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Abstract

An approximation scheme for the probability
maximizing combinatorial optimization problem

Jisun Lee

Department of Industrial Engineering

The Graduate School

Seoul National University

In this thesis, we consider a variant of the deterministic combinatorial optimization

problem (DCO) where there is uncertainty in the data, the probability maximizing

combinatorial optimization problem (PCO). PCO is the problem of maximizing the

probability of satisfying the capacity constraint, while guaranteeing the total profit

of the selected subset is at least a given value. PCO is closely related to the chance-

constrained combinatorial optimization problem (CCO), which is of the form that

the objective function and the constraint function of PCO is switched. It search

for a subset that maximizes the total profit while guaranteeing the probability of

satisfying the capacity constraint is at least a given threshold. Thus, we discuss the

relation between the two problems and analyse the complexities of the problems in

special cases. In addition, we generate pseudo polynomial time exact algorithms of

PCO and CCO that use an exact algorithm of a deterministic constrained combina-

torial optimization problem. Further, we propose an approximation scheme of PCO

that is fully polynomial time approximation scheme (FPTAS) in some special cases
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that are NP-hard. An approximation scheme of CCO is also presented which was

derived in the process of generating the approximation scheme of PCO.

Keywords: Combinatorial Optimization with uncertainty, Probability Maximizing

Combinatorial Optimization Problem, Chance-constrained Combinatorial Optimiza-

tion Problem, Bisection Procedure
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Chapter 1

Introduction

1.1 Problem Description

In this study, we consider a probability maximizing combinatorial optimization prob-

lem (PCO). A (deterministic) combinatorial optimization problem (DCO) is defined

with a finite set N = {1, . . . , n}, weights aj for j ∈ N , profits pj for j ∈ N , and

a set F of feasible subsets of N . DCO is a problem of finding a feasible set S ∈ F

such that the sum of weights
∑
j∈S

aj is minimized while guaranteeing the total profit∑
j∈S

pj of at least f . Here, we assume that pj ∈ Z for all j ∈ N and let the set of the

incidence vectors of F ∈ F be X. Then, by defining binary variable xj to be 1 if

item j ∈ S and otherwise 0 for each j ∈ N , we can formulate DCO as the following.

(DCO) minimize
∑
j∈N

ajxj

subject to
∑
j∈N

pjxj ≥ f,

x ∈ X,

where X ⊆ Bn.

In PCO however, weights aj for j ∈ N are assumed to be independent normal
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random variables, that is, aj ∼ N(µj , σ
2
j ) with µj ∈ Z for all j ∈ N . Then, the

problem is to find a subset S ∈ F that maximizes the probability Pr

(∑
j∈S

aj ≤ b

)
with the sum of the profit

∑
j∈S

pj not less than f , where b is a given nonnegative

integer. We assume that there exists at least one feasible set S ∈ F that satisfies∑
j∈S

µj ≤ b, which indicates that the optimal objective value is at least 0.5. By defining

xj for j ∈ N as same as that of DCO, we can represent PCO as follows.

(PCO) maximize Pr

∑
j∈N

ajxj ≤ b


subject to

∑
j∈N

pjxj ≥ f, (1.1)

x ∈ X.

The knapsack constraint (1.1) may be one of the defining constraints of the feasi-

ble set X of a PCO. However, in the above formulation, we separate a knapsack

constraint from the defining constraints of the feasible set X for the ease of later

exposition. Note that constraint (1.1) may be redundant.

Closely related to PCO from a theoretical point of view is so-called the chance-

constrained combinatorial optimization problem (CCO) which is defined as follows.

(CCO) maximize
∑
j∈N

pjxj

subject to Pr

∑
j∈N

ajxj ≤ b

 ≥ ρ,
x ∈ X,
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where ρ is a given probability threshold which we assume 0.5 ≤ ρ < 1. CCO is

the problem to find a subset S ⊆ N that maximizes
∑
j∈S

pj , the total profit, while

guaranteeing the probability of satisfying the knapsack constraint
∑
j∈S

aj ≤ b to be

at least ρ.

There are well-known applications of PCO and CCO in reality, where we consider

the variability of the data. First, consider a case of choosing the shortest path from

the departure s to the destination t. Since there are many uncertainties in each road

such as traffic jam or signal, the time required varies. Let dj be the duration of each

road j ∈ N such that dj ∼ N(µj , σ
2
j ), and need pay the fee pj to drive through each

road j ∈ N . Suppose that we have the budget f and Xst is the set of the incidence

vectors of all the possible s-t paths. Then, the problem of choosing the path with

maximum probability of arriving t in time b can be formulated as the following.

maximize Pr

∑
j∈N

djxj ≤ b


subject to

∑
j∈N

pjxj ≤ f,

x ∈ Xst.

Since we have no assumption on the sign of pj , j ∈ N , the constraint
∑
j∈N

pjxj ≤ f

can be formulated as
∑
j∈N
− pjxj ≥ −f , which makes the above problem as a special

case of PCO.

In addition, there is an application of the multi-robot teaming introduced in Yang

and Chakraborty (2018). There are a finite set of robots R that each robot r ∈ R

has an uncertain travel distance dr ∼ N(µr, σ
2
r ). Each robot r costs cr and we want
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to choose a subset of R that has the probability of covering the total distance D at

least the given threshold ρ with the minimum cost. The problem can be formulated

as

minimize
∑
r∈R

crxr

subject to Pr

(∑
r∈R

drxr ≥ D

)
≥ ρ,

x ∈ B|R|,

which is the form of an instance of CCO when we substitute xr with yr where

yr = 1 − xr. There are much more applications of PCO and CCO as we specify X

and the coefficients of the problems.

Now, we examine the relation between PCO and CCO. Clearly, it can be checked

if the optimal objective value of PCO is at least a given threshold ρ by solving CCO.

