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Abstract 

 
The purpose of this research is to develop a neural network model 

that is computationally inexpensive in predicting two-dimensional 

assembly-wise power distributions along with assembly-wise pin 

power peaking factors (PPPFs) by taking only a set of beginning of 

cycle (BOC) macroscopic cross sections. Such a computationally 

inexpensive and fast prediction model is needed because the 

conventional prediction model still renders a computational burden 

in loading pattern(LP) optimization processes.  

 

As the first step of the research, the previously developed state-

of-the-art power prediction neural network models are evaluated 

to select the best one. It is then modified using convolutional neural 

network architectures. 20,000 Korean Standard Nuclear Power 

Plant (OPR1000) LPs are randomly generated and used for 

supervised learning. The reference power distributions are 

generated by using a three-dimensional core analysis code called 

ASTRA. The averaged and maximum absolute error(AE) in the 

assembly power predictions obtained by the trained neural network 

turns out to be 0.19% and 7.34%, respectively, while those for 

PPPF are 0.31% and 9.13%, respectively. In order to test the model 

in the region of interest, 3,000 general design bounded LPs which 

reside outside of the range of the trained data are separately 

generated. It appears that the maximum AE for assembly-wise 

power and PPPF are 3% and 5%, respectively. Those errors are 

within the acceptable range when an approximate model is used in a 

LP optimization process. The computing time of the neural network 

model is around 0.2 second, which is about 1000 time faster than 
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ASTRA. 

 

The model can greatly reduce the computing time of LP optimization 

processes. Although it can be a great utility for a nuclear designer 

as well as in an automatic LP optimization program, it has one 

limitation. The trained neural network model is only valid within the 

specified core conditions: a number of total and fresh fuels, initial 

boron concentration, T/H conditions, and etc. If any of the core 

condition changes, the model can produce higher than presented 

errors.  

 

Keyword: Convolutional Neural Network(CNN) 

Supervised learning 

power distribution prediction 

Pressurized Water Reactor(PWR) 
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1. Introduction 

 

1.1 Background 

 

The loading pattern (LP) optimization is carried out by comparing 

and evaluating a number of candidates which are generated based 

on the engineer’s design experience. In the LP optimization process 

shown in Figure 1-1, the “Calculate CORE” has been performed by 

a three-dimensional (3D) core analysis code like the ASTRA code 

of the KEPCO Nuclear Fuel Company (KNF) while the “Change the 

LP” is carried out based on the designer’s experience and/or 

automatic LP optimization code’s judgments. 

 

In the history of core analysis that involves the solution of the 

transport and/or diffusion equations, many trials had been 

conducted on balancing the solution accuracy and computing time. 

Even with the recent advances in the computational resources, the 

direct whole core transport calculations are too computationally 

expensive for 3D core depletion calculations. Therefore, the most 

widely used procedure in nuclear core analyses is a two-step 

system in which the lattice transport and the diffusion core 

calculations are combined1. As computer performance and the 

calculation methods are improved, the accuracy and computing time 

of 3D core depletion calculations have been improved over time. 

The computing time is, however, still quite a burden in an LP 

optimization process. If the time for 3D core depletion calculations 

is greatly reduced, the overall optimization process will be faster 

and easier and will lead to an economic benefit at a reload design 

company. 
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1.2 Purpose and Scope 

 

In the past, there have been studies to reduce the core calculation① 

time using the artificial neural network(ANN) such as Optimization 

Layer by Layer method(OLL)2. As in the previous study, the 

objective of this paper is to construct a fast prediction ANN that can 

deliver high accuracy. The neutronic characteristics of interest for 

this ANN are two-dimensional (2D) assembly-wise core power 

distribution and the pin power peaking factor (PPPF) for each 

assembly. As the recent improvement of ANNs, a new branch has 

been developed called Deep Neural Network (DNN). Within the 

sub-field, Convolutional Neural Network (CNN) has been 

introduced to solve spatial relationship problems such as image 

classification and regressions3. Although the previous networks 

such as OLL performed well in the trained distribution, it worsens 

quickly outside the trained distributions. In other words, the 

network was not generalized to a wider range of problems. It is 

thought that this is because of the neglect of the spatial relationship. 

By considering the spatial relationship using a CNN, it is possible to 

greatly improve the accuracy of the prediction even with the data 

that are outside the trained distribution. In addition, burnup 

depletion can be performed using an ANN. 

                                            
①  the results of the core calculations include: power distribution, pin power 

peaking factors, burnup distribution, cycle length, and etc.. 
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Figure 1-1. Flow chart to loading pattern optimization 
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2. Review of previous researches 

 

2.1 Optimization Layer by Layer 

 

The applicability of the ANN for prediction of PWR core neutronic 

parameters was first demonstrated by Kim et al. (1993)14. From 

this research, several variants of ANN have been developed but due 

to their high error, there were no practical applications. Among the 

researches, most promising in accuracy and computational speed 

was demonstrated by Jang et al. (2001)2 

 

The optimization layer by layer (OLL) learning algorithm is applied 

as shown in Figure 2-1 to predict the assembly-wise core power 

and burnup distributions, the critical soluble boron concentration, 

and the pin power peaking factor (PPPF) for a Pressurized Water 

Reactor (PWR) based on the given set of k-infinity and 

Macroscopic Cross Sections (XSs). They utilized the nodal powers 

and the assembly discontinuity factors of the given fuel 

assembly(FA) and eight surrounding FAs for training the OLL 

networks to predict the PPPF of the individual FA as like as the pin 

power reconstruction. The summary of the validation test is as 

shown in Table 2-1. As shown in the table, the OLL predict the 

assembly power and PPPF very well and can show 40 times 

improvement in computing time when compared to the modern nodal 

method code. 
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Table 2-1: Power distribution and pin power peaking factor 

prediction validation error of OLL 

 

 eavg
a emax

b Frac. with 

ec > 5% 

Frac. with  

ec > 10% 

Assembly Power 0.73 9.11 0.19 - 

PPPF 0.85 11.26 0.80 0.06 

a= average relative error (%) 

b= maximum relative error (%) 

c= Fraction of the assemblies with relative error (%) 

 

  

 
d)  l = assembly(1~29) 

e)  n = burnup 

 

Figure 2-1. Three-layer OLL network for prediction of normalized 

FA power 
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2.2 Improvements 

 

Although there are accurate ANN models in core predicting, we 

want to revise the models with the latest development in the field of 

ANN called deep learning for better accuracy. 

