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Abstract

Financial Time Series Clustering: Obtaining
Long-Term Trends with Deep Embedding

Network

Hyungjin Ko

Department of Industrial Engineering

The Graduate School

Seoul National University

In the field of asset selection and portfolio, there are active researches on clustering

for various reasons. In recent years, there have been increasing cases of applying

machine learning and deep learning methodology to asset clustering studies. This

is because it is difficult to reflect insights such as long-term trends and patterns

reflected in high-dimensional image data by traditional correlation-based analysis.

Therefore, this thesis investigated how to clustering financial time series through

deep embedding network that is specialized for processing high-dimensional data

efficiently. It is shown that the existing algorithm is not suitable for the financial

time series data, and proposed algorithm can perform the clustering better than

the existing algorithm. In addition, we have clustered KOSPI data with the pro-

posed algorithm and determined the optimal number of clusters through various

performance measures. We also examined whether the insights trends inherent in

i



the actual high-dimensional images can be reflected in the clustering results. In ad-

dition, based on the results of this thesis, it can be shown that the actual effect of

incorporating the results of this study to the portfolio management by comparing

the performance measures of various portfolios with the benchmark results, in the

future works.

Keywords: Financial time series clustering, Asset clustering, Asset selection, Deep

embedding network, Deep learning, Long-term trends

Student Number: 2017-21537

ii



Contents

Abstract i

Contents v

List of Tables vi

List of Figures viii

Chapter 1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Motivation and Contribution . . . . . . . . . . . . . . . . . 3

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Related Work 8

2.1 Markowitz’s mean-variance Portfolio Theory . . . . . . . . . . . . . . 8

2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Deep Learning and Researches on Deep Embedding Clustering . . . 10

2.3.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Deep Auto Encoder . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Deep Embedding Clustering . . . . . . . . . . . . . . . . . . . 14

iii



2.4 Geometric Brownian Motion and Monte Carlo Simulation . . . . . . 16

2.4.1 Geometric Brownian Motion . . . . . . . . . . . . . . . . . . 16

2.4.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3 Data Description and Proposed algorithm 19

3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Toy Data: Simulated Financial Time Series Data from GBM 19

3.1.2 Real-Data: KOSPI data . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Data Preprocessing for Three Types of Data Set . . . . . . . 21

3.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Problems of existing algorithm . . . . . . . . . . . . . . . . . 24

3.2.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4 Experimental Results 29

4.1 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Experiments for First and Second Data Set(the number of custer = 2) 31

4.2.1 First Experiment for Toy Data . . . . . . . . . . . . . . . . . 31

4.2.2 Second Experiment for Real-Data . . . . . . . . . . . . . . . 32

4.2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 33

4.3 Experiment for Third Data Set(the number of custer ≥ 2) . . . . . . 35

4.3.1 Experiment for Third Data and Performance Evaluation . . . 35

4.3.2 Interpretation to Intuition in the Embedding . . . . . . . . . 35

Chapter 5 Conclusion 39

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



Bibliography 42

국문초록 47

v



List of Tables

Table 1.1 Numerical example of the problem of clustering analysis based

on historical return of the low-dimensional time series . . . . 5

Table 3.1 Explanation of three types of data for three experiments. . . 23

Table 3.2 Conditions for artificial segmentation of data . . . . . . . . . 24

Table 4.1 Basic statistics for each axis of embedding extracted from toy

data by existing and proposed algorithm . . . . . . . . . . . . 32

Table 4.2 Performance evaluation of existing and proposed algorithm . 34

Table 4.3 Performance evaluation of hierarchical clustering and proposed

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 4.4 Performance evaluation of proposed algorithm for third experi-

ment. Prepare three sets of data for monthly, weekly, and daily

time resolution of KOSPI data. And clustered them into a pro-

posed model and then obtained the performance measures for

each cluster number. . . . . . . . . . . . . . . . . . . . . . . . 37

vi



List of Figures

Figure 1.1 Image for two asset prices in the numerical example . . . . . 5

Figure 3.1 The stock price model data sampled by MC simulation based

on the GBM. (a) σ = 1% (b) σ = 5% (c) σ = 10% (d) σ = 30% 19

Figure 3.2 Daily closing price of four stocks in KOSPI for five years. (a)

SAMWHA CAPACITOR (b) HYUNDAI MOTOR SECURI-

TIES (c) KIA MOTORS (d) SK HYNICS . . . . . . . . . . 21

Figure 3.3 Financial time series price data based on time resolution. (a)

daily (b) weekly (c) monthly . . . . . . . . . . . . . . . . . . 22

Figure 3.4 Toy data artificially divided into two groups (a) Uptrend (b)

Downtrend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.5 Real data(stocks in KOSPI) artificially divided into two groups

(a) Uptrend (b) Downtrend . . . . . . . . . . . . . . . . . . 23

Figure 3.6 Embedding extracted as a result of existing algorithm on toy

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.7 Embedding by turning the angle according to the axis direc-

tion. (a) x-axis (b) y-axis (c) z-axis . . . . . . . . . . . . . . 25

Figure 3.8 (a) Extracted results of existing algorithm (b) Embedding

with center . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



Figure 4.1 Results of embedding extracted by proposed algorithm for toy

data(top) Embedding with varying angles along the axis(bottom).

(a) embedding (b) result of clustering (c) true labels (d) x-

axis (e) y-axis (f) z-axis . . . . . . . . . . . . . . . . . . . . 31

Figure 4.2 Results of embedding extracted proposed algorithm for real

KOSPI data(the number of cluster = 2). (a) embedding (b)

result of clustering (c) true labels . . . . . . . . . . . . . . . 33

Figure 4.3 (a) Two clusters of monthly data (b) Three clusters of monthly

data (c) Two clusters of daily data (d) Three clusters of daily

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.4 Weekly Data (a) two clusters (b) four clusters (c) five clusters 36

Figure 4.5 The result of clustering three clusters using monthly data and

actual shape of embedding. (a) uptrend cluster (b) downtrend

cluster (c) sideways cluster 3 . . . . . . . . . . . . . . . . . . 38

viii



Chapter 1

Introduction

1.1 Introduction

Since Markowitz’s Modern Portfolio Theory in [23], asset selection and asset alloca-

tion have become the most important consideration in the investment management.

