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Abstract

The purpose of this research is to develop a neural network model
that is computationally inexpensive in predicting two—dimensional
assembly—wise power distributions along with assembly —wise pin
power peaking factors (PPPFs) by taking only a set of beginning of
cycle (BOC) macroscopic cross sections. Such a computationally
inexpensive and fast prediction model is needed because the
conventional prediction model still renders a computational burden

in loading pattern (LP) optimization processes.

As the first step of the research, the previously developed state—
of—the—art power prediction neural network models are evaluated
to select the best one. It is then modified using convolutional neural
network architectures. 20,000 Korean Standard Nuclear Power
Plant (OPR1000) LPs are randomly generated and used for
supervised learning. The reference power distributions are
generated by using a three—dimensional core analysis code called
ASTRA. The averaged and maximum absolute error(AE) in the
assembly power predictions obtained by the trained neural network
turns out to be 0.19% and 7.34%, respectively, while those for
PPPF are 0.31% and 9.13%, respectively. In order to test the model
in the region of interest, 3,000 general design bounded LPs which
reside outside of the range of the trained data are separately
generated. It appears that the maximum AE for assembly—wise
power and PPPF are 3% and 5%, respectively. Those errors are
within the acceptable range when an approximate model is used in a

LP optimization process. The computing time of the neural network

model is around 0.2 second, which is about 1000 time faster than :
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ASTRA.

The model can greatly reduce the computing time of LP optimization
processes. Although it can be a great utility for a nuclear designer
as well as in an automatic LP optimization program, it has one
limitation. The trained neural network model is only valid within the
specified core conditions: a number of total and fresh fuels, initial
boron concentration, T/H conditions, and etc. If any of the core
condition changes, the model can produce higher than presented

errors.

Keyword: Convolutional Neural Network (CNN)
Supervised learning
power distribution prediction
Pressurized Water Reactor (PWR)

Student Number: 2017—-26188

i A 2l



Table of Contents

ADSEIACE ceeeeeeeiiiiiieeee et e e e 1
Table 0f Contents .....cciviiiueiiieiieeeeeeee e iii
LiSt Of TableS.cuuuuueeeeeerreeiirieiireeeeeeeeeeereeeieee e e e e eeeeennnnnaaeee e v
LiSt Of FIGUIES weiiiiiieiieiiieeeeeeeeee et \%
1. INtroducCtion ....ccceeereeeeeiiemiieeeeeeeeeeerreereee e eecereeeeeeee e 1
1.1 BackgroUnd ...oouoeieieiei e 1
1.2 PUurpose and SCODE «.vuieie e 2
2. Review of previous researches ...oovveeveeeieiiniiniieeeeeennen. 4
2.1 Optimization Layer by Layer oo, 4
2.2 I D OV EIMCIIES et 6
3. Method...ccoiiiiieiiiieieeeee e e e e 8
3.1 Deep Learning ModelS. ..o 8
3.2 Convolution Neural NetwWork.....ccooveeeriiiiiiiiiiiineeeeeieiiiiee, 9
3.3 Residual Neural Network ......coouuuuiiiiiiiiiiiiiiiiiiiieeecccei, 10
3.4 ArchiteCture .. 11
4, RESU ettt eeeeeeee 24
4.1 Loading Pattern Random Generation........cc.ccovevuveiuiiuninnnss 24
4.2 Supervised Learning ....ocoovviviiiiiieiieeeeeee e, 27
5. CONCIUSIONS...ccctttrruuuieeerrreeeetrreiireeeeeeeeeeereeennneeeeseeeeeenns 43
REferenCe...cieiiiieiiieeeeeeeeeetetteee e e e e ee e 44
B USSP 46

iii



List of Tables

Table 2—1: Power distribution and pin power peaking factor
prediction validation error of OLL ..o, 5
Table 4—1: Power distribution prediction error of FC and CNN .... 28

Table 4—2: Power distribution prediction error of the three models

..................................................................................................... 29
Table 4—3: Power distribution and pin power peaking factor

prediction validation error of CNN for the whole cycle............ 31
Table 4—4: Power distribution and pin power peaking factor

prediction error of test ModelS .o, 35
Table 4—5: No. of trained data by the 3 types of ANN.....c..coeevneni. 37

. ) o 11 =1
v ) -||'1_.l| L



List of Figures

Figure 1—1. Flow chart to loading pattern optimization .......c..c......... 3
Figure 2—1. Three—layer OLL network for prediction of normalized
B A DO O e e, 5
Figure 3—1. Convolution neural network architecture with shortcut
o0 ) s Vs Lot 5 (o) s S UPPPPPPRRRN 12
Figure 3—2. Sample input of the 5 types of the BOC macro cross—

section: fast/thermal nu—fission XS, fast/thermal absorption XS,

fast to thermal scattering XS 14
Figure 3—3. residual neural NetWork ......cooooviiiiiiiiiiiiiieeeeiee 17
Figure 3—4. Modified SE Residual CNN Layout......cc.cooeviiiiniinninnne. 18
Figure 3—5. Rotationally symmetric padding ......ccoeeeveeveeeeeeeenvennennnn. 20
Figure 3—6. CNN for depletion 1ayout .cooeeeeeveeie i 22

Figure 4—1. Assembly power and PPPF distribution of the train data

Figure 4—2. Cycle maximum PPPF distribution of the test data .... 26
Figure 4—3. Loss according to learning time about FC vs. CNN for
BOC ONLY ottt 27
Figure 4—4. Loss according to learning time about CNN for the
WO CY L et 30
Figure 4—5. Predicted (CNN) vs. Calculated(ASTRA): Assembly —
WISE ASSCIMDLY DOW T ettt 32
Figure 4—6. Predicted (CNN) vs. Calculated(ASTRA): Assembly —
Wise pin power Peaking faCtOr . .o, 33
Figure 4—7. Sample prediction result.......ccccccceeiiiieiiiiiiiiiiiiiineeeeeeee, 34
Figure 4—8. Predicted (CNN) vs. Calculated(ASTRA): Cycle

maximum pin power peaking facCtor ..o, 36



Figure 4—9. Modified CNN for the cycle maximum layout.............. 39
Figure 4—10. Modified CNN for the maximum Fr at each burnup
STED LAV OUL wrttit it 39
Figure 4—11. Predicted (CNN) vs. Calculated(ASTRA): Cycle
maximum pin power peaking factor, Original model ................. 40
Figure 4—12. Predicted (CNN) vs. Calculated(ASTRA): Cycle

maximum pin power peaking factor, the cycle maximum model

..................................................................................................... 41
Figure 4—13. Predicted (CNN) vs. Calculated(ASTRA): Cycle

maximum pin power peaking factor, the maximum at each

DUINUD INOAEC] i, 42

vi A L) ¢



1. Introduction

1.1 Background

The loading pattern (LP) optimization is carried out by comparing
and evaluating a number of candidates which are generated based
on the engineer’s design experience. In the LP optimization process
shown in Figure 1—1, the “Calculate CORE” has been performed by
a three—dimensional (3D) core analysis code like the ASTRA code
of the KEPCO Nuclear Fuel Company (KNF) while the “Change the
LP” is carried out based on the designer’s experience and/or

automatic LP optimization code’s judgments.