 

The first improvement is that the main concept of ANN is changed 

from OLL to CNN. The conventional nodal method calculates 

assembly power with four surrounding surface flux. To reflect on 

this fact, CNN method calculates its assembly power with four 

surrounding assembly features. It is thus attempted to improve the 

speed and accuracy by converting the main neural network into 

CNN based on past researches.  

 

The second change is on the input type. Instead of using a 

combination of k-infinity and specific macroscopic cross-sections,  

we use 5 types of macroscopic cross-sections (fast/thermal nu-

fission XS, fast/thermal absorption XS, fast-to-thermal scattering 

XS) that are used to calculate core eigenvalue. Note that the degree 

of freedom to calculate assembly power is low when k-inf is used. 

The reason for this is that neutron leakage is different for each 

position but k-inf is made without considering the leakage. 

Therefore, in order to predict the power with high accuracy, it is 

better to consider all 5 XSs that can consider leakage. 

 

Another notable improvement is predicting the core power 

distribution (PD) over the entire cycle with only the beginning of 

cycle (BOC) XSs rather than using different macro cross sections 

for each burnup step. If we update the XSs to calculate the depleted 
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power, final prediction error will include the error from XSs updates. 

More importantly, we are taking advantage of the parallel nature of 

GPU computing by un-linking the depletion process.  

 

And the other one is a reflector and moderator area is included for 

analyzing periphery area assembly power. The reason for this is 

that a neutron leakage of the periphery assembly is higher than that 

of inside assembly. In order to reflect on this phenomena, we have 

included the reflector and the moderator.  
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3. Method 
 

3.1 Deep Learning Models 

 

Deep learning is a class of machine learning algorithms that4: 

 

- use a cascade of multiple layers of nonlinear processing 

units for feature extraction and transformation. Each successive 

layer uses the output from the previous layer as input. 

- learn in supervised (e.g., classification) and/or unsupervised 

(e.g., pattern analysis) manners. 

- learn multiple levels of representations that correspond to 

different levels of abstraction; the levels form a hierarchy of 

concepts. 

 

3.2 Supervised learning 

 

Supervised learning is the machine learning task of learning a 

function that maps an input to an output based on example input-

output pairs5. It infers a function from labeled training data 

consisting of a set of training examples6. In supervised learning, 

each example is a pair consisting of an input object (typically a 

vector) and the desired output value (also called the supervisory 

signal). A supervised learning algorithm analyzes the training data 

and produces an inferred function, which can be used for mapping 

new examples. An optimal scenario will allow for the algorithm to 

correctly determine the class labels for unseen instances. This 

requires the learning algorithm to generalize from the training data 

to unseen situations in a "reasonable" way. 
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3.3 Convolution Neural Network 

 

A convolutional neural network consists of an input and an output 

layer, as well as multiple hidden layers. The hidden layers of a CNN 

typically consist of convolutional layers, RELU layer i.e. activation 

function, pooling layers, fully connected layers, and normalization 

layers3. 

Description of the process as a convolution in neural networks is by 

convention. Mathematically it is a cross-correlation rather than a 

convolution (although cross-correlation is a related operation). 

This only has significance for the indices in the matrix, and thus 

which weights are placed at which index. Convolutional layers apply 

a convolution operation to the input, passing the result to the next 

layer. The convolution emulates the response of an individual 

neuron to visual stimuli7. 

Each convolutional neuron processes data only for its receptive 

field. Although fully connected feedforward neural networks can be 

used to learn features as well as classify data, it is not practical to 

apply this architecture to images. A very high number of neurons 

would be necessary, even in a shallow (opposite of deep) 

architecture, due to the very large input sizes associated with 

images, where each pixel is a relevant variable. For instance, a fully 

connected layer for a (small) image of size 100 x 100 has 10000 

weights for each neuron in the second layer. The convolution 

operation brings a solution to this problem as it reduces the number 

of free parameters, allowing the network to be deeper with fewer 

parameters8. For instance, regardless of image size, tiling regions of 

size 5 x 5, each with the same shared weights, requires only 25 

learnable parameters. 
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3.4 Residual Neural Network 

 

A residual neural network is an artificial neural network (ANN) of a 

kind that builds on constructs known from pyramidal cells in the 

cerebral cortex. Residual neural networks do this by utilizing skip 

connections or short-cuts to jump over some layers9. 

One motivation for skipping overlayers is to avoid the problem of 

vanishing gradients by reusing activations from a previous layer 

until the layer next to the current one learns its weights. During 

training, the weights adapt to mute the previous layer and amplify 

the layer next to the current. In the simplest case, only the weights 

for the connection to the next to the current layer is adapted, with 

no explicit weights for the upstream previous layer. This usually 

works properly when a single non-linear layer is stepped over, or 

when the intermediate layers are all linear. If not, then an explicit 

weight matrix should be learned for the skipped connection. 

Skipping initially compresses the network into fewer layers, which 

speeds learning. The network gradually restores the skipped layers 

as it learns the feature space. During later learning, when all layers 

are expanded, it stays closer to the manifold and thus learns faster. 

A neural network without residual parts explores more of the 

feature space. This makes it more vulnerable to perturbations that 

cause it to leave the manifold and necessitates extra training data to 

recover. 
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3.5 Architecture 

 

The architecture of the network is summarized in Figure 3-1. Five 

types of the macroscopic cross-section are fast/thermal nu-fission 

XS, fast/thermal absorption XS, fast to thermal scattering XS. The 

XSs used is taken from the lattice code (KARMA) calculation which 

is mainly used for commercial core analysis. It is node-wise (1/4 

assembly node). Five XSs is spatially represented as 17 × 17 

(Quadrant core, the complete input shape is [17×17×5]). A first 

convolution (CONV1) is performed using a 1×1 filter, same padding, 

ReLU activation function and 64 channels (the output shape is 

[17×17×64]). The second convolution (CONV2) has the same 

properties of (CONV1) except for the size of filter—growing now to 

3×3 filter (shape of [17×17×64]). The third convolution 

(CONV3) has the same properties as (CONV1) except for the 

number of channels—growing now to 256 (shape of [17×17×256]). 