This is because asset selection and allocation can have diversification effect over

risk. In other words, it is possible to construct a portfolio with a lower risk under a

given level of return. In his research, he proposed a mathematical analysis framework

called mean-variance analysis, which uses the expected returns and the variance ob-

tained through historical returns. Since then, there have been many studies on asset

selection and allocation based on this theory. When choosing the assets that make

up the portfolio and determining how much to allocate to those assets, the effect of

risk diversification can be gained by measuring and using the correlation between

assets. For that reason, the correlation between assets, that is, the similarity between

assets, is a very important measure in asset allocation.

In this respect, many studies have been carried out to utilize the similarity of

assets for clustering of assets and to use them for portfolio management. Tola et

al. [32] attempted to mitigate the statistical uncertainty inherent in the variance-

covariance matrix used as an estimate of risk in the portfolio optimization by using
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clustering algorithms. Nanda et al. [24] conducted clustering based on various cor-

porate valuation variables such as historical returns and price-to-book ratio using

k-means, self-organizing map, and fuzzy c-means. In addition, he used the results

to construct efficient portfolio. Leon et al. [18] have shown that using a hierarchi-

cal clustering technique in a risk-adjusted portfolio improves performance over the

existing mean-variance portfolio approach.

The reasons for attempting clustering in research related to asset selection and

asset allocation are as follows. First, for diversification effects for less risk under a

given return, assets with different characteristics should be selected and a portfolio

constructed. If the portfolio is composed of multiple clusters with small similarities

and then the assets are selected from the clusters, diversification effect can be ex-

pected [18]. Second, there may be assets with similar characteristics or movements

of similar stock prices where these redundancy can be eliminated through clustering.

This is important in terms of time efficiency. If the investor has a very large set of

base assets to choose from, the number of cases where the asset can be selected is

very large, which is inefficient in terms of the time efficiency of constructing the port-

folio. Therefore, choosing assets after removing redundancy through asset clustering

would be much more efficient in terms of time efficiency [15].

Recently, machine learning and deep learning have been actively studied. In some

areas, including image processing, performance already exceeds human performance

according to Guo et al. [16]. In addition, as the superior performance of the tech-

nology of machine learning and deep learning has been demonstrated, attempts and

researches have been actively made to apply to actual financial field [6]. For exam-

ple, studies on outliers detection and filtering have been actively conducted to solve
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the problem of outliers [14] that cause performance degradation of various financial

models such as data-driven prediction models [9, 21]. A financial time series is a

collection of data about time and is nonlinear and dynamical data. Li et al. [19]

attempted to analyze the entire time-series data by dividing the financial time series

by time and identifying the patterns of the parts. Financial time series prediction is

also very important for researchers in the field of machine learning [31]. A variety of

machine learning and deep learning methodologies such as Artificial Neural Network

[20], Multilayer Neural Network [11], Support Vector Machine [22], and Tree and En-

semble [4] have been used for financial time series prediction models. In particular,

clustering is one of the most important areas of unsupervised learning, one of the

representative areas of machine learning, and is a methodology directly applied to

asset selection studies. D’Urso et al. [12] conducted a study on financial time series

clustering using novel distance measure based on GARCH model. Aghabozorgi et

al. [1] also researched the clustering of time series, which is called co-movement,

showing similar motion patterns regardless of time difference.

1.2 Research Motivation and Contribution

Generally, a person who sees an object in a visual system recognizes time series data

as high-dimensional image data rather than single-variable time series numerical

data. According to Aigner et al. [2], the purpose of visualizing time series data is

to understand the data by sensing the long-term trends and patterns inherent in

the data and by recognizing its intuition. In other words, it is possible to reflect

the intuition such as long-term trends and patterns by converting the time series

into an image which is high-dimensional data instead of low-dimensional numerical
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data. However, most studies on clustering-based asset selection have focused on

clustering based on low-level financial time series data [15, 24]. The use of only

simple numerical data of a time series with a low dimension has a disadvantage that

the intuition intrinsic to the high dimensional data imaged by the time series is

difficult to be reflected in the clustering analysis. In other words, the conventional

clustering method uses only low-dimensional simple time-series numerical data, and

it is difficult to reflect intuitive relationships between assets represented by high-

dimensional image data.

This problem mainly occurs when the correlation coefficient is obtained based on

historical returns of each assets which are simple low-dimensional time series, and

clustering is performed based on this correlation. If we simply look at correlations

based on historical returns, we may not have a compensating effect on the correlation

coefficient that depends on the time resolution. In other words, in measuring the

similarity of two assets, only micro-movements at a specific time point are reflected

but macroscopic movements may not be accurately reflected. Numerical examples

for understanding are as follows.

Assume that two assets exist as in Table 1.1. Starting with a price of 100 for

the first asset, the price goes up by 2 for even days and the price goes down by -1

for odd days. This price change is repeated, resulting in a final price of 146. For the

second asset, the asset price starts at 100, the price drops by -1 for even days, and

the price goes up by 2 for odd days. By repeating this price change, the final price

becomes 146 as well.

The price of two assets is shown in Figure 1.1. When price of time series data

is represented by high-dimensional image data, the correlation between two assets

4



Date
Assets

price of asset1 price of asset2

start date 100 100

even days Increased by +2 Decreased by -1

odd days Decreased by -1 Increased by +2

end date 146 146

Table 1.1: Numerical example of the problem of clustering analysis based on histor-
ical return of the low-dimensional time series

seems to be very high in the long term. However, if correlation coefficient is calculated

based on historical returns, the result is -0.997, which is the opposite result to our

intuition. In other words, high-dimensional image data appears to have a positive

correlation in the long term, but negative correlation in the historical return data.

There is a possibility that the actual numerical result and the intuition recognized in

the high-dimensional image may not match. When the clustering is performed using

the existing correlation-based clustering method, the two assets belong to different

clusters. It may vary depending on the purpose of the clustering, but it do not seems

to be a result consistent with the purpose of clustering in general.

Figure 1.1: Image for two asset prices in the numerical example

Conventional clustering methods have such problems, but attempts to directly
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solve these problems have not been studied yet. Therefore, in order to solve these

problems, it is necessary to study the clustering technique that can process high-

dimensional image data. Fortunately, in recent research, a deep embedding clustering

technique [34] has been studied that efficiently clusters high-dimensional image data

through deep embedding techniques. This shows that it is possible to efficiently

cluster the high dimensional image data than other existing clustering models.

Therefore, in this thesis, we will apply the deep embedding technique that can

efficiently process the image data, which is high-dimensional data, to the clustering

analysis for the stock price of financial time series. However, existing deep embed-

ding techniques are not suitable for financial time series data because they have

good performance only for certain data such as MNIST, which is frequently used

as experimental data in the field of deep learning. Therefore, in this thesis, we pro-

pose a new algorithm that solves this problem by modifying the existing algorithm

appropriately.

