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Abstract 

This thesis describes a traffic-aware routing problem with shared autonomous 

vehicles by incorporating jams along traffic flow due to the large population 

of vehicles in the network. This anticipates that autonomous vehicles will 

replace privately owned vehicles in the future. To provide an efficient shared 

common service, the dial-a-ride problem is combined with the traffic flow 

model to satisfy demand (origin-destination pairs), producing a system-

optimal traffic assignment problem solution. Macroscopic traffic flow is 

modelled via the two--regime transmission model (TTM), utilizing inflow and 

outflow for each link. The optimal solution demonstrates that an appropriate 

number of vehicles is utilized regardless of the demand or fleet size due to 

congestion limitations.  
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Chapter 1: Introduction 

1.1. Background and Purpose 

The development of autonomous vehicle (AV) technology has brought about 

a new form of transportation – the shared autonomous vehicle (SAV) 

transportation mode. An SAV transportation service, notably autonomous 

taxicabs that supply an origin-destination (O-D) transportation for travellers, 

could possibly provide inexpensive transportability on-demand services 

without the requirement for an operator (Krueger et al., 2016). With the full 

automation of the vehicle, making driver input obsolete, together with the 

ability to provide a common shared service, the potential of AVs to change 

the transportation system landscape is undeniable. SAVs have the potential 

to further decrease private vehicle ownership considerably, eliminating the 

case of wastage wherein private cars are left idle for long durations; past 

studies have concluded that up to 11 personal vehicles can be replaced by a 

single SAV (Fagnant and Kockelman, 2015). 

 

An SAV service presents many potential positive impacts to society, 

including reducing carbon emissions as well as energy consumption. However, 

an underlying problem, that is, congestion, has been left out in the majority 

of previous studies. AVs are able to travel at higher densities for all specified 

velocities compared to human-driven cars, therefore leading to increased 

capacity on the roads (Chang and Lai, 1997). However, an SAV service may 

in fact result in increased congestion of the roads if poorly planned. The issue 
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of obtaining an optimal SAV route allocation is presented in an SAV routing 

problem, considering many other factors including fulfilment of service to all 

travellers. Given the possibility that SAVs will replace all personal vehicles 

in the future, this would relate to tens of thousands of SAVs on the road. 

Although extensive vehicle routing problems (VRPs) had been researched in 

the past, an SAV service would involve a scale many times larger. As such, 

this thesis addresses a large variable routing problem to determine the 

optimal route choice of SAVs, while considering the effect that the number 

of vehicles present on the road has on congestion.  

 

An SAV routing problem bears similarities to the Dial-a-Ride problem 

(DARP) (Cordeau and Laporte, 2007), where passengers specify their pickup 

and delivery requests between origins and destinations while concurrently 

minimizing cost for each vehicle route. This thesis addresses the issue of 

morning commute/last-mile service, wherein demand is relatively fixed but 

high. Considering the traffic dynamics, this thesis aims to capture the 

congestion phenomena in the morning commute/ last-mile scenario, including 

the dial-a-ride behaviour of SAVs as well as the traffic flow. As such, with 

each SAV chained and time dependent, this problem is classified as a type of 

Dynamic Traffic Assignment (DTA) problem. Poor routing allocation will 

result in bottlenecks and gridlocks due to traffic congestion. The 

contributions of this thesis are as such: a linear program formulation and an 

analysis of the routing of SAV utilizing discrete traffic flow via the two-regime 

transmission model (TTM) (Balijepalli et al., 2014) to solve the SAV morning 

commute/ last-mile routing problem. This thesis presents the first dynamic 
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system optimum (DSO)-DTA formulation using TTM, where previous works 

utilized the Link Transmission Model (LTM) or the Cell Transmission Model 

(CTM). This presents advantages as TTM has the ability to depict the queue 

spillbacks similar to LTM, but also the ability to depict peculiarly the 

distribution of the front shocks in the link, providing a detailed traffic state 

in the link. This thesis also incorporates the SAV morning commute/last-

mile dial-a-ride behaviour, distributing congestion lengths and also being able 

to determine the optimal fleet required to fulfil the morning commute/last-

mile demand. By doing so, this prevents over-supplying and underutilization 

of SAV and incurring additional cost. 

1.2. Literature Survey 

The SAV routing problem involves a large number of vehicles and every 

vehicle being represented in each time space. This poses the main 

dissimilarity between a typical DARP and this problem, including the impact 

of the count of vehicles on congestion conditions. TTM is able to reflect the 

fluctuation of traffic flow within each link depending on time and space; 

combined with the DARP, this results in the ability to obtain a system-

optimal solution. 

1.2.1. Shared Autonomous Vehicle 

The potential of SAVs provides a plethora of potential advantages to our 

transportation system. The US National Household Travel Survey found that 

the number of vehicles that are idle at any time in a day amounts to more 

than 83% (Administration, 2009). It was also reported in Fortune that 

today’s cars are parked 95% of the time (Morris, 2016). This suggests that 
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there is an excess of cars to serve the current travel patterns of travellers in 

most locations, and that decreasing car ownership can result in “huge parking 

space savings,” making cities denser, more liveable and more efficient. 

Previous studies proposed that as AVs could reposition themselves 

throughout the network without fulfilling any demand from travellers, an 

SAV system could be implemented. With SAVs, vehicles could reposition 

themselves without passengers and provide service to other travellers, 

decreasing the number of vehicles in operation, thus optimizing land usage in 

reducing excess parking spaces while providing service to multiple commuters 

of the same family (Almeida and Arem, 2016). In addition, there is 

substantial environmental advantages in the form of a decrease in additional 

vehicle miles travelled (VMT); Shaheen et al. (2013) estimated that car-

sharing members reduced their driving distance by as much as 27%, with one-

fourth of them forgoing a vehicle acquisition. On the other hand, other 

research has proven that by staggering and planning properly the time that 

trips have to be fulfilled, personal vehicles could fulfil demand by several 

travellers in the same family unit by providing a dial-a-ride service, offering 

an user equilibrium formulation (Fagnant and Kockelman, 2015). SAVs have 

the potential to play a significant role in future transportation systems, as a 

cheap form of on-demand transportation service. SAVs are able to encompass 

car sharing through trip planning, probably implemented by the government 

or private taxi companies, providing a cheap taxi transportation service or 

an on-call transportation service that may be more efficient than current 

driver-reliant taxi systems. For example, SAVs could be used as a convenient 

transportation service for morning commute/last-mile situations 



5 

 

(transporting people either from starting destinations to a central point or 

from transit drop-offs to final destinations) that can be implemented in 

multimodal transportation systems (Krueger et al., 2016).  

 

Existing literature has investigated the implementation of SAVs and its 

impact on transportation networks. Fagnant et al. (2014) observed that each 

SAV may be able to replace as many as 11 personal vehicles on a grid network. 

Fagnant and Kockelman (2018), utilizing 10% of personal trips in Austin, 

Texas, investigated dynamic ride-sharing in a network and found that a 

replacement rate of 1:7 was observed between SAVs and personal vehicles. 

Spieser et al. (2014) conducted a case study based on Singapore, considering 

the case in which private transportation is replaced by SAVs, and found that 

a fleet size one third that of currently operational vehicles was sufficient. 

Subsequently, even though there was a reduction in the number of vehicles 

on the road, there had to be an increase in the number of vehicular trips to 

satisfy all demand. Burns et al. (2013) identified the optimal SAV fleet size 

to provide service to all residents within acceptable waiting times in an urban 

environment.  

1.2.2. VRP and DARP 

VRP has been studied extensively in many literatures because of its extensive 

usage in many transportation problems. Ropke (2005) and Kumar (2012) 

discussed the various classes and variants of VRPs, including the classic VRP, 

the pick-up and delivery problem with time windows (PDPTW), and the 

travelling salesman problem. The formulation of these mathematical models 
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employs operations research methodologies and is characterized as a non-

deterministic polynomial-time hard (NP-hard) type of problem. 

 

PDPTW is closely linked to the flexible on-demand peak-hour transportation 

service as it features a set of goods that needs to be collected at the customer’s 

location and then transported to the destination of the customer’s choice. 

There has been many variants of PDPTW, including extensions where 

multiple types of vehicles were considered, constrained by various time 

windows (Bae and Moon, 2016). While PDPTW focuses on the logistics of 

transportation of goods, DARP is a sub-class of PDPTW that considers the 

transportation of passengers, where there is one or multiple passengers at a 

given pick-up location (Dong et al., 2009). DARP is a classic pickup and 

delivery problem with the objective of scheduling vehicle routing for a set of 

n requests by passengers. The aim is to minimize the total cost incurred by 

satisfying those requests. Historically, the problem was formulated for the 

transportation of elderly or disabled people. However, this certain type of 

problem can be applied in multiple forms of other transportation systems 

such as taxis, ambulances, and courier services (Madsen et al., 1995). There 

are many variants of DARP, and various algorithms to solve this 

mathematical problem have been proposed. Both Cordeau and Laporte (2007) 

and Parragh et al. (2012) have provided a comprehensive review of the 

different variants of DARP that have been developed. The basic case consists 

of a single vehicle that will service the set of requests throughout the time 

window. However, in the case of an SAV peak-hour transportation system, 

the system will rely on a multi-vehicle DARP model. 
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In general, the DARP can be divided into two categories: (1) static DARP 

and (2) dynamic DARP. In a static DARP model, the full set of user requests 

is made known to the operators prior to the scheduling and routing of vehicles. 

Various objective functions that are proposed, including the minimization of 

total service cost (Toth and Vigo, 1996), operational costs (Bornd et al., 1997) 

and, total route length (Cordeau and Laporte, 2003). The objective function 

also can be formulated to minimize a combination of different parameters 

that is defined by the user. In a dynamic DARP model, new requests by 

passengers are introduced into the system at different times. Given that the 

set of initial requests is already scheduled, and when a new request is 

introduced, the problem is formulated to insert and accommodate the new 

request by re-optimizing the objective function. The initial vehicle scheduling 

and routing remains unchanged in this case (Cordeau and Laporte, 2007). 

Various insertion algorithms have been suggested to derive a solution to solve 

the dynamic case including the solution algorithm REBUS developed by 

Madsen et al. (1995). Sayarshad and Chow (2015) also adapted a version of 

the travelling salesman problem with pickup and delivery to consider a non-

myopic dynamic DARP model. In the case of a morning commute/ last-mile 

transportation system, that is, when requests for trips are set beforehand by 

commuters due to the daily routine to and fro from work, the set of user 

requests are known to the transport provider prior to the dispatch of vehicles. 