There is shortcut-connection that only passed CONV3 (shape of 

[17×17×256]). After adding two convolution layers, it is divided 

into 2 main feature, the first is assembly-wise power and the 

second is PPPF. The fourth convolution (CONV4) is performed 

using a 2×2 filter, 2×2 strides, same padding, ReLU activation 

function and 128 channels (the output shape is [9×9×128]). The 

fifth convolution (CONV5) is performed using a 1×1 filter, ReLU 

activation function and 1 channel (the output shape is [9×9×1]). In 

assembly power prediction, the fifth convolution is the final step to 

predict. But, in PPPF, the final value is the product of the fifth 

convolution output and assembly power prediction value[9×9×1]. 

the resulting data (of shape [9×9×1]) is flattened to a single 

vector (of [81] elements). 
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Figure 3-1. Convolution neural network architecture with shortcut -connection 

for assembly and PPPF prediction.
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3.5.1 Block: XS INPUT  

 

Like most ANN architecture defining input is the most important 

part of the architecture optimization. Therefore, we carefully 

choose our input as a building block of core simulation: beginning of 

cycle (BOC) macroscopic XSs. As we previously have shown, the 

input shape was 2D node-wise full core XSs 34x34x5. It was 

34x34 nodes because there are radially 15 assemblies with 2 

reflectors on both sides. Since the core is rotationally symmetric, 

by simply taking 4th quadrant of the full core, we can simulate the 

rest of the core. Therefore, our input shape becomes 17x17x5 and 

sample input is shown in figure 3-2. 
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BOC 2D-NODE NU-FISSION XS DISTRIBUTION ( /CM)  
 
FIRST  LINE: GROUP 1 (1.0E-03) 
SECOND LINE: GROUP 2 (1.0E-01) 
 
Y/X     H       J               K               L               M               N               P               R               RE 
 
8       SC      R7              S7              R4              R4              R4              S4              Q7              RE 
        4.77839 5.61786 5.61759 6.69639 6.69639 5.61616 5.59614 5.84188 5.68230 5.56132 5.59652 6.78027 6.78027 4.83484 4.80103 0.00000 0.00000 
        0.81353 1.24859 1.24851 1.14505 1.14505 1.24890 1.24438 1.27576 1.25747 1.24017 1.24443 1.19201 1.19201 1.07430 1.06715 0.00000 0.00000 
 
9       R7      Q0              R0              R6              S4              R6              S6              Q1              RE 
        5.66429 5.21731 5.03144 6.12443 6.28149 5.85481 5.67095 6.78027 6.78027 5.67976 5.88457 6.86966 6.86966 5.06002 4.90205 0.00000 0.00000 
        1.25457 1.16414 1.12256 1.30808 1.32055 1.27687 1.25587 1.19201 1.19201 1.25790 1.28014 1.23964 1.23964 1.12954 1.09522 0.00000 0.00000 
 
        5.66322 5.14435 4.97169 5.86893 6.00359 5.85150 5.68395 6.78027 6.78027 5.72380 5.95193 6.86966 6.86966 4.92746 4.82086 0.00000 0.00000 
        1.25451 1.14635 1.10761 1.28149 1.29462 1.27663 1.25723 1.19201 1.19201 1.26293 1.28665 1.23964 1.23964 1.10223 1.07827 0.00000 0.00000 
 
10      S7      R0              Q0              S7              R7              S4              S6              Q6              RE 
        6.69639 6.12423 5.86866 4.97033 5.03003 6.69639 6.69639 5.60049 5.59770 6.78027 6.78027 6.86966 6.86966 4.88929 4.74498 0.00000 0.00000 
        1.14505 1.30806 1.28145 1.10742 1.12252 1.14505 1.14505 1.24466 1.24424 1.19201 1.19201 1.23964 1.23964 1.09559 1.06550 0.00000 0.00000 
 
        6.69639 6.28121 6.00320 5.14284 5.21621 6.69639 6.69639 5.56674 5.58171 6.78027 6.78027 6.86966 6.86966 4.88588 4.74554 0.00000 0.00000 
        1.14505 1.32053 1.29458 1.14630 1.16396 1.14505 1.14505 1.24104 1.24278 1.19201 1.19201 1.23964 1.23964 1.09566 1.06726 0.00000 0.00000 
 
11      R4      R6              S7              R4              R1              R4              S0              RC              RE 
        5.57878 5.85469 5.85155 6.69639 6.69639 5.60961 5.63851 5.75629 5.86292 5.56877 5.56573 6.95092 6.95092 0.00000 0.00000 0.00000 0.00000 
        1.24456 1.27686 1.27666 1.14505 1.14505 1.24693 1.25186 1.26303 1.27493 1.24113 1.24058 1.32510 1.32510 0.00000 0.00000 0.00000 0.00000 
 
        5.56094 5.67069 5.68367 6.69639 6.69639 5.63829 5.69632 5.91092 6.08023 5.55731 5.55056 6.95092 6.95092 0.00000 0.00000 0.00000 0.00000 
        1.24011 1.25584 1.25721 1.14505 1.14505 1.25183 1.25994 1.27914 1.29629 1.23949 1.23861 1.32510 1.32510 0.00000 0.00000 0.00000 0.00000 
 
12      R4      S4              R7              R1              S4              S1              Q6              RE 
        5.84143 6.78027 6.78027 5.60193 5.56776 5.75679 5.91164 6.78027 6.78027 6.91356 6.91356 4.92894 4.75861 0.00000 0.00000 
        1.27561 1.19201 1.19201 1.24462 1.24117 1.26309 1.27922 1.19201 1.19201 1.28855 1.28855 1.10744 1.07105 0.00000 0.00000 
 
        5.68235 6.78027 6.78027 5.59864 5.58249 5.86356 6.08140 6.78027 6.78027 6.91356 6.91356 4.90088 4.74446 0.00000 0.00000 
        1.25742 1.19201 1.19201 1.24433 1.24288 1.27498 1.29626 1.19201 1.19201 1.28855 1.28855 1.09916 1.06587 0.00000 0.00000 
 
13      R4      R6              S4              R4              S1              Q4              RC              RE 
        5.57909 5.67953 5.72356 6.78027 6.78027 5.56883 5.55693 6.91356 6.91356 4.85531 4.74683 0.00000 0.00000 0.00000 0.00000 
        1.24461 1.25787 1.26290 1.19201 1.19201 1.24113 1.23943 1.28855 1.28855 1.09086 1.06736 0.00000 0.00000 0.00000 0.00000 
 
        5.61646 5.88442 5.95177 6.78027 6.78027 5.56549 5.55019 6.91356 6.91356 4.85549 4.74674 0.00000 0.00000 0.00000 0.00000 
        1.24894 1.28012 1.28663 1.19201 1.19201 1.24056 1.23856 1.28855 1.28855 1.09096 1.06731 0.00000 0.00000 0.00000 0.00000 
 