Conversely, if the optimal value of PCO is at least ρ, then it means the optimal value

of CCO is at least f . According to this relation, we can use one of them to solve

the other. First, we can solve CCO by solving PCO polynomial times without any

assumption. Let the lower and upper bound of the objective value of CCO be L and

U , respectively. A possible value of the lower and upper bound are L = min
j∈N
{pj} and

U =
∑
j∈N
|pj |, respectively. Then we iteratively solve PCO with f = dL+U

2 e. Then,

• if the optimal value is strictly smaller than ρ, reset as U = dL+U
2 e − 1,

• otherwise, reset as L = dL+U
2 e.

We continue solving PCO with updated value f , until we have L = U . Since we

assumed that pj for all j ∈ N are integer, it is sufficient to conclude and the optimal
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objective value is L(= U). The number of iterations solving PCO is O(log2(U −L)),

which is polynomial of n.

We now consider the opposite direction, obtaining the optimal value of PCO

by iteratively solving CCO. Unfortunately, since Pr

(∑
j∈S

aj ≤ b

)
can have any real

value between [0.5, 1], we need an assumption to solve PCO by solving CCO poly-

nomial times. We assume that we know a lower bound δ > 0 for the gap between

any two possible value of
b−

∑
j∈S

µj√ ∑
j∈S

σ2
j

that is larger than 0;

δ ≤

∣∣∣∣∣∣∣∣
b−

∑
j∈S

µj√∑
j∈S

σ2
j

−
b−

∑
j∈T

µj√∑
j∈T

σ2
j

∣∣∣∣∣∣∣∣ (1.2)

for all S, T ⊆ N such that

b−
∑
j∈S

µj√∑
j∈S

σ2
j

6=
b−

∑
j∈T

µj√∑
j∈T

σ2
j

.

Then, similar to how we used PCO to solve CCO, we solve CCO with ρ = L+U
2 ,

where L and U are a lower and upper bound of the objective value of PCO. Possible

values are L = 0.5 and U = 1, since we have assumed that there exists at least one

feasible subset S ∈ F that satisfies
∑
j∈S

µj ≤ b. Then,

• if the optimal value is strictly smaller than f , reset as U = L+U
2 ,

• otherwise, reset as L = L+U
2 .

We solve CCO with updated L and U until we have U − L < δ. Then we obtain an
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optimal subset S with L ≤ Pr

(∑
j∈S

aj ≤ b

)
. To solve PCO, we have to solve CCO

O(log2(1
δ )) times. However, the assumption we made may be unrealistic, since there

is no algorithm to find such δ that satisfies (1.2) that is known so far, except to

check for all possible subset S ⊆ N and find the minimum positive gap, which takes

O(2n) computational time.
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1.2 Literature Review

Combinatorial optimization problems and the algorithms to solve them have been

widely studied. Well-known combination optimization problems include knapsack

problem, shortest path problem, vehicle routing problem, etc. The knapsack problem

and the vehicle routing problem are NP-hard (Pisinger and Toth, 1998; Toth and

Vigo, 2002), and the shortest path problem is polynomial time solvable (Dijkstra,

1959). However, when there is uncertainty in the data, problems may be harder

than the corresponding deterministic combinatorial problems. Thus, various studies

have been done about the combinatorial optimization problems with uncertainty,

recently.

From the perspective of the stochastic optimization, there are several popular

models that have been considered. Among the models, using the probability of sat-

isfying the capacity constraint with coefficients that follow independent normal dis-

tributions are one of the mainly studied models. The probability can be used as the

objective function or it is possible to construct a constraint with the probability. The

problems considered in this thesis are PCO and CCO as defined in Section 1.1. The

complexity studies for the special cases of PCO and CCO have been done. Atamtürk

and Narayanan (2009) proved that the submodular function minimization with a car-

dinality constraint can be solved in a polynomial time. This induces that CCO with

unit profit values can be solved in a polynomial time. Additionally, Atamtürk et al.

(2013) proved that the minimization of the mean-risk function, which is the function

of the capacity constraint in the equivalent deterministic nonlinear form of CCO,

over the generalized upper bound (GUB) constraints is NP-hard. This implies the
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NP-hardness of CCO over GUB constraints. Nikolova et al. (2006) gave an upper-

bound for both PCO and CCO in the case of the shortest path problem as nO(logn)

by showing the one-to-one correspondence of the extreme points of the shadow of

the path polytope dominant and the breakpoints of the parametric shortest path

problem. Additionally, they suggested an exact algorithm for the stochastic shortest

path problem with the complexity of nO(logn).

Many researches on the algorithm of PCO and CCO for general and some special

cases also have been actively proceeded. For the stochastic approach of the combina-

torial optimization problem with uncertainty, Nikolova (2008) presented two differ-

ent stochastic optimization problems and their equivalent deterministic nonconvex

forms, the threshold and the risk stochastic problem. She proposed approximation

schemes of the two problems with an application of the stochastic shortest path

problem in Nikolova (2009). In particular, the two problems covered in Nikolova

(2008) and Nikolova (2009) are closely related to PCO and CCO. The problems are

(N-PCO) maximize

b−
∑
j∈N

µjxj√∑
j∈N

σ2
jxj

subject to x ∈ F ,

and

(N-CCO) minimize
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj

subject to x ∈ F ,
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where F ⊆ Rn. The objective function of N-PCO is to maximize the tail probability,

and that of N-CCO is to minimize the possible value of the sum of the mean and the

deviation of the weight, without assuming any distribution to the uncertain data.

Since the objective functions of N-PCO and N-CCO are different from those of PCO

and CCO, the approximation solutions satisfy different conditions. The complexities

of the approximation schemes of N-PCO and N-CCO proposed in Nikolova (2009)

are

O
(

log(
smax

smin
) log(

fu
fl

)
1

ε2
g(w,F)

)
and O

(
(1 +

1

ε
log(

fu
fl

))(1 +
log( 1

ε2
)

log(1 + ε)
)g(w,F)

)
,

respectively. Here, smax and smin correspond to the maximum and the minimum val-

ues of
∑
j∈N

σ2
jxj for x ∈ F , fu and fl are the values of the maximum and the minimum

value of
∑
j∈N

µjxj + Φ−1
√∑
j∈N

σ2
jxj for x ∈ F , and g(w,F) is the computational time

of the minimization of the linear function wTx over F . Other studies also considered

PCO and CCO such as Ilyina (2017), which covered the complexity analysis and the

solution approaches of the combinatorial optimization under ellipsoidal uncertainty.