Hence, the dynamic case will not be considered in the current implementation. 

However, with an increase in the number of users in this form of 

transportation system in future developments, it is possible to incorporate 
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dynamic requests from passengers in future works. The morning commute/ 

last-mile SAV routing problem can be further extended to ordinary 

impromptu trips (recreational, leisure), which will lead to dynamic demand. 

 

Implementation of DARP requires that constraints be placed on vehicular 

and passenger requirements. For instance, each passenger may require a 

certain time window for departing and arriving. In addition, for an SAV 

system, it is necessary to include vehicular capacity constraints if ride-sharing 

is implemented (Agatz et al., 2012). However, this increases the feasible area 

of vehicle route choice and assignments, thus increasing the complexity of the 

formulation exponentially and hence the computational time. Therefore, the 

DARP with respect to SAVs is an NP-hard problem. Chen et al. (2016) 

proposed a Tabu search optimization framework to simulate SAV allocation 

and found that the computational effort increases exponentially as problem 

size increases. Ride-sharing will not be included in the initial formulation in 

this thesis but is expected to be added in future expansion. Also, in the typical 

DARP problem, researchers consider the case where each passenger has a 

desired departure and arrival time window (Cordeau and Laporte, 2003; 

Desrosiers et al., 1995; Jaw et al., 1986). However, this may result in the 

infeasibility if implemented in our model of fulfilling the respective time 

windows of passengers, coupled with long travel times affected by congestion. 

As such, this model considers only passengers with a desired departure times 

but without arrival time windows. 
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Given the nature of an SAV network, the model presented is in the form of 

a large-scale optimization problem. Compared to most DARP formulations, 

where heuristics or metaheuristics (Ho et al., 2018) are developed to solve the 

NP-hard DARP, the model proposed utilizes a continuous approximation, 

which is more suitable for a problem with a large number of variables. This 

approximation method has normally been applied to DTA models (Chiu et 

al., 2011) but has recently been incorporated into other VRPs such as 

dynamic network loading and assignment (Carey et al., 2014). The key point 

to note is that a constant travel time for a vehicle travelling from node to 

adjacent node is a common assumption in DARP models. Further research 

has been done to factor in the effects of congestion such as carbon emissions 

by vehicles between nodes, driving hours regulations with fixed travel time 

(Rincon-Garcia et al., 2018), extended travel times (Kok et al., 2012), and 

varying speed (Xiang et al., 2008). However, this assumption is not applicable 

to the SAV routing problem due to the large fleet size, which in turn will 

result in congestion depending on the number of vehicles on the route at each 

respective point in time. In this view, a congestion-aware routing system 

formulation for SAVs can be produced by integrating with system-optimal 

DTA. 

1.2.3. Traffic-flow Model 

There has been much research with respect to modelling the traffic network 

for DSO traffic assignment problems, where travellers cooperate in making 

their choices for the overall benefit of the system instead of their individual 

benefits. This particular routing problem deals with the time-dependent 

travelling pattern of commuters in a traffic grid to satisfy two objectives: (1) 
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O-D pairs of demands with respect to time and (2) the total system travel 

time (TSTT) that travellers spend in the network. To reflect the situations 

of the traffic networks, many traffic flow models have been developed, 

including microscopic models—wherein each individual vehicle is tracked to 

its respective route—and macroscopic models—in which the general 

behaviour of traffic propagation on the road is used to depict the flow of 

traffic and vehicle route choice (Wageningen-Kessels et al., 2015). Due to the 

problem statement, which assumes that there is a large number of SAVs that 

will be in operation at any time, and the objective, which is to identify the 

optimal SAV fleet size, we utilized the macroscopic model to represent the 

traffic conditions in our model. 

 

The macroscopic approach is based on fundamental relationships such as that 

between flow and density to control traffic flow. Assuming the aggregate 

behaviour of groups of vehicles, it is able to reflect current traffic conditions 

in an easier way to validate and observe. Based on the kinematic-wave theory 

(KWM) developed by Lighthill and Witham (1955), and Richards (1956), 

traffic propagation is assumed to follow the wave motion in fluids. Daganzo 

(1994) formulated a discrete version of KWM, developing a traffic model 

known as CTM. This requires that the model be disaggregated to cell level 

to accurately reflect traffic conditions, which requires high computational 

capacity as it is directly proportional to the number of cells that the modeler 

specifies. LTM was then developed in both discrete form (Yperman, 2007) 

and continuous form (Han et al., 2016) based on Newell’s shortcut solution 

method (Newell, 1993), where traffic flow is predicted using the difference in 
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traffic flow at one end of the link and the other end, without having any 

information at any intermediate points. Utilizing the conservation of flows 

between incoming and outgoing traffic, the flow propagation can be found 

constrained by the sending and receiving flows between nodes. Nevertheless, 

even though LTM is able to depict the free-flow travel time delay when the 

link is not congested and the backward shockwave time delay when the link 

is fully congested, it is unable to explicitly determine the propagation of the 

front shocks within a link and is unable to provide a detailed traffic state 

within each link.  

 

Subsequently, TTM (Balijepalli et al., 2014) was developed to address this 

problem. The concept of TTM will be described here briefly. Similar to the 

CTM and LTM, the TTM defines the traffic condition in each link via the 

entry and exit flows. From the flow-density relationship defined, the speed of 

the vehicles can be calculated. Given that the density of the vehicles at the 

respective parts of the link is less than or equal to the critical density, vehicles 

in the corresponding part of the link travel at free-flow speed. Conversely, in 

the opposing case, the speed of vehicles can be found by dividing the flow by 

the density. In addition, the TTM is able to provide the variation in queue 

lengths within the link through time and space, as shown in Figure 1 below. 
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The TTM splits traffic in a link into two regimes: (1) the non-congested 

regime in which density is below critical density and (2) the congested regime 

wherein density is above critical density. TTM allows us to formulate the 

state of the link as non-homogenous according to its length (where LTM is 

unable to) and does not require a computationally intensive discretization 

method of cell-modelling (as in CTM for the same prescribed level of 

accuracy). In addition, TTM is able to deal with discontinuity in densities 

within congested regimes, where there may be multiple situations of varying 

densities within a single congested regime. Even though there exists more 

advanced models developed by other researchers (Aubin et al., 2008; Liu et 

al., 2018), TTM allows one to formulate the traffic flow propagation in a 

straightforward and efficient manner. This thesis builds upon the preliminary 

linear programming formulation of TTM to the DSO problem by Ngoduy et 

al. (2016), combining it with the DARP and SAV routing problem to obtain 

an optimal solution.  

 

Figure 1. Link traffic state between 2 nodes 
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The remainder of this thesis is organized as follows. In Chapter 2, the linear 

programming formulation of the SAV DSO-DTA problem is presented. 

Chapter 3 presents numerical experimentation and results, and the conclusion 

and further discussions are finalized in Chapter 4. By conducting experiments, 

we reveal insights that would help in implementation of SAVs in real-world 

scenarios. A summary of related studies is shown in Table 1.
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Table 1. Summary of related papers 
 

Considerations Methodology 

Author SAV DARP 
Congestion-awareness 

 
Demand 

Heuristics LP 
TTM LTM CTM Others Static Demand Dynamic Demand 

Balijepalli et al. (2014)   √        √ 

Daganzo (1994)     √      √ 

Yperman (2007)    √       √ 

Madsen et al. (1995)  √       √ √  
Sayarshad and Chow (2015)  √       √ √  

Chen et al. (2016) √         √  
Cordeau and Laporte (2003)  √        √  

Fagnant and Kockelman 
(2014) √ √        √  

Toth and Vigo (1996)  √      √  √  
Spieser et al. (2014) √       √  √  
Carey et al. (2014)      √    √  
Dong et al. (2009)  √        √  

Levin (2017) √ √  √    √   √ 
Fagnant and Kockelman 

(2015) √        √ √  
Fagnant and Kockelman 

(2018) √        √ √  

This Thesis (2019) √ √ √     √   √ 
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Chapter 2: Mathematical Model 

 

This thesis consists of a DSO-DTA problem, dealing with a directed network 

with centroids defined as being both source and sink nodes at the same time. 

Addressing the SAV routing problem requires solving three challenges 

typically absent in the VRP literature. First, this model solves a large 

variable linear programming model, tracking the macroscopic flow of vehicles 

relative to each time period, unlike VRP problems which deal with the 

routing of a small discrete fleet of vehicles. Second, it is noted that congestion 

will occur due to the large fleet of vehicles and limited capacity of the roads. 

Therefore, at every time interval, a real-time traffic flow model must be 

included to account for the number of vehicles on the road. Previous literature 

typically uses graphs with edges that map the nodes to nodes without 

considering the dynamic flow of traffic. Furthermore, route choices from the 

embarkation of the passenger until the point where the passenger is dropped 

off affects the traffic congestion on the respective links, and each link may be 

unique in its characteristics; therefore, each link must be modelled accurately 

to simulate the system dynamics of traffic flow. Lastly, the utilization of 

TTM provides a comprehensive traffic state within each link, reflecting the 

propagation of front shocks within the link which enables optimally 

distributing the queues. Previous literature on traffic flow is able to generalise 

only the state within the link as a whole, providing less information for 

planners in finding the optimal distribution with consideration of congestion 

within the link.  
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Given that this thesis addresses the morning commute/last-mile problem, 

where demand is determined beforehand, trip routing behaviour can be 

planned in advanced. As such, computational time is not of the topmost 

priority. Nevertheless, fast algorithms are essential to solve the static traffic 

assignment problem to obtain a system-optimal solution.  