In the history of core analysis that involves the solution of the
transport and/or diffusion equations, many trials had been
conducted on balancing the solution accuracy and computing time.
Even with the recent advances in the computational resources, the
direct whole core transport calculations are too computationally
expensive for 3D core depletion calculations. Therefore, the most
widely used procedure in nuclear core analyses is a two—step
system in which the lattice transport and the diffusion core
calculations are combined!. As computer performance and the
calculation methods are improved, the accuracy and computing time
of 3D core depletion calculations have been improved over time.
The computing time is, however, still quite a burden in an LP
optimization process. If the time for 3D core depletion calculations
1s greatly reduced, the overall optimization process will be faster
and easier and will lead to an economic benefit at a reload design

company.



1.2 Purpose and Scope

In the past, there have been studies to reduce the core calculation®
time using the artificial neural network (ANN) such as Optimization
Layer by Layer method(OLL)% As in the previous study, the
objective of this paper is to construct a fast prediction ANN that can
deliver high accuracy. The neutronic characteristics of interest for
this ANN are two—dimensional (2D) assembly—wise core power
distribution and the pin power peaking factor (PPPF) for each
assembly. As the recent improvement of ANNs, a new branch has
been developed called Deep Neural Network (DNN). Within the
sub—field, Convolutional Neural Network (CNN) has been
introduced to solve spatial relationship problems such as image
classification and regressions®. Although the previous networks
such as OLL performed well in the trained distribution, it worsens
quickly outside the trained distributions. In other words, the
network was not generalized to a wider range of problems. It is
thought that this is because of the neglect of the spatial relationship.
By considering the spatial relationship using a CNN, it is possible to
greatly improve the accuracy of the prediction even with the data
that are outside the trained distribution. In addition, burnup

depletion can be performed using an ANN.

@ the results of the core calculations include: power distribution, pin power

peaking factors, burnup distribution, cycle length, and etc..

9 ;A X

I:.'_'l'li -"_I.i —Il
T —'| 1] 'l'l



Deterministic 3 :
* Nodal Method Bl Calculate CORE R )
* Neutron Transport | !

Stochastic

» Monte Carlo Method

Initial LP

S | ”

Check the nuclear
parameter

Final LP

Figure 1—1. Flow chart to loading pattern optimization



2. Review of previous researches

2.1 Optimization Layer by Layer

The applicability of the ANN for prediction of PWR core neutronic
parameters was first demonstrated by Kim et al. (1993). From
this research, several variants of ANN have been developed but due
to their high error, there were no practical applications. Among the
researches, most promising in accuracy and computational speed

was demonstrated by Jang et al. (2001)?

The optimization layer by layer (OLL) learning algorithm is applied
as shown in Figure 2—1 to predict the assembly—wise core power
and burnup distributions, the critical soluble boron concentration,
and the pin power peaking factor (PPPF) for a Pressurized Water
Reactor (PWR) based on the given set of k—infinity and
Macroscopic Cross Sections (XSs). They utilized the nodal powers
and the assembly discontinuity factors of the given fuel
assembly (FA) and eight surrounding FAs for training the OLL
networks to predict the PPPF of the individual FA as like as the pin
power reconstruction. The summary of the validation test is as
shown in Table 2—1. As shown in the table, the OLL predict the
assembly power and PPPF very well and can show 40 times
improvement in computing time when compared to the modern nodal

method code.



Table 2—1: Power distribution and pin power peaking factor

prediction validation error of OLL

Cavg" Emax’ Frac. with Frac. with
e > 5% e > 10%
Assembly Power 0.73 9.11 0.19 -
PPPF 0.85 11.26 0.80 0.06
a= average relative error (%)
b= maximum relative error (%)
c= Fraction of the assemblies with relative error (%)
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d) |=assembly(1~29)

weights for output neuron

e) n=burnup

Figure 2—1. Three—layer OLL network for prediction of normalized

FA power
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2.2 Improvements

Although there are accurate ANN models in core predicting, we
want to revise the models with the latest development in the field of

ANN called deep learning for better accuracy.

The first improvement is that the main concept of ANN is changed
from OLL to CNN. The conventional nodal method -calculates
assembly power with four surrounding surface flux. To reflect on
this fact, CNN method calculates its assembly power with four
surrounding assembly features. It is thus attempted to improve the
speed and accuracy by converting the main neural network into

CNN based on past researches.

The second change is on the input type. Instead of using a
combination of k—infinity and specific macroscopic cross—sections,
we use b5 types of macroscopic cross—sections (fast/thermal nu—
fission XS, fast/thermal absorption XS, fast—to—thermal scattering
XS) that are used to calculate core eigenvalue. Note that the degree
of freedom to calculate assembly power is low when k—inf is used.
The reason for this is that neutron leakage is different for each
position but k—inf is made without considering the leakage.
Therefore, in order to predict the power with high accuracy, it is

better to consider all 5 XSs that can consider leakage.

Another notable improvement 1is predicting the core power
distribution (PD) over the entire cycle with only the beginning of
cycle (BOC) XSs rather than using different macro cross sections

for each burnup step. If we update the XSs to calculate the depleted
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power, final prediction error will include the error from XSs updates.
More importantly, we are taking advantage of the parallel nature of

GPU computing by un—linking the depletion process.

And the other one is a reflector and moderator area is included for
analyzing periphery area assembly power. The reason for this is
that a neutron leakage of the periphery assembly is higher than that
of inside assembly. In order to reflect on this phenomena, we have

included the reflector and the moderator.



3. Method

3.1 Deep Learning Models

Deep learning is a class of machine learning algorithms that*:

— use a cascade of multiple layers of nonlinear processing
units for feature extraction and transformation. Each successive
layer uses the output from the previous layer as input.

— learn in supervised (e.g., classification) and/or unsupervised
(e.g., pattern analysis) manners.

— learn multiple levels of representations that correspond to
different levels of abstraction; the levels form a hierarchy of

concepts.

