour-in-day element and the holiday flag can represent local traffic volume

at specific times.

China 1-year dataset. This dataset was published in Zheng et al., 2015 [24], named

as FFA (Forecasting Fine-grained Air pollution) and collected from May 2014 to April

2015. It consists of AQ data, meteorological data, and weather forecasts of many Chi-

nese cities. These data are similar to Seoul air pollution and meteorological data, as

mentioned earlier. However, the length of this dataset is only one year, which causes

difficulties for deep learning approaches. Besides, a large amount of data is missing in

it. For instance, PM10 has 38% missing records out of 278,023 records for Beijing.

4.3 Spatial Transformation Function

Our datasets have two different structures, in which one contains positional informa-

tion (latitude and longitude) of measurement stations while the other consists of only

districts aggregation values. Datasets, which include positional information such as

AirKorea or China 1-year data, are convenient and straightforward for spatial and tem-

poral interpolation. However, these datasets are usually neither instantly updated nor

available for crawling, causing difficulty for real-time interpolation and prediction. On

the other hand, the AQ pollutant data of Seoul Government (CleanAir Website) com-

prise hourly data of 25 districts in Seoul from 2008.

The spatial transformation function converts the local AQ data into heat-map im-

ages to analyze spatial changes of air quality. By using images, our model effectively
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captures spatial properties and relationships without explicitly modeling the spatio-

temporal dynamics of PM2.5 or PM10 and other atmospheric factors. Next, it extracts

valuable features from the heat-map images by exploiting the spatial learning pro-

cesses of CNN layers. Besides that, using images allow the predictive model to in-

terpolate missing values spatially. As a result, the original problem is converted to

predicting future heat-map images from sequences of historical ones. From practical

reasons, the size of an image is set as 25x25 or 32x32 for computation efficiency and

prediction accuracy. We propose two different spatial interpolation methods for each

type of dataset as follows.

4.3.1 District-based Interpolation

Figure 4.1: Spatial transformation method. It transforms row-wise data into heat-map

images. Each area’s pixels have the same value as its concentration value.

Air pollutant data are crawled from CleanAir website, including NO2, CO, SO2,

O3, PM2.5, PM10 of 25 districts in Seoul. This dataset does not include geometrical

information such as latitude and longitude of measuring stations, which causes diffi-

culties to the citywide level interpolation. We assume that every location in a district

has a level of air pollution as same as the representative value. Therefore, we create a

heat-map map image for each hour data of Seoul where all pixels of a district hold an

equivalent number that is the instant crawled value as presented in Fig. 4.1. We firstly

specify the boundary of each district in a heat-map image then fill all pixels in this

14



area with its data. We repeat this process for each air pollutant mentioned above. As

a result, each hour data of districts is converted to a cube with size Width x Height x

Dimension where width and height are corresponding to the image while dimension

depends on the number of pollutants.

4.3.2 Geo-based Interpolation

Geo-based interpolation method also generates a heat-map image from hourly data,

but it is a little different from the previous method. First, we convert the latitude and

longitude of each station into coordinate values as follows:

x = b lng − ax
bx

c

y = b lat− ay
by

c

idx = y ∗ s+ x

(4.1)

where lat and lng are the latitude and longitude value of a station. The longitude

value of the left vertical boundary and the latitude value of the bottom boundary line

are denoted as ay and ax, respectively. The width and the height of a grid cell are bx

and by, respectively. Let s denote the size of a heat-map image. Finally, idx is the

index of a station in the 1-D flattened array of a heat-map image.

Figure 4.2: Transformation of row-wise values of stations to a heat-map image.
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We fill stations’ idx with their corresponding values then apply the k-nearest

neighbors (k-NN) algorithm to interpolate the remaining points. Fig. 4.2 presents an

example of a geo-based interpolation heat-map image. This method allows us to in-

terpolate the missing points efficiently spatially. Up to our knowledge, not many data

sources contain geo-information and also allow instant access, which is an obstacle to

this interpolation method for applying to a real-time predictive system. Therefore, we

only use this method for experimental purposes while sticking with the approach, as

described in 4.3.1, for the real-time prediction system.
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Chapter 5

Proposed Method

5.1 Data Source

First, we define data sources used in our model as follows:

• I =
{
Ikt
}

: AQ data of an Investigated area

• M =
{
Mk
t ,W

x
t

}
: Meteorological data

• N =
{
Nx
t

}
: AQ data of Neighboring countries

• D =
{
Dx
t

}
: Additional Date information

For brevity, index t, k, and x represent each time step, each station, and each city, re-

spectively. Also, x can be either s or c, which represent the investigated area or cities

from neighboring countries, respectively. Ikt is the 6-dimensional vector of AQI con-

centrations in station k for time step t. Similarly, Nx
t denotes the 1-dimensional vector

of PM2.5 concentrations of a city x for time step t.Mk
t andW x

t mean the 6-dimensional

vector of meteorological conditions, including temperatures, humidity, precipitation,

wind, and weather forecasts. Additionally, Mk
t denotes the meteorological observa-

tional data, while W x
t is the weather forecasts of a city x. Lastly, Dx

t denotes the
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3-dimensional vector of date information of a city x, including a binary holiday flag,

months, and hours.