14      S4      S6              S6              S0              Q6              RC              RE 
        6.78027 6.86966 6.86966 6.86966 6.86966 6.95092 6.95092 4.92855 4.90052 0.00000 0.00000 0.00000 0.00000 
        1.19201 1.23964 1.23964 1.23964 1.23964 1.32510 1.32510 1.10737 1.09914 0.00000 0.00000 0.00000 0.00000 
 
        6.78027 6.86966 6.86966 6.86966 6.86966 6.95092 6.95092 4.75818 4.74411 0.00000 0.00000 0.00000 0.00000 
        1.19201 1.23964 1.23964 1.23964 1.23964 1.32510 1.32510 1.07096 1.06585 0.00000 0.00000 0.00000 0.00000 
 
15      Q7      Q1              Q6              RC              RE              RE 
        4.83492 5.05940 4.92710 4.88904 4.88492 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
        1.08358 1.12943 1.10215 1.09550 1.09554 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
 
        4.81610 4.91655 4.83412 4.75709 4.75724 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
        1.08189 1.10081 1.08353 1.07050 1.07228 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
 
RE      RE      RE              RE              RE 
        0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
        0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
 
        0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
        0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
 
 

 

 

Figure 3-2. Sample input of the 5 types of the BOC macro cross-

section: fast/thermal nu-fission XS, fast/thermal absorption XS, fast 

to thermal scattering XS 

(1/3) 
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BOC 2D-NODE ABSORPTION XS DISTRIBUTION ( /CM)                  
 
FIRST  LINE: GROUP 1 (1.0E-03) 
SECOND LINE: GROUP 2 (1.0E-02) 
 
Y/X     H       J               K               L               M               N               P               R               RE 
 
8       SC      R7              S7              R4              R4              R4              S4              Q7              RE 
        8.01580 9.14219 9.14218 9.33165 9.33165 9.15271 9.15400 9.11081 9.13901 9.16237 9.15392 9.31903 9.31903 9.24578 9.25647 1.24007 1.24007 
        4.74785 8.15172 8.15148 7.64284 7.64284 8.16940 8.16107 8.07232 8.14474 8.17620 8.16094 7.60627 7.60627 7.80842 7.79959 8.88229 8.88229 
 
9       R7      Q0              R0              R6              S4              R6              S6              Q1              RE 
        9.13270 9.21002 9.23826 9.10429 9.08931 9.11806 9.15170 9.31903 9.31903 9.15144 9.11424 9.31254 9.31254 9.22870 9.26432 1.24007 1.24007 
        8.13426 8.06055 7.97677 7.99441 7.87720 8.07879 8.16504 7.60627 7.60627 8.16946 8.06595 7.58630 7.58630 7.97787 7.92128 8.88229 8.88229 
 
        9.13306 9.21774 9.24926 9.13545 9.11520 9.11859 9.14857 9.31903 9.31903 9.14232 9.10704 9.31254 9.31254 9.26025 9.28828 1.24007 1.24007 
        8.13539 8.01504 7.94057 8.13298 8.05246 8.08109 8.15765 7.60627 7.60627 8.14831 8.03635 7.58630 7.58630 7.94208 7.90037 8.88229 8.88229 
 
10      S7      R0              Q0              S7              R7              S4              S6              Q6              RE 
        9.33165 9.10431 9.13550 9.24975 9.23908 9.33165 9.33165 9.14234 9.14269 9.31903 9.31903 9.31254 9.31254 9.26897 9.31465 1.24007 1.24007 
        7.64284 7.99455 8.13310 7.94096 7.97858 7.64284 7.64284 8.14237 8.14255 7.60627 7.60627 7.58630 7.58630 7.93459 7.89830 8.88229 8.88229 
 
        9.33165 9.08933 9.11524 9.21854 9.21029 9.33165 9.33165 9.15144 9.14771 9.31903 9.31903 9.31254 9.31254 9.27111 9.31694 1.24007 1.24007 
        7.64284 7.87741 8.05265 8.01692 8.06060 7.64284 7.64284 8.16158 8.15435 7.60627 7.60627 7.58630 7.58630 7.93976 7.91120 8.88229 8.88229 
 
11      R4      R6              S7              R4              R1              R4              S0              RC              RE 
        9.16184 9.11807 9.11862 9.33165 9.33165 9.15270 9.14848 9.13800 9.11951 9.16116 9.16147 9.04297 9.04297 1.24007 1.24007 1.24007 1.24007 
        8.18734 8.07883 8.08127 7.64284 7.64284 8.16371 8.16286 8.11873 8.06531 8.17542 8.17472 7.09388 7.09388 8.88229 8.88229 8.88229 8.88229 
 
        9.16246 9.15175 9.14864 9.33165 9.33165 9.14852 9.13804 9.11125 9.09177 9.16328 9.16485 9.04297 9.04297 1.24007 1.24007 1.24007 1.24007 
        8.17632 8.16513 8.15785 7.64284 7.64284 8.16293 8.14661 8.03268 7.93989 8.17757 8.17971 7.09388 7.09388 8.88229 8.88229 8.88229 8.88229 
 
12      R4      S4              R7              R1              S4              S1              Q6              RE 
        9.11070 9.31903 9.31903 9.14157 9.15120 9.13792 9.11115 9.31903 9.31903 9.21099 9.21099 9.26449 9.31508 1.24007 1.24007 
        8.07163 7.60627 7.60627 8.13980 8.16119 8.11854 8.03233 7.60627 7.60627 7.51606 7.51606 7.97273 7.92276 8.88229 8.88229 
 
        9.13891 9.31903 9.31903 9.14242 9.14754 9.11938 9.09148 9.31903 9.31903 9.21099 9.21099 9.26736 9.31615 1.24007 1.24007 
        8.14427 7.60627 7.60627 8.14189 8.15409 8.06485 7.93810 7.60627 7.60627 7.51606 7.51606 7.94493 7.90177 8.88229 8.88229 
 
13      R4      R6              S4              R4              S1              Q4              RC              RE 
        9.16177 9.15149 9.14237 9.31903 9.31903 9.16113 9.16337 9.21099 9.21099 9.27179 9.30530 1.24007 1.24007 1.24007 1.24007 
        8.18725 8.16954 8.14840 7.60627 7.60627 8.17532 8.17767 7.51606 7.51606 7.93076 7.89654 8.88229 8.88229 8.88229 8.88229 
 
        9.15265 9.11426 9.10705 9.31903 9.31903 9.16154 9.16494 9.21099 9.21099 9.27197 9.30531 1.24007 1.24007 1.24007 1.24007 
        8.16931 8.06600 8.03641 7.60627 7.60627 8.17487 8.17983 7.51606 7.51606 7.93145 7.89632 8.88229 8.88229 8.88229 8.88229 
 