3.2 Supervised learning

Supervised learning is the machine learning task of learning a
function that maps an input to an output based on example input—
output pairs®. It infers a function from labeled training data
consisting of a set of training examples®. In supervised learning,
each example is a pair consisting of an input object (typically a
vector) and the desired output value (also called the supervisory
signal). A supervised learning algorithm analyzes the training data
and produces an inferred function, which can be used for mapping
new examples. An optimal scenario will allow for the algorithm to
correctly determine the class labels for unseen instances. This
requires the learning algorithm to generalize from the training data

to unseen situations in a "reasonable" way.
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3.3 Convolution Neural Network

A convolutional neural network consists of an input and an output
layer, as well as multiple hidden layers. The hidden layers of a CNN
typically consist of convolutional layers, RELU layer i.e. activation
function, pooling layers, fully connected layers, and normalization
layersg.

Description of the process as a convolution in neural networks is by
convention. Mathematically it is a cross—correlation rather than a
convolution (although cross—correlation is a related operation).
This only has significance for the indices in the matrix, and thus
which weights are placed at which index. Convolutional layers apply
a convolution operation to the input, passing the result to the next
layer. The convolution emulates the response of an individual
neuron to visual stimuli’.

Each convolutional neuron processes data only for its receptive
field. Although fully connected feedforward neural networks can be
used to learn features as well as classify data, it is not practical to
apply this architecture to images. A very high number of neurons
would be necessary, even in a shallow (opposite of deep)
architecture, due to the very large input sizes associated with
images, where each pixel is a relevant variable. For instance, a fully
connected layer for a (small) image of size 100 x 100 has 10000
weights for each neuron in the second layer. The convolution
operation brings a solution to this problem as it reduces the number
of free parameters, allowing the network to be deeper with fewer
parameters®. For instance, regardless of image size, tiling regions of
size 5 x b, each with the same shared weights, requires only 25

learnable parameters.



3.4 Residual Neural Network

A residual neural network is an artificial neural network (ANN) of a
kind that builds on constructs known from pyramidal cells in the
cerebral cortex. Residual neural networks do this by utilizing skip
connections or short—cuts to jump over some layersg.

One motivation for skipping overlayers is to avoid the problem of
vanishing gradients by reusing activations from a previous layer
until the layer next to the current one learns its weights. During
training, the weights adapt to mute the previous layer and amplify
the layer next to the current. In the simplest case, only the weights
for the connection to the next to the current layer is adapted, with
no explicit weights for the upstream previous layer. This usually
works properly when a single non—linear layer is stepped over, or
when the intermediate layers are all linear. If not, then an explicit
weight matrix should be learned for the skipped connection.
Skipping initially compresses the network into fewer layers, which
speeds learning. The network gradually restores the skipped layers
as it learns the feature space. During later learning, when all layers
are expanded, it stays closer to the manifold and thus learns faster.
A neural network without residual parts explores more of the
feature space. This makes it more vulnerable to perturbations that
cause it to leave the manifold and necessitates extra training data to

recover.

I 3 =11 =1 —
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3.5 Architecture

The architecture of the network is summarized in Figure 3—1. Five
types of the macroscopic cross—section are fast/thermal nu—fission
XS, fast/thermal absorption XS, fast to thermal scattering XS. The
XSs used is taken from the lattice code (KARMA) calculation which
is mainly used for commercial core analysis. It is node—wise (1/4
assembly node). Five XSs is spatially represented as 17 x 17
(Quadrant core, the complete input shape is [17x17%x5]). A first
convolution (CONV1) is performed using a 1 x 1 filter, same padding,
ReLU activation function and 64 channels (the output shape is
[17x17%x64]). The second convolution (CONV2) has the same
properties of (CONV1) except for the size of filter—-growing now to
3x3 filter (shape of [17%x17x64]). The third convolution
(CONV3) has the same properties as (CONV1) except for the
number of channels—growing now to 256 (shape of [17 x17 x256]).
There is shortcut—connection that only passed CONV3 (shape of
[17x17%x256]). After adding two convolution layers, it is divided
into 2 main feature, the first is assembly—wise power and the
second is PPPF. The fourth convolution (CONV4) is performed
using a 2x2 filter, 2x2 strides, same padding, RelLU activation
function and 128 channels (the output shape is [9x9x 128]). The
fifth convolution (CONV5) is performed using a 1 x1 filter, ReLU
activation function and 1 channel (the output shape is [9x9x 1]). In
assembly power prediction, the fifth convolution is the final step to
predict. But, in PPPF, the final value is the product of the fifth
convolution output and assembly power prediction value[9Xx9x 1],
the resulting data (of shape [9Xx9x1]) is flattened to a single

vector (of [81] elements).
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Figure 3—1. Convolution neural network architecture with shortcut —connection

for assembly and PPPF prediction.



3.5.1 Block: XS INPUT

Like most ANN architecture defining input is the most important
part of the architecture optimization. Therefore, we carefully
choose our input as a building block of core simulation: beginning of
cycle (BOC) macroscopic XSs. As we previously have shown, the
input shape was 2D node—wise full core XSs 34x34x5. It was
34x34 nodes because there are radially 15 assemblies with 2
reflectors on both sides. Since the core is rotationally symmetric,
by simply taking 4th quadrant of the full core, we can simulate the
rest of the core. Therefore, our input shape becomes 17x17x5 and

sample input is shown in figure 3—2.
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BOC 2D-NODE NU-FISSION XS DISTRIBUTION ( /CM)

FIRST LINE: GROUP 1 (1.0E-03)
SECOND LINE: GROUP 2 (1.0E-01)

Y/X H J K L M N P R RE

8 SC R7 S7 R4 R4 R4 S4 a7 RE
4.77839 5.61786 5.61759 6.69639 6.69639 5.61616 5.59614 5.84188 5.68230 5.56132 5.59652 6.78027 6.78027 4.83484 4.80103 0.00000 0.00000
0.81353 1.24859 1.24851 1.14505 1.14505 1.24890 1.24438 1.27576 1.25747 1.24017 1.24443 1.19201 1.19201 1.07430 1.06715 0.00000 0.00000

9 R7 Q0 RO R6 S4 R6 S6 Q1 RE
5.66429 5.21731 5.03144 6.12443 6.28149 5.85481 5.67095 6.78027 6.78027 5.67976 5.88457 6.86966 6.86966 5.06002 4.90205 0.00000 0.00000
1.25457 1.16414 1.12256 1.30808 1.32055 1.27687 1.25587 1.19201 1.19201 1.25790 1.28014 1.23964 1.23964 1.12954 1.09522 0.00000 0.00000