2.1. Model Development 

Consider a fleet of public AVs providing services similar to those provided by 

taxis for a large number of commuters. Each commuter possesses a specific 

origin, destination, and departure time, wherein each customer can be picked 

up only at or after his/her predefined departure time. Traffic flow is modeled 

using TTM to solve the DSO traffic assignment problem. This predicts the 

optimal time-dependent routing pattern of travelers in a network, with the 

objective of fulfilling all O-D demands, at the same time minimizing TSTT 

of travelers in the network. To identify the choice of routes that each vehicle 

takes in the traffic network, we created a DSO-DTA model to describe the 

time-varying network and demand interaction. Although Levin formulated 

an optimal DTA formulation using LTM, this is the first time that a 

formulation implementing TTM is applied to obtain a system-optimal DTA-

DSO solution. As such, we termed this problem as a two-regime transmission 

model-dynamic system optimum-dial a ride problem (TTM-DSO-DARP). 
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Each vehicle on the traffic network is assumed to be solely a single class of 

SAVs. Past research (Fagnant and Kockelman, 2014) had applied this 

assumption too, given that in the future, there will be an aim to replace a 

large part of the vehicle fleet with SAVs ("Dubai's Autonomous 

Transportation Stratedgy," 2018; Singapore, 2019). This also is due to the 

difficulty in modelling the dynamic interaction of SAVs and human-driven 

vehicles sharing the same road within system-optimal DTA. In this thesis, 

ride-sharing was not considered due to its complexity. Also, as we are 

modelling the morning commuter/last-mile problem, where customers’ 

journeys are relatively fixed daily, the demand is assumed to be known 

beforehand. Each vehicle is defined to carry only a single passenger, and each 

vehicle is able to travel to another customer immediately after the most 

recent drop-off. Vehicles are parked at depots (centroids) at the start and 

end of the time horizon. Within the time horizon, vehicles exist in only two 

states, travelling within links or parked.  

2.2. Traffic Network  

The traffic network, G = (N, A), is defined as a set of links, A connected by 

a set of nodes, N. There exist two types of nodes—centroids and ordinary 

nodes. Centroids z represent depots or destinations, where O-D pairs are 

specified. The ordinary nodes represent junctions, where travelers are not 

allowed to alight nor be picked up. Links that exist between two nodes are 

denoted by (i, j) ϵ A and are defined to be bidirectional. This implies that 

for every (i, j) link that exists, there is a parallel, reversed road link (j, i) 

that exists. 
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We define centroids to be connected to the ordinary nodes by centroids 

connectors. Since travel demands have to be met together with the 

conservation of flow of traffic, centroids are defined differently from ordinary 

nodes. Instead of road segments, centroid connectors represent not only the 

commuter embarkation and disembarkation of the SAVs, but also the parking 

behavior at the centroids. As such, there are no capacity constraints for 

centroid connectors, being used to represent just the interface between the 

centroids and junctions. We define A0  as the set of links (𝑖𝑖, 𝑗𝑗) that neither 

begin nor end at a centroid, while Az is defined as the set of links that either 

begin or end at a centroid; that is, for each respective centroid connector (𝑖𝑖, 𝑗𝑗) 

ϵ Az, each of i or j can represent a centroid, (i ϵ z or j ϵ z). In addition, we 

define 

 𝐴𝐴𝑧𝑧− = {(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧: 𝑗𝑗 ∈ 𝑧𝑧}  

 

as the set of centroid connectors with the end points at a centroid and 

 𝐴𝐴𝑧𝑧+ = {(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧: 𝑖𝑖 ∈ 𝑧𝑧}  

 

as the set of centroid connectors with their starting points at a centroid. The 

superscript “–” and “+” represents links coming into a centroid and out of a 

centroid, respectively. 

 

With regards to nodes where j ϵ N, we represent the sets of incoming links 

going into j as Γ𝑗𝑗−, and Γ𝑗𝑗+ representing the set of outgoing links out of j. 

Centroids also possess both types of links that can represent vehicles entering 
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and exiting the depot. Discrete time is used in this model, with one time 

interval representing 30 seconds, and time is indexed by t ϵ (0,1, 2,…, T). 

Exogenous parameters utilized in the model are shown in Table 2 to define 

the network characteristics.  

 

Table 2. Exogenous parameters for network 

Notation Parameter 

Length of analysis period T 

Capacity of link (i,j) Qij 

Length of link (i,j) Lij 

Maximum density of link (i,j) Kij 

Free flow speed of link (i,j) vij 

Congested wave speed of link (i, j) wij 

Cost of waiting per customer per unit time σw 

Cost in system per vehicle per unit time σv 

Number of parked vehicles at centroid i when t=0 pi(0) 

Demand originating from r to destination s at time t drs(t) 

Time interval used 30 secs 

 

2.3. Explanations on Constraints 

The number of vehicles in each link is considered an important decision 

variable in this TTM-DSO-DARP problem. In addition, other decision 

variables in this problem include the inflow and outflow for each link, the 
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number of passengers to keep waiting at each node and the outflow from each 

centroid. Decision variables in this problem are summarized, categorized, and 

presented in Table 3 below, and will be further elaborated in the latter parts 

of this thesis. 

 

Table 3. Decision variables 

Category Decision 
Variable 

Description 

Vehicle 𝑝𝑝j(t) Number of parked vehicles at 

centroid 

Vehicle 𝑛𝑛ij (t)/ nijf (t) / 𝑛𝑛ijc(t) Number of vehicles in each link 

Flow 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑘𝑘)/ 𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑘𝑘) Inflow/ outflow of traffic 

Flow 𝐹𝐹ijks (t) Continuous flow from (𝑖𝑖, 𝑗𝑗)  to 

(𝑗𝑗, 𝑘𝑘) 

Flow yrjS (t) Outflow from centroids 

Travelers ωr
s(𝑡𝑡) Waiting demand travelling to s 

from r 

Travelers ers(t) Number of travelers leaving r to s 

 

Based on TTM (Lighthill and Whitham, 1955), we define the number of 

vehicles in a link going to a specific destination s at each time instant t ϵ T 

as the number of vehicles within the full length of the link at time t between 

two nodes. This is represented by the sum of all inflow 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑘𝑘) subtracting 

outflow  𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑘𝑘)  for each time interval from 0 to t, going to a specific 

destination s. Therefore,  
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𝑛𝑛ij𝑠𝑠(t) = ��(𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑘𝑘) − 𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑘𝑘))

𝑠𝑠∈𝑍𝑍

𝑡𝑡

𝑘𝑘=0 

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

(1) 

 

Following this, the number of vehicles in each link will be the sum of vehicles  

in each link (i, j) regardless of destination s. 

 
𝑛𝑛ij (t) = �𝑛𝑛ij𝑠𝑠(t)

𝑠𝑠∈𝑧𝑧 

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

 

 

(2) 

 

Two conditions which provide boundaries for the number of vehicles: (1) the 

number of vehicles if the link is fully congested; that is, when the length of 

the link which is congested (𝐿𝐿𝑖𝑖𝑗𝑗𝑐𝑐 (t)) equals the length of the link (𝐿𝐿𝑖𝑖𝑗𝑗(t)), and 

(2) the number of vehicles if the link is fully non-congested; that is, when the 

length of the link which is free-flowing (𝐿𝐿𝑖𝑖𝑗𝑗
𝑓𝑓 (i)) equals the length of the 

link (𝐿𝐿𝑖𝑖𝑗𝑗(t)), can be determined by TTM. As links in centroid connectors are 

defined to be unlimited in capacity with no constraint (that is 𝑄𝑄𝑖𝑖𝑗𝑗 = ∞ for (i, 

j) ϵ Az), only links belonging to A0 are considered. 

 
nijf (t) = � 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑘𝑘)

T

𝑘𝑘=�t−
Lij
vij
+1�

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [
Lij
vij
− 1,𝑇𝑇] 

(3) 

    

 
𝑛𝑛ijc(t) = KLij − � �𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑘𝑘)

𝑠𝑠∈𝑍𝑍

𝑇𝑇

𝑘𝑘=�t−
Lij
wij

+1� 

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [
Lij
wij

− 1,𝑇𝑇] 

(4) 
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The number of vehicles in a link, 𝑛𝑛ij (t) is constrained by two variables: (1) 

the number of vehicles when fully non-congested, nijf (t) and (2) the number 

of vehicles when fully congested, 𝑛𝑛ijc (t). Therefore,  

 𝑛𝑛ijf (t) ≤ 𝑛𝑛ij(t) ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(5) 

    

 
𝑛𝑛ij(t) ≤ 𝑛𝑛ijc(t) 

∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(6) 

 

At each immediate node that belongs to the ordinary nodes, the flow of 

vehicles has to obey the conservation of flow. Therefore, the sum of incoming 

traffic flow into node i must be equal to the sum of outgoing traffic flow out 

of node i at every time interval, t.  

 � �𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑗𝑗

−
= � �𝑈𝑈𝑗𝑗𝑘𝑘𝑠𝑠 (𝑡𝑡)

𝑠𝑠𝑠𝑠𝑍𝑍(𝑗𝑗,𝑘𝑘)𝑠𝑠Γ𝑗𝑗
+

 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧− 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(7) 

 

For the solution of the congested regime to be unique via TTM, the following 

conditions must hold: 

 �𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍

≤ 𝑀𝑀𝐴𝐴𝑀𝑀𝐹𝐹𝐿𝐿𝑀𝑀𝑀𝑀 − 1 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(8) 

    

 �𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍

≤ 𝑀𝑀𝐴𝐴𝑀𝑀𝐹𝐹𝐿𝐿𝑀𝑀𝑀𝑀 − 1 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(9) 

where 𝑀𝑀𝐴𝐴𝑀𝑀𝐹𝐹𝐿𝐿𝑀𝑀𝑀𝑀 =  𝐾𝐾𝑖𝑖𝑗𝑗𝑣𝑣𝑖𝑖𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗

𝑣𝑣𝑖𝑖𝑗𝑗+𝑤𝑤𝑖𝑖𝑗𝑗
. 
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To obtain a unique length of the congested regime, we have to prevent the 

total flow from reaching the critical point, equivalent to the highest flow in 

the triangular fundamental diagram used to formulate the KWM model. 

Bounding the dynamic maximum flow prevents maximum flow from 

occurring at any particular time at any place within the link such that there 

is a unique solution for TTM. 

 

To model the network in such a way that it is tractable via continuous flow, 

we define 𝐹𝐹ijk
s (t)  ϵ R+ as the vehicular flow from (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  to (𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴 

moving to 𝑠𝑠 ∈ 𝑧𝑧 during the time t. Therefore, for every incoming traffic flow,  

 

𝑈𝑈𝑗𝑗𝑘𝑘𝑠𝑠 (𝑡𝑡) = � 𝐹𝐹ijks (t)
(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑗𝑗

−
 

∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧− 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(10) 

 

and every outgoing traffic flow,  

 

𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡) = � 𝐹𝐹ijks (t)
(𝑗𝑗,𝑘𝑘)𝑠𝑠Γ𝑗𝑗

+

 

∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧− 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(11) 

 

We now define flow and parking behaviour at centroids. We further define 

yrjs (t) as the outflow from centroids, r to ordinary nodes, j where r ϵ z and (r, 

j) ϵ Az. As such, the outflow from centroid i must be equal to the incoming 

traffic flow into centroid link (i, j). 
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𝑦𝑦𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡) = 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡) 

∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧+ 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

(12) 

 

For simplicity, we assume that 
Lij
vij

= 1 for centroid connectors in 𝐴𝐴𝑧𝑧− or 𝐴𝐴𝑧𝑧+. 