Table 5.1: Input Vector Features

Data Source Feature Range Type

I

PM2.5 [0,1]

Float

PM10 [0,1]

O3 [0,1]

NO2 [0,1]

SO2 [0,1]

CO [0,1]

M

Temperature [0,1]

Float

Humidity [0,1]

Precipitation [0,1]

Wind Speed [0,1]

Wind Gust [0,1]

Wind Direction [0,360] Categorical

N PM2.5 [0, 1] Float

D

Month [1,12]

CategoricalIsHoliday {0,1}

Hour [0,23]

Based on the statistical data analysis, we specified the input features of data sources

as described in Table 5.1. The features of I and M consist of all AQI and standard

meteorological conditions. Unlike I, N has only PM2.5 due to the lack of AQ data

from open sources from neighboring countries. Also, we added to vectorsD’s features

corresponding to each country to represent the date and time properties.
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We categorized input features into two types, namely categorical features and nu-

merical features. For categorical features, we used numeric encoding instead of one-

hot encoding, since the sparseness of one-hot encoding causes expensive computation

and degrades the model performance. For numerical features, we normalized them

using the min-max scaling method.

5.2 Problem Definition

Given I,M,N ,D, the model fθ aims to predict Ŷ which is the air quality (PM2.5 and

PM10 concentrations) over the next Tpred hours for each station k ∈ K.

fθ

(
I,M,N ,D

)
= Ŷ (5.1)

Our goal is to train the model fθ using collected datasets with L2 loss functions.

5.3 Model

Figure 5.1: An overview of AQNet. It is based on the encoder-decoder framework with

CNN-LSTM networks. The encoder consists of three main modules, which take input

vectors of four data sources into account and output a 128-dimensional vector. The

decoder generates heat-map images of future air quality based on CNN-LSTM units

and up-sampling networks.
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To capture features from various data sources, we designed a deep generative

model based on an encoder-decoder framework. As depicted in Fig. 5.1, our model

comprises of two main components, an encoder and a decoder.

5.3.1 Encoder

The encoder comprises an input mapping module, a sequence construction module, a

temporal module, and a hidden layer feedforward network.

Input Mapping. This module consists of normalized vectors of four data sources

I,M,N ,D. As Eq. 5.2 shows, it concatenates vectors of different data sources into

input vectors for each part in the sequence construction module. We denote SC,WC,

and NC as the input sets of SC, WC, and NC.

SC = Concatenate
(
I,M,D

)
WC = Concatenate

(
M(W s),D

)
(5.2)

NC = Concatenate
(
N ,M(W c),D

)
Sequence Construction. The sequence construction module comprises of three parts

for SC, WC, and NC, which aim to construct sequences of input vectors from data

sources for the temporal module. It is important to note that SC is used to capture

spatial relations of observational data, while MC and NC are employed to capture

temporal changes of future meteorology (weather forecasts) and air pollution sources

from neighboring countries. The roles of each component can be described as follows:

• SC’s inputs are the combination of AQ data, meteorological observational data,

and additional date information of the investigated area. Each vector comprises

of 15 features of I, M, and D in Table 5.1. SC has a spatial transformation

function, which turns input vectors into heat-map images to capture spatial re-

lations of air quality and meteorology among various areas. Finally, it gives an

output of a sequence of 128-dimensional vectors.
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• WC captures the temporal changes of future meteorological conditions of the in-

vestigated area to assess their impact on the variation of future air quality. WC’s

inputs are 9-dimensional vectors, which comprise of features ofM and D. D’s

features represent additional information such as seasonal variations through

time and date information. Next, it loads a sequence of vectors and pushes them

to the temporal module.

• NC is responsible for determining the impact of transboundary air pollution

sources on local AQ levels. Its inputs are 27-dimensional vectors, which com-

prise of 21 (7x3) features of N andM of three cities in China, and 3 features

ofD. Particularly,D’s features allow our model to represent additional informa-

tion such as seasonal variations, transportation situation, to name a few. These

features are critical to revealing the variations of external air quality sinceN has

only PM2.5 data.