14      S4      S6              S6              S0              Q6              RC              RE 
        9.31903 9.31254 9.31254 9.31254 9.31254 9.04297 9.04297 9.26461 9.26759 1.24007 1.24007 1.24007 1.24007 
        7.60627 7.58630 7.58630 7.58630 7.58630 7.09388 7.09388 7.97269 7.94535 8.88229 8.88229 8.88229 8.88229 
 
        9.31903 9.31254 9.31254 9.31254 9.31254 9.04297 9.04297 9.31524 9.31639 1.24007 1.24007 1.24007 1.24007 
        7.60627 7.58630 7.58630 7.58630 7.58630 7.09388 7.09388 7.92270 7.90216 8.88229 8.88229 8.88229 8.88229 
 
15      Q7      Q1              Q6              RC              RE              RE 
        9.26665 9.22897 9.26033 9.26895 9.27155 1.24007 1.24007 1.24007 1.24007 1.24007 1.24007 
        7.89237 7.97796 7.94192 7.93413 7.94016 8.88229 8.88229 8.88229 8.88229 8.88229 8.88229 
 
        9.30153 9.28996 9.31397 9.34042 9.34305 1.24007 1.24007 1.24007 1.24007 1.24007 1.24007 
        7.92831 7.96969 7.94739 7.94424 7.95788 8.88229 8.88229 8.88229 8.88229 8.88229 8.88229 
 
RE      RE      RE              RE              RE 
        1.24007 1.24007 1.24007 1.24007 1.24007 1.24007 1.24007 
        8.88229 8.88229 8.88229 8.88229 8.88229 8.88229 8.88229 
 
        1.24007 1.24007 1.24007 1.24007 1.24007 1.24007 1.24007 
        8.88229 8.88229 8.88229 8.88229 8.88229 8.88229 8.88229 
 
 

 

 

Figure 3-2. Sample input of the 5 types of the BOC macro cross-

section: fast/thermal nu-fission XS, fast/thermal absorption XS, fast 

to thermal scattering XS 

(2/3) 
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BOC 2D-NODE IN-SCATTERING XS DISTRIBUTION ( /CM) 
 
FIRST  LINE: GROUP 1 -> 2 (1.0E-02) 
 
Y/X     H       J               K               L               M               N               P               R               RE 
 
8       SC      R7              S7              R4              R4              R4              S4              Q7              RE 
        0.01951 0.01849 0.01849 0.01775 0.01775 0.01851 0.01852 0.01837 0.01847 0.01854 0.01852 0.01782 0.01782 0.01887 0.01889 2.48745 2.48745 
 
9       R7      Q0              R0              R6              S4              R6              S6              Q1              RE 
        0.01846 0.01875 0.01885 0.01824 0.01814 0.01838 0.01850 0.01782 0.01782 0.01849 0.01836 0.01793 0.01793 0.01883 0.01891 2.48745 2.48745 
 
        0.01846 0.01879 0.01888 0.01840 0.01832 0.01838 0.01849 0.01782 0.01782 0.01846 0.01832 0.01793 0.01793 0.01890 0.01896 2.48745 2.48745 
 
10      S7      R0              Q0              S7              R7              S4              S6              Q6              RE 
        0.01775 0.01824 0.01840 0.01888 0.01885 0.01775 0.01775 0.01850 0.01851 0.01782 0.01782 0.01793 0.01793 0.01889 0.01898 2.48745 2.48745 
 
        0.01775 0.01814 0.01832 0.01879 0.01876 0.01775 0.01775 0.01853 0.01852 0.01782 0.01782 0.01793 0.01793 0.01890 0.01898 2.48745 2.48745 
 
11      R4      R6              S7              R4              R1              R4              S0              RC              RE 
        0.01853 0.01838 0.01838 0.01775 0.01775 0.01851 0.01849 0.01846 0.01839 0.01854 0.01854 0.01771 0.01771 2.22126 2.22126 2.48745 2.48745 
 
        0.01854 0.01850 0.01849 0.01775 0.01775 0.01849 0.01846 0.01836 0.01826 0.01854 0.01855 0.01771 0.01771 2.22126 2.22126 2.48745 2.48745 
 
12      R4      S4              R7              R1              S4              S1              Q6              RE 
        0.01837 0.01782 0.01782 0.01850 0.01853 0.01846 0.01836 0.01782 0.01782 0.01792 0.01792 0.01888 0.01897 2.48745 2.48745 
 
        0.01847 0.01782 0.01782 0.01850 0.01852 0.01839 0.01826 0.01782 0.01782 0.01792 0.01792 0.01889 0.01898 2.48745 2.48745 
 
13      R4      R6              S4              R4              S1              Q4              RC              RE 
        0.01853 0.01849 0.01846 0.01782 0.01782 0.01854 0.01854 0.01792 0.01792 0.01890 0.01895 2.22126 2.22126 2.48745 2.48745 
 
        0.01851 0.01836 0.01832 0.01782 0.01782 0.01854 0.01855 0.01792 0.01792 0.01890 0.01895 2.22126 2.22126 2.48745 2.48745 
 
14      S4      S6              S6              S0              Q6              RC              RE 
        0.01782 0.01793 0.01793 0.01793 0.01793 0.01771 0.01771 0.01888 0.01889 2.22126 2.22126 2.48745 2.48745 
 
        0.01782 0.01793 0.01793 0.01793 0.01793 0.01771 0.01771 0.01897 0.01898 2.22126 2.22126 2.48745 2.48745 
 
15      Q7      Q1              Q6              RC              RE              RE 
        0.01888 0.01883 0.01890 0.01889 0.01890 2.22126 2.22126 2.48745 2.48745 2.48745 2.48745 
 
        0.01888 0.01889 0.01894 0.01895 0.01896 2.22126 2.22126 2.48745 2.48745 2.48745 2.48745 
 
RE      RE      RE              RE              RE 
        2.48745 2.48745 2.48745 2.48745 2.48745 2.48745 2.48745 
 
        2.48745 2.48745 2.48745 2.48745 2.48745 2.48745 2.48745 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-2. Sample input of the 5 types of the BOC macro cross-

section: fast/thermal nu-fission XS, fast/thermal absorption XS, fast 

to thermal scattering XS 

(3/3) 
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3.5.2 Block: SE Residual CNN 

 

  

This ANN module is the main neural network for this prediction. 

Since most of the current convolutional neural network works with 

a residual neural network the main concept should be first explained. 