Thus, incoming traffic flow into link (i,j) ϵ 𝐴𝐴𝑧𝑧− 𝑜𝑜𝑜𝑜 𝐴𝐴𝑧𝑧+ requires a time interval 

of only 1 to exit the centroid link: 

 

𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡 + 1) = 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡) 

∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧− ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

(13) 

 

Parking behaviour is modelled at the centroids. We define pj(t) ϵ R+ as the 

number of parked vehicles at 𝑗𝑗 ∈ 𝑧𝑧 at time t. Then, pj(t) changes through the 

relationship 

 𝑝𝑝j(t + 1) = 𝑝𝑝j(t) + � 𝑉𝑉𝑚𝑚𝑗𝑗
𝑗𝑗 (𝑡𝑡)

(𝑚𝑚,j)∈Γ𝑗𝑗
−

− � �𝑦𝑦𝑗𝑗𝑘𝑘𝑠𝑠 (𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍(𝑗𝑗,𝑘𝑘)𝑠𝑠Γ𝑗𝑗

+

 

 

∀𝑗𝑗 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

 

(14) 

 

Entry is not allowed to vehicles in any centroid connector (𝑖𝑖, 𝑗𝑗) ϵ 𝐴𝐴𝑧𝑧− unless 

their final destinations corresponds to the respective centroid. As such,  

 

𝐹𝐹ijks (t) = 0 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴𝑧𝑧− 

∀(𝑖𝑖, 𝑗𝑗) ∈ Γ− 

∀𝑠𝑠 ≠ 𝑘𝑘 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(15) 

 

Upon reaching a centroid, a vehicle returns to the state of being parked. 
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These vehicles are not allocated any demand to satisfy at that point in time 

and are parked at the centroid for the time being. A vehicle that leaves a 

centroid goes to any one of the other centroids apart from itself. Thus, the 

number of parked vehicles at 𝑖𝑖 provides a bound on the amount of outgoing 

flows at i by: 

 

� �𝑦𝑦𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑖𝑖

+

≤ pi(t) 

∀𝑖𝑖 ∈ 𝑧𝑧 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(16) 

 

The model is assumed to have all vehicles parked at the beginning and at the 

end of the time horizon. Therefore, the number of vehicles in all links at t = 

0 and t = T will be equal 0; thus 

 
𝑛𝑛ij(0) = 0 

∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

 

(17) 

 
𝑛𝑛ij(T) = 0 

∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

 

(18) 

 

The number of vehicles parked at t = 0 has to be the same as that at t = T 

(end of horizon). Thus 

 �pi
i∈Z

(0) = �pi(T)
i∈Z

 

 

 (19) 

 

pi(0) is taken as an exogenous variable that will be specified to indicate the 

number of SAVs initially parked at 𝑖𝑖  at the beginning of the model 

simulation. In addition, this is an important variable for planners in 

identifying the ample amount of vehicles so as to satisfy all demand with 
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minimum cost.  

 

We further define constraints to satisfy the conditions of DARP. We define 

the number of commuter-trip demand originating from r to s, with r, s ϵ z at 

time i as drs(t). As this problem tackles the morning commute/ last-mile 

problem, perfect information about demand is known beforehand. A vehicle 

would not be able to pick up a customer departing at t before the designated 

time t. Each person-trip demand corresponds to drs(t) vehicle trips; that is, 

one-person trip demand requires one vehicle to satisfy. We further define the 

number of serviced demands awaiting departure at r to travel to destination 

s as ωr
s(𝑡𝑡). Demand waiting at r to s, ωr

s(𝑡𝑡) is satisfied by vehicle trips 

starting at r going to s. Also, the number of travellers leaving to destination 

s at time t for each time t is defined as ers(t). 

 

With these variables, constraints are formulated to represent the movement 

of parked vehicles to satisfy each respective demand per time interval t. First, 

the number of customers leaving the depot cannot exceed the number of 

customers waiting: 

 

ers(t) ≤ ωr
s(𝑡𝑡) 

∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(20) 

 

The number of customers who can leave the depot cannot be more than the 

number of vehicles that are leaving the depot. 

 ers(t) ≤ � 𝑦𝑦𝑟𝑟𝑗𝑗s (𝑡𝑡)
(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑟𝑟+

 ∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(21) 
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The number of customers waiting at r going to s at each time interval t+1 

depends on the number of customers waiting at the time interval t, together 

with the fixed demand at time t, less the number of customers who are 

leaving: 

 
ωr
𝑠𝑠(t + 1) = ωr

s(t) + drs(t) − ers(t) 

 

∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

 

(22) 

 

In this way, the waiting demand that varies over time can be traced. 

However, it must be noted that even if there is no demand for trips, that is 

drs(t) = 0, there may be repositioning trips from other centroids. Waiting 

demand, which is inclusive of all demand, has to be satisfied when the time 

simulated ends; thus: 

 
ωr
s(𝑇𝑇) = 0 

∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

 

(23) 

 

It is important to note that even though demand is defined to be satisfied at 

the end of the simulated time, this may result in high waiting times over the 

time horizon. For example, a demand at time period 1, ωr
s(1) may be satisfied 

only at time period T–1 while still obeying the constraint. As such, 

minimizing the customer waiting time must be included in the objective 

function to create a more realistic scenario. 

 

As defined earlier, the number of travellers leaving the depot and the outgoing 
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flows from the centroids are constrained to be more than or equal to 0. 

 

yrjS (t) ≥ 0 

∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀(𝑜𝑜, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧+ 

∀𝑡𝑡 ∈ [0,  𝑇𝑇] 

(24) 

    

 
ers(t) ≥ 0 

∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,  𝑇𝑇] 

(25) 

 

In addition, given the number of vehicles in each link, the length of the 

congested regime 𝐿𝐿𝑖𝑖𝑗𝑗𝑐𝑐 (t) at every point in time can be approximated via the 

following equation through the fixed-point principle below: 

 

 
𝐿𝐿𝑖𝑖𝑗𝑗𝑐𝑐 (t) =

𝑛𝑛ij(t) −  𝑛𝑛ijf (t)
𝑛𝑛ij𝑐𝑐(t) − 𝑛𝑛ijf (t)

𝐿𝐿𝑖𝑖𝑗𝑗 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 
∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(26) 

 

2.4. Objective Function 

The objective function can be split into two parts. The first objective was to 

minimize the cost of the waiting time of customers such that customers will 

not have to wait for a long time between their required set-off time and the 

actual time of departure. Minimizing the waiting time of customers also 

corresponds to maximizing vehicle departures and thus inflow of vehicles at 

the centroids. For each time interval that each customer wait, a homogenous 

cost is assumed to be incurred, denoted by σw. As such, total waiting time 

cost per centroid r per destination s equals 𝜎𝜎𝑤𝑤𝜔𝜔𝑟𝑟𝑠𝑠. 
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Secondly, the total system cost corresponds to the cost per unit time usage 

𝜎𝜎𝑝𝑝, multiplied by the number of vehicles in the transport grid at any point in 

time. This is indicated by the total number of SAVs present in the system, 

less the number of vehicles parked at the centroids at any point in time. This 

is because the vehicles that are not parked at centroid i at time t are incurring 

costs as they are in transit from node to node, incurring operating costs in 

terms of carbon footprint and energy consumption. Therefore, any vehicle 

not parked is assumed to be incurring a cost of 𝜎𝜎𝑣𝑣 per unit time. This includes 

not only vehicles that are bringing passengers from origin to destination, but 

also repositioning trips wherein supply of vehicles in other centroids is 

insufficient to meet current demand. Even though this does not segregate 

demand-fulfilling trips with passengers and repositioning trips, travelling time 

of travellers still will be minimized by maximizing the number of parked 

vehicles at every time interval, which is an overestimation of actual travel 

times. Non-holding-back conditions (Shen et al., 2007), in which the system 

discharges as much flow as it can, is satisfied by this objective function.  

 

Combining these two parts wherein minimizing of (1) total waiting time cost 

of customers and (2) total system cost over specified time T, the optimization 

problem produces an optimal solution of route choice for the SAV routing 

problem. Thus, the objective function is 

 

 

Remarks: 

Minimize 
𝐶𝐶 = 𝜎𝜎𝑣𝑣���𝑝𝑝j(0)

𝑗𝑗𝑠𝑠𝑍𝑍

−�𝑝𝑝j(t)
𝑗𝑗𝑠𝑠𝑍𝑍

�
𝑇𝑇

𝑡𝑡=0

+ � �𝜎𝜎𝑤𝑤𝜔𝜔𝑟𝑟𝑠𝑠
𝑇𝑇

𝑡𝑡=0(𝑟𝑟,𝑠𝑠)𝑠𝑠𝑧𝑧2
 

 (27) 
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The movement of vehicles with respect to their O-D and route choices can 

be described wherein (1) routes begin at centroid z and (2) routes end at z. 

Parked vehicles located initially at z decrease in number according to the 

vehicles dispatched to satisfy demand, and when flow destined to some 𝑗𝑗 ∈ 𝑧𝑧 

arrives at centroid z, pi(t) is updated accordingly. Parked vehicles are allowed 

to relocate to other centroids to fulfill demand at those centroids when the 

number of vehicles at those locations is insufficient. Upon entering the 

network, every individual vehicle possesses a fixed destination, and flows 

behave according to TTM via the following constraints. In between link flows, 

𝐹𝐹ijk
s (t) behaves accordingly to inflow 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡) and outflow 𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡) traffic and is 

used as the optimization decision variable in the objective function. Route 

choice is decided by the inflow and outflow variables, and turning movement 

variables are specified similarly depending on destination, 𝑠𝑠 ∈ 𝑧𝑧. 

 

Another objective function given by the total system travel time (TSTT) can 

also be used to obtain an optimal solution, given by minimizing: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ ∑ ∑ 𝑛𝑛ij (t)𝑇𝑇
𝑡𝑡=0 + ∑ ∑ 𝜔𝜔𝑟𝑟𝑠𝑠𝑇𝑇

𝑡𝑡=0(𝑟𝑟,𝑠𝑠)𝑠𝑠𝑧𝑧2𝑠𝑠𝑠𝑠𝑍𝑍(𝑖𝑖,𝑗𝑗)𝑠𝑠𝜖𝜖∩(𝑗𝑗,𝑘𝑘)𝑠𝑠𝜖𝜖 . 