Clustering analysis was performed as follows. First, clustering is performed on

artificially divided data through a specific criterion to see whether the existing deep

embedding technique can appropriately cluster the financial time series data. We

then proposed a new algorithm by modifying existing algorithm and experimented

to see if the proposed algorithm works properly. Finally, through the proposed al-

gorithm, clustering analysis is performed on KOSPI stock price data that is not

artificially divided. We will also investigate the number of optimal clusters in vari-

ous performance measures. We will interpret how the intuitive relationship between

assets inherent in high-dimensional images is reflected in the clustering results.
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1.3 Organization of the Thesis

The organization of this thesis is as follows. In the Chapter 2, we will discuss the theo-

retical background of portfolio allocation, clustering, deep learning, deep embedding

clustering, Geometric Brownian motion. In Chapter 3, we will describe simulated

data and real KOSPI data and explain description of three data sets preprocessed

for three experiments. We will also diagnose the problems of existing algorithm and

propose new algorithm that solve them. In Chapter 4, we show that the financial

time series data can be appropriately clustered through the newly proposed algo-

rithm. We will also analyze the clustering results of the financial time series data

and intuitive relationships between assets inherent in high-dimensional image data

after determining the optimal number of clusters through clustering performance

measures. Finally, we will conclude and present future work in Chapter 5.
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Chapter 2

Related Work

2.1 Markowitz’s mean-variance Portfolio Theory

Markowitz [23] proposed a mean-variance analysis model to find a portfolio with the

lowest risk under a given expected return for appropriate asset allocation to pursue

a portfolio with risk diversification effects. This mean-variance portfolio model pos-

tulates that investors are risk-averse. In other words, the investor prefers the least

risky asset among the assets with the same expected return, and on the contrary,

prefer the high expected return at the same risk level. In this case, the expected re-

turn is the expectation of the historical returns, and the variance-covariance matrix

is calculated using the variance of historical returns and covariance between histor-

ical return of each asset. The investor tries to minimize the non-systematic risk by

calculating the optimum weight w∗ considering the trade-off between maximizing

profit and minimizing risk through the expected return and the variance-covariance.

This can be expressed by the following optimization problem.
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min
w

wTμ− 1

2
wTΣw

s.t.
∑
i

wi = 1

wi ≥ 0

where μ is the expected return vector of each asset and Σ is the variance-

covariance matrix. The optimum weight w∗ is obtained by the above optimization

problem. The optimal portfolio is expressed as w∗ · μ, a linear combination of the

optimal weight w∗ and the expected return of the assets μ.

2.2 Clustering

Unsupervised learning is studied extensively in the field of machine learning. Super-

vised learning refers to a machine learning method in which both input and output

data are paired as a data sample for learning when a function f that maps the

predictive variables X to the target variables Y is found. On the other hand, unsu-

pervised learning is a learning method in which the predictive variable X exists but

the target variable Y does not exist. In other words, the probability distribution of

the predictive variable X, P (X), is directly deduced without the help of the target

variable Y [13].

A representative example of such unsupervised learning is clustering analysis.

The clustering analysis is to group the entities according to the common character-

istics extracted from the input variable X. That is, the input data is grouped based

on homogeneous features, relationships among the elements, and hidden patterns
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intrinsic in the data. This object can generally be achieved by the following pro-

cess. First, minimize dispersion within the cluster. Second, maximize the dispersion

among the clusters. In other words, clustering is performed so that the cohesion

degree between instances becomes higher by making the distance between the data

belonging to the same cluster close to each other, and at the same time, the dis-

tances between the clusters are made large so that the degree of separation between

the clusters is high. In general, the clustering analysis are performed by defining the

following distance or dissimilarity measures.

D(xi, yj), i �= j

If the above distance between instances in the same cluster is small, it means

that the similarity between instances is high. Also, the distances among individuals

belonging to different clusters are high, which means that there is a low similarity

among individuals in different clusters.

2.3 Deep Learning and Researches on Deep Embedding

Clustering

2.3.1 Deep Learning

Deep learning, an area of machine learning, is a methodology based on the concept

of biological mechanisms by which neural networks in the brain work [28]. In the

early research, it was in the form of a simple artificial neural network or percep-

tron, which is not deep in layers, but it has developed into a deep neural network

with a multilayer neural network. It works as a nonlinear function approximator
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ŷ = f(X;w) through multi-layer neural networks and performs learning for tasks

in one of supervised learning, semi-supervised learning, and unsupervised learning.

Generally, in the learning process of deep learning, first, each layer composed of neu-

ral networks is stacked deeply and hierarchically. The neural network of each layer

receives the output value of the previous neural network as the input value, and

outputs the linear combination of the input value and the weight, passing through

the nonlinear activation function. It is the multilayer neural network that the neural

networks of each layer that make these calculations form several layers. The goal of

the deep learning is to define the appropriate loss function L(y, ŷ) and then update

the parameter of the neural network w with the learning rate η according to the

optimization method such as gradient descent method.

w ← w − η ∂L
∂w

By updating the parameters w in the above manner, it is achieved that the

optimal parameter w∗ makes the loss function have minimum value as follows.

w∗ = argmin
w
L(y, f̂(X;w))

2.3.2 Batch Normalization

In order for the optimization to proceed properly in the deep learning process, the

distribution of the activation function output value of each layer should be appro-

priately distributed so that it does not deviate to one side. This is because the

gradient vanishing problem may cause the optimization to no longer be updated.

Ioffe et al. [17] solved this problem by forcing the distribution of output values of
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the activation functions of each layer through batch normalization. The key proce-

dure of batch normalization is as follows. First, the mean μB and variance σ2B for a

particular batch B = x1,...,m are obtained as follows.

μB ← 1

m
Σmi=1xi

σ2B ←
1

m
Σmi=1(xi − μB)2

where, xi is k-dimensional input vector. Then, normalization is performed so that

the distribution of data becomes appropriate.

x̂i ← xi − μB√
σ2B + ε

where, ε is and small constant for numerical stability. Finally, transformation is

performed as follows. At this time, the initial value of γ and β is 1 and 0. As learning

is performed, the value is adjusted to an appropriate value.

yi ← γx̂i + β

Batch normalization improves the learning speed and solves the dependency problem

caused by the initial parameter value. In addition to this, the overfitting problem

can be solved to a great extent.

2.3.3 Deep Auto Encoder

Deep auto encoders are bottleneck-shaped deep neural networks that reduce the di-

mension of input data and learn its embedding in an unsupervised manner. In the

middle network, the representations inherent in the data are encoded in the latent
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space and for this, the output data similar to the input data are used simultaneously.