It studied both the uncorrelated and the correlated cases.

The most common special case of the stochastic combinatorial optimization is

the stochastic knapsack problem. Goyal and Ravi (2010) proposed a polynomial

time approximation scheme (PTAS) for the chance-constrained knapsack problem

with the uncertainty in the item size. Han et al. (2016) also proposed an approxima-

tion algorithm of the chance-constrained knapsack problem by approximating the

ellipsoidal uncertainty set with a polyhedral set. Klopfenstein and Nace (2008) sug-

gested an robust model of the chance-constrained knapsack problem and devised an
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approximation algorithm of the chance-constrained knapsack problem that solves

the robust model iteratively. Shabtai et al. (2018) proposed a relaxed fully poly-

nomial time approximation scheme (FPTAS) for the chance-constrained knapsack

problem of which the item weights follow normal distributions. Here, the relaxed

approximation means that the probability of satisfying the capacity constraint is

(1 − ε) times the given threshold. A heuristic algorithm for the chance-constrained

knapsack problem has been presented by Joung and Lee (2018), where they used

the submodularity of the mean-risk function.

There are also some algorithmic studies for the special case of the shortest path

problem. Ji (2005) proposed three stochastic models for the shortest path prob-

lem, which are the expected shortest path model, the most shortest path model,

α-shortest path model, and suggested a hybrid intelligent algorithm which consist

of genetic algorithm and stochastic simulation. Cheng and Lisser (2015) generated

an approximation algorithm of the maximization of the probability of the stochas-

tic resource constrained shortest path problem, which maximizes the probability of

satisfying all the resources constraints while not exceeding the cost threshold. They

used a second-order cone programming approximation to solve the relaxed problem

repeatedly. Additionally, Dinh et al. (2018) suggested an exact algorithm that solves

the chance-constrained vehicle routing problem with uncertainties in the demand.

Even though there are many studies that take uncertainty into account, there are

still areas that need to be studied. We could not find any previous study that suggests

an approximation scheme guaranteeing an absolute error of the probability value by

the approach of using the probability function itself. Also, complexity studies for

special cases of PCO and CCO are not much. Thus in this thesis, we focus on the
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stochastic model with uncertain values that follow normal distributions. We analyse

the complexities of PCO and CCO, and generate solution approaches to solve those

problems efficiently.
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1.3 Research Motivation and Contribution

The research motivations and the main contributions of our thesis are as follows:

(a) We conducted the complexity study of PCO and CCO in the general and the

special cases, and discovered that some special cases of PCO and CCO can be

NP-hard even though the deterministic combinatorial optimization problems

(DCO) in the same condition are polynomial time solvable.

(b) We proposed pseudo polynomial time exact algorithms of PCO and CCO that

iteratively solve constrained DCOs.

(c) We devised an approximation scheme of PCO which guarantees that the ab-

solute error of the probability value of the resulting solution is at most δ to

the optimal probability value of PCO.

(d) An approximation scheme of CCO is suggested, which guarantees the solution

that the probability of satisfying the capacity constraint is at least ρ − δ for

any given ρ ∈ [0.5, 1].
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1.4 Organization of the Thesis

This thesis is composed of 5 chapters. In Chapter 2, we analyse the complexities of

PCO and CCO in the general and the special cases. In Chapter 3, we propose exact

algorithms to solve PCO and CCO, which follow similar procedures of iteratively

solving deterministic combinatorial problems. Then, in Chapter 4, we suggest an

approximation scheme of PCO that uses an approximation scheme of CCO, which

solves DCO repeatedly. Finally, in Chapter 5, the concluding remarks and future

works of this study are presented.
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Chapter 2

Computational Complexity of Probability
Maximizing Combinatorial Optimization Problem

In this chapter, we study the complexity of the probability maximizing combinatorial

optimization problem (PCO) and the chance-constrained combinatorial optimization

problem (CCO) for some special cases, given in the Table 2.1.

Table 2.1: Special cases of PCO and CCO

Case X Profit value

1
Bn

pj ∈ Z,∀j ∈ N
2 pj = 1,∀j ∈ N
3 pj ∼ O(p(n))a, ∀j ∈ N
4

Xstb
pj = 0 (≥ f),∀j ∈ A

5 pj ∈ Z−,∀j ∈ A
6 pj = −1 (≥ f),∀j ∈ A

a p(n) : polynomial function of n
b Xst : set of incidence vectors of s-t paths for a given

graph G = (V,A) with |V | = n, |A| = m

Beforehand, consider the complexity of the deterministic combinatorial optimiza-
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tion problem (DCO) for the six cases. We formulate DCO as

(DCO) minimize
∑
j∈N

wjxj

subject to
∑
j∈N

pjxj ≥ f, (2.1)

x ∈ X,

where the coefficients wj ∈ R and pj ∈ Z for j ∈ N . It is obvious that DCO is a 0-1

knapsack problem when X = Bn and is a constrained shortest path problem when

X = Xst. For the cases of X = Xst, assume that we are given a directed graph G

of which the cycle set C of G satisfies
∑
j∈C

wjxj ≥ 0 for all C ∈ C i.e., all cycles are

nonnegative cycles. Then, the complexity of each cases are given as the Table 2.2.

(See, e.g., Kellerer et al. (2004) for X = Bn, and Bellman (1958) for X = Xst.)