The number of vehicles in each link per unit time is a decision variable to 

determine the number of trips departing toward destination s along (𝑖𝑖, 𝑗𝑗) at 

time t, which also encapsulates both passenger carrying trips and empty trips. 

As the number of vehicles influences the objective value based on the 

constraints of the maximum number of vehicles in a link due to road capacity 

and congestion, only trips of repositioning or passenger carrying trips are 

taken when necessary. 
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2.5. Mathematical Formulation 

With the constraints and objective function presented above, we formulated 

the entire linear program as below. In addition, constraint 40 was added as 

outflow traffic from one node to another takes place only after the amount of 

time that vehicles can travel on roads without congestion has elapsed at the 

start of simulation. As such, the linear program is as follows: 

 

Objective: 

Minimize 

  

 

 
𝐶𝐶 = 𝜎𝜎𝑣𝑣���𝑝𝑝j(0)

𝑗𝑗𝑠𝑠𝑍𝑍

−�𝑝𝑝j(t)
𝑗𝑗𝑠𝑠𝑍𝑍

�
𝑇𝑇

𝑡𝑡=0

+ � �𝜎𝜎𝑤𝑤𝜔𝜔𝑟𝑟𝑠𝑠
𝑇𝑇

𝑡𝑡=0(𝑟𝑟,𝑠𝑠)𝑠𝑠𝑧𝑧2
 

   
(28) 

   

� �𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑗𝑗

−
= � �𝑈𝑈𝑗𝑗𝑘𝑘𝑠𝑠 (𝑡𝑡)

𝑠𝑠𝑠𝑠𝑍𝑍(𝑗𝑗,𝑘𝑘)𝑠𝑠Γ𝑗𝑗
+

 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧− 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(29) 

   

𝑛𝑛ij𝑠𝑠(t) = ��(𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑘𝑘) − 𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑘𝑘))
𝑠𝑠∈𝑍𝑍

𝑡𝑡

𝑘𝑘=0 

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

(30) 

   

𝑛𝑛ij (t) = �𝑛𝑛ij𝑠𝑠(t)
𝑠𝑠∈𝑧𝑧 

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

(31) 

   

nijf (t) = � 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑘𝑘)
T

𝑘𝑘=�t−
Lij
vij
+1�

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [
Lij
vij
− 1,𝑇𝑇] 

(32) 

   

𝑛𝑛ijc(t) = KLij − � �𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑘𝑘)
𝑠𝑠∈𝑍𝑍

𝑇𝑇

𝑘𝑘=�t−
Lij
wij

+1� 

 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑠𝑠 ∈ 𝑧𝑧 

(33) 
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∀𝑡𝑡 ∈ [
Lij
wij

− 1,𝑇𝑇] 

   

𝑛𝑛ijf (t) ≤ 𝑛𝑛ij(t) ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(34) 

   

𝑛𝑛ij(t) ≤ 𝑛𝑛ijc(t) ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(35) 

   

𝑈𝑈𝑗𝑗𝑘𝑘𝑠𝑠 (𝑡𝑡) = � 𝐹𝐹ijks (t)
(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑗𝑗

−
 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧− 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(36) 

   

𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡) = � 𝐹𝐹ijks (t)
(𝑗𝑗,𝑘𝑘)𝑠𝑠Γ𝑗𝑗

+

 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧− 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(37) 

   

𝐹𝐹ijks (t) ≥ 0 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(38) 

   

𝑝𝑝j(t + 1) = 𝑝𝑝j(t) + � 𝑉𝑉𝑚𝑚𝑗𝑗
𝑗𝑗 (𝑡𝑡)

(𝑚𝑚,j)∈Γ𝑗𝑗
−

− � �𝑦𝑦𝑗𝑗𝑘𝑘𝑠𝑠 (𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍(𝑗𝑗,𝑘𝑘)𝑠𝑠Γ𝑗𝑗

+

 

 

∀𝑗𝑗 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

 

(39) 

   

𝐹𝐹ijks (t) = 0 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 ∪ 𝐴𝐴𝑧𝑧+ 

∀(𝑗𝑗, 𝑘𝑘) ∈ Γ𝑗𝑗+ 

∀𝑠𝑠 ∈ 𝑧𝑧 

(40) 
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∀𝑡𝑡 ∈ [0,
Lij
vij
− 1] 

 

   

𝐹𝐹ijks (t) = 0 

∀(𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴𝑧𝑧− 

∀(𝑖𝑖, 𝑗𝑗) ∈ Γ𝑗𝑗− 

∀𝑠𝑠 ≠ 𝑘𝑘 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(41) 

   

� �𝑦𝑦𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑖𝑖

+

≤ pi(t) 

 

∀𝑖𝑖 ∈ 𝑧𝑧 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(42) 

   

𝑦𝑦𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡) = 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡) ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧+ 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

 

(43) 

   

𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡 + 1) = 𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡) ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧− ∪ 𝐴𝐴𝑧𝑧+ 

∀𝑠𝑠 ∈ 𝑧𝑧 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

 

(44) 

   

�pi
i∈Z

(0) = �pi(T)
i∈Z

 

 

 (45) 

   

ers(t) ≤ ωr
s(𝑡𝑡)  

 

∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(46) 
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ers(t) ≤ � 𝑦𝑦𝑟𝑟𝑗𝑗s (𝑡𝑡)
(𝑖𝑖,𝑗𝑗)𝑠𝑠Γ𝑟𝑟+

       
∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(47) 

   

ωr
𝑠𝑠(t + 1) = ωr

s(t) + drs(t) − ers(t) 

 

∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,𝑇𝑇 − 1] 

 

(48) 

   

�𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍

≤ 𝑀𝑀𝐴𝐴𝑀𝑀𝐹𝐹𝐿𝐿𝑀𝑀𝑀𝑀 − 1 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(49) 

   

�𝑉𝑉𝑖𝑖𝑗𝑗𝑠𝑠(𝑡𝑡)
𝑠𝑠𝑠𝑠𝑍𝑍

≤ 𝑀𝑀𝐴𝐴𝑀𝑀𝐹𝐹𝐿𝐿𝑀𝑀𝑀𝑀 − 1 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴0 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(50) 

   

ωr
s(𝑇𝑇) = 0 ∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

 

(51) 

   

𝑛𝑛ij(0) = 0 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

 

(52) 

𝑛𝑛ij(T) = 0 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

 

(53) 

𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠 (0) = 0 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

∀𝑠𝑠 ∈ 𝑧𝑧 

 

(54) 

yrjS (t) ≥ 0 ∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀(𝑜𝑜, 𝑗𝑗) ∈ 𝐴𝐴𝑧𝑧+ 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(55) 

   

ers(t) ≥ 0 ∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑧𝑧2 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

(56) 
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Chapter 3: Computational Experiments 

3.1. Test Network 

Figure 2 shows the grid network used to conduct experiments on the 

mathematical formulation developed in Chapter 2. This network is similar to 

past studies conducted by Levin et al. (Levin, 2017) and Duell et al. (Duell 

et al., 2016) on DTA formulations.  

 

The network consists of four centroids, representing origins and destinations, 

as well as depots where vehicles are parked. Each centroid is connected to 

the grid network by a centroid connector, with the grid network consisting of 

13 ordinary nodes. All links are bidirectional, and the exogenous parameters 

used in our simulation are stated in Table 4.  

Figure 2: Grid network with 4 centroids 

A 

 B C 

D 
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Table 4. Assigned data values 

Parameters Notation Value [unit] 

Capacity of link (i,j) Qij 6 

Length of link (i,j) Lij 0.5 [miles] 

Free flow speed of 

link (i,j) 
vij 30 [Mph] 

Congested wave 

speed of link (i, j) 
wij 15 [Mph] 

Cost of waiting per 

customer per unit 

time 

σw 1 [$] 

Cost in system per 

vehicle per unit time 
σv 1 [$] 

Number of vehicles 

parked at depot i at 

beginning of 

simulation 

pi(0) 3000 

Person-trip demand 

leaving from r 

towards at time t  drs(t) 

Peak Hour Demand 
A - D: 1639 
D – A: 139 
B – C: 1340 
C – B: 290 

Time interval used - 30 [seconds] 

Length of analysis 

period 
T 80 [time intervals] 
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For each scenario, demand was chosen to be over 20 time intervals, with 

default simulation time set to T= 80, resulting in an additional 60 time 

intervals to allow all O-D pairs to be satisfied. Each time interval represented 

30 seconds, thus accounting for 10 minutes of demand and 30 minutes of 

simulation. (The objective function maximized the total number of parked 

vehicles at any point in time, minimizing the travel time taken for each SAV 

to fulfil its route to satisfy the respective demand at each point in time). 

Peak hour demand was used to test the model, wherein demands was set to 

extremely high values such that the number of trips exceeded the capacity of 

network at 100% demand and were not distributed proportionately such that 

SAVs had to make repositioning trips to other centroids to satisfy demand 

at that point. The linear program proposed above produces an optimal 

solution that balances waiting time and vehicle travel time. Even though 

waiting time can be reduced by discharging as many vehicles into the network 

as possible, this results in congestion in the network and thus increases vehicle 

travel time. Since the model is a linear program, it produces a solution that 

is not only a local optima but also a global optimum. However, recent 

research (Shen and Zhang, 2014) has shown that high dimensionality, system-

optimal DTA may have numerous solutions in which the optimal objective 

function value is the same but queue distribution and route choice is different 

in each solution. As such, path flows are nonunique, reducing the difficulty 

in finding a system optima solution. Because the problem is formulated such 

that a system- optimal path is found, any optimal solution is sufficient. Since 

this formulation is the first of its kind (to this author’s knowledge), 

comparison of results with previous works were not possible. The linear 
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programming formulation was implemented in IBM CPLEX 12.8.0 using an 

Intel i7-3720QM CPU clocked at 2.6GHz with 16GB RAM.  

3.2. Comparison with Static Traffic Assignment Formulation 

To assess the performance of this formulation, we modify the above TTM 

linear programming formulation to obtain a non-system optimal DTA 

solution, that is the static traffic assignment (STA) solution. This assumes 

that demand is satisfied as soon as it appears; that is, there is no waiting 

time for customers at the centroids. This also means that all departing 

vehicles will be associated with demand present at that point in time. This 

provides a user optimal solution but not system optimal. Customers’ choices 

are based on their myopic decisions rather than anticipating the traffic 

condition along the route so as to minimize actual experienced travel time. 