Spatial Transformation. The spatial sparsity of observational data of monitoring sta-

tions causes difficulties in capturing the variations of air quality in areas. To take into

account additional spatial information in areas, we used heat-map images instead of

row-wise data for training. In the SC module, we designed a spatial transformation

function to convert row-wise data into heat-map images of 25 × 25 size. First, we

developed a tool to define the boundary of districts in the image. Then, the spatial

transformation function filled all pixels of a district in an image with a corresponding

AQI value as depicted in Fig. 4.1. Algorithm 1 depicts a group of heat-map images as

P . The inputs of SC turn to sequences of heat-map images instead of input vectors for

districts. Next, the model pushes these images to a convolutional-based network for

capturing spatial relations. To enable the model to learn both local and global spatial

features of the images, we designed a multi-scale convolutional neural network (MS-

CNN) model similar to the naive version of [25]. Table 5.2 demonstrates the structure

of MS-CNN of the SC component. The SC’s output is now a sequence of vectors

similar to the other parts in the sequence construction module.
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Table 5.2: Configurations of MS-CNNs for AQNet Encoder

Layers Type Num. Kernel Size Output Size

Down-sample ReLU 32 5×5 11×11×32

Multi-scale MS-CNN 4×16 (7,5,3,1)×(7,5,3,1) 11×11×64

Feature ReLU - - -

Down-sample ReLU 32 5×5 4×4×32

Multi-scale MS-CNN 4×8 (7,5,3,1)×(7,5,3,1) 4×4×32

Feature ReLU - - -

Down-sample ReLU 32 5×5 2×2×32

Output Flatten - - 128

As shown in Fig. 5.2, multi-scale convolutional networks, used in our model, are

comprised of multiple filters with different kernel size (including 7x7, 5x5, 3x3, 1x1)

as similar to the naı̈ve version of inception module [26]. The size of kernels is de-

cided based on intuitive reasons rather than specific concepts. Each sub-convolution

networks work as similar to the original version which applies kernel function to lo-

cal regions then concatenates the outputs along the last dimension into a single one

forming the next stage’s input. Multi-scale networks can efficiently learn both local

and global features of input through multiple kernels with different size.

Temporal module. The temporal module, which is based on attention-based networks

with LSTM units, is responsible for outputting a 128-dimensional hidden vector from a

sequence of vectors in each part of the sequence construction module. The model uses

LSTM to learn the temporal changes of critical factors, which affect future AQ levels.

To learn the varying importance of each time step, we included a weighted attention

layer on top of LSTM outputs. The module initializes different weights for SC, WC,

and NC.
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Figure 5.2: A Multi-scale Convolutional Unit with different kernels size.

Long short-term memory network (LSTM) is a variance of a recurrent neural net-

work (RNN), which are prevalent in time series analysis. Recurrent Neural Networks

consist of a sequence of inputs x =
(
x1, ..., xT

)
and activation units. In each time step,

the activation unit computes the hidden vector h and the output vector y. After T time

steps, the networks generate a sequence of hidden and output vectors. The networks

are described as following:

ht = σ
(
W hxt + Uhht-1 + bh

)
yt = σ

(
W yht + by

) (5.3)

where the term W and U denote weights (e.g., W xh) is the weight of the hidden

layer corresponding to input vector x, the term b denotes the bias vector (e.g., bh is the

bias of the hidden layer), and σ is the activation function such as Sigmoid, Tanh, or

ReLU.

Conventional RNNs confront with either vanishing or exploding gradients problem

causing poor performance when executing long sequences. Long Short-term Mem-

ory and other derivative architectures solve these problems by replacing the existing

activation function with a robust network what can both learn and remember knowl-

edge. They all have specific memory cells with complicated dynamics allowing them

to memorize trained knowledge much better than the original RNNs. Because of these

properties, a modern LSTM architecture can easily extend and stack on top of oth-
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ers to form multiple layers structure. Practically, we apply a simple version of LSTM

networks with only one layer for better execution time while still producing notice-

able results. The LSTM architecture, used in our models, is given by the following

equations:

it = σ
(
W ixt + U iht-1 + bi

)
f t = σ

(
W fxt + U fht-1 + bf

)
ot = σ

(
W oxt + Uoht-1 + bo

)
ct = f t ∗ ct-1 + it ∗ tanh(W cxt + bc)

ht = ot ∗ tanh(ct)

(5.4)

where σ is the sigmoid activation, and i, f , o, c are respectively the input gate,

forget gate, output gate, and cell activation vectors which vector size is same as the

hidden vector h. All weights are diagonal matrices.

The attention mechanism is widely combined with LSTMs in the sequential analy-

sis that consists of two vital components, a scoring module and a weighted distribution

equation, as presented in Fig. 5.3. A scoring module can be formed by various deep

learning networks that take into account a hidden vector h, then output a score value.