Table 2.2: Complexity of DCO for special cases

Case X Profit value Complexity
Algorithm
Complexity

1
Bn

pj ∈ Z,∀j ∈ N NP-hard O(nU)a

2 pj = 1,∀j ∈ N P O(n2)
3 pj ∼ O(p(n))b, ∀j ∈ N P O(n2p(n))

4
Xstc

pj = 0 (≥ f),∀j ∈ A P O(nm)d

5 pj ∈ Z−,∀j ∈ A NP-hard O(nmU)
6 pj = −1 (≥ f),∀j ∈ A P O(nm2)

a U : upper bound of
∑
j∈N

|pj |xj , x ∈ X

b p(n) : polynomial function of n

c Xst : set of incidence vectors of s-t paths for a
given graph G = (V,A) with |V | = n, |A| = m

Consider a case of PCO with σj = 0 and µj = wj for all j ∈ N . Then the
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problem turns out to be a decision problem

Instance : N = {1, . . . , n}, X ⊆ Bn, b, f ∈ Z, pj ∈ Z and wj ∈ R,∀j ∈ N

Question : ∃x ∈ X such that
∑
j∈N

wjxj ≤ b,
∑
j∈N

pjxj ≥ f ? (2.2)

The optimal value of PCO is 1 if the answer of (2.2) is ”yes” and 0, otherwise. In

addition, (2.2) is also the decision problem of DCO and can be answered by solving

a single DCO. In this chapter, the main goal is to determine the complexity of PCO

in special cases in Table 2.1. Thus, in the rest of the chapter, we will first analyse

the complexity of CCO for the above six cases, and then use some of the proof to

analyse the complexity of PCO for the cases.
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2.1 Complexity of General Case of PCO and CCO

We first analyse the complexity of PCO and CCO in general case. Since the two

problems have equivalent decision problem, the complexities of both problems can

be determined by using the same decision problem. Consider the following decision

problem

Instance : N = {1, . . . , n}, X ⊆ Bn, b, f ∈ Z, pj ∈ Z,∀j ∈ N,

aj ∼ N(µj , σ
2
j ) where µj ∈ Z, σj ∈ R, ∀j ∈ N

Question : ∃x ∈ X such that
∑
j∈N

pjxj ≥ f, Pr

∑
j∈N

ajxj ≤ b

 ≥ ρ ? (2.3)

which is the decision problem of both PCO and CCO.

Proposition 2.1. If (2.3) is NP-complete, then both PCO and CCO is NP-hard.

Proof. Assume the contrary, i.e., PCO or CCO is not NP-hard when (2.3) is NP-

complete. Without loss of generality, suppose that CCO is polynomial time solvable.

Then for any instance of (2.3), we can answer the question by solving CCO with

same instance of pj , µj , σj for all j ∈ N and ρ, and comparing the objective value

to f . Thus, the assumption is wrong and CCO needs to be NP-hard. Same logic

can be applied to PCO.

Now consider a special case of (2.3). If X = Bn and σj = 0 for all j ∈ N ,

(2.3) becomes a decision problem of the knapsack problem which is NP-complete

(Kellerer et al., 2004). Thus, (2.3) is NP-complete in general and by Proposition

2.1, PCO and CCO are both NP-hard.
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2.2 Complexity of CCO in Special Cases

In this section, we consider the complexity of the chance-constrained combinatorial

optimization problem of the special cases in Table 2.1.

(CCO) maximize
∑
j∈N

pjxj

subject to Pr

∑
j∈N

ajxj ≤ b

 ≥ ρ, (2.4)

x ∈ X,

where aj ∼ N(µj , σ
2
j ) for j ∈ N and X ⊆ Bn. Throughout this paper, we assume

that the values of pj and µj are both integer for all j ∈ N .

Prior to the analysis of the complexity, we reformulate CCO to an equivalent de-

terministic problem by using the cumulative distribution function Φ of the standard

normal distribution. The constraint (2.4) can be reformulated as

Pr

z ≤
b−

∑
j∈N

µjxj√∑
j∈N

σ2
jx

2
j

 ≥ ρ, (2.5)

where z =

∑
j∈N

ajxj−
∑
j∈N

µjxj√ ∑
j∈N

σ2
jx

2
j

and z ∼ N(0, 12). Since Φ(·) is nondecreasing, (2.5) can

be replaced by

∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jx

2
j ≤ b, (2.6)
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where Φ−1 is the inverse cumulative distribution function of standard normal dis-

tribution. Additionally, x2
j can be converted to xj because x ∈ {0, 1} for all j ∈ N .

Then, we can reformulate CCO as

(CCO) maximize
∑
j∈N

pjxj

subject to
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj ≤ b, (2.7)

x ∈ X.

Either of the formulation of CCO with the probability lower bound constraint (2.4)

or that with nonlinear deterministic inequality constraint (2.7) can be used to analyse

the complexity of CCO. Note that we call the first three cases of X = Bn as the

chance-constrained knapsack problem (CKP) and the other three cases of X = Xst

as the chance-constrained shortest path problem (CSP).

. Case 1 : X = Bn, pj ∈ Z for j ∈ N

Consider an instance of σj = 0 for all j ∈ N , then the second term of the constraint

(2.7) can be removed and the problem turns out to be as

maximize
∑
j∈N

pjxj

subject to
∑
j∈N

µjxj ≤ b,

x ∈ Bn,
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which is a deterministic 0-1 knapsack problem. This problem is well-known to be

NP-hard (Kellerer et al., 2004) and thus, Case 1 with X = Bn and pj ∈ Z for all

j ∈ N is also NP-hard.

. Case 2 : X = Bn, pj = 1 for j ∈ N

Before we cover the case of unit profit values, i.e., pj = 1 for all j ∈ N , we first

introduce a new problem

(Sub-CCO) minimize
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj

subject to
∑
j∈N

pjxj ≥ f,

x ∈ X,

which can be obtained by switching the objective function and the constraint (2.7)

of the deterministic nonlinear formulation of CCO.

Proposition 2.2. If Sub-CCO is polynomial time solvable, then CCO is also poly-

nomial time solvable.