5.66322 5.14435 4.97169 5.86893 6.00359 5.85150 5.68395 6.78027 6.78027 5.72380 5.95193 6.86966 6.86966 4.92746 4.82086 0.00000 0.00000
1.25451 1.14635 1.10761 1.28149 1.29462 1.27663 1.25723 1.19201 1.19201 1.26293 1.28665 1.23964 1.23964 1.10223 1.07827 0.00000 0.00000

10 S7 RO [¢4] S7 R7 S4 S6 6 RE
6.69639 6.12423 5.86866 4.97033 5.03003 6.69639 6.69639 5.60049 5.59770 6.78027 6.78027 6.86966 6.86966 4.88929 4.74498 0.00000 0.00000
1.14505 1.30806 1.28145 1.10742 1.12252 1.14505 1.14505 1.24466 1.24424 1.19201 1.19201 1.23964 1.23964 1.09559 1.06550 0.00000 0.00000

6.69639 6.28121 6.00320 5.14284 5.21621 6.69639 6.69639 5.56674 5.58171 6.78027 6.78027 6.86966 6.86966 4.88588 4.74554 0.00000 0.00000
1.14505 1.32053 1.29458 1.14630 1.16396 1.14505 1.14505 1.24104 1.24278 1.19201 1.19201 1.23964 1.23964 1.09566 1.06726 0.00000 0.00000

" R4 R6 S7 R4 R1 R4 SO RC RE
5.57878 5.85469 5.85155 6.69639 6.69639 5.60961 5.63851 5.75629 5.86292 5.56877 5.56573 6.95092 6.95092 0.00000 0.00000 0.00000 0.00000
1.24456 1.27686 1.27666 1.14505 1.14505 1.24693 1.25186 1.26303 1.27493 1.24113 1.24058 1.32510 1.32510 0.00000 0.00000 0.00000 0.00000

5.56094 5.67069 5.68367 6.69639 6.69639 5.63829 5.69632 5.91092 6.08023 5.55731 5.55056 6.95092 6.95092 0.00000 0.00000 0.00000 0.00000
1.24011 1.25584 1.25721 1.14505 1.14505 1.25183 1.25994 1.27914 1.29629 1.23949 1.23861 1.32510 1.32510 0.00000 0.00000 0.00000 0.00000

12 R4 S4 R7 R1 S4 St Q6 RE
5.84143 6.78027 6.78027 5.60193 5.56776 5.75679 5.91164 6.78027 6.78027 6.91356 6.91356 4.92894 4.75861 0.00000 0.00000
1.27561 1.19201 1.19201 1.24462 1.24117 1.26309 1.27922 1.19201 1.19201 1.28855 1.28855 1.10744 1.07105 0.00000 0.00000

5.68235 6.78027 6.78027 5.59864 5.58249 5.86356 6.08140 6.78027 6.78027 6.91356 6.91356 4.90088 4.74446 0.00000 0.00000
1.25742 1.19201 1.19201 1.24433 1.24288 1.27498 1.29626 1.19201 1.19201 1.28855 1.28855 1.09916 1.06587 0.00000 0.00000

13 R4 R6 4 R4 S1 4 RC RE
5.57909 5.67953 5.72356 6.78027 6.78027 5.56883 5.55693 6.91356 6.91356 4.85531 4.74683 0.00000 0.00000 0.00000 0.00000
1.24461 1.25787 1.26290 1.19201 1.19201 1.24113

.23943 1.28855 1.28855 1.09086 1.06736 0.00000 0.00000 0.00000 0.00000

5.61646 5.88442 5.95177 6.78027 6.78027 5.56549 5.55019 6.91356 6.91356 4.85549 4.74674 0.00000 0.00000 0.00000 0.00000
1.24894 1.28012 1.28663 1.19201 1.19201 1.24056 1.23856 1.28855 1.28855 1.09096 1.06731 0.00000 0.00000 0.00000 0.00000

14 4 S6 S6 S0 6 RC RE
6.78027 6.86966 6.86966 6.86966 6.86966 6.95092 6.95092 4.92855 4.90052 0.00000 0.00000 0.00000 0.00000
1.19201 1.23964 1.23964 1.23964 1.23964 1.32510 1.32510 1.10737 1.09914 0.00000 0.00000 0.00000 0.00000
6.78027 6.86966 6.86966 6.86966 6.86966 6.95092 6.95092 4.75818 4.74411 0.00000 0.00000 0.00000 0.00000
1.19201 1.23964 1.23964 1.23964 1.23964 1.32510 1.32510 1.07096 1.06585 0.00000 0.00000 0.00000 0.00000
15 a7 Qi 6 RC RE RE

4.83492 5.05940 4.92710 4.88904 4.88492 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.08358 1.12943 1.10215 1.09550 1.09554 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

4.81610 4.91655 4.83412 4.75709 4.75724 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1.08189 1.10081 1.08353 1.07050 1.07228 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

RE RE RE RE RE
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Figure 3—2. Sample input of the 5 types of the BOC macro cross—
section: fast/thermal nu—fission XS, fast/thermal absorption XS, fast

to thermal scattering XS

(1/3)
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BOC 2D-NODE ABSORPTION XS DISTRIBUTION ( /CM)

FIRST LINE: GROUP 1 (1.0E-03)
SECOND LINE: GROUP 2 (1.0E-02)

Y/X H J

8 SC R7
8.01580 9.14219
4.74785 8.15172

9 R7 Q0
9.13270 9.21002
8.13426 8.06055

9.13306 9.21774
8.13539 8.01504

S7 RO
9.33165 9. 10431
7.64284 7.99455

9.33165 9.08933
7.64284 7.87741

" R4 R6
9.16184 9.11807
8.18734 8.07883

9.16246 9.15175
8.17632 8.16513
R4 s4

9.11070 9.31903
8.07163 7.60627

9.13891 9.31903
8.14427 7.60627
R4 R6

9.16177 9.15149
8.18725 8.16954

.15265 9. 11426
.16931 8.06600

® ©

4 S6
9.31903 9.31254
7.60627 7.58630

9.31903 9.31254
7.60627 7.58630

a7 Qi
9.26665 9.22897
7.89237 7.97796

9.30153 9.28996

7.92831 7.96969
RE RE RE
1.24007 1.24007
8.88229 8.88229

1.24007 1.24007

9.
8.

9.
7.
9.
7.
9.
8.
9.
8.
9.
8.
9.
8.
9.
7.
9.
7.
9.
8.
9.
8.
9.
7.
9.
7.
9.
7.

9.
7.