A similar formulation was done by Ziliaskopoulos et al. (2000), but our 

formulation differs by implementing TTM instead of CTM with multiple 

destinations. Therefore, we replace constraints 38, 43 through 46 and 55 

through 56 with the following constraint: 

 

� 𝑦𝑦𝑟𝑟𝑗𝑗s (𝑡𝑡)
(𝑟𝑟,𝑗𝑗)𝑠𝑠Γ𝑟𝑟+

= drs(t)      ∀(𝑜𝑜, 𝑠𝑠) ∈ 𝑍𝑍 

∀𝑡𝑡 ∈ [0,𝑇𝑇] 

 

(56) 

At the time when demand is present, the system chooses the most optimal 

route choice based on current road conditions; that is, there is no balance 

between delaying departure, taking into account the congestion that will be 

resulted from releasing an additional vehicle into the system. As a 

consequence, paths become congested. This produces the lower bound for 



39 

 

TSTT for each particular demand scenario, presenting a basis for comparison. 

Furthermore, this formulation also illustrates the case in which only personal 

vehicles are present on the road, and each traveller determines his/her 

departure time based on personal preference without concern that his/her 

decision will affect road conditions; that is, the optimal solution found is a 

user equilibrium optimal but not system optimal. 

3.3. Experiments 

To evaluate the performance of the TTM-DSO-DARP linear programming 

formulation, we varied different important parameters such as demand, fleet 

size, and number of time intervals to observe its effect on the decision 

variables. All departing vehicles depend on the number of person-trips, and 

the optimal solution depends on the trade-off between time spent waiting to 

depart from the depot and the time spent in travelling (with and without 

congestion).  

 

The number of vehicles on the road affects the level of congestion; this in 

turn relates to the amount of demand of travelers going from centroid to 

centroid. As such, using the TTM-DSO-DARP model, we study the impact 

of different levels of demand on the service levels and time taken to travel. 

Experiments ranging from 10% of total demand to 100% of demand were 

used. The number of SAVs in the entire system was set to 1,720, half the 

number of trips for the 100% demand scenario, and the start of the simulation 

was done with all SAVs split equally between the four centroids. 
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3.3.1. Effects of Change in Demand on Utilization Rate 

First, in Figure 3, the straight line indicates the total number of SAVs that 

are available, which was fixed at 1720 for all cases. All available SAVs were 

not used even though demand exceeded the total amount of SAVs available. 

Figure 3 shows that as demand increased, the number of SAVs used increased 

less than proportionately. It can be deduced that there is a limit on the 

number of SAVs that can be used based on the traffic network, and it was 

suboptimal to utilize all SAVs available due to an increase in congestion, in 

turn increasing travel time by travelers. Thus, this model can be used in the 

planner’s perspective, to be able to identify the optimal number of SAVs such 

that there is no oversupply of vehicles leading to increased cost. 

 

 

Figure 3. Effects of demand on number of SAVs used 
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By dividing the demand by fleet size, we can obtain the average demand 

fulfilled per SAV. The result suggests that results in the previous literature 

(Fagnant and Kockelman, 2014), wherein each SAV can replace 11 personal 

vehicles may not be optimal due to other considerations such as the demand 

and the road network. Increasing the number of SAVs in the network may 

do more harm than good, considering the negative impacts that may arise 

due to congestion. 

3.3.2. Effects of Change in Demand on VMT 

Average VMT per passenger increased with demand as seen in Figure 4 for 

the case of the TTM-DSO-DARP model. For the STA model, average vehicle 

miles per commuter were constant as each dispatch was based on the user 

optimal route choice, regardless of demand at any point in time. Vehicle miles 

traveled per passenger increased as vehicles took less direct routes where 

overall traveling cost was significantly less than if extended traveling time 

were spent in traffic congestion. However, vehicle miles traveled increased 

initially but decreased after a certain point of demand. This could be due to 

demand increasing leading to immediate trip chaining by the SAVs, resulting 

in a less need to carry out repositioning trips while satisfying demand on 

short notice. 
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Figure 4. Effects of demand on VMT 
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Figure 5. Effects of demand on waiting time, vehicle travel time 
and total travel time 
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time increased exponentially as demand increased. At low demand, TSTT of 

the STA formulation was lower than the vehicle travel time per passenger of 

this thesis’s model, but at 70%, it exceeded that of this model. This was 

because departing vehicles of the STA formulation only considered each of 

their instantaneous travel times but not foresee the traffic conditions in the 

future. Even though with low demand, the STA formulation performed better 

with lower TSTT, but in the case of a morning commute/last mile service, 

where demand is expected to be many times greater, the STA formulation 

will perform badly. Even though overall TSTT of this thesis’s model is larger 

than that of the STA formulation, most of the time is spent waiting. This 

implies that customers do not have to waste time stuck in the vehicle 

commuting, but instead while waiting, customers have the ability to continue 

doing other things, maximizing their time instead of being constrained in a 

vehicle.   

3.3.4. Effects of Change in Fleet Size on Total Travel Time 

We further investigated the effect of fleet size on the average waiting time 

per passenger, the average vehicle travel time per passenger, and the average 

TSTT per passenger. Demand was kept at a constant level of 100%, utilizing 

the high-demand scenario. Figure 6 reflects the result. At a fleet size of 800, 

the average TSTT per passenger was 15 minutes. The average vehicle travel 

time per passenger stayed relatively constant even though fleet size decreased, 

but average waiting time per passenger—thus average TSTT per passenger—

increased by a power function as fleet size decreased. This is due to the 
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increase in repositioning trips that are required to satisfy demand at the 

respective nodes caused by a lack of supply of SAVs. 

 

Figure 6. Effects of fleet size on average waiting time, vehicle 
travel time and TSTT 
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demand over 20 time intervals with the length of analysis period set to 80 

time intervals was used. 

 

In the experiments for the peak hour demand at default settings, 100% 

demand is satisfied within 832 seconds in the grid. Varying the time 

intervals changes the time domain for each run, leading to changes in 

computational time. This is shown in Table 5, noting the impact of 

different time intervals with respect to TTM. 

 

Table 5. Effects of number of time intervals on computational 

time and complexity 

Time 
intervals 

Preparatio
n Time  

Run Time 
Number of 
Constraints 

Number of 
Variables 

60 0.36 secs 3 mins 41 secs 134,390 103,213 

70 0.47 secs 9 mins 14 secs 156,230 120,133 

80 0.53 secs 13 mins 52 secs 178,069 137,053 

90 0.62 secs 20 mins 21 secs 199,910 153,973 

100 0.7 secs 25 mins 26 secs 221,750 170,893 
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Figure 7. Effects of number of time intervals (T) on 
computational time 

 

 

Figure 8. Effects of number of time intervals (T) on number of 
variables and constraints 
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The amount of time taken to create the grid network of TTM, including 

processing of data from the input file and generating the abstract models with 

constraints, variables, and parameters, increases linearly as number of time 

intervals increases. This includes processing the data file and .xlsx 

spreadsheet and defining a model instance with constraints, objective 

function, variables, and parameters. Figure 7 depicts the linear relationship 

between increasing the number of time intervals in the model with the 

computational time, while similarly Figure 8 shows that the number of 

variables and number of constraints also increases linearly with respect to 

time. This is not surprising as the model is constructed in such a way that 

each link (𝑖𝑖, 𝑗𝑗) records the number of vehicles based on the inflow and outflow 

per unit time. Inflow and outflow of each link is further segregated into its 

respective final destinations, denoting each turning proportion and then 

defining each choice of route. Therefore, not only is each link defined by its 

link index; it is defined by the destinations in the model for each time interval, 

that is, the centroids, resulting in a linear increase as seen from the graph. 

As such, the user has to take these factors into consideration. 
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Chapter 4: Conclusions 

This thesis tackled two main issues commonly found in SAV routing problems: 

(1) how to represent traffic flow within the system grid and (2) how to satisfy 

demand with vehicle supply. This novel linear programming formulation 

presented a way to incorporate TTM together with DARP to satisfy the 

demand of passengers’ O-D pairs while factoring in the problem of congestion 

in the traffic flow if there are too many vehicles in the system. This 

anticipates that sooner or later, smart city proposals will aim to replace 

privately owned vehicles with electric SAVs to tackle the problems of 

environmental pollution and increasing population. This formulation is able 

to depict the queue lengths evolution through time and space within each 

link, providing a useful tool for transportation planners who will optimize 

autonomous routing problems in the future. Morning commute/last-mile 

demand is assumed in this study, while dynamic demand can be further used 

to expand the model in the future. 

 

Experiments were carried out and solved to optimality based on several 

scenarios to test the feasibility and performance of the model. Distribution of 

demand, fleet size, and total time period length of simulation runs were some 

of the factors that were found to make a significant impact in the model. The 

repositioning trips that were necessary to compensate for the lack of vehicles 

at any centroid contributed to the increase in waiting time of passengers. In 

this way, it is important that transportation planners identify the ground 

situation and make necessary arrangements before the peak hour start, such 
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as moving SAVs to hot zones beforehand. This will reduce each customer’s 

travel time, improving efficiency and customer satisfaction levels. 

 

As this linear program is a large-scale linear programming problem, we have 

carried out case studies to illustrate the performance of this model. 

Computation time increases linearly as the size of the network increases. 

Complexity of the model including the number of constraints and the number 

of variables increases linearly with time intervals. TTM is able to depict the 

conditions within links closer to real-life scenarios and thus provide us with 

a more optimal solution. 

 

However, there are limitations to this formulation. The usage of TTM in 

depicting traffic flow implies that an assumption is made about the location 

of the congestion; that is, it occurs only at the exit of the link, propagating 

upstream. The link is assumed to have uniform capacity throughout, such 

that given the case where there is a change in the number of lanes of the 

road, the link has to be subdivided into two links before TTM can be used 

to model traffic flow. Special care has to be taken to ensure that actual 

scenarios are modeled accurately. Furthermore, TTM is not able to depict 

the case of a double shockwave, wherein a temporary bottleneck occurs 

between the upstream node and downstream node; that is, the regimes 

alternate via the order—free flow, congested, and free flow within a single 

link. Along the same line, the model is not able to deal with multiclass 

vehicles and moving bottlenecks. As such, unexpected phenomena such as 

random accident occurrences are unable to be captured in this model. 
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Nevertheless, not only does this formulation provide a parsimonious depiction 

of traffic dynamics; it also incorporates DARP to provide a shared 

autonomous transportation service by satisfying multiple O-D pairs. 