The key concept of the residual neural network is the skip 

connection as shown in Figure 3-3.  

 

Figure 3-3. residual neural network 

 

Without the skip connection, F(x) is the output from convolutional 

layers. Because the original information x is may still be relevant 

information, x identity was added to F(x) which is H(x). Only 

learning that we need to do is everything except identity x. 

Therefore, it is easier for ANN to learn more complex features9. 

Our model is a combination of three networks, ResNet, Inception-

v3, and SE Network. The summary of the Modified-ResNet 

network is as shown in Figure 3-4.  Each layer is explained in 

detail in the following sections.  
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Figure 3-4. Modified SE Residual CNN Layout 
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3.5.3 Layer: CONV1 

 

CONV1 layer is to reduce the dimension for CONV2 for faster 

calculation. This specific residual neural network is called 

bottleneck design in the original paper9. CONV1 layer can take two 

inputs: 5 features from the input layer or 256 features from the 

output of the previous residual neural network layer. The input from 

the previous layer is applied with 1x1x64 filters with 1x1 strides 

which means that it will produce 17x17x64 as its output. 

Disregarding the input from the input layer, the number of features 

is reduced from 256 to 64.  

 

3.5.4 Layer: BATCHNORM 

 

Batch-Normalization (BN) layer is presented to solve the vanishing 

and exploding gradient problem and internal covariate shift. Since 

each layer is normalized, any small value will be increased and any 

large value will be decreased. This results in mitigating the effects 

of vanishing and exploding gradient descent. Moreover, BN layer 

helps NN to train faster, because of the whitening effect where 

means are set to zero and only the variants within the layers will be 

meaningful. “The covariate shift is the change in the distribution of 

network activations due to the change in network parameters during 

training.” 10  
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3.5.5 Layer: CONV2 and 3 

 

CONV2 and 3 layers are presented to find a spatial relationship 

between surrounding node-wise assemblies. Our prototype model 

is based on ResNet which is a 3x3 convolution filter. However, later 

papers such as inception v3 show that it is better to implement two 

1x3 and 3x1 layers for a deeper network. 11 

The general knowledge is that it is efficient to build a deeper model 

with skipping connections. Therefore, we repeated 15 times. 

 

3.5.6 Layer: ROTPADDING1 

 

ROTPADDING1 layer is needed for quadrant inputs. Because our 

input only has 4th quadrant, the rotational symmetry padding must 

be applied beginning of each CONV2 and 3 layers because the gray 

area is not reflectors (denoted as black boxes) but another node as 

shown in the Figure 3-512. Therefore, before each CONV2 and 3 

layers, this layer needs to copy the nodes from white spaces to 

gray spaces. This will greatly reduce memory issues and 

computational time. 

 

  

Figure 3-5. Rotationally symmetric padding 
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3.5.7 Layer: Squeeze and Excitation (SE) Network 

 

SE layer is for faster training and by learning the importance of 

each layer’s features. This layer achieves the importance in 

features with GLOBAL-AVERAGE -POOLING1 layer. There are 

256 features from CONV3 with batch normalization. The features 

are globally averaged. From the features of the average, DENSE1 

and DENSE2 can learn the importance of each feature by finding the 

relationship with each other. Finally, important features are 

multiplied to the output of CONV5 layers for faster learning13. 

 

3.5.8 Block: CNN for Depletion 

 

This ANN module is sub neural network for depletion. The 

summary of the CNN for depletion is as shown in Figure 3-6. In 

this network, ROTPADDING and BATCHNORM layer is used as 

same as SE-Residual CNN, but SE and Residual network concept 

are not used. Each layer is explained in detail in the following 

sections. 
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Figure 3-6. CNN for depletion layout 
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3.5.9 Layer: CONV4 

 

CONV4 layer is to change the dimension to assembly-wise[9x9] 

from node-wise[17x17]. For that, it is applied with 2x2x256 filters 

with 2x2 strides. It will produce 9x9x256 that is the core feature 

for depletion each assembly power and pin power peaking factor. 

 

3.5.10 Layer: CONV5 

 

CONV5 layer is depletion series CNN. To reflect the unique 

properties of each depletion step, CNN that looks at immediate 

surrounding (3x3) assemblies is introduced. Moreover, features 

from previous depletion step are concatenated to facilitate the 

prediction of the current depletion step. As same as CONV 2 and 3, 

inception v3 is used. 

 

3.5.11 Layer: CONV6 

 

CONV6 is applied with a 1x1 filter with 1x1 stride 1 feature. So, it 

will produce 9X9X1 same as assembly power and pin peaking 

assembly-wise quadrant distribution. In the two-step method, the 

pin-wise power distribution is determined by employing the pin 

power reconstruction method. Similarly, Fr/PD factor will be 

produced by CONV6 and multiplied by PD from current burnup 

depletion step. 
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4. Result 
 

4.1 Loading Pattern Random Generation 

 

4.1.1 Train & Validation Data 

 

The target plant for test is OPR1000 (177 fuel assemblies). The 

feed assembly uses gadolinia as a burnable absorption rod. Four 

different types of burnable absorbers differing in the number and 

position were randomly selected for each location. In addition, the 

following are assumed: 

 

- No. of Feed assembly is fixed (69 Feed) 

- Octant Symmetry 

 

18827 loading patterns (16659 LPs for train data and 2168 LPs for 

validation data) were produced using the assumed conditions and 

3-D core calculation code (ASTRA). 

 

Train data 

- Assembly Relative Power Range: 0.07 ~ 3.80 

- Assembly Maximum PPPF Range: 0.15 ~ 4.33 

- Cycle Maximum PPPF Range: 1.54 ~ 4.33 

 

Validation data 

- Assembly Relative Power Range: 0.09 ~ 2.90 

- Assembly Maximum PPPF Range: 0.17 ~ 3.54 

- Cycle Maximum PPPF Range: 1.53 ~ 3.54 
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Figure 4-1. Assembly power and PPPF distribution of the train data 
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4.1.2 Test Data 

 

2692 loading patterns are generated for test. Based on the 

optimized loading pattern (equilibrium cycle) that used to a recent 

cycle of OPR1000, only the loading pattern with near a maximum 

pin power peaking factor(PPPF) of ‘1.60’ was selected. ‘1.60’ 

is a  boundary value for accident analysis and is also a reference 

value when the designer finds the loading pattern. Additional LP’s 

were generated independently from the train data. 