1

K

S7
14218 9.33165 9.33165
15148 7.64284 7.64284

RO
23826 9.10429 9.08931
97677 7.99441 7.87720

24926 9.13545 9.11520
94057 8.13298 8.05246

Q0
13550 9.24975 9.23308
13310 7.94096 7.97858

11524 9.21854 9.21029
05265 8.01692 8.06060

S7
11862 9.33165 9.33165
08127 7.64284 7.64284

14864 9.33165 9.33165
15785 7.64284 7.64284

R7
31903 9.14157 9.15120
60627 8.13980 8. 16119

31903 9.14242 9.14754
60627 8.14189 8. 15409

sS4
14237 9.31903 9.31903
14840 7.60627 7.60627

10705 9.31903 9.31903
03641 7.60627 7.60627

S6
31254 9.31254 9.31254
58630 7.58630 7.58630

31254 9.31254 9.31254
58630 7.58630 7.58630

6
26033 9.26895 9.27155
94192 7.93413 7.94016

31397 9.34042 9.34305

L M

R4 R4
9.15271 9.15400 9. 11081
8.16940 8.16107 8.07232

R6 S4
9.11806 9.15170 9.31903
8.07879 8.16504 7.60627

9.11859 9.14857 9.31903
8.08109 8.15765 7.60627

S7 R7
9.33165 9.33165 9. 14234
7.64284 7.64284 8.14237

9.33165 9.33165 9.15144
7.64284 7.64284 8.16158

R4 R1
9.15270 9.14848 9. 13800
8.16371 8.16286 8.11873

9.14852 9.13804 9.11125
8.16293 8.14661 8.03268

R1 S4
9.13792 9.11115 9.31903
8.11854 8.03233 7.60627

9.11938 9.09148 9.31903
8.06485 7.93810 7.60627

R4 N
9.16113 9.16337 9.21099
8.17532 8.17767 7.51606

9.16154 9.16494 9.21099
8.17487 8.17983 7.51606

S0 6
9.04297 9.04297 9.26461
7.09388 7.09388 7.97269

9.04297 9.04297 9.31524
7.09388 7.09388 7.92270

RC RE
1.24007 1.24007 1.24007
8.88229 8.88229 8.88229

1.24007 1.24007 1.24007

9.
8.

9.
7.
9.
7.
9.
8.
9.
8.
9.
8.
9.
7.
9.
7.
9.
7.
9.
7.
9.
7.
9.
7.

9.
7.

1

1

N P R RE
R4

13901 9.16237 9.

14474 8.17620 8.

S4 a7 RE
15392 9.31903 9.31903 9.24578 9.25647 1.24007
16094 7.60627 7.60627 7.80842 7.79959 8.88229

R6 S6 Q1 RE
31903 9.15144 9.11424 9.31254 9.31254 9.22870 9.26432 1.24007
60627 8.16946 8.06595 7.58630 7.58630 7.97787 7.92128 8.88229

31903 9.14232 9.10704 9.31254 9.31254 9.26025 9.28828 1.24007
60627 8.14831 8.03635 7.58630 7.58630 7.94208 7.90037 8.88229

S4 S6 6 RE
14269 9.31903 9.31903 9.31254 9.31254 9.26897 9.31465 1.24007
14255 7.60627 7.60627 7.58630 7.58630 7.93459 7.89830 8.88229

14771 9.31903 9.31903 9.31254 9.31254 9.27111 9.31694 1.24007
15435 7.60627 7.60627 7.58630 7.58630 7.93976 7.91120 8.88229

R4 S0 RC RE
11951 9.16116 9.16147 9.04297 9.04297 1.24007 1.24007 1.24007
06531 8.17542 8.17472 7.09388 7.09388 8.88229 8.88229 8.88229

09177 9.16328 9.16485 9.04297 9.04297 1.24007 1.24007 1.24007
93989 8.17757 8.17971 7.09388 7.09388 8.88229 8.88229 8.88229

S1 Q6 RE
31903 9.21099 9.21099 9.26449 9.31508 1.24007 1.24007
60627 7.51606 7.51606 7.97273 7.92276 8.88229 8.88229

31903 9.21099 9.21099 9.26736 9.31615 1.24007 1.24007
60627 7.51606 7.51606 7.94493 7.90177 8.88229 8.88229

4 RC RE
21099 9.27179 9.30530 1.24007 1.24007 1.24007 1.24007
51606 7.93076 7.89654 8.88229 8.88229 8.88229 8.88229

21099 9.27197 9.30531 1.24007 1.24007 1.24007 1.24007
51606 7.93145 7.89632 8.88229 8.88229 8.88229 8.88229

RC RE
26759 1.24007 1.24007 1.24007 1.24007
94535 8.88229 8.88229 8.88229 8.88229

31639 1.24007 1.24007 1.24007 1.24007
90216 8.88229 8.88229 8.88229 8.88229

RE

.24007 1.24007 1.24007
8.

88229 8.88229 8.88229

.24007 1.24007 1.24007

94739 7.94424 7.95788 8.88229 8.88229 8.88229 8.88229 8.88229 8.88229

RE

.24007 1.24007 1.24007
8.

88229 8.88229 8.88229

.24007 1.24007 1.24007

RE
1.24007 1.24007
8.88229 8.88229

1.24007 1.24007

8.88229 8.88229 8.88229 8.88229 8.88229 8.88229 8.88229

1.24007
8.88229

1.24007
8.88229
1.24007
8.88229
1.24007
8.88229
1.24007
8.88229
1.24007
8.88229

1.24007
8.88229

Figure 3—2. Sample input of the 5 types of the BOC macro cross—

section: fast/thermal nu—fission XS, fast/thermal absorption XS, fast

to thermal scattering XS
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BOC 2D-NODE IN-SCATTERING

FIRST LINE: GROUP 1 —>
Y/X H J

8 SC
0.01951 0.01849

9 R7
0.01846 0.01875

0.01846 0.01879

10 S7
0.01775 0.01824

0.01775 0.01814

" R4 R6
0.01853 0.01838

0.01854 0.01850

12 R4
0.01837 0.01782

0.01847 0.01782

13 R4

2

0

0.

0.

0.

0.

0.

0.

0.

0.

XS DISTRIBUTION
(1.06-02)

K

S7
.01849 0.01775 0.

RO
01885 0.01824 0.

01888 0.01840 0.

Q0
01840 0.01888 0.
01832 0.01879 0.

S7
01838 0.01775 0.

01849 0.01775 0.

R7
01782 0.01850 0.

01782 0.01850 0.

sS4
0.01853 0.01849 0.01846 0.01782 0.

0.01851 0.01836 0.01832 0.01782 0.

14 s4

S6
0.01782 0.01793 0.01793 0.01793 0.

0.01782 0.01793 0.01793 0.01793 0.

6
0.01888 0.01883 0.01890 0.01889 0.