Proof. Recall the assumption that the profit values pj , ∀j ∈ N , are integer. Thus,

the possible candidate values of the objective function of CCO are 0, 1, . . . ,
∑
j∈N

pj .

Then, we can obtain an optimal solution of CCO by solving Sub-CCO with f =∑
j∈N

pj ,
∑
j∈N

pj − 1, . . . , 1 in decreasing order, until we have a solution that has the

objective value less than b. This cost us the number of the iterations of solving

Sub-CCO at most
∑
j∈N

pj times. However, we can reduce the number of iterations by

doing bisection of f in the range

[
1,
∑
j∈N

pj

]
.
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First, initialize as LB = 1 and UB =
∑
j∈N

pj . In each iteration, solve Sub-CCO with

the value f = dLB+UB
2 e. Then,

• if the objective value is strictly larger than b, reset as UB = dLB+UB
2 e − 1,

• otherwise, reset as LB = dLB+UB
2 e.

We continue the iteration until we have LB = UB, which takes O
(

log2(
∑

j∈N pj)
)

iterations. Thus even if pj for some j ∈ N are exponential of n, we can guarantee that

it is possible to obtain an optimal solution of CCO by solving Sub-CCO polynomial

times. This induces to the relation that if Sub-CCO is polynomially solvable, then

CCO is also polynomially solvable.

Now, if we show that a special case of Sub-CCO is polynomial-time solvable,

we can guarantee that CCO is also polynomial-time solvable in same case. When

X = B and pj = 1 for all j ∈ N , Sub-CCO is proven to be polynomial-time solvable

in Atamtürk and Narayanan (2009). Thus, CCO is also polynomial-time solvable in

the same condition.

. Case 3 : X = Bn, pj ∼ O(p(n)) for j ∈ N

Next, consider the case of pj values that are polynomially bounded by n, i.e.,

pj ∼ O(p(n)), where p(n) is a polynomially bounded function of n. We do not

yet know whether CKP in this case is NP-hard or not. However, we propose a

pseudo-polynomial time dynamic programming algorithm for the problem. The al-

gorithm is given in Section 3.2 and for CKP, we can solve the problem for all

f = 1, . . . , U =
∑
j∈N
|pj | and t = 1, . . . , b at once using dynamic programming. This

reduces the complexity of the algorithm for CKP to O(nbU).
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. Case 4-6 : X = Xst

Now, let X = Xst, which is the set of the incidence vectors of s-t simple paths for

a given directed graph G = (V,A) with the departure node s and the destination

node t, where s, t ∈ V . For each arc j ∈ A, arc weights are given as aj ∼ N(µj , σ
2
j )

and the resource consumption pj , ∀j ∈ A with no negative cycle. Note that G does

not need to be simple graph. For all Cases 4,5, and 6, we can show that CSP is

NP-hard by proving only for the Case 4, i.e., all zero profits pj = 0 for all j ∈ A.

The corresponding decision problem of the Case 4 is as follows.

Instance : G = (V,A) with |V | = n, |A| = m, Xst ⊆ Bm, b ∈ Z, ρ ∈ [0.5, 1],

aj ∼ N(µj , σ
2
j ) where µj ∈ Z, σj ∈ R,∀j ∈ N

Question : ∃x ∈ Xst such that
∑
j∈A

µjxj + Φ−1(ρ)

√∑
j∈A

σ2
jxj ≤ b ? (2.8)

We prove that the above decision problem is NP-complete by showing a special case

of G that makes (2.8) NP-complete.

Proposition 2.3. The decision problem (2.8) is NP-complete.

Proof. Consider a directed graph G = (V,A) with V = {0, 1, . . . , q} and set of arcs

A that consists of arcs k, q+k that go from node k−1 to node k for all k = 1, . . . , q.

0 1 2 q-1 q

1 2 3 q-1 q

q+1 q+2 q+3 2q-1 2q

Figure 2.1: Example graph for the proof of NP-hardness
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For convenience, index arcs k ∈ A = {1, . . . , 2q} as in Figure 2.1 and suppose

that each arc has a length ak ∼ N(µk, σ
2
k) such that µk ∈ Z and σk ∈ R for all

k ∈ A. The problem is to answer whether there is a path from node 0 to node q that

satisfies
∑
k∈A

µkxk + Φ−1(ρ)
√∑
k∈A

σ2
kxk ≤ b. We can state the decision problem (2.8)

for the graph G in Figure 2.1 as the following.

Instance : G = (V,A) with |V | = q + 1, |A| = 2q, b ∈ Z, ρ ∈ [0.5, 1],

ak ∼ N(µk, σ
2
k) where µk ∈ Z, σk ∈ R, ∀k ∈ A

Question : ∃x such that
∑
k∈A

µkxk + Φ−1(ρ)

√∑
k∈A

σ2
kxk ≤ b, (2.9)

xk + xk+q = 1, ∀k = 1, . . . , q, xk ∈ {0, 1}, ∀k = 1, . . . , 2q ?

Define a lower bound l and an upper bound u as

l =
∑
k∈Q

min{µk, µq+k},

u =
∑
k∈Q

max{µk, µq+k}+ Φ−1

√∑
k∈Q

max{σ2
k, σ

2
q+k}

of the possible values of

∑
k∈Q

µkxk + Φ−1(ρ)

√∑
k∈Q

σ2
kxk,
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where Q = {1, . . . , q} and let D = u− l. Then, define another decision problem as

∑
k∈Q

µkxk + Φ−1(ρ)

√∑
k∈Q

σ2
kxk + s = b,

xk + xq+k = 1,∀k ∈ {1, . . . , q},

x ∈ B2q,

0 ≤ s ≤ D,

(2.10)

where s is a slack variable and since u − l = D, s can be any real value between 0

and D. We can prove that if (2.10) is NP-complete, (2.9) is also NP-complete. For

the decision problem (2.10), the answer depends on the value of b.

• If b < l : answer ”no” (no item chosen with s = b).