Although the proposed framework applies to only an O-D network without 

ridesharing, it plays an important role in future SAV network implementation 

and planning and paves the way for future work such as developing heuristics 

and further development involving larger-scale networks and traffic control 

abilities for computing a dynamic user equilibrium.  
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국문초록 

공유 자율주행 차량 서비스를 활용한 최적 교통 경로 문제 

 

본 연구는 네트워크 내 교통 흐름 혼잡을 고려하는 공유 자율주행 차량 

경로문제(Shared Autonomous Vehicle Routing Problem)를 다루고 있다. 

이 문제는 향후 자율주행차가 개인 소유의 차를 대체할 것이라는 관점에서 

시작되었다. 효율적인 공유 서비스를 제공하기 위해, 기존의 다이얼 어 

라이드(Dial-A-Ride) 문제에 출발지와 도착지 간의 수요를 만족하도록 하는 

교통 흐름 모델을 결합해 최적의 교통 할당 문제를 제안한다. 거시적인 교통 

흐름은 네트워크 각 링크에 유입 및 유출을 활용한 이중 체제 전송(Two 

Regime Transmission) 모델을 활용한다. 혼잡으로 인한 제약들로 인해 

수요 및 차량 크기와 관계없이 최적의 해에서는 최대 차량 수가 활용되고 

있음을 보여준다. 또한, 피크 교통 시간대에서는 수요에 따른 최적의 교통 

할당과 차량 크기를 얻어 교통 혼잡에 활용할 수 있다. 

 
 
 
 
 
주요어: Two Regime Transmission Model, DARP, Shared Autonomous 

Vehicles, Morning Commute, Last Mile 

학번: 2017-20583 
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Appendix 

i) IBM CPLEX ILOG Linear Programming Code 

/********************************************* 
 * OPL 12.8.0.0 Model 
 * Author: blzm 
 *********************************************/ 
/*************************************************************************
***** 
 * DATA DECLARATIONS 
**************************************************************************
****/ 
range NODES = 1..17; 
{int} CENTROIDS = {1,2,3,4}; 
int T = 50; 
int A[NODES][NODES] =...;// !binary code of ALL present arcs 
int A0[NODES][NODES] =...;// ofal integer !binary code of arcs without 
centroids 
int AZP[NODES][NODES] =...;// of integer !binary code of arcs with 
centroids to normal 
int AZN[NODES][NODES] =...;// of integer !binary code of arcs with normal 
to centroids  
float L[NODES,NODES] =...;//length 
float Q[NODES][NODES] =...;//capacity 
float W[NODES][NODES] =...;//congested wavespeed 
float K = ...;//jam density 
tuple fromtotime { 
 key int fromcentroid; 
 key int tocentroid; 
 key int time; 
} 
float sigmaV = 1; 
float sigmaW = 1; 
{fromtotime} FromToTime with fromcentroid in CENTROIDS, tocentroid in 
CENTROIDS =...; 
int DD[FromToTime]=...; 
int TimeforWholeLinkFree = ftoi(ceil(L[i,j]/V[i,j])); 
int TimeforWholeLinkCong = ftoi(ceil(L[i,j]/W[i,j])); 
 
float MAXFLOW = (K*0.25*0.125)/(0.25+0.125); 
/*************************************************************************
***** 
 * DECISION VARIABLES 
 
**************************************************************************
****/ 
dvar float+ NO[NODES,NODES, 0..T]; 
dvar float+ NC[NODES, NODES, 0..T]; 
dvar float+ NF[NODES, NODES,0..T]; 
dvar float+ NOS[NODES, NODES, CENTROIDS, 0..T]; 
dvar float+ y[CENTROIDS][NODES][CENTROIDS][0..T]; 
dvar float+ P[CENTROIDS][0..T]; //number of vehicles at each centroid 
dvar float+ F[NODES,NODES,NODES, CENTROIDS, 0..T]; 
dvar float+ E[CENTROIDS,CENTROIDS, 0..T];//number of travelers departing r 
to s  
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dvar float+ OM[CENTROIDS, CENTROIDS, 0..T];//number of waiting travellers 
dvar float+ U[NODES, NODES, CENTROIDS, 0..T]; 
dvar float+ V[NODES, NODES, CENTROIDS, 0..T]; 
 
dexpr float objective = sigmaV*sum(i in CENTROIDS, t in 0..T) (P[i,0]- 
P[i,t]) + sum( r, s in CENTROIDS, t in 0..T) sigmaW*OM[r,s,t]; 
minimize objective;  
 
subject to { 
 
  C1: 
   forall(i,j in NODES, s in CENTROIDS, t in 
0..T:A0[i,j]==1) 
   NOS[i,j,s,t] == sum( k in 0..t) (U[i,j,s,k]- 
V[i,j,s,k]); 
  C2: 
   forall(i,j in NODES, t in 0..T:A0[i,j]==1) 
      NO[i,j,t] == sum(s in CENTROIDS) 
NOS[i,j,s,t]; 
  C3: 
   forall(i,j in NODES, t in TimeforWholeLinkCong-
1..T:A0[i,j]==1) 
     NC[i,j,t] ==97 - sum(s in CENTROIDS, m in t-
TimeforWholeLinkCong+1..t) V[i,j,s,m]; 
  C4: 
   forall(i,j in NODES, t in TimeforWholeLinkFree-
1..T:A0[i,j]==1) 
     NF[i,j,t] == sum(s in CENTROIDS, m in t-
TimeforWholeLinkFree+1..t)  U[i,j,s,m]; 
  C5: 
   forall(i,j in NODES, t in 0..T:A0[i,j]==1) 
     NO[i,j,t] <= NC[i,j,t];  
  C6: 
   forall(i,j in NODES, t in 0..T:A0[i,j]==1) 
     NF[i,j,t] <=NO[i,j,t]; 
  C7: 
   forall(s in CENTROIDS, j in NODES, t in 0..T) 
     sum(i in NODES:A0[i,j]==1||AZP[i,j]==1) V[i,j,s,t] 
== sum(k in NODES:A0[j,k]==1||AZN[j,k]==1) U[j,k,s,t]; 
  C8: 
   forall(j,k in NODES,s in CENTROIDS, t in 
0..T:A0[j,k]==1||AZN[j,k]==1) 
     U[j,k,s,t] ==  sum(i in 
NODES:A0[i,j]==1||AZP[i,j]==1)F[i,j,k,s,t];   
  C9: 
   forall(i,j in NODES, s in CENTROIDS, t in 
0..T:A0[i,j]==1||AZP[i,j]==1) 
     V[i,j,s,t] == sum(k in 
NODES:AZN[j,k]==1||A0[j,k]==1)F[i,j,k,s,t];      
  C10: 
   forall(i,j,k in NODES, s in CENTROIDS, t in 
0..T:A[i,j]==1 && A[j,k]==1) 
     F[i,j,k,s,t] >= 0; 

C11: 
   forall(i,j,k in NODES, s in CENTROIDS, t in 0.. 
TimeforWholeLinkFree-1:A0[i,j]==1 && AZP[i,j]==1 && A[j,k]==1) 
     F[i,j,k,s,t] == 0; 
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  C12:  
      forall(i in NODES, j in CENTROIDS, t in 0..T-1:AZN[i,j]==1)
    
      P[j, t+1] == P[j,t] + V[i,j,j,t] - sum(k in 
NODES,s in CENTROIDS: AZP[j,k]==1)y[j,k,s,t]; 
  C13: 
       forall(i, j, k in NODES, s in CENTROIDS, t in 
0..T:A[i,j]==1 && AZN[j,k]==1 && s!=k)  
         F[i,j,k,s,t] == 0;       
  C14: 
    forall(t in 0..T, i in CENTROIDS) 
           sum(j in NODES: (AZP[i,j]==1))( sum(s in CENTROIDS) 
y[i,j,s,t]) <= P[i,t]; 
  C15: 
      forall(i,s in CENTROIDS,j in NODES, t in 0..T-1: 
(AZP[i,j]==1)) 
         y[i,j,s,t] == U[i,j,s,t];      
  C16: 
        forall(i, j in NODES, s in CENTROIDS, t in 0..T-1: 
AZN[i,j]==1||AZP[i,j]==1) 
             V[i,j,s,t+1] == U[i,j,s,t]; 
  C17: 
         sum(i in CENTROIDS) P[i,0] == sum(k in CENTROIDS) P[k,T];    
      C18: 
      forall(r,s in CENTROIDS, t in 0..T) 
        E[r,s,t] <= OM[r,s,t]; 
    C19: 
     forall(r,s in CENTROIDS, t in 0..T) 
         E[r,s,t] <=   sum(j in NODES: (AZP[r,j]==1))  
y[r,j,s,t]; 
    C20: 
      forall(r,s in CENTROIDS, t in 0..T-1: r!=s) 
         OM[r,s,t+1] == OM[r,s,t] + DD[<r,s,t>] - 
E[r,s,t]; 
     C21:   
   forall(i, j in NODES, t in 0..T:((A0[i,j]==1)))    
      sum(s in CENTROIDS) V[i,j,s,t] <= MAXFLOW-1;  
   C22: 
      forall(i, j in NODES, t in 0..T:((A0[i,j]==1)))  
          sum(s in CENTROIDS) U[i,j,s,t] <= MAXFLOW-1;   
     C23: 
      forall(r,s in CENTROIDS) 
         OM[r,s, T] == 0;   
   C24: //terminating condition 
       forall( i,j in NODES:A[i,j]==1) 
            NO[i,j,T]==0;  
    C25: //terminating condition 
       forall( i,j in NODES, s in CENTROIDS:A[i,j]==1) 
            U[i,j,s,T]==0;   
     C26: 
      forall(i,j in NODES, s in CENTROIDS:A[i,j]==1) 
           V[i,j,s,T]==0; 
       C27: 
       forall(r,s in CENTROIDS ,j in NODES, t in 0..T: 
(AZP[r,j]==1))  
             y[r,j,s,t]>=0; 
      C28: 
           forall(r,s in CENTROIDS, t in 0..T)  
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                 E[r,s,t]>=0; 
     C29: 
         forall(i,j in NODES, s in CENTROIDS, t in 
0..TimeforWholeLinkFree-1 :(A[i,j]==1)) 
                 V[i,j,s,t] == 0;      
     C30: 
         forall(i,j in NODES, s in CENTROIDS, t in 
0..TimeforWholeLinkFree-1 :(A[i,j]==1)) 
                     U[i,j,s,t] == 0; 
     C31:// DECISION CONSTRAINT 
      P[1,0] == 430; 
    P[2,0] == 430; 
    P[3,0] == 430; 
   P[4,0] == 430; 
 }    
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ii) Two Regime Transmission Model Mathematical 
Proof 

 

A brief mathematical explanation of the two-regime transmission model will 

be presented. A more detailed explanation can be found in supporting papers 

in the bibliography.  