Specifically, given a sequence of hidden vector h =
(
h1, ..., hT

)
, the scoring module

generates the score value for each vector ht by the following equation:

score(ht) =W sht (5.5)

After that, the weighted distribution Eq. 5.6 computes weights for inputs from its

score value as follows:

αt = softmax(score(ht)) (5.6)

Finally, the content vector c is computed as the weighted average over all hidden
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vectors as follows:

c =

T∑
n=1

αtht (5.7)

(a) Using softmax for the score module (b) Using mean for the score module

Figure 5.3: An overview of the attention mechanism.

Hidden layer feedforward network. Lastly, the model concatenates three outputs

from the temporal module into a unique vector hE and pushes it to a feedforward

layer with Tanh activation. Then, the model outputs the final 128-dimensional vector

representation of the encoder.

5.3.2 Decoder

The decoder consists of CNN-LSTM networks and an up-sampling unit. CNN-LSTM

networks, which consist of a CNN and an LSTM component, are responsible for cap-

turing spatio-temporal features of prediction outputs. The CNN architecture for the

decoder is identical to SC’s model. Besides that, the up-sampling unit aims at generat-

ing heat-map images of future AQ levels. Similar to [27], the output of prediction time

step t becomes the input of the next time step t + 1, except the first time step, whose

input is the last input image of the encoder.

Up-sampling Unit. The up-sampling unit is responsible for generating heat-map im-
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Table 5.3: Configurations of an up-sampling unit for AQNet

Layers Operator Filter Size Output Size

Input Concatenation Concat - 256

Hidden Tanh - 256

Transform Reshape - 2×2×64

Transposed CNNs ReLU 5×5 4×4×128

Transposed CNNs ReLU 5×5 11×11×64

Transposed CNNs ReLU 5×5 25×25×1

ages of future AQ levels. It is based on a Transposed CNN architecture (or Decon-

volutional Neural Networks as referred to in some papers). Table 5.3 shows the ar-

chitecture of Transposed CNNs used in the decoder. At each prediction time step t,

the model concatenates the CNN-LSTM output with the hidden output hE into a 256-

dimensional vector. This vector is fed to the up-sampling unit. Since the difference of

particulate matters values among adjacent districts is large, the model needs to generate

various predictions among adjacent areas for valuable predictions effectively. There-

fore, we used Transposed-CNN layers described in DCGAN [28] for providing sharp

output images.

5.3.3 Training Algorithm

Henceforth, we denote the length of the encoder as lE and the length of the decoder as

lD, to mean input/output time lengths respectively in our model. Algorithm 1 outlines

our model’s training process. First, we pre-processed collected data to make training

and testing vectors. Secondly, we transformed AQI and meteorological observational

data of the investigated area into heat-map images to reduce execution time. Next, we

constructed training samples from the pre-processed data. At each iteration, the model
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takes lE heat-map images, and feed them to the SC component. The outputs of this

component are lE spatial representation vectors of heat-map images. WC and NC also

take lD and lE input vectors from their corresponding data sources. After that, all three

components feed their input vectors to the temporal module. The subsequent steps of

the encoder follow the flow of our model, as mentioned above. Finally, the decoder

begins the processes of generating lD heat-map images of future air quality.

Algorithm 1 AQNet Training
Input: SC,WC,NC

Output: Trained AQNet Model fθ.

1: P = {}

2: for all available time t do

3: xt = Spatial Transform(SCt)

4: Add xt to P

5: end for

6: Initialize all parameters θ in AQNet fθ

7: repeat

8: for all available instance xt ∈ P do

9: Xt = Spatial Represent({xi}ti=t−lE )

10: hI = Temporal Module(Xt)

11: hM = Temporal Module({WCi}t+lDi=t )

12: hN = Temporal Module({NCi}ti=t−lE )

13: hE = Concatenate([hi, he, hm])

14: Y = Decode(Xt, h)

15: find θ by minimizing the loss function with Y

16: end for

17: until Stopping criteria are met
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Chapter 6

EXPERIMENTS

6.1 Baselines and State-of-the-art methods

Here, we briefly explain seven alternatives for comparison and divide them into two

categories.

Baselines. We compared our model results with common time-series methods.

• SVR Support Vector Regression uses the same principles as the Support Vector

Machine (SVM) with only a few differences. SVR model uses the radial basis

function (RBF) kernel. The epsilon value is set to 0.1.

• DNN Fully-connected deep neural network consists of three layers with [128,

64, 32] hidden ReLU units.

• CNN Convolutional neural network consists of three 1-D convolution layers

with kernel size 5, [256,128,64] filters, and pooling layers.

• RNN Recurrent neural network consists of [64,64] encode-decoder states with

LSTM units.