• If b > u = l+D : answer ”yes” (there exists a solution such that ∃j ∈ N with

xj = 1 since
∑
k∈Q

µkxk + Φ−1(ρ)
√∑
k∈Q

σ2
kxk > l).

• If l ≤ b ≤ u : the answer is same as the answer of (2.9).

Thus, when (2.10) is NP-complete, it corresponds to the case of l ≤ b ≤ u implying

that (2.9) is also NP-complete.

Now, it is sufficient to prove that (2.10) is NP-complete. Here we prove it using

the Two-Partition Problem which is NP-complete (Karp, 1972).

Definition 2.4. Two-Partition Problem : Given a set of positive integers W =

{w1, . . . , wq}, is it possible to construct two sets W1 and W2 that have equal values

without an intersection, i.e.,
∑
k∈W1

wk =
∑
k∈W2

wk = 1
2

∑
k∈W

wk = C, W1 ∩W2 = ∅?

The two-partition problem can be reduced to (2.10) by setting the instance values

of (2.10) as the following. Let µk := 2Dwk and σk := 0 for k = 1, . . . , q, and µq+k := 0

and σ2
q+k := wk for k = 1, . . . , q. Then by assigning b := 2DC+

√
C and Φ−1(ρ) := 1,
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(2.10) turns out to be

q∑
k=1

2Dwkxk +

√√√√ q∑
k=1

wkxq+k + s = 2DC +
√
C,

xk + xq+k = 1, ∀k ∈ {1, . . . , q},

x ∈ B2q,

0 ≤ s ≤ D.

This problem is proven to be NP-complete in Atamtürk et al. (2013). Therefore,

(2.10) is NP-complete and thus, the decision problem (2.9) is NP-complete which

is an instance of Case 4. Consequently, (2.8) is NP-complete.

Even though, the NP-hardness of the PCO and CCO with X = Xst may be in-

ferred by the NP-hardness of constrained shortest path problem (Warburton, 1987),

the above proof implies that it is still NP-hard for a very simple graph like Figure

2.1. This naturally leads to the NP-hardness of Case 5 and 6, since the Case 4 is a

special case of both Case 5 and 6. Thus, CSP is NP-hard with any profit values pij

for all (i, j) ∈ A.

We summarize the complexity of CCO for the six special cases as Table 2.3.

Table 2.3: Complexity of CCO for special cases

Case X Profit value Complexity
1

Bn
pj ∈ Z,∀j ∈ N NP-hard

2 pj = 1,∀j ∈ N P
3 pj ∼ O(p(n))a, ∀j ∈ N at most O(nbU)b

4
Xstc

pj = 0 (≥ f),∀j ∈ A NP-hard
5 pj ∈ Z−,∀j ∈ A NP-hard
6 pj = −1 (≥ f),∀j ∈ A NP-hard

a p(n) : polynomial function of n
b U : upper bound of

∑
j∈N

|pj |xj , x ∈ X

c Xst : set of incidence vectors of s-t paths for a given graph G = (V,A) with
|V | = n, |A| = m
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2.3 Complexity of PCO in Special Cases

Finally, consider PCO which can be formulated as

(PCO) maximize Pr

∑
j∈N

ajxj ≤ b

 (2.11)

subject to
∑
j∈N

pjxj ≥ f,

x ∈ X,

where aj ∼ N(µj , σ
2
j ) for j ∈ N , pj and µj are both integer for all j ∈ N and

X ⊆ Bn. Before analysing the complexity, we reformulate PCO to an equivalent

deterministic problem using the cumulative distribution function Φ of the standard

normal distribution. The objective function (2.11) can be reformulated as

Pr

z ≤
b−

∑
j∈N

µjxj√∑
j∈N

σ2
jx

2
j

 ,

where z =

∑
j∈N

ajxj−
∑
j∈N

µjxj√ ∑
j∈N

σ2
jx

2
j

and z ∼ N(0, 12). Since Φ−1, the inverse function of

Φ, is a nondecreasing function of ρ, we can obtain an optimal solution of PCO by

maximizing the following fractional function

b−
∑
j∈N

µjxj√∑
j∈N

σ2
jx

2
j

.
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We can substitute x2
j with xj , since xj ∈ {0, 1} for all j ∈ N . Thus, solving PCO is

equivalent to solving the following problem

(PCO) maximize

b−
∑
j∈N

µjxj√∑
j∈N

σ2
jxj

(2.12)

subject to
∑
j∈N

pjxj ≥ f,

x ∈ X.

We use either of the formulation with the objective function of the form (2.11) or

(2.12) to analyse the complexity of PCO of the special cases.

. Case 1,4-6 : CCO is NP-hard

Here, we first propose a proposition about the relation between PCO and CCO.

Proposition 2.5. If CCO is NP-hard in a certain condition, then PCO is also

NP-hard in the same condition.

Proof. Recall the assumption that all values of pj , j ∈ N are integer. Then the objec-

tive function of CCO can only have integer values. Also remind that the formulation

of PCO can be obtained by switching the objective function and the constraint (2.4)

of CCO. Then, we can obtain an optimal solution of CCO by solving PCO with

f =
∑
j∈N

pj ,
∑
j∈N

pj − 1, . . . , 1 in decreasing order, until we have a solution with the

objective value larger than ρ. By applying a binary search of f in range

[
1,
∑
j∈N

pj

]
,

same as the procedure in the proof of Proposition 2.2, the number of the itera-

tions is at most O(log2(
∑

j∈N pj)). Thus, we can obtain an optimal solution of CCO

by solving PCO polynomial times. Suppose that PCO is polynomial-time solvable.
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Then, by solving PCO polynomial time, we obtain an optimal solution of CCO in

polynomial time. Thus, as the contraposition, if CCO is NP-hard, then PCO is also

NP-hard.

By Proposition 2.5, we can convince that PCO in the cases 1,4,5, and 6 is NP-

hard. We then only have to analyse the complexity of PCO for the case 2 and 3,

which we call it probability maximizing knapsack problem (PKP) since X = Bn.