0.01888 0.01889 0.01894 0.01895 0.

RE RE

RE
2.48745 2.48745 2.48745 2.48745 2.

2.48745 2.48745 2.48745 2.48745 2.

(/oM

01775

01814

01832

01885

01876

01775

01775

01853

01852

01782

01782

01793
01793

01890
01896

48745

48745

)

L M N P R RE
R4 R4 R4 S4 Q7 RE
0.01851 0.01852 0.01837 0.01847 0.01854 0.01852 0.01782 0.01782 0.01887 0.01889 2.48745 2.48745

R6 S4 R6 S6 Q1 RE
0.01838 0.01850 0.01782 0.01782 0.01849 0.01836 0.01793 0.01793 0.01883 0.01891 2.48745 2.48745

0.01838 0.01849 0.01782 0.01782 0.01846 0.01832 0.01793 0.01793 0.01830 0.01896 2.48745 2.48745

S7 R7 S4 S6 6 RE
0.01775 0.01775 0.01850 0.01851 0.01782 0.01782 0.01793 0.01793 0.01889 0.01898 2.48745 2.48745
0.01775 0.01775 0.01853 0.01852 0.01782 0.01782 0.01793 0.01793 0.01890 0.01898 2.48745 2.48745

R4 R1 R4 S0 RC RE
0.01851 0.01849 0.01846 0.01839 0.01854 0.01854 0.01771 0.01771 2.22126 2.22126 2.48745 2.48745

0.01849 0.01846 0.01836 0.01826 0.01854 0.01855 0.01771 0.01771 2.22126 2.22126 2.48745 2.48745

R1 S4 N Q6 RE
0.01846 0.01836 0.01782 0.01782 0.01792 0.01792 0.01888 0.01897 2.48745 2.48745

0.01839 0.01826 0.01782 0.01782 0.01792 0.01792 0.01889 0.01898 2.48745 2.48745

R4 S 4 RC RE
0.01854 0.01854 0.01792 0.01792 0.01890 0.01895 2.22126 2.22126 2.48745 2.48745
0.01854 0.01855 0.01792 0.01792 0.01890 0.01895 2.22126 2.22126 2.48745 2.48745

S0 6 RC RE
0.01771 0.01771 0.01888 0.01889 2.22126 2.22126 2.48745 2.48745

0.01771 0.01771 0.01897 0.01898 2.22126 2.22126 2.48745 2.48745

RC RE RE
2.22126 2.22126 2.48745 2.48745 2.48745 2.48745

2.22126 2.22126 2.48745 2.48745 2.48745 2.48745

RE
2.48745 2.48745

2.48745 2.48745

Figure 3—2. Sample input of the 5 types of the BOC macro cross—

section: fast/thermal nu—fission XS, fast/thermal absorption XS, fast

to thermal scattering XS
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3.5.2 Block: SE Residual CNN

This ANN module is the main neural network for this prediction.
Since most of the current convolutional neural network works with
a residual neural network the main concept should be first explained.
The key concept of the residual neural network is the skip

connection as shown in Figure 3—3.

X
weight layer
F(x) ! relu «
weight layer identity
F(x) +x

Figure 3—3. residual neural network

Without the skip connection, F(x) is the output from convolutional
layers. Because the original information x is may still be relevant
information, x identity was added to F(x) which is H(x). Only
learning that we need to do is everything except identity x.
Therefore, it is easier for ANN to learn more complex features®.

Our model is a combination of three networks, ResNet, Inception—
v3, and SE Network. The summary of the Modified—ResNet
network is as shown in Figure 3—4. Each layer is explained in

detail in the following sections.
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BATCHNORM, |+ ROTPADDING,

Inception [3 X1,
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V3
|

!

‘ BATCHNORM, ‘
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1 x 3,

64] CONV, |
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| BATCHNORM, |
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|[1 X1, 256] CONV, |

‘ (= —  SE Network -.
|

| BATCHNORM,

GLOBALAVGPOOLING | i

I

: l |
h 4 v . .

|[1x 1, 256] CoNV, | | Multiply <L DENSE, H

7 S ———— _
‘ Addition }4—‘ [Filter Size, No. of Filter]

Figure 3—4. Modified SE Residual CNN Layout
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3.5.3 Layer: CONV1

CONV1 layer is to reduce the dimension for CONVZ2 for faster
calculation. This specific residual neural network 1is called
bottleneck design in the original paper’. CONV1 layer can take two
inputs: 5 features from the input layer or 256 features from the
output of the previous residual neural network layer. The input from
the previous layer is applied with 1x1x64 filters with 1x1 strides
which means that it will produce 17x17x64 as its output.
Disregarding the input from the input layer, the number of features

i1s reduced from 256 to 64.

3.9.4 Layer: BATCHNORM

Batch—Normalization (BN) layer is presented to solve the vanishing
and exploding gradient problem and internal covariate shift. Since
each layer is normalized, any small value will be increased and any
large value will be decreased. This results in mitigating the effects
of vanishing and exploding gradient descent. Moreover, BN layer
helps NN to train faster, because of the whitening effect where
means are set to zero and only the variants within the layers will be
meaningful. “The covariate shift is the change in the distribution of
network activations due to the change in network parameters during

training.” 1°
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3.5.5 Layer: CONV2 and 3

CONV2 and 3 layers are presented to find a spatial relationship
between surrounding node—wise assemblies. Our prototype model
is based on ResNet which is a 3x3 convolution filter. However, later
papers such as inception v3 show that it is better to implement two
1x3 and 3x1 layers for a deeper network. !

The general knowledge is that it is efficient to build a deeper model

with skipping connections. Therefore, we repeated 15 times.

3.5.6 Layer: ROTPADDING1

ROTPADDINGI1 layer is needed for quadrant inputs. Because our
input only has 4th quadrant, the rotational symmetry padding must
be applied beginning of each CONVZ and 3 layers because the gray
area is not reflectors (denoted as black boxes) but another node as
shown in the Figure 3—5'. Therefore, before each CONV2 and 3
layers, this layer needs to copy the nodes from white spaces to
gray spaces. This will greatly reduce memory issues and

computational time.

v

NN N O

Figure 3—5. Rotationally symmetric padding
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3.5.7 Layer: Squeeze and Excitation (SE) Network

SE layer is for faster training and by learning the importance of
each layer’ s features. This layer achieves the importance in
features with GLOBAL—AVERAGE —POOLINGI1 layer. There are
256 features from CONV3 with batch normalization. The features
are globally averaged. From the features of the average, DENSE1
and DENSE?Z can learn the importance of each feature by finding the
relationship with each other. Finally, important features are

multiplied to the output of CONVS5 layers for faster learning®.
3.5.8 Block: CNN for Depletion

This ANN module is sub neural network for depletion. The
summary of the CNN for depletion is as shown in Figure 3—6. In
this network, ROTPADDING and BATCHNORM layer is used as
same as SE—Residual CNN, but SE and Residual network concept
are not used. Each layer is explained in detail in the following

sections.