Deep auto encoders can be applied to many applications such as dimensional reduc-

tion, representation learning, embedding extraction, generative model, clustering.

The deep autocoder consists of an encoder, which is a function to map the input

data on the feature space to the latent space, and a decoder, which is a function that

reconstruct the embedding mapped in the latent space to the output data similar

to original input data again. The encoder and the decoder are expressed as follows.

fφ : X → Z

gψ : Z → X

where fφ is non-linear mapping for the encoder, gψ is non-linear mapping for the

decoder, X is the input space, and Z is the latent space. The dimensionality of X

is larger than that of Z due to dimension reduction. Learning of the auto encoder

proceeds to obtain the optimal φ∗ and ψ∗ by updating the learnable parameters

φ and ψ constituting the encoder and decoder in the direction of minimizing the

reconstruction error L(X, X̃) = ||X − gψ(fφ(X))||2. The optimal φ∗ and ψ∗ is as

follows:

φ∗, ψ∗ = argmin
φ,ψ

L(X, X̃)

The conventional clustering algorithms used in machine learning have the prob-

lem of not handling high-dimensional image data properly. This is because the

existing machine learning algorithm works well for low-dimensional data, but its

computational complexity for high-dimensional data is very high and thus, can not

guarantee its performance. However, as researches on deep neural networks and deep
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auto encoders have been actively conducted recently, clustering techniques using such

models have been studied. Due to the characteristics of deep neural networks capable

of processing high-dimensional image data that have not been efficiently processed in

the past, various clustering models are being developed to handle high-dimensional

data effectively.

2.3.4 Deep Embedding Clustering

Xie et al. [34] effectively clustered high-dimensional data by using variation of deep

auto encoders. The embedding is extracted through a deep autocoder, and the clus-

tering is performed by changing the form of embedding gradually as the distance

between the clusters is increased and the distance within the cluster is closer. The

clustering process proceeds as follows. First, learn the auto encoder that minimizes

the following reconstruction error.

L(X, X̃) = ||X − gψ(fw(X))||2

where f is non-linear mapping for the encoder, gψ is non-linear mapping for

the decoder, X is the input space, and Z is the latent space. At this time, since

dimension reduction occurs, the dimensionality of X is larger than that of Z. The

dimension of the embedding of the auto encoder is ten dimensions. After learning of

deep auto encoder is completed, the center vector μ0j is extracted using the k-means

algorithm. Next, a new clustering layer is added to the previously learned encoder

to construct a new neural network. The output value at the last layer of new neural

network is as follows.
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qij =
(1 + ||zi − μj ||2)−1

Σj′(1 + ||zi − μj′ ||2)−1

where zi ∈ Z is the vector of ith data point on the embedding output by the

encoder, fw(xi) ∈ Z corresponding to xi ∈ X, i = 1, ...N where xi is vector of ith

input data and N is the number of data points and μj ∈ Z is vector of the center

point in the jth cluster which is learnable parameter and j = 1, ..., J where J is the

number of clusters. The parameter to be updated is the parameter of the encoder

w and center μj . The value of the center μ0j , already extracted by the k-means

algorithm, is used as the initial center vector μj . qij is a distance measure indicating

the degree of similarity between zi and μj . That is, the probability that the point zi

belongs to the jth cluster. Next, we define the loss function as follows.

L = ΣiΣjpijlog
pij
qij

where pij is defined as the probability qij that the point zi belongs to the jth

cluster is transformed to have an extreme distribution and is defined as follows.

pij =
q2ij

Σiqij
/Σj′

q2ij′

Σiqij′

To minimize the loss function L, the parameters w and μj are updated as follows.

w ← w − η ∂L
∂w

μj ← μj − η ∂L
∂μj

where η is learning rate. The loss function L used at this time is updated in the
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direction that the distribution q is close to the distribution p by the Kullback-Leibler

divergence. As a result, clustering is performed so as to increase the separation

between clusters by increasing the distance between the clusters on the embedding,

and to increase the compactness by reducing the distance within the clusters. Finally,

the ith data belongs to the jth cluster satisfying the following equation.

j∗ = argmax
j
qij

Despite its moderate performance, existing deep embedding clustering method-

ologies are problematic to be applied to financial time series clustering for asset

selection. This is because it works effectively only for data such as MNIST, which is

commonly used in machine learning research. For financial time series data, cluster-

ing is not done properly with the methodology presented in the paper. Therefore, in

this thesis, we propose a new clustering algorithm suitable for financial time series

image data by improving the algorithm of existing deep embedding technique.

2.4 Geometric Brownian Motion and Monte Carlo Sim-

ulation

2.4.1 Geometric Brownian Motion

The Brownian motion is used to analyze changes in the price of financial assets.

Assuming that the change in the price of financial assets follows a random walk,

which is a discrete-time stochastic process, the Brownian motion expands it to a

continuous-time stochastic process. Bachelier [3] introduced this Brownian motion

to financial theory for the first time. It can be considered the beginning of the
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efficient market hypothesis that stock prices are random and unpredictable, since

all predictable information is already reflected in the prices of financial assets. Since

then, research on Brownian motion has continued to develop. Wiener [33] presents

Brownian motion as a stochastic process and presents it as a complete mathematical

concept. Osborne [25, 26] conducted a study to express the stock price return as

Brownian motion. Since then, Samuelson [29, 30] introduced the Brownian motion,

which modified the Brownian motion by introducing the Wiener process. Since then,

he introduced the Geometric Brown motion(GBM), which modified the Brownian

motion by introducing the Wiener process. The GBM is a continuous-time stochastic

process that follows the lognormal distribution except for drift parameters. In the

Brownian motion model, there was a problem that the stock price could be negative.

However, this problem was solved by following the lognormal distribution in the

GBM. If St which is a stochastic process satisfies the below stochastic differential

equation, it is said to follow a GBM.

dSt = μStdt+ σStdWt

The result of solving the above differential equation is as follows.