State-of-the-art methods. We implemented state-of-the-art methods of time-series

prediction and spatio-temporal prediction and compared their results on Seoul air pol-

lution dataset with our proposed method.
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• DA-RNN [29]: Dual-stage attention-based recurrent model for time-series pre-

diction.

• GCRN [30]: Graph convolutional recurrent networks for predicting time-varying

graph-based data using ChebNet [31]. K=2 localized filter is used for experi-

ments.

• DCRNN [9]: Diffusion convolutional recurrent networks using bidirectional

graph random walk. K=2 diffusion step is used for experiments.

6.2 Experimental Settings

6.2.1 Implementation details

In this part, we describe hyper-parameters and configurations of experiments. First,

we set the sequence length of SC and NC as 24 and 48, while the length of WC is

the same as the number of the decoder’s time steps. In training and testing for hourly

predictions, our model generates 24 hours in one execution time. To reduce execution

time for long-term predictions and let our model focus on a specific prediction day, it

only generates output images after an offset O. For example, we set O as 48 to stop

our model from generating outputs up to 48th, and it only predicts from the 49th time

step. The output of each day is the aggregated value of the corresponding hours.

Practically, we set the learning rate as 2x10-3 and used ADAM optimizer with β1 =

0.5 and β2 = 0.999. To avoid overfitting, we set the dropout rate as 0.5 for multiple

layers and applied the early stopping technique. Our model uses L2 loss function, as

shown in Eq. 6.1.

L =
1

W

1

H

W∑
i=1

H∑
j=1

(Y i,j − Ŷ i,j)
2 (6.1)

where W and H are the width and height of a heat-map image, Y is the ground-truth

image, while Ŷ is the predicted one generated from AQNet.
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6.2.2 Evaluation Metric

Mean absolute error (MAE) used to evaluate model performance is defined as follows:

MAE =

∑
i | yi − ŷi |

n
(6.2)

where yi and ŷi are the real value and prediction value of time step i, and n is the total

number of predictions.

6.3 Experimental Results

In this part, we present the experimental results for two datasets, as mentioned in the

previous section. In experimenting with Seoul dataset, all prediction results were con-

centration values. With China 1-year dataset, we compared our model performance

with FFA’s method on Chinese AQI standards. We used the following terms to indi-

cate the difference in time:

1. Short term: ≤ 8 hours

2. Middle term: 9-24 hours

3. Long term: ≥ 1 day

Before moving to experimental results, we demonstrate the statistical information

of PM2.5 and PM10 in Seoul (2014-2018) and Beijing (May 2014 - April 2015). In

Seoul, we calculated the mean (µ) and standard derivation (σ) values in particle con-

centrations (µg/m3). In contrast, we calculated these values in both particle concen-

trations and Chinese AQI standards for Beijing. As shown in Table 6.1, the mean and

standard derivation of PM2.5 in Beijing are several times greater than in Seoul. We did

not compute the statistical values for PM10 in Beijing due to a large amount of missing

data.
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Table 6.1: Statistic of PM2.5 and PM10 in Seoul (2014 - 2018) and Beijing (May 2014

- April 2015)

City
PM2.5 PM10

Unit
µ σ µ σ

Seoul 24.75 16.54 45.99 34.07 µg/m3

Beijing
83.12 80.12 - - µg/m3

106.67 91.79 - - China AQI

6.3.1 Performance on Spatial Module Selection

In this section, we evaluate the efficiency of using different CNN architectures in SC

component and the decoder up-sampling units. We conducted all experiments with full

data sources (I, N , andM). For the SC component, we compared multi-scale CNNs

with simple CNNs. The simple CNN architecture is a non-multi-scale version of Table

5.2. For up-sampling units in the decoder, we chose either transposed CNNs or one

feedforward layer. We then set up four settings from these CNN architectures, which

can be defined as follows:

1. MS-CNNs + Trans-CNNs: the encoder uses multi-scale CNNs, while the de-

coder uses Transposed CNNs.

2. CNNs + Trans-CNNs: the encoder uses only CNNs, a non-multi-scale version

of the one above, and the decoder uses Transposed CNNs.

3. MS-CNNs: the decoder is the same as CNNs, and the encoder uses only multi-

scale CNNs.

4. CNNs: the encoder uses only CNNs, while the decoder generates outputs, whose

size is equal to 25× 25, using only one feedforward layer with ReLU activation.
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(a)

Ground

Truth

(b)

MS-CNNs +

Trans-CNNs

(c)

CNNs +

Trans-CNNs

(d)

CNNs

(e)

MS-CNNs

Figure 6.1: Examples of spatial outputs of different CNNs types of IC encoder and the

generation decoder. The color bar is based on US AQI scale.