. Case 2 : X = Bn, pj = 1 for j ∈ N

Suppose that pj = 1 for all j ∈ N . Then, we solve

maximize

b−
∑
j∈N

µjxj√∑
j∈N

σ2
jxj

(2.13)

subject to
∑
j∈N

xj ≥ f, (2.14)

x ∈ Bn.

Since the objective function (2.13) is a nonincreasing function of variable xj , ∀j ∈ N ,

we still obtain the same optimal objective value even if we change the constraint

(2.14) to the equation form, that is

maximize

b−
∑
j∈N

µjxj√∑
j∈N

σ2
jxj

(2.15)

subject to
∑
j∈N

xj = f,

x ∈ Bn.
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Let a(T ) =
∑
j∈T

µj and c(T ) =
∑
j∈T

σ2
j for any subset T ⊆ N . Then, the above problem

can be represented as the following problem

νf = max
T⊆N

{
b− a(T )√

(c(T ))
: |T | = f

}
. (2.16)

Let

Tf = {T ⊆ N : |T | = f},

Yf = conv {(a(T ), c(T )) : T ∈ Tf}.

Now consider the problem

max

{
b− z1√
z2

: (z1, z2) ∈ Yf
}
. (2.17)

Since the objective function of (2.17) is quasi-convex on Yf (Nikolova, 2008) and Yf

is a compact convex set, we have an optimal solution that is an extreme point of Yf

(Nikolova et al., 2006) and thus (2.17) gives equivalent solution with (2.16). Due to

the nonincreasing objective function (2.15) on Bn, the candidate extreme points of

Yf can be enumerated efficiently by parametric linear programming. We solve

min z1 + λz2 : (z1, z2) ∈ Yf for ∀λ ≥ 0 (2.18)

and a single optimization

min z2 : (z1, z2) ∈ Yf . (2.19)

For fixed λ, the optimal solutions for (2.19) is the sum of f smallest σ2
j , j ∈ N . The
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optimal solutions of (2.18) for each λ ≥ 0 are f smallest µj + λσ2
j , j ∈ N . Since the

order of (µj + λσ2
j ) changes at most

(
n
2

)
times as λ ranges over [0,+∞), there are

at most
(
n
2

)
extreme points to consider. These can be enumerated by solving (2.18)

for each λ = λij , where λij satisfies

µi + λijσ
2
i = µj + λijσ

2
j , ∀i, j ∈ N, i 6= j.

Due to the cardinality constraint
∑
j∈N

xj = f , only the order change of the fth and

(f + 1)th smallest items matters. In addition, an exchange of every pair {i, j} is of

interest of at most one value of f (Atamtürk and Narayanan, 2009). With the proof

in Atamtürk and Narayanan (2009), we can conclude that PKP with unit profit

values for each items can be solved in O(n3).

. Case 3 : X = Bn, pj ∼ O(p(n)) for j ∈ N

Lastly, we consider the case of PKP with pj ∼ O(p(n)) for all j ∈ N , where p(n) is

a polynomial function of n. Same as CKP, the complexity of this case have not been

proven. However, we provide an pseudo-polynomial dynamic programming algorithm

in Section 3.1, of which the complexity can be reduced by specifying that X = Bn.

The complexity of the algorithm is O(nbU), where U =
∑
j∈N
|pj |.

The summary of the complexity of PCO for the special cases is given in Table

2.4.
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Table 2.4: Complexity of PCO for special cases

Case X Profit value Complexity

1
Bn

pj ∈ Z,∀j ∈ N NP-hard
2 pj = 1,∀j ∈ N P
3 pj ∼ O(p(n))a, ∀j ∈ N at most O(nbU)b

4
Xstc

pj = 0 (≥ f),∀j ∈ A NP-hard
5 pj ∈ Z−,∀j ∈ A NP-hard
6 pj = −1 (≥ f),∀j ∈ A NP-hard

a p(n) : polynomial function of n
b U : upper bound of

∑
j∈N

|pj |xj , x ∈ X

c Xst : set of incidence vectors of s-t paths for a given graph G = (V,A) with
|V | = n, |A| = m
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Chapter 3

Exact Algorithms

In this chapter, we talk about the exact algorithm for the probability maximizing

combinatorial optimization problem (PCO) and the chance-constrained combinato-

rial optimization problem (CCO). Though our study is focused on PCO, we also

cover the exact algorithm of CCO since it has very similar form with that of PCO.

Prior to the construction of the exact algorithms of PCO and CCO, we assume

that there is an exact algorithm for the constrained deterministic combinatorial

optimization problem (C-DCO).

(C-DCO) minimize
∑
j∈N

wjxj

subject to
∑
j∈N

pjxj ≥ f,

∑
j∈N

µjxj ≤ t,

x ∈ X,

of which the complexity is f(n, t, U). Here, U is the upper bound of
∑
j∈N

pjxj for

x ∈ X. In this chapter, we derive exact algorithms of PCO and CCO that use the

exact algorithm of C-DCO.
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3.1 Exact Algorithm of PCO

We first derive an exact algorithm of PCO. Consider the deterministic nonlinear

formulation of PCO

(PCO) maximize

b−
∑
j∈N

µjxj√∑
j∈N

σ2
jxj

(3.1)

subject to
∑
j∈N

pjxj ≥ f,

x ∈ X.