St = S0exp[σWt + (μ− σ2

2
)t]

E[log(
St
S0

)] = (μ− σ2

2
)t

where, Wt is a Wiener process. μ is the drift parameter and σ is the volatility

parameter where both are constants.
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2.4.2 Monte Carlo Simulation

A Monte Carlo(MC) simulation, whose rationale is from The Law of Large Numbers,

is a random sampling of the values that are calculated probabilistically for simula-

tion purposes. It can be used to approximate the true distribution by generating a

very large number of sample data of a certain probability distribution or stochastic

process. In this thesis, we will generate stock price model data through MC simula-

tion based on the GBM model to see if the deep embedding technique can properly

cluster the generated financial time series data for simulation.
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Chapter 3

Data Description and Proposed algorithm

3.1 Data Description

3.1.1 Toy Data: Simulated Financial Time Series Data from GBM

Figure 3.1: The stock price model data sampled by MC simulation based on the
GBM. (a) σ = 1% (b) σ = 5% (c) σ = 10% (d) σ = 30%

In this study, we investigated whether the algorithm of existing deep embedding

technique clusters simulated data properly before clustering real-data. Stock price
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data was generated by MC simulation based on the GBM as toy data. The drift

parameter μ means the annual average return of the stock price. We used 1.4%,

the average annual return over the past eight years of the KOSPI index as a drift

parameter. The simulations were performed by generating data with a wide range

of volatility σ, which is equivalent to the annual volatility, using the range of 1% to

30 %, at 1% intervals. A total of 5 years data was sampled based on 252 trading

days. Figure 3.1 shows the stock price model data sampled by MC simulation based

on the GBM.

3.1.2 Real-Data: KOSPI data

Real-data used in this study are daily, weekly, and monthly closing price of stocks

listed on KOSPI stock market, which is Korean representative stock market. The

closing price data fromMay 2013 to April 2018 was collected from http://investing.com.

Figure 3.2 shows the daily closing price of the four stocks listed on the KOSPI from

May 2013 to April 2018.

For accurate analysis, all data are divided by the closing price of May 2, 2013,

which is the first stock price, and the initial value is scaled to 1. This is because stock

prices are very diverse in each stock. This is necessary because the degree of trend

reflected in the image may be distorted when the stock price scaling is not performed.

Figure 3.3 shows that the characteristics and intuition of the data reflected in the

stock price vary according to the time resolution of monthly stocks, weekly and

daily closing price of stock. Therefore, monthly, weekly, and daily experiments were

conducted separately to see how clustering is performed at each time resolution.
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Figure 3.2: Daily closing price of four stocks in KOSPI for five years. (a) SAMWHA
CAPACITOR (b) HYUNDAI MOTOR SECURITIES (c) KIA MOTORS (d) SK
HYNICS

3.1.3 Data Preprocessing for Three Types of Data Set

In this thesis, we use three types of data set as shown in Table 3.1 for three ex-

periments. First, simulated data artificially divided into two clusters. Second, stock

price data of traded stocks listed in KOSPI that are artificially divided into two

clusters. Third, stock price data of traded stocks listed in KOSPI data that are not

artificially divided.

The first simulated data, as toy data, was based on the stock price model data

generated by MC simulation based on the GBM. According to the condition of Table

3.2, toy data is artificially divided into two groups of uptrend and downtrend. Figure

3.4 shows this toy data. Similarly, the second data set is constructed by dividing the
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Figure 3.3: Financial time series price data based on time resolution. (a) daily (b)
weekly (c) monthly

data of the stocks listed on the KOSPI into two groups artificially, uptrend and

downtrend, according to the condition of Table 3.2. Figure 3.5 shows this real data.

The third data set is from all stocks listed on the KOSPI. The number of optimal

clusters is unknown because no artificial splitting conditions are applied.

Figure 3.4: Toy data artificially divided into two groups (a) Uptrend (b) Downtrend
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Data
Time

Resolution
Artificially

Divided Trend
Kinds

# of
Stocks

1
Simulated data
based on GBM

Daily
Uptrend

Downtrend
Toy 90

2
Stocks

listed in KOSPI
Daily

Uptrend
Downtrend

Real 92

3
Stocks

listed in KOSPI

Daily,
Weekly,
Monthly

No Artificially
Divided

Real 770

Table 3.1: Explanation of three types of data for three experiments.

Figure 3.5: Real data(stocks in KOSPI) artificially divided into two groups (a) Up-
trend (b) Downtrend

3.2 Proposed Algorithm

The existing deep embedding clustering study may not be suitable for clustering of

financial time-series data because only MNIST, STL-HOG, and REUTERS data,

which are typical experimental data in the field of machine learning, are used for

empirical experiments. Therefore, in this thesis, we will propose a new algorithm

by modifying and improving existing deep embedding algorithm to be suitable for

financial time series data clustering.
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Condition Trend

[minimum price >= initial price] and
[last price >(initial price + maximum price)/2]

Uptrend

[maximum price <= initial price] and
[last price <(initial price + minimum price)/2]

Downtrend

Table 3.2: Conditions for artificial segmentation of data

3.2.1 Problems of existing algorithm

Figure 3.6 (a) shows embedding of the first data, which is artificially divided into two

financial time series data as toy data, after the clustering with the existing algorithm.

The dimension of embedding is ten and it is drawn three dimensional graph through

principal component analysis. The distance between the clusters on the embedding

is close and the boundary between the two clusters is ambiguous due to the overlap

between the two clusters. Figure 3.6 (b) and (c) show the results of the clustering

and the true labels with different colors according to the clusters. There is a large

gap between clustering results and true labels. In other words, it can be seen that

clustering of toy data, divided into two groups, artificially uptrend and downtrend,

can not be performed properly. The reason why existing deep embedding techniques

are not suitable for financial time series data clustering is as follows.

First, as shown in Table 4.1, the difference in scale between the data of each

dimension of the embedded data is very large. Scale differences in each dimension

have an undesirable effect on performance in proper clustering. According to Celebi

et al. [7], the scale differences in each of these dimensions have adverse effects on the

distance calculation in the clustering process and thus cause numerical instability.

Figure 3.7 shows the extracted embedding by changing the angle along the axis. The

scale of the range of data distribution along the axis is very different.
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Second, in the process of learning, the update of the parameter of the encoder

w is much higher than the update of the central parameter of each cluster μj , thus

learning is not performed properly. In other words, ∂L/∂w, the gradient value of w,

the parameter of the encoder, is much larger than ∂L/∂μj , the gradient value of μj ,

the central parameter of each cluster, and the new cluster center is not properly per-

formed as the cluster center because it is pushed out from cluster on the embedding

of data as shown in Figure 3.8.

Figure 3.6: Embedding extracted as a result of existing algorithm on toy data

Figure 3.7: Embedding by turning the angle according to the axis direction. (a)
x-axis (b) y-axis (c) z-axis

3.2.2 Proposed Algorithm

In this thesis, we solve the above problems by modifying existing algorithm and

improve them to fit financial time series data. The first problem can be solved by

introducing a normalization operation that can force the scale of each dimension to
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Figure 3.8: (a) Extracted results of existing algorithm (b) Embedding with center

be no large different. Among the various normalization methods, normalization by

inserting a batch normalization layer showed the best clustering performance.