Fig. 6.1 depicts the generated outputs of each setting of CNN architectures used in our

model. It shows that using transposed-CNN for up-sampling units of the decoder gen-

erates sharper images than using a simple feedforward layer. Intuitively, the generated

images of MS-CNNs + Trans-CNNs are closer to the ground truth labels.
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Figure 6.2: Comparison of spatial modules selection on hourly predictions.

As shown in Fig. 6.2, the accuracy of MS-CNNs + Trans-CNNs is superior to
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other settings. Fig. 6.3 elaborates the effectiveness of this module selection in long-

term predictions. MS-CNNs, including various kernel sizes, can efficiently extract

both local and global features in a heat-map image. Also, transposed CNNs generate

high-resolution output images leading to significant improvement in prediction. Inter-

estingly, using only CNNs in the encoder (4rd setting) also generates noticeable results

compared with others. Even though the results are noticeable in terms of MAE scores,

the output images are vague due to the spatially average properties of convolutional

neural networks.
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Figure 6.3: Comparison of spatial modules selection on long-term predictions.

Since we aimed at predicting future air quality spatio-temporally, the accuracy

was not the only concern for our approach. We also focused on providing reliable

predictions for all districts in an investigated city. Therefore, we chose multi-scale

networks for spatial feature extraction and transposed CNNs for up-sampling units of

the decoder to achieve the best performance.

6.3.2 Comparison to Baselines and State-of-the-art Methods

We compared our model with baseline and state-of-the-art models in hourly prediction

for up to 24 hours, and long-term predictions for up to seven days ahead.
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Table 6.2: Comparison of Hourly Predictions of PM2.5

Methods 1-3h 4-6h 7-9h 10-12h 13-18h 19-24h

SVR 6.73 7.85 8.63 9.32 9.94 10.65

DNN 4.17 6.53 7.95 8.86 9.78 10.57

CNN 4.02 6.47 7.87 8.85 9.81 10.67

RNN 4.03 6.52 7.93 8.85 9.81 10.63

DA-RNN 5.81 7.17 8.11 8.85 9.61 10.28

GCRN 5.50 6.86 7.92 8.63 9.39 10.08

DCRNN 5.56 6.87 7.88 8.61 9.40 10.04

AQNet 5.67 6.69 7.17 7.63 8.21 9.07

Table 6.3: Comparison of Hourly Predictions of PM10

Methods 1-3h 4-6h 7-9h 10-12h 13-18h 19-24h

SVR 15.77 16.50 17.12 17.59 17.98 18.47

DNN 6.61 10.11 12.23 13.47 14.71 15.95

CNN 5.85 9.90 12.17 13.64 14.91 16.16

RNN 5.96 10.00 12.22 13.6 14.87 15.96

DA-RNN 9.47 11.78 13.34 14.39 15.3 16.18

GCRN 8.52 11.35 13.22 14.41 15.41 16.21

DCRNN 8.17 11.12 13.01 14.18 15.23 16.07

AQNet 9.25 10.83 12.01 12.89 13.78 14.62

In hourly prediction, our model performs better than baselines and state-of-the-

art methods in the middle term as presented in Tables 6.2 and 6.3. On the contrary,
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Table 6.4: Comparison of Long-Term Predictions of PM2.5

Methods 1d 2d 3d 4d 5d 6d 7d

SVR 10.32 12.35 12.51 12.41 12.75 12.76 12.38

DNN 10.69 11.78 11.94 11.97 11.91 12.06 12.02

CNN 10.70 11.82 12.03 11.99 11.99 12.14 12.03

RNN 10.74 11.66 11.96 12.04 11.96 12.16 12.07

DA-RNN 10.45 11.40 11.60 11.80 11.56 11.44 11.37

GCRN 10.40 11.36 11.53 11.43 11.27 11.23 11.26

DCRNN 10.18 11.48 11.57 11.44 11.28 11.24 11.31

AQNet 9.10 9.34 9.67 10.11 10.35 10.52 10.78

Table 6.5: Comparison of Long-Term Predictions of PM10

Methods 1d 2d 3d 4d 5d 6d 7d

SVR 18.41 19.63 19.83 19.91 19.99 19.90 20.07

DNN 16.13 17.71 17.82 17.59 17.91 18.15 18.24

CNN 15.90 17.46 17.58 17.28 17.69 18.08 17.80

RNN 16.35 17.54 17.55 17.66 17.71 18.23 18.03

DA-RNN 17.22 18.60 19.01 19.04 19.31 19.04 18.46

GCRN 16.27 17.60 17.97 18.13 18.33 18.43 18.43

DCRNN 16.09 17.60 17.97 18.33 18.52 18.63 18.65

AQNet 14.93 15.94 15.93 16.15 16.08 16.41 16.35
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baseline models, especially time-series methods, outperformed our proposed method

in the short term.