21 .__:Ix_s _'q.;:-'_ T



[Filter Size, No. of Filter]
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Figure 3—6. CNN for depletion layout



3.5.9 Layer: CONV4

CONV4 layer is to change the dimension to assembly—wise[9x9]
from node—wise[17x17]. For that, it is applied with 2x2x256 filters
with 2x2 strides. It will produce 9x9x256 that is the core feature

for depletion each assembly power and pin power peaking factor.

3.5.10 Layer: CONV5

CONV5 layer is depletion series CNN. To reflect the unique
properties of each depletion step, CNN that looks at immediate
surrounding (3x3) assemblies is introduced. Moreover, features
from previous depletion step are concatenated to facilitate the
prediction of the current depletion step. As same as CONV 2 and 3,

inception v3 is used.

3.5.11 Layer: CONV6

CONVG6 is applied with a 1x1 filter with 1x1 stride 1 feature. So, it
will produce 9X9X1 same as assembly power and pin peaking
assembly —wise quadrant distribution. In the two—step method, the
pin—wise power distribution is determined by employing the pin
power reconstruction method. Similarly, Fr/PD factor will be
produced by CONV6 and multiplied by PD from current burnup

depletion step.
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4. Result

4.1 Loading Pattern Random Generation

4.1.1 Train & Validation Data

The target plant for test is OPR1000 (177 fuel assemblies). The
feed assembly uses gadolinia as a burnable absorption rod. Four
different types of burnable absorbers differing in the number and
position were randomly selected for each location. In addition, the

following are assumed:

— No. of Feed assembly is fixed (69 Feed)

— Octant Symmetry

18827 loading patterns (16659 LPs for train data and 2168 LPs for
validation data) were produced using the assumed conditions and

3—D core calculation code (ASTRA).

Train data
— Assembly Relative Power Range: 0.07 ~ 3.80
— Assembly Maximum PPPF Range: 0.15 ~ 4.33
— Cycle Maximum PPPF Range: 1.54 ~ 4.33

Validation data

— Assembly Relative Power Range: 0.09 ~ 2.90
— Assembly Maximum PPPF Range: 0.17 ~ 3.54
— Cycle Maximum PPPF Range: 1.53 ~ 3.54
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Figure 4—1. Assembly power and PPPF distribution of the train data
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4.1.2 Test Data

2692 loading patterns are generated for test. Based on the
optimized loading pattern (equilibrium cycle) that used to a recent
cycle of OPR1000, only the loading pattern with near a maximum
pin power peaking factor (PPPF) of ‘1.60° was selected. ‘1.60’

1s a boundary value for accident analysis and is also a reference
value when the designer finds the loading pattern. Additional LP’ s

were generated independently from the train data.

— Assembly Relative Power Range: 0.23 ~ 1.50
— Assembly Maximum PPPF Range: 0.46 ~ 1.77
— Cycle Maximum PPPF Range: 1.46 ~ 1.77

120 A

s
Iy |
N

|

100

80 A

No. of LP

'y
LA

1.45 1.50 1.55 1.60 1.65 1.70 1.75
Cycle Maximum Pin Peak

20 A

Figure 4—2. Cycle maximum PPPF distribution of the test data
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4.2 Supervised Learning

4.2.1 Fully Connected (FC) vs. Convolutional Neural
Network (CNN)

The OLL is a class of fully connected(FC) neural network. So, we
compared the FC method and the CNN method instead of OLL and
CNN. In order to compare only the differences according to the
network, the number of parameters used in the network is made
equal. In the case of FC, k—inf and two macro cross—sections are
used as in the previous study, and in CNN, five macro cross—
sections are used as described above. The mean squared error is
set to loss and learned to minimize it. The learning time is the same
as the one hour, and at the completion of the learning, the loss can
confirm that CNN is lower than FC.

1.E+00
1.E-01
1E-02
1.E-03

1.E-04

Loss({Mean Square Error, Log scale)

1.E-05
0 10 20 30 40 50 60 70 80

Time(min)

Figure 4—3. Loss according to learning time about FC vs. CNN for

BOC only
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The predicted results are shown in the following table. There is no
significant difference in the mean error, but the maximum error is
almost twice the difference. If we calculate the fraction of the
assemblies with over than specific absolute error, we can see that
CNN accurately predicts the assembly—wise power distribution

rather than FC.

Table 4—1: Power distribution prediction error of FC and CNN

Network a b Frac. With Frac. With
Type Cave Cmax e > 3% e > 5%
FC 1.05 11.92 4.8 0.4
CNN 0.44 4.23 0.0 0.0

a= average absolute error (%)
b= maximum absolute error (%)
c¢= Fraction of the assemblies with absolute error (%)

Three loading patterns are selected to check the range of prediction.

The first is the optimized loading pattern (equilibrium cycle) that
used to a recent cycle for OPR1000 and meets the assumed
conditions, the second is that add feed assembly inside, and last is
that increased neutron leakages by loading feed assembly at the
periphery (outermost) location. The results using the learned CNN

are as follows.
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Table 4—2: Power distribution prediction error of the three models

?}e}‘;v;ork Model Cave’ €max
CNN  Eaq. 0.48 1.96
73Feed 0.62 2.43
73Feed+ H.L.4 3.27 17.35

FC Eq. 1.00 2.60
73Feed 0.83 2.62
73Feed+ H.L.A 24.35 69.14

a= Average absolute error (%)

b= Maximum absolute error (%)

c¢= Fraction of the assemblies with absolute error (%)
d= High neutron leakage rather than assumed condition

For the first model, the mean and maximum errors were larger than

the validation model but well predicted. The error of the model

which added feed assembly inside also increased, but CNN predicts

the power distribution using the relation between the assemblies,

considering that the absolute error exceeding 3% does not occur.