The second problem can be solved by forcibly allocating the center within the

cluster through the k-means algorithm again, at every specific update cycle, so that

the center does not deviate far out of the cluster. It is the core of the existing

technique that the learning progresses so that the other data points belonging to the

corresponding cluster are gradually getting closer to each other to the direction of the

center of their cluster in the embedding. However, there is a problem that the cluster

center is located far away from the data, and it is not possible to grasp to which

cluster each data point belongs. Therefore, this problem can be solved by forcibly

allocating the center within a cluster for each specific period. Algorithm 1 and 2

below shows pseudo code for the existing algorithm and the proposed algorithm,

respectively.
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Algorithm 1 Existing Algorithm

while before objective function Lrecon converges do
Update the encoder fw and decoder gψ in the direction that the following

objective function Lrecon decreases:

Lrecon = Σi||xi − gψ(fw(xi))||2

end while

Initiate encoder fw, clustering layers cμ, and a new deep neural network hw,μ =
cμ ◦ fw
Initialize parameters w of new deep neural networks with parameters of pre-
learned encoder:

w ← w0

Initialize parameters μ of new deep neural networks with the center of k-mean:

μ← μ0

while before objective function LKL−divergence converges do

Compute q and p every n steps, for all i, j:

qij ← (1+||zi−μj ||2)−1

Σj′ (1+||zi−μj′ ||2)−1

pij ← q2ij
Σiqij

/Σj′
q2
ij′

Σiqij′

Update new deep neural networks hw,μ in the direction that the following
objective function LKL−divergence decreases:

LKL−divergence = ΣiΣjpijlog
pij
qij

end while
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Algorithm 2 Proposed Algorithm

while before objective function Lrecon converges do
Initiate a batch B = x1, ..., xm and μB, σ

2
B for batch normalization:

μB ← 1
mΣmi=1xi

σ2B ← 1
mΣmi=1(xi − μB)2

x̂i ← xi−μB√
σ2
B+ε

Update the encoder fw and decoder gψ in the direction that the following
objective function Lrecon decreases:

Lrecon = Σi||xi − gψ(fw(xi))||2

end while

Initiate encoder fw, clustering layers cμ, and a new deep neural network hw,μ =
cμ ◦ fw
Initialize parameters w of new deep neural networks with parameters of pre-
learned encoder:

w ← w0

Initialize parameters μ of new deep neural networks with the center of k-mean:

μ← μ0

while before objective function LKL−divergence converges do

Compute q and p every n steps, for all i, j:

qij ← (1+||zi−μj ||2)−1

Σj′ (1+||zi−μj′ ||2)−1

pij ← q2ij
Σiqij

/Σj′
q2
ij′

Σiqij′

Replace center vector μ with k-mean center μ0: μ← μ0

Update new deep neural networks hw,μ in the direction that the following
objective function LKL−divergence decreases:

LKL−divergence = ΣiΣjpijlog
pij
qij

end while
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Chapter 4

Experimental Results

We have confirmed that the existing algorithm can not properly cluster for financial

time series data through toy data. We also proposed a new algorithm by identifying

the cause and correcting and improving the existing algorithm. In this section, we

will show how the newly proposed clustering algorithm can properly cluster financial

time series data by experimenting with the three types of data we prepared earlier.

We will look at the results of each embedding for all three data sets, and compare the

performance of the proposed algorithm with those of the existing algorithm through

various performance measures used for clustering performance evaluation.

4.1 Performance Measure

In this thesis, we will use the accuracy, ARI, NMI, Silhouette coefficient, Calinski-

Harabasz score, and Davies-Bouldin index as the performance measure of clustering.

Accuracy, ARI, and NMI are measures that can be measured on the assumption that

the true label is known, so they can be measured only for the first toy data and the

second actual KOSPI data that are artificially divided into two types and the true

label is known for. The third data, which was not artificially divided, had only the

silhouette coefficient, Calinski-Harabasz score, and Davies-Bouldin score.
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The accuracy can be expressed as Σi1(yi=ŷi)/N , a ratio of the number of data in

which the predicted value and the true value are equal, to the total number of data.

The Adjusted Random Index (ARI) indicates the degree of random assignment of the

cluster. Closer to 0 means that the data cluster allocation is random, and the closer

to 1, the opposite. Normalized Mutual Information (NMI) is a normalized measure

of interdependence between two clusters. The closer to 0, the more interdependence

disappears. The closer to 1, the greater the interdependence. Accuracy, ARI, and

NMI are all postulated to know the true label. In the case of clustering problems,

there is generally no label value for the data class, and thus the accuracy of the

classification based on the true label can not be measured unlike the classification

problem. In the first and second experiments, however, accuracy, ARI, and NMI

were calculated because we used toy data and KOSPI data artificially divided into

two groups.

silhouette coefficients indicate whether the overall clustering is performed prop-

erly by comparing the distance between one data and the other data in the predicted

cluster and the distance from the data in the other cluster [8]. The larger the coeffi-

cient, the better the clustering is done. The Calinski-Harabaz score is defined as the

ratio of intra-cluster deviation to inter-cluster deviation [5]. The larger the value,

the more appropriately the clustering was performed. The Davies-Bouldin index

is a measure related to ratio calculated by intra-cluster distance and inter-cluster

distance, and the lower the value, the better the clustering [10]. The silhouette co-

efficient, the Calinski-Harabaz score, and the Davies-Bouldin index do not need to

know the true label value. Therefore, we measured for the first, second, and third

data set in the experiments.
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4.2 Experiments for First and Second Data Set(the num-

ber of custer = 2)

4.2.1 First Experiment for Toy Data

Figure 4.1: Results of embedding extracted by proposed algorithm for toy data(top)
Embedding with varying angles along the axis(bottom). (a) embedding (b) result of
clustering (c) true labels (d) x-axis (e) y-axis (f) z-axis

The first experiment is an experiment to verify whether the proposed algorithm

performs clustering properly for the simulated data, which is the first data in Ta-

ble 3.1. Figure 4.1 (a) shows the embedding extracted by the proposed algorithm.