In long-term predictions, AQNet is superior to baselines and state-of-the-art meth-

ods, as shown in Tables 6.4 and 6.5. To compare our method with baselines and state-

of-the-art methods, we averaged MAE scores of seven days for all methods. It showed

that the proposed method 15.2% and 8.2% improvement in MAE scores for PM2.5 and

PM10, respectively.

The variations in PM10 and PM2.5 strongly correlate with the changes in time due

to the complex interactions of various factors. In the middle and long term, these in-

teractions cause significant variations in AQ levels, especially spatially. As a result,

transforming monitoring data into heat-map images lets our model capture spatial rela-

tions efficiently leading to superiority when predicting air quality for a more extended

period. However, due to the spatial learning process, our model is less sensitive to the

short-term variations, which affects the accuracy in short-term predictions. Therefore,

in the short term, time-series methods such as DNN, CNN, and RNN perform better

than AQNet.

In training and testing, all baseline models use only local AQ data as input, while

our model uses various data sources. We also conducted experiments on baselines with

multiple data sources. However, adding more data sources to baseline models degrades

their accuracy. It reveals the weakness of baselines in term of assessing the impact of

critical factors on AQ prediction.

6.3.3 Evaluation on China 1-year Dataset

The previous method, proposed in Zheng et al., 2015 (FFA), is an ensemble model

based on basic machine learning algorithms. It uses 2:1 ratio for data separation in the

experiments. For example, it tests our model with 3, 6, 9, 12, and training with the

other months. In the paper, the experimental results are only the predictions of PM2.5

levels in Chinese AQI standards for Beijing.
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Figure 6.4: Compared with FFA on prediction results of PM2.5 levels in Chinese AQI

standards.

We conducted two experiments on this dataset. First, we evaluated our model ro-

bustness with an experiment, which trains our model from scratch, named as China

Only. In the China-only setting, we also trained our model for 8 months and tested with

4 months as similar to the previous method. Secondly, we checked our model’s capa-

bility of dealing with the lack of data by applying transfer learning on Seoul dataset

to China dataset, called Seoul Transfer. In this experiment, we pre-trained our model

on Seoul dataset for 20 epochs then re-trained our model on China dataset for 300

epochs. Both settings outperformed the previous method, and the transfer learning set-

ting is superior to others, as shown in Fig. 6.4. It points out that transfer learning is

appropriate for dealing with the lack of data in China 1-year dataset. However, the

results also reveal our model weakness for short-term predictions.

6.3.4 Assessing the Impact of Critical Factors

According to [3], the dispersion and formation of particulate matters depend on time,

wind speed, precipitation, and humidity. To assess the impact of critical factors on fu-

ture AQ levels, we performed experiments on all possible combinations of data sources

I,M, and N . These combinations can be divided into two categories (1) involving I

and (2) canceling I due to the similar trend of prediction errors.
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Figure 6.5: An assessment of critical factors affecting the hourly prediction.

Short-to-middle-term impact. As shown in Fig. 6.5, adding local AQ data (I) to the

predictive model (E.g., I +M, I +N ) shows superior performance compared to the

settings when removing I from the input data. We can infer that short-to-middle-term

AQ predictions firmly rely on local AQ data.

As depicted in Fig. 6.5a, the performance of predicting AQ levels using only me-

teorology data (M) is poor in the short term, while it gradually improves in the middle

term. It reveals the increased influence of meteorology on PM2.5 in the middle term.

The parallel performance of experimental settings with I, I+M, and I+N indicate

the corresponding impact of both local meteorological conditions and neighboring air

pollution sources on short-to-middle-term PM2.5 levels. Also, the best performance of

the experiment with all data sources emphasized the strong correlation of PM2.5 varia-

tions with critical factors. Besides, the weak results of the setting using onlyN data re-

veal that the external air pollution sources have less influence on short-to-middle-term

PM2.5 levels than meteorological conditions. Therefore, short-to-middle-term PM2.5

levels are the results of a combination of critical factors.