Because we never saw the 73 feed H.L. model in the training

process, the high error was found. However, when compared to FC,

CNN error is comparably low. This demonstrates that CNN predicts

the power distribution using the relationships and the trained model

is well generalized to the problem.
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4.2.2 Convolutional Neural Network for the whole

cycle

16659 loading patterns and architecture (Figure 2—1) are used for
training. The mean squared error is also used as the loss for
training. The loss according to the time is as follows. It takes about
two minutes to learn once (epoch). So, the time of training is almost
3 days and it learned over 2000 epoch to reach the desired loss.
1.E+01

1.E+00

1.E-01

1.E-02

1.E-03

Loss(Mean Square Error, Log scale)

1.E-04
0 1000 2000 3000 4000 5000 6000

Time(min)

Figure 4—4. Loss according to learning time about CNN for the
whole cycle
The graph (Figure 4—4) shows enough learning, and the maximum
errors by each location of 2168 loading patterns for validation are

as follows.
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Table 4—3: Power distribution and pin power peaking factor

prediction validation error of CNN for the whole cycle

Cavg" Emax’ Frac. with Frac. with
e“> 1% e’ > 3%
Assembly Power 0.19 7.33 0.457 0.002
PPPF 0.31 9.13 2.836 0.013

a= average absolute error (%)
b= maximum absolute error (%)
c= Fraction of the assemblies with absolute error (%)

As a result of the validation, it was confirmed that the assembly and
PPPF with the absolute error exceeding 1% is only 0.47% and
2.83% of the total assembly, respectively. And that it is in good
agreement with the 3—D core calculation. The supervised learning
method predicts the results through nonlinear regression analysis.
The fact that the average is close to zero suggests that supervised
learning is well done. In order to make it easier to understand, the
scattering plot of assembly power and PPPF is shown in figure 4—5
and 4—6, respectively. The red line in the figure means absolute

error = 3% and the violet line means absolute error £+ 1%.
The prediction results can be summarized as shown in figure 4—7,

which is based on the application program used by the actual

designer.

31 A 2- ‘_]l 10T



Predicted Value(CNN)

Purple
Red

Predicted Value(CNN)

Predicted Value(CNN)

T T T T
0.6 0.7 0.8 0.9
Caculated Value(ASTRA)

1.0

T T T T
1.6 1.7 1.8 1.9
Caculated Value(ASTRA)

2.0

1.10
1.08 ~
1.06 ~
1.04 ~

1.02 1=

1.00 "
1.000

- T T T
1.025 1.050 1.075
Caculated Value(ASTRA)

1.100

1%
+3%

line:
line:

Predicted Value(CNN)

Predicted Value(CNN)

Predicted Value(CNN)

T T T T
1.1 1.2 1.3 1.4
Caculated Value(ASTRA)

15

T T T T
2.1 2.2 2.3 2.4
Caculated Value(ASTRA)

2.5

1.30

1.28 ~

1.26 ~

1.24 ~

1.22 {rsss

1.20
1.200

— T T
1.225 1.250 1.275
Caculated Value(ASTRA)

1.300

Figure 4—5. Predicted (CNN) vs. Calculated (ASTRA): Assembly —
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4.2.3 Test

The reason for performing "Test" in addition to "Validation" is to
ensure that it works well in the area of interest. As shown in
Section 4.1.2, the loading patterns used in “Test” is somewhat
optimized from the cycle maximum pin power peaking factor
perspective. The results using the supervised learned convolution

neural network are as follows.

Table 4—4: Power distribution and pin power peaking factor

prediction error of test models

Cavg emax’  Frac. with e Frac. with e°
> 1% > 3%
Assembly Power 0.14 2.47 0.141 0.000
PPPF 0.28 4.71 2.053 0.008

a= Average absolute error (%)
b= Maximum absolute error (%)
c= Fraction of the assemblies with absolute error (%)

As a result, it was confirmed that the artificial neural network has
better prediction below a boundary value area. The maximum
absolute error is less than 3% for the assembly power and the
maximum error is 4.71% for the PPPFE. Since the fraction of the
error exceeding 3% is close to O, it can be sufficiently connected
with the automatic loading pattern searching code. In the case of the
cycle maximum pin power peaking factor, it is predicted very well
as shown in Figure 4—8 and the maximum absolute error is 2.56%.

It is lower than that of assembly —wise value.

. SERS L



Predicted Value(CNN)

1.75

1.70 A

1.65 A

1.60 A

1.559

1.50

Purple line:

Red

line:

1%
+3%

1.50 1.55 1.60 1.65 1.

Caculated Value(ASTRA)

70 1.75

Figure 4—8. Predicted (CNN) vs. Calculated (ASTRA): Cycle

maximum pin power peaking factor
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4.2.4 Convolution Neural Network for the -cycle

maximum PPPF

In this section, we will look at why we should look at all of the
assembly —wise power in order to better predict the cycle maximum
pin peaking factor which is the main value of optimization, rather
than seeing the one value. For this evaluation, we modified the
existing artificial neural network. The first model predicts the cycle
maximum pin peaking factor only (Figure 4—9) and the second

predicts the maximum pin peaking factor at each burnup (Figure 4-—

10).

First, the assembly—wise maximum pin power peaking factor is
predicted by using the artificial neural network evaluated above, and
then the cycle maximum value is classified and predicted well as

shown in the following Figure 4—11.

Table 4—5: No. of trained data by the 3 types of ANN

First? Second® Original®

No. of the trained data 16,659 399,816 20,790,432

a= the cycle maximum pin peaking factor only

b= the maximum pin peaking factor at each burnup

c= the assembly-wise maximum pin peaking factor

In contrast, if the first model is not predicted as shown in Figure 4—
12. The largest reason is that the number of trained data(Table 4—
5). In the case of the original artificial neural network, the number

of trained data is the number of LPs(16,659) * the number of

burnup steps(24) * the number of quadrant assembly (52), whereas
-
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the first model is that the number of LPs is all of the trained data.
The second model has better predictions than the first model but
still does not predict the level of existing neural network
model (Figure 4—13). In other words, the original artificial neural
networks can predict more accurate with less the number of loading
patterns data. In an aspect of prediction using a deep neural
network with supervised learning, showing various output

distributions makes better prediction possible.
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Figure 4—9. Modified CNN for the
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5. Conclusions

Convolutional neural networks were applied in the prediction of the
2D assembly—wise core power and pin power peaking factor
distributions for a whole cycle. It turned out that accurate values
were obtained in a very short time. The computational time is only
around 0.2 second on a personal computer equipped with a CPU of
Intel i7—=3770 (3.40GHz, DDR3 16GB) and the error in the cycle
maximum pin power peaking factor at the region of interest was
less than 3%. The model can greatly reduce the computing time of
the LP optimization process. It will thus be of great help to those
who design the fuel loading patterns as well as to an automatic LP
searching program. Nonetheless, this model has one limitation. The
trained neural network model is valid only within the specified core
conditions: the number of the total and fresh fuels, initial boron
concentration, T/H conditions, etc. In order to improve this, it is
necessary to perform reinforcement learning and to develop a
module that creates a loading pattern that is equivalent to the actual

design at different conditions.
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