 

- Assembly Relative Power Range: 0.23 ~ 1.50 

- Assembly Maximum PPPF Range: 0.46 ~ 1.77 

- Cycle Maximum PPPF Range: 1.46 ~ 1.77 

 

Figure 4-2. Cycle maximum PPPF distribution of the test data 
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4.2 Supervised Learning 

 

4.2.1 Fully Connected (FC) vs. Convolutional Neural 

Network (CNN) 

 

The OLL is a class of fully connected(FC) neural network. So, we 

compared the FC method and the CNN method instead of OLL and 

CNN. In order to compare only the differences according to the 

network, the number of parameters used in the network is made 

equal. In the case of FC, k-inf and two macro cross-sections are 

used as in the previous study, and in CNN, five macro cross-

sections are used as described above. The mean squared error is 

set to loss and learned to minimize it. The learning time is the same 

as the one hour, and at the completion of the learning, the loss can 

confirm that CNN is lower than FC. 

  

Figure 4-3. Loss according to learning time about FC vs. CNN for 

BOC only 
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The predicted results are shown in the following table. There is no 

significant difference in the mean error, but the maximum error is 

almost twice the difference. If we calculate the fraction of the 

assemblies with over than specific absolute error, we can see that 

CNN accurately predicts the assembly-wise power distribution 

rather than FC. 

 

Table 4-1: Power distribution prediction error of FC and CNN 

Network 

Type 
eavg

a emax
b 

Frac. With 

ec > 3% 

Frac. With 

ec > 5% 

FC 1.05 11.92 4.8 0.4 

CNN 0.44 4.23 0.0 0.0 

a= average absolute error (%) 

b= maximum absolute error (%) 

c= Fraction of the assemblies with absolute error(%) 

 

Three loading patterns are selected to check the range of prediction. 

The first is the optimized loading pattern (equilibrium cycle) that 

used to a recent cycle for OPR1000 and meets the assumed 

conditions, the second is that add feed assembly inside, and last is 

that increased neutron leakages by loading feed assembly at the 

periphery(outermost) location. The results using the learned CNN 

are as follows. 
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Table 4-2: Power distribution prediction error of the three models 

 

Network 

Type 
Model eavg

a emax
b 

CNN Eq. 0.48 1.96 

 73Feed 0.62 2.43 

 73Feed+ H.L.d 3.27 17.35 

FC Eq. 1.00 2.60 

 73Feed 0.83 2.62 

 73Feed+ H.L.d 24.35 69.14 

a= Average absolute error (%) 

b= Maximum absolute error (%) 

c= Fraction of the assemblies with absolute error(%) 

d= High neutron leakage rather than assumed condition 

 

For the first model, the mean and maximum errors were larger than 

the validation model but well predicted. The error of the model 

which added feed assembly inside also increased, but CNN predicts 

the power distribution using the relation between the assemblies, 

considering that the absolute error exceeding 3% does not occur. 

Because we never saw the 73 feed H.L. model in the training 

process, the high error was found. However, when compared to FC, 

CNN error is comparably low. This demonstrates that CNN predicts 

the power distribution using the relationships and the trained model 

is well generalized to the problem. 
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4.2.2 Convolutional Neural Network for the whole 

cycle 

 

16659 loading patterns and architecture (Figure 2-1) are used for 

training. The mean squared error is also used as the loss for 

training. The loss according to the time is as follows. It takes about 

two minutes to learn once (epoch). So, the time of training is almost 

3 days and it learned over 2000 epoch to reach the desired loss. 

 

  

Figure 4-4. Loss according to learning time about CNN for the 

whole cycle 

The graph (Figure 4-4) shows enough learning, and the maximum 

errors by each location of 2168 loading patterns for validation are 

as follows.  
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Table 4-3: Power distribution and pin power peaking factor 

prediction validation error of CNN for the whole cycle 

 

 eavg
a emax

b Frac. with 

ec > 1% 

Frac. with  

ec > 3% 

Assembly Power 0.19 7.33 0.457 0.002 

PPPF 0.31 9.13 2.836 0.013 

a= average absolute error (%) 

b= maximum absolute error (%) 

c= Fraction of the assemblies with absolute error (%) 

 

As a result of the validation, it was confirmed that the assembly and 

PPPF with the absolute error exceeding 1% is only 0.47% and 

2.83% of the total assembly, respectively. And that it is in good 

agreement with the 3-D core calculation. The supervised learning 

method predicts the results through nonlinear regression analysis. 

The fact that the average is close to zero suggests that supervised 

learning is well done. In order to make it easier to understand, the 

scattering plot of assembly power and PPPF is shown in figure 4-5 

and 4-6, respectively. The red line in the figure means absolute 

error ± 3% and the violet line means absolute error ± 1%. 

 

The prediction results can be summarized as shown in figure 4-7, 

which is based on the application program used by the actual 

designer. 
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Purple line: ±1% 

Red    line: ±3% 

 

 

 

Figure 4-5. Predicted(CNN) vs. Calculated(ASTRA): Assembly-

wise assembly power 
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Purple line: ±1% 

Red    line: ±3% 

 

 

 

Figure 4-6. Predicted(CNN) vs. Calculated(ASTRA): Assembly-

wise pin power peaking factor 
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First  line: Fuel Assembly Name 

Second line: BOC burnup(MWD/MTU) 

Third  line: Power 

Fourth line: Pin Power Peaking Factor(PPPF) 

 

Figure 4-7. Sample prediction result 
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4.2.3 Test 

 

The reason for performing "Test" in addition to "Validation" is to 

ensure that it works well in the area of interest. As shown in 

Section 4.1.2, the loading patterns used in “Test” is somewhat 

optimized from the cycle maximum pin power peaking factor 

perspective. The results using the supervised learned convolution 

neural network are as follows. 

 

Table 4-4: Power distribution and pin power peaking factor 

prediction error of test models 

 eavg
a emax

b Frac. with ec 

> 1% 

Frac. with ec 

> 3% 

Assembly Power 0.14 2.47 0.141 0.000 

PPPF 0.28 4.71 2.053 0.008 

a= Average absolute error (%) 

b= Maximum absolute error (%) 

c= Fraction of the assemblies with absolute error (%) 

 

As a result, it was confirmed that the artificial neural network has 

better prediction below a boundary value area. The maximum 

absolute error is less than 3% for the assembly power and the 

maximum error is 4.71% for the PPPF. Since the fraction of the 

error exceeding 3% is close to 0, it can be sufficiently connected 

with the automatic loading pattern searching code. In the case of the 

cycle maximum pin power peaking factor, it is predicted very well 

as shown in Figure 4-8 and the maximum absolute error is 2.56%. 