 

Let p(x,t) represent the traffic density and q(x,t) represent the flow of 

vehicles at time t and point x from the start of any link from A. Note that 

link index (i, j) has been dropped for simplicity but the following equations 

apply for all links in A. Speed is assumed to be solely dependent on total 

density along each link. Based on the LWR model, density and flow are 

related by the following equation: 

𝜕𝜕𝑝𝑝
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 

Then, based on definition, flow at length 0 corresponds to inflow, U(t): 

𝜕𝜕(0, 𝑡𝑡) = 𝑈𝑈(𝑡𝑡) 

and flow at length 𝑙𝑙(total length) corresponds to outflow, V(t): 

𝜕𝜕(𝑙𝑙, 𝑡𝑡) = 𝑉𝑉(𝑡𝑡) 

Flow is a function of density via the equation: 

𝜕𝜕(𝜕𝜕, 𝑡𝑡) =  𝜑𝜑(𝑝𝑝(𝜕𝜕, 𝑡𝑡)) 

By assuming that φ(.) follows that of a triangular flow-density relationship, 

𝜕𝜕(𝜕𝜕, 𝑡𝑡) = 𝜑𝜑(𝑝𝑝) = �
𝑣𝑣𝑝𝑝, 0 ≤ 𝑝𝑝 < 𝐶𝐶;

𝑤𝑤(𝐾𝐾 − 𝑝𝑝), 𝐶𝐶 ≤ 𝑝𝑝 ≤ 𝐾𝐾  

where critical density, 𝐶𝐶 = 𝐾𝐾𝑤𝑤
𝑣𝑣+𝑤𝑤

 based on backward propagation congested 

speed, w and free-flow speed, v as shown by Figure A1. 
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Figure A1. Triangular flow-density relationship 
  

Based on Newell’s equation, where cumulative flow along a wave varies at a 

fixed rate depending on condition of traffic, we can find the density at the 

particular time by tracing back to an earlier time of a boundary location 

(start or end of the link): 

𝑝𝑝(𝜕𝜕, 𝑡𝑡) = �
𝑝𝑝(0, 𝑡𝑡 −

𝜕𝜕
𝑣𝑣

), 0 ≤ 𝑝𝑝 < 𝐶𝐶;

𝑝𝑝(𝑙𝑙, 𝑡𝑡 −
𝑙𝑙 − 𝜕𝜕
𝑤𝑤

), 𝐶𝐶 ≤ 𝑝𝑝 ≤ 𝐾𝐾
 

Combining the above equations, we can find the flow of the link depending 

on the densities via: 

𝜕𝜕(𝜕𝜕, 𝑡𝑡) = 𝜑𝜑(𝑝𝑝) = �
𝜑𝜑 �𝑝𝑝(0, 𝑡𝑡 −

𝜕𝜕
𝑣𝑣

)� = 𝑈𝑈(𝑡𝑡 −
𝜕𝜕
𝑣𝑣

), 0 ≤ 𝑝𝑝 < 𝐶𝐶;

𝜑𝜑 �𝑝𝑝(0, 𝑡𝑡 −
𝑙𝑙 − 𝜕𝜕
𝑤𝑤

)� = 𝑉𝑉(𝑡𝑡 −
𝑙𝑙 − 𝜕𝜕
𝑤𝑤

), 𝐶𝐶 ≤ 𝑝𝑝 ≤ 𝐾𝐾
 

 

There may be 4 different cases that can happen at any time instant t: 

1) Traffic begins at the start of the link when there are no vehicles at 

the downstream end. 

Fl
ow

, q

Density, p

Triangular flow-density relationship

C K0
0
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2) There is no congestion at any part of the link, i.e. the link is free-

flowing. This arises when 𝑉𝑉(𝑡𝑡) = 𝑈𝑈 �𝑡𝑡 − 𝑙𝑙
𝑣𝑣
�. 

3) The whole link is congested, i.e. when 𝑉𝑉 �𝑡𝑡 − 𝑙𝑙
𝑤𝑤
� = 𝑈𝑈(𝑡𝑡). 

4) Downstream end of link is congested while upstream is free as shown 

in the figure below, i.e. when 𝑈𝑈(𝑡𝑡) > 𝑉𝑉 �𝑡𝑡 + 𝑙𝑙
𝑣𝑣
� , where  

𝑙𝑙𝑓𝑓 represents the length of the free-flow regime and 𝑙𝑙𝑐𝑐 represents the 

length of the congested length of the link. This means that 𝑙𝑙 = 𝑙𝑙𝑓𝑓(𝑡𝑡) +

𝑙𝑙𝑐𝑐(𝑡𝑡). Refer to Figure 1. 

 

The number of vehicles in a link is defined as the sum of all outflow 

 𝑉𝑉(𝑘𝑘) subtracted by the sum of inflow 𝑈𝑈(𝑘𝑘) for each time interval from 0 to 

t, represented by: 

𝑛𝑛(t) = �𝑈𝑈(𝑘𝑘) − 𝑉𝑉(𝑘𝑘)
𝑡𝑡

𝑘𝑘=0 

 

which can also be defined based on the density p(x, t) as: 

𝑛𝑛(𝑡𝑡) =  � 𝑝𝑝(𝜕𝜕, 𝑡𝑡)𝑑𝑑𝜕𝜕
𝑙𝑙

0
 

By substituting the equations of density earlier above into the above equation, 

we obtain: 

𝑛𝑛(𝑡𝑡) = 𝑛𝑛𝑜𝑜𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑡𝑡𝑛𝑛𝑑𝑑 𝑜𝑜𝑛𝑛𝑛𝑛𝑖𝑖𝑟𝑟𝑛𝑛 + 𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑡𝑡𝑛𝑛𝑑𝑑 𝑜𝑜𝑛𝑛𝑛𝑛𝑖𝑖𝑟𝑟𝑛𝑛

=  
1
𝑣𝑣
� 𝑈𝑈 �𝑡𝑡 −

𝜕𝜕
𝑉𝑉
� 𝑑𝑑𝜕𝜕 + � 𝐾𝐾 −

1
𝑀𝑀
𝑉𝑉 �𝑡𝑡 −

𝜕𝜕
𝑀𝑀
�𝑑𝑑𝜕𝜕

𝑙𝑙𝑐𝑐(𝑡𝑡)

0

𝑙𝑙𝑓𝑓(𝑡𝑡)

0
 

We can obtain the number of vehicles at two extreme states of the link, 1) 

when the link is fully at free-flow speed: 
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nf (t) = � 𝑈𝑈(𝑘𝑘)
T

𝑘𝑘=�t−
Lij
vij
+1�

 

And 2) when the link is fully congested: 

𝑛𝑛c (t) = K𝑙𝑙 − � �𝑉𝑉(𝑘𝑘)
𝑇𝑇

𝑘𝑘=�t−
Lij
wij

+1� 

 

As such, the number of vehicles in the link is bounded by these 2 conditions: 

𝑛𝑛f (t) ≤ 𝑛𝑛(𝑡𝑡) ≤ nc (t) 

Inflow, U(t) and outflow, V(t) are bounded by the link capacity, given by: 

𝑈𝑈(𝑡𝑡) ≤
𝐾𝐾𝑣𝑣𝑤𝑤
𝑣𝑣 + 𝑤𝑤

 

𝑉𝑉(𝑡𝑡) ≤
𝐾𝐾𝑣𝑣𝑤𝑤
𝑣𝑣 + 𝑤𝑤

 

 

Given that  

𝑛𝑛(𝑖𝑖) =  lim
𝑡𝑡→(𝑖𝑖+1)−

1
𝑣𝑣
� 𝑈𝑈 �𝑡𝑡 −

𝜕𝜕
𝑉𝑉
�𝑑𝑑𝜕𝜕 + � 𝐾𝐾 −

1
𝑀𝑀
𝑉𝑉 �𝑡𝑡 −

𝜕𝜕
𝑀𝑀
�𝑑𝑑𝜕𝜕

𝑙𝑙𝑐𝑐(𝑡𝑡)

0

𝑙𝑙𝑓𝑓(𝑡𝑡)

0
 

and that U(t) and V(t) are steady, i.e. 

𝑈𝑈(𝑡𝑡) = 𝑈𝑈(𝑡𝑡 + 𝑖𝑖) = 𝑈𝑈(𝑖𝑖) 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉(𝑡𝑡 + 𝑖𝑖) = 𝑉𝑉(𝑖𝑖) 

then: 

𝑛𝑛(𝑡𝑡) ≈ 𝑙𝑙𝑐𝑐(𝑡𝑡) �𝐾𝐾 −
𝑈𝑈(𝑡𝑡)
𝑣𝑣

−
𝑉𝑉(𝑡𝑡)
𝑤𝑤

� +
𝑈𝑈(𝑡𝑡)𝑙𝑙
𝑣𝑣

 

Therefore, the length of the congested regime can be approximated as such: 

𝑙𝑙𝑐𝑐(𝑡𝑡) ≈
𝑛𝑛(𝑡𝑡) − 𝑈𝑈(𝑡𝑡)𝑙𝑙

𝑣𝑣
�𝐾𝐾 − 𝑈𝑈(𝑡𝑡)

𝑣𝑣 − 𝑉𝑉(𝑡𝑡)
𝑤𝑤 �
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A unique solution for the length of the congested regime can be found if the 

following conditions hold: 

𝑈𝑈(𝑘𝑘) < 𝐻𝐻 

 
∀𝑘𝑘 ∈ [𝑡𝑡 −

𝑙𝑙
𝑣𝑣

, 𝑡𝑡] 

𝑉𝑉(𝑘𝑘) < 𝐻𝐻 ∀𝑘𝑘 ∈ [𝑡𝑡 −
𝑙𝑙
𝑤𝑤

, 𝑡𝑡] 

where 𝐻𝐻 = 𝐾𝐾𝑣𝑣𝑤𝑤
𝑣𝑣+𝑤𝑤

. 

Further explanations can be found in Ngoduy et al. (2016). 
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