Compared to (a) in Figure 3.6, it can be seen that the clustering more clearly with

two clusters is visually distinct. Comparing the clustering result in (b) of Figure 4.1

with the true label in (c) is quite different from the result of (b) and (c) in Figure

3.6. Existing algorithm do not perform clustering properly, and there is a large gap

between clustering results and true labels. On the other hand, comparing the cluster

labeling results with the true label values through the proposed algorithm, we can
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see that the two results are quite similar.

The first problem of the existing algorithm is that the scale difference in the

range of data distribution for each dimension(axis) is large. The problem is solved

by introducing a batch normalization layer which can adjust the scale of each dimen-

sion(axis) without any difference of deviation. (d), (e), and (f) in Figure 4.1 show

the extracted embedding by angles along the axis. Compared to Figure 3.7, it can

be seen that the scale of the range in which the data is distributed along the axis is

very uniform. As shown in Table 4.1, it can be seen that the standard deviation of

data distribution for each axis is fairly uniform around 1.

Axis # 1 2 3 4 5 6 7 8 9 10

dec
Mean 20.1 4.2 32.1 -82 33.5 -37 12 -7 25.6 19.3
Std 0.54 0.11 0.85 2.2 0.9 0.99 0.31 0.18 0.68 0.52

ours
Mean 1.6 0.4 -4 -0.7 1 4.3 -3.7 -4.5 1.5 -0.2
Std 1.09 1.06 1.16 1.24 1.25 1.1 1.11 1.07 1.08 1.10

Table 4.1: Basic statistics for each axis of embedding extracted from toy data by
existing and proposed algorithm

The second problem, in which the update rate of the parameters of the encoder,

w, is much higher than the update rate of the central parameter of each cluster, μj ,

is solved by reallocating the center obtained from the k-means at every n steps to

the inside the center of the cluster. It can be seen that new cluster center has played

a role properly as a clustering center because it has not been pushed out of the data

cluster of the embedding.

4.2.2 Second Experiment for Real-Data

We show that the proposed algorithm can perform clustering properly in the toy

data. Experiments were carried out to find out whether the proposed algorithm
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performs clustering properly on the real KOSPI data, which is the second data

of Table 3.1. Figure 4.2 shows the extracted embedding result of clustering of the

KOSPI data by the proposed algorithm. Observing the embedding, we can see clearly

two distinct clusters. This is a reflection of the fact that two artificially divided data

were used.

Figure 4.2: Results of embedding extracted proposed algorithm for real KOSPI
data(the number of cluster = 2). (a) embedding (b) result of clustering (c) true
labels

As in the case of simulated data experiment results, the first problem in which

the scale of the range in which the data is distributed in each dimension(axis) in

the real KOSPI data is different is solved by introducing a batch normalization

layer. In addition, we can see that the second problem, in which the updating of the

parameter of the encoder is much higher than the update of the central parameter

of each cluster, and the learning did not proceed properly can be solved by proposed

method as seen in Figure 4.2 (a).

4.2.3 Performance Evaluation

Table 4.2 shows the results of clustering performance measurement for the toy data

and the real KOSPI data for the existing algorithm and the proposed algorithm. In

both cases, the performance of the proposed algorithm is much better than that of
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the existing algorithm.

Performance
Measure

Toy Data Real KOSPI Data
Existing Proposed Existing Proposed

Accuracy 0.554 0.947 0.533 0.837

ARI 0.007 0.798 -0.007 0.448

NMI 0.010 0.702 0.003 0.362

Silhouette 0.640 0.728 0.542 0.673

Calinski-Harabasz 451 734 172 388

Davies-Bouldin 0.507 0.374 0.632 0.418

Table 4.2: Performance evaluation of existing and proposed algorithm

We compare the performance of the proposed algorithm with hierarchical cluster-

ing, which is mainly used in the field of asset clustering. Hierarchical clustering uses

the correlation matrix of the expected returns of the financial time series as a dis-

tance matrix. On the otherhand, the proposed algorithm performs clustering on the

embedding extracted using image of financial time-series data as input. It is a com-

pletely different approach and we can not directly compare the two methodologies in

terms of typical performance measures for clustering. We can not use performance

measures that use only X data to compare the two. Only the performance measures

using the label value y will be completely comparable. Therefore, we compared per-

formance using Accuracy, ARI, and NMI that can be used when knowing true labels.

As shown in the Table 4.3, the proposed methodology is superior to the hierarchical

clustering methodology in entire performance measures.
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Performance
Measure

Toy Data Real KOSPI Data
Hierarchical Proposed Hierarchical Proposed

Accuracy 0.609 0.947 0.652 0.837

ARI 0.039 0.798 0.086 0.448

NMI 0.046 0.702 0.121 0.362

Table 4.3: Performance evaluation of hierarchical clustering and proposed algorithm

4.3 Experiment for Third Data Set(the number of custer

≥ 2)

4.3.1 Experiment for Third Data and Performance Evaluation

The third data set (KOSPI data - monthly, weekly, and daily) without artificially

split conditions were clustered from 2 to 11 clusters. Table 4.4 shows the results of

Shilouette coefficient, Calinski-Harabasz score, and Davies-Bouldin index for each

monthly, weekly, and daily cases. The two highest values for each measure are shown

in bold. According to the experimental results, two or three clusters can be regarded

as appropriate clusters based on three performance measures in monthly and daily

data. In weekly data, the number of clusters two is the most appropriate, and other

proper the number of clusters is four or five.

4.3.2 Interpretation to Intuition in the Embedding

Figure 4.3 and Figure 4.4 show the clustering of monthly and daily data into 2 and

3 clusters and the clustering of weekly data into 2,4 and 5 clusters according to

the results of Table 4.4. Figure 4.5 shows KOSPI data belonging to each cluster

for the monthly data of the three clusters among the clustering results. The shape

of the overall embedding can be seen to represent the shape of the ellipsoid. The

more data are distributed in the clusters close to both ends, the larger the uptrend
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or the greater the downtrend. The data in the central cluster also represents the

sideways trend. In real data, there may be various images showing a trend between

the uptrend and the downtrend, which is a result of fitting with intuition. In other

words, if clustering is performed through the proposed algorithm, it can be seen

that each cluster actually reflects the intuitive relationship between assets inherent

in high-dimensional image data.

Figure 4.3: (a) Two clusters of monthly data (b) Three clusters of monthly data (c)
Two clusters of daily data (d) Three clusters of daily data

Figure 4.4: Weekly Data (a) two clusters (b) four clusters (c) five clusters
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Chapter 5

Conclusion

5.1 Conclusion

Clustering is one of the important issues in portfolio research on existing asset se-

lection. Clustering is important in portfolio research because it can have a diversifi-

cation effect by selecting assets from dissimilar clusters, and it can be time-efficient

in asset selection through elimination of redundancy.