It is lower than that of assembly-wise value. 
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Purple line: ±1% 

Red    line: ±3% 

 

 

 

 

Figure 4-8. Predicted(CNN) vs. Calculated(ASTRA): Cycle 

maximum pin power peaking factor 
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4.2.4 Convolution Neural Network for the cycle 

maximum PPPF 

 

In this section, we will look at why we should look at all of the 

assembly-wise power in order to better predict the cycle maximum 

pin peaking factor which is the main value of optimization, rather 

than seeing the one value. For this evaluation, we modified the 

existing artificial neural network. The first model predicts the cycle 

maximum pin peaking factor only(Figure 4-9) and the second 

predicts the maximum pin peaking factor at each burnup(Figure 4-

10). 

 

First, the assembly-wise maximum pin power peaking factor is 

predicted by using the artificial neural network evaluated above, and 

then the cycle maximum value is classified and predicted well as 

shown in the following Figure 4-11. 

 

Table 4-5: No. of trained data by the 3 types of ANN 

 Firsta Secondb Originalc 

No. of the trained data 16,659 399,816 20,790,432 

a= the cycle maximum pin peaking factor only 

b= the maximum pin peaking factor at each burnup 

c= the assembly-wise maximum pin peaking factor 

 

In contrast, if the first model is not predicted as shown in Figure 4-

12. The largest reason is that the number of trained data(Table 4-

5). In the case of the original artificial neural network, the number 

of trained data is the number of LPs(16,659) * the number of 

burnup steps(24) * the number of quadrant assembly(52), whereas 
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the first model is that the number of LPs is all of the trained data. 

The second model has better predictions than the first model but 

still does not predict the level of existing neural network 

model(Figure 4-13). In other words, the original artificial neural 

networks can predict more accurate with less the number of loading 

patterns data. In an aspect of prediction using a deep neural 

network with supervised learning, showing various output 

distributions makes better prediction possible. 
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Figure 4-9. Modified CNN for the cycle maximum layout 

 

 

 

 

 

 

Figure 4-10. Modified CNN for the maximum Fr at each burnup 

step layout 
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Green  line: ±3% 

Yellow line: ±10% 

 

Blue    dot: “Validation” 

Red     dot: “Test” 

 

 

 

 

Figure 4-11. Predicted(CNN) vs. Calculated(ASTRA): Cycle 

maximum pin power peaking factor, Original model 
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Green  line: ±3% 

Yellow line: ±10% 

 

Blue    dot: “Validation” 

Red     dot: “Test” 

 

 

 

 

Figure 4-12. Predicted(CNN) vs. Calculated(ASTRA): Cycle 

maximum pin power peaking factor, the cycle maximum model 
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Green  line: ±3% 

Yellow line: ±10% 

 

Blue    dot: “Validation” 

Red     dot: “Test” 

 

 

 

 

Figure 4-13. Predicted(CNN) vs. Calculated(ASTRA): Cycle 

maximum pin power peaking factor, the maximum at each burnup 

model 
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5. Conclusions 

 

Convolutional neural networks were applied in the prediction of the 

2D assembly-wise core power and pin power peaking factor 

distributions for a whole cycle. It turned out that accurate values 

were obtained in a very short time. The computational time is only 

around 0.2 second on a personal computer equipped with a CPU of 

Intel i7-3770 (3.40GHz, DDR3 16GB) and the error in the cycle 

maximum pin power peaking factor at the region of interest was 

less than 3%. The model can greatly reduce the computing time of 

the LP optimization process. It will thus be of great help to those 

who design the fuel loading patterns as well as to an automatic LP 

searching program. Nonetheless, this model has one limitation. The 

trained neural network model is valid only within the specified core 

conditions: the number of the total and fresh fuels, initial boron 

concentration, T/H conditions, etc.  In order to improve this, it is 

necessary to perform reinforcement learning and to develop a 

module that creates a loading pattern that is equivalent to the actual 

design at different conditions. 
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초 록 
 

경수로 노심 2차원 출력분포 예측을 위한 

합성곱 인공 신경망 
 

이 진 영 

원자핵공학과 

The Graduate School 

Seoul National University 
 

이 논문의 주 목표는 2차원 형태의 거시단면적을 이용하여 한국의 

대표적인 가압경수로인 OPR1000의 장전모형을 빠르게 분석한 후 

집합체 단위의 출력과 최대 핀 출력을 예측하는 인공신경망을 개발하는 

것이다. 이와 같은 인공신경망 개발이 필요한 이유는 장전모형 최적화 

단계에서 보다 빠른 계산 능력이 필요하기 때문이다. 

 

이번 논문과 비슷한 목표를 가진 선행연구를 바탕으로 다른 형태의 

인공신경망을 적용 평가하였다. 최근 이미지 분석을 위해 널리 쓰이고 

있는 합성곱 인공신경망을 적용하였으며, 학습을 위한 데이터는 

KNF사의 ASTRA 코드를 통해 만들었다. 약 2만개의 랜덤한 

장전모형을 생산하였으며, 이를 인공신경망으로 지도학습하였다. 집합체 

단위의 출력의 평균 오차와 최대 오차는 각각 0.19%와 7.34%이며, 

최대 핀 출력의 평균 오차와 최대 오차는 각각 0.31%와 9.13%이다. 

기존의 설계된 최적 장전모형과 비슷한 분포를 가진 약 3천개의 랜덤한 

장전모형을 이용하여 검증한 결과 집합체 출력과 최대 핀 출력의 최대 

오차는 각각 3%와 5% 수준으로 장전모형 최적화 작업 시 ASTRA 

코드 대신 간이 평가 코드로 활용 가능한 수준이다. 계산 시간은 

CPU(Intel i7-3770 3.40GHz, DDR3 16GB)기준 ASTRA 코드는 

200초 정도 소요되지만, 개발된 인공신경망은 이보다 1000배 빠른 

0.2초이다. 
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개발된 인공신경망은 장전모형 최적화 코드와의 연계를 통해 장전모형 

최적화 시간을 크게 단축시킬 수 있을 뿐 아니라 설계자에게도 많은 

도움을 줄 수 있다. 지도학습된 인공신경망은 동일한 노심 조건(연료 총 

다발 수, 초기 붕소농도, 열수력 조건, 신연료 다발 수 등)에서만 앞선 

오차율을 보장하며, 조건이 바뀔 경우 추가로 데이터 생산 후 추가 

지도학습이 필요하다. 

 

주요어 : 합성곱 신경망 

지도학습 

출력 분포 예측 

가압경수로 

학   번 : 2017-26188 
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