Similar to PM2.5, PM10 levels are also connected with critical factors in the short

and middle term. However, the impact of each factor on short-to-middle-term PM10

levels is not as discernible as PM2.5. As Fig. 6.5b shows, the errors of experimental

38



1 2 3 4 5 6 7

9

10

11

12

13

Time (day)

C
on

c
M

A
E

E
rr

or
(µ
g

/m
3

)

I+N+M I+M

I+N I

M+N M

N

(a) PM2.5

1 2 3 4 5 6 7

15

16

17

18

19

20

Time (day)

C
on

c
M

A
E

E
rr

or
(µ
g

/m
3

)

I+N+M I+M

I+N I

M+N M

N

(b) PM10

Figure 6.6: An assessment of critical factors affecting the long-term prediction.

settings N , M, and M+N are constant and significant. Also, the performance of

two settings I +N and I are similar, which emphasizes the negligible impact of the

external air pollution sources on the variations of short-to-middle-term PM10. Finally,

the analogy of the performance of two settings I +N +M and I +M shows the

strong correlation of meteorology and local observational AQI with PM10 in the short

and middle term.

Long-term impact. From Fig. 6.6, we can see the specific influence of critical factors

on long-term air quality.

As depicted in Fig. 6.6a, meteorology and the external air pollution sources signif-

icantly impact the variations of long-term PM2.5 levels. First, all experimental settings

without the advent of I have similar performance with the prediction setting using

only I data. Next, the comparable performance ofM + N , I +M, and I + N in-

dicate the relative effects of critical factors on long-term PM2.5 levels. Finally, similar

to short-to-middle-term predictions, the distinctive results of the combination of all

data sources emphasize the strong interconnectedness of meteorology, the external air

pollution sources, and the future PM2.5 levels.

Unlike long-term PM2.5 predictions, the impact of decisive factors on PM10 level

predictions are not evident, especially the external air pollution sources. From Fig.
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6.6b, the experiment with only N data gives the worst performance followed by the

settingsM+N andM. The performance of the predictive model using only local AQ

data (I) is a bit worse than the results of the experiment with I andN . Similar to short-

to-middle-term predictions, it shows the slight influence of the external air pollution

sources on PM10 levels. Also, the analogy of results of the two settings I +N +M

and I +M indicate the direct influence of meteorology on the variations of long-term

PM10. Finally, the distinguished performance of all data sources combination confirm

the accumulative impacts of all factors on PM10 levels.

To summarize, PM2.5 is sensitive to both meteorological conditions and external

air pollution sources. In contrast, PM10 is more localized and is less affected directly by

external air pollution sources than PM2.5. Furthermore, the influences of these factors

on air quality level are more significant in the middle and long term.
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Chapter 7

CONCLUSION

In this thesis, we proposed a data-driven approach, which extracts and combines fea-

tures from various data sources, to spatio-temporal air quality prediction. Additionally,

we developed a deep generative model for predicting short-to-long-term air quality

levels. Unlike previous methods, our model transforms local air quality observations

into heat-map images to capture spatial relations of air quality levels efficiently. The

experimental results showed that our model outperforms baselines and state-of-the-

art methods, especially in long term predictions. The results on China 1-year dataset

demonstrated our model robustness in both the training from scratch and the transfer

learning setting. These results open the door for dealing with the lack of data for air

quality prediction of many urban areas. Next, we assessed the impact of specific fac-

tors on future air quality. Besides that, we realized the weaknesses of an LSTM-based

model, which usually makes predictions based on previous values. However, future

air quality does not entirely depend on previous time-steps due to the strong intercon-

nectedness of air quality levels and many factors. As a result, we plan to focus on air

quality prediction for sudden changes along with short-to-long-term predictions. Also,

we will extend the proposed model to an IoT platform.
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초록

세계 경제 활동과 에너지 수요가 증가함에 따라 많은 국가들이 대기 오염에 대

한 우려를 제기하고 있다. 하지만 많은 요인들의 복잡한 상호 작용으로 인해 대기

질을 예측하는 것은 어려운 문제다. 본 논문에서는 AQNet이라는 이름의 시공간적

대기질예측을위한심층생성모델을제안한다.이전연구와달리이모델은대기

질지수데이터를 2D프레임(히트맵이미지)으로변환하여대기품질수준의영역

간공간적관계를효과적으로포착한다.그런다음기상과외부대기오염원과같은

중요한요소의시간적특징과공간표현을결합한다.예측모델은먼저미래의대기

품질 수준의 히트 맵 이미지를 생성한 다음 해당 영역의 출력 값으로 집계한다. 데

이터분석을토대로대기오염예측에각주요요소들이미치는영향을평가하였다.

제안된방법을평가하기위해실제대기오염데이터세트인서울의데이터세트와

중국의 1년데이터세트를실험했다.본논문에서제안한방법은서울데이터세트에

서수행된 PM2.5와 PM10의장기예측에대해이전의 SOTA방법과비교하여MAE

점수가 각각 15.2%, 8.2% 향상되었다. 또한 중국 데이터 세트에 대한 이전 연구와

비교하여 PM2.5예측의MAE점수를 20%향상시켰다.

주요어:서울대학교논문양식, TeX

학번: 2017-20722
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