In recent years, researches have been actively conducted to apply machine learn-

ing and deep learning to asset clustering in the financial sector. However, most of the

existing studies use simple low-dimensional time-series data based on correlations of

expected returns for clustering. This has the disadvantage that it is difficult to reflect

the intuitive relation between the assets reflected in the high-dimensional image data

and the time scale correction effect according to the time resolution. Therefore, in

this thesis, we tried to solve the above problems through deep embedding technique

which can process high dimensional image.

There are three main types of data sets. First, the toy data simulated by the

GBM are artificially divided into two groups: uptrend and downtrend. The second

is real KOSPI daily closing price data, which is artificially divided into two groups.

The third is KOSPI daily, weekly, and monthly closing price data, which are not
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artificially divided.

Existing algorithm have failed to cluster the financial time series properly. The

causes are as follows. The first is that the scale difference on the data distribution

of each dimension(axis) on the embedding is very large. The second is that the

cluster center does not play its own role because the cluster center deviates out of

the embedding. In this thesis, we propose a new algorithm to solve this problem

by improving the algorithm in the following way. The first is to insert a batch

normalization layer, and the second is to reallocating center every n steps by using

k-means.

In the empirical experiment, we verified that the proposed algorithm properly

performed clustering on the three data sets prepared above. For the first and second

data sets, the cluster performance of the proposed algorithm is much better than

that of the existing algorithm in terms of six performance measures. For the third

data, we calculated the optimal number of clusters by daily, weekly, and monthly

through three performance measures, and examined the distribution of data in the

embedding.

The results of this study are as follows. First, existing algorithm are not suitable

for financial time series clustering. Therefore, we propose new clustering algorithm

for financial time series clustering. The proposed algorithm has superior quantitative

performance not only in the simulated data but also in the real data.

Second, we clustered the monthly, weekly, and daily data of the actual KOSPI

data through the proposed algorithm and calculated the optimal number of clusters

according to the performance measures. In monthly and daily data, two or three are

optimal clusters, and in weekly data, 2, 4, and 5 are optimal clusters for KOSPI.
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Lastly, it is confirmed that the clustering result obtained through the proposed

algorithm can actually reflect the intuitive relationship of assets inherent in high

dimensional image data. For example, we can see the patterns or long-term trends

in high-dimensional image data by clustering monthly data into three groups of

optimal clusters, clustering into three groups: uptrend, downtrend, sideways trend.

5.2 Future Direction

We can extend our approaches to apply to other problems which need to do asset

clustering. For example, instead of using hierarchical clustering as described above

for portfolio management, we can use our proposed algorithm. We can examine

whether our proposed algorithm can actually work more effectively in portfolio se-

lection. Therefore, in our future research, we can try to verify whether the proposed

model is more effective in reflecting the intuitive relationship between assets intrinsic

in high-dimensional images in the portfolio. To verify this, we can consider not only

various benchmark models including hierarchical clustering but also performance

measures that can measure appropriately the diversification effect and return of the

portfolio.
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[5] T. Caliński and J. Harabasz, A dendrite method for cluster analysis, Com-

munications in Statistics-theory and Methods, 3 (1974), pp. 1–27.

[6] R. C. Cavalcante, R. C. Brasileiro, V. L. Souza, J. P. Nobrega, and

A. L. Oliveira, Computational intelligence and financial markets: A survey

and future directions, Expert Systems with Applications, 55 (2016), pp. 194–

211.

42



[7] M. E. Celebi, H. A. Kingravi, and P. A. Vela, A comparative study

of efficient initialization methods for the k-means clustering algorithm, Expert

systems with applications, 40 (2013), pp. 200–210.

[8] G. Chen, S. A. Jaradat, N. Banerjee, T. S. Tanaka, M. S. Ko, and

M. Q. Zhang, Evaluation and comparison of clustering algorithms in analyzing

es cell gene expression data, Statistica Sinica, (2002), pp. 241–262.

[9] W. Dai, J.-Y. Wu, and C.-J. Lu, Combining nonlinear independent com-

ponent analysis and neural network for the prediction of asian stock market

indexes, Expert systems with applications, 39 (2012), pp. 4444–4452.

[10] D. L. Davies and D. W. Bouldin, A cluster separation measure, IEEE trans-

actions on pattern analysis and machine intelligence, (1979), pp. 224–227.

[11] S. Dhar, T. Mukherjee, and A. K. Ghoshal, Performance evaluation of

neural network approach in financial prediction: Evidence from indian market,

in 2010 International Conference on Communication and Computational Intel-

ligence (INCOCCI), IEEE, 2010, pp. 597–602.

[12] P. D’Urso, C. Cappelli, D. Di Lallo, and R. Massari, Clustering of

financial time series, Physica A: Statistical Mechanics and its Applications,

392 (2013), pp. 2114–2129.

[13] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical

learning, vol. 1, Springer series in statistics New York, 2001.
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국문초록

자산 선택 및 포트폴리오 분야에서 군집화에 대해 활발히 연구가 진행되고 있다. 특히

최근, 이러한 자산 군집화 연구에 기계학습 및 심층 학습 방법론을 적용하고자 하는

사례가 증가하고 있다. 기존의 상관관계 분석만으로는 고차원 이미지 데이터에 반영된

장기적 추세, 패턴 등의 직관적인 자산간의 관계를 반영하기 어렵기 때문이다. 따라서

본 연구는 고차원 이미지를 처리할 수 있는 심층 임베딩 기법을 통해 금융 시계열을

군집화할수있는방법을연구하였다.기존 알고리즘이 금융 시계열데이터에적절하지

않음을보이고, 본연구진이제안한 새로운알고리즘이 기존알고리즘보다군집화를더

적절히 수행할 수 있음을 보였다. 또한, 제안된 알고리즘을 통해 실제 KOSPI 데이터를

군집화하여각종성능척도를통해최적군집수를산출해보았으며실제고차원이미지

에반영된 직관적인자산간의관계가군집화 결과에도 반영될 수 있는지를살펴보았다.

또한, 본 논문의 연구 결과를 바탕으로, 후속 연구를 통해 실제로 포트폴리오 구성에

이러한연구결과를반영을하게됐을때의실제효과에대해다양한포트폴리오의성능

측정 측도와 벤치마크 결과와의 비교를 통해 보여줄 수 있을 것이다.

주요어:금융시계열군집화,자산군집화,자산선택,심층임베딩네트워크,심층학습,

장기적 추세

학번: 2017-21537
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