Since the objective function (3.1) is a fractional function whose numerator is a linear

and denominator is a nonlinear function of x, we split the objective function. We

define a subproblem of PCO by adding a constraint which specifies the lower bound

of the numerator as k and substituting the objective function by the function in the

root of the denominator. Then the subproblem has the form of

(Sub-PCOk) minimize
∑
j∈N

σ2
jxj (3.2)

subject to
∑
j∈N

µjxj ≤ b− k, (3.3)

∑
j∈N

pjxj ≥ f,

x ∈ X,

with k = 1, . . . , b − 1. Note that (3.3) is equivalent to b −
∑
j∈N

µjxj ≥ k. Then, we

can obtain an optimal solution of PCO by solving Sub-PCOk for all k = 1, . . . , b− 1
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and an additional optimization problem

max

{
k
√
zk

: k = 1, . . . , b− 1

}
, (3.4)

where zk is the optimal value of each Sub-PCOk for k = 1, . . . , b−1. Since Sub-PCOk

has the form of C-DCO and b− k ≤ b for all k = 1, . . . , b− 1, we can solve each of

Sub-PCOk in f(n, b, U) and (3.4) can be calculated in O(b). Thus, the complexity

of the exact algorithm of PCO is O(b · f(n, b, U)).

Algorithm 1 Exact Algorithm of PCO

1: procedure Algorithm
2: for k = 1, . . . , b− 1 do
3: Solve Sub-PCOk and let zk be the optimal objective value.

4: return z∗ = max
{

k√
zk

: k = 1, . . . , b
}

Further, in the special cases of X = Bn or X = Xst, we can reduce the complexity

by O(f(n, b, U)). For convenience, we call the problem as probability maximizing

knapsack problem (PKP) and probability maximizing shortest path problem (PSP)

when X = Bn and X = Xst, respectively. Also we call their subproblems as Sub-PKP

and Sub-PSP, and C-DCO in each case as C-DKP and C-DSP.

When X = Bn, i.e., PKP, Sub-PKPk turns out to be a knapsack problem with

additional constraint (3.3) of which the coefficients µj for j ∈ N are all integer. Since

this has identical form with C-DKP, we can use the dynamic programming algorithm

with complexity O(nbU) (Kellerer et al., 2004). Since the DP algorithm contains

states for every value of
∑
j∈S

pj for all S ⊆ N , i.e., any t′ such that 0 ≤ t′ ≤ t, we can

solve Sub-PCOk for all k = 1, . . . , b − 1 at once by solving C-DKP with t = b − 1.

Therefore, the algorithm complexity can be reduced to O(f(n, b, U)) = O(nbU).
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Algorithm 2 Exact Algorithm of PKP

Define : Π(j, k, p) is the minimum value of
∑
j∈S

σ2
j of any subset S ⊆ J = {1, . . . , j} of

which b−
∑
j∈S

µj ≥ k and
∑
j∈S

pj ≥ p, for j = 0, . . . , n, k = 0, . . . , b− 1, and p = 0, . . . , f .

1: procedure DP Algorithm
2: for k = b− 1, . . . , 0 do
3: Π(0, k, 0) = 0
4: for p = 1, . . . , f do
5: Π(0, k, p) =∞
6: for j = 1, . . . , n do
7: for p = 0, . . . , pj − 1 do
8: for k = b− µj , . . . , 0 do
9: Π(j, k, p) = min{Π(j − 1, k, p),Π(j − 1, k + µj , 0) + σ2

j }
10: for k = b− 1, . . . , b− µj + 1 do
11: Π(j, k, p) = Π(j − 1, k, p)

12: for p = pj , . . . , f − 1 do
13: for k = b− µj , . . . , 0 do
14: Π(j, k, p) = min{Π(j − 1, k, p),Π(j − 1, k + µj , p− pj) + σ2

j }
15: for k = b− 1, . . . , b− µj + 1 do
16: Π(j, k, p) = Π(j − 1, k, p)

17: for p = f, . . . , U do
18: for k = b− µj , . . . , 0 do
19: Π(j, k, f) = min{Π(j − 1, k, f),Π(j − 1, k + µj ,min{p− pj , f}) + σ2

j }
20: for k = b− 1, . . . , b− µj + 1 do
21: Π(j, k, f) = Π(j − 1, k, f)

22: for k = 1, . . . , b− 1 do
23: zk = Π(n, k, f)

24: return z∗ = min
{

k√
zk

: k = 1, . . . , b− 1
}

Similar logic can be adopted to PSP, where X = Xst, since there exists a DP

algorithm for multi-resource constrained shortest path problem in the form of C-

DSP. Given a directed graph G = (V,A) with the arc weight aj ∼ N(µj , σ
2
j ) and
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the resource consumption pj for j ∈ A. Assume there is no negative cycle in G

and µj , pj ∈ Z for all j ∈ N . The DP algorithm runs in O(nmbU), where n = |V |

and m = |A| (Ziegelmann and Mehlhorn, 2001). Then, the complexity of the exact

algorithm of PSP can be reduced to O(nmbU). Note that since m = O(n2), the

complexity can be represented as O(n3bU).

Algorithm 3 Exact Algorithm of PSP

Define : Π(l, v, k, p) is the minimum value of
∑
j∈P

σ2
j for a simple path P from 0 to v with

at most l arcs that satisfies b −
∑
j∈P

µj ≥ k and
∑
j∈P

pj ≥ p, for l = 0, . . . , n − 1,v = 0, . . . , n,

k = 0, . . . , b − 1, and p = 0, . . . , U . Note that for j ∈ A such that j = (u, v) for some
u, v ∈ V , pj , µj , σj can be written as puv, µuv, σuv, respectively.

1: procedure DP Algorithm
2: for k = 0, . . . , b− 1 do
3: for v = 0, . . . , n do
4: for p = 0, . . . , U do
5: Π(0, v, µ, p) =∞
6: Π(0, 0, k, 0) = 0

7: for l = 1, . . . , n− 1 do
8: for v = 1, . . . , n− 1 do
9: for p = 1, . . . , f do

10: for k = b− 1, . . . , 1 do
11: Ξ(l, v, k, p) = min

u∈V −(v) : µuv≤b−k

[
Π(l − 1, u, k + µuv,max{p− puv, 0}) + σ2

uv

]
12: Π(l, v, k, p) = min{Π(l − 1, v, k, p),Ξ(l, v, k, p)}
13: for k = 1, . . . , b− 1 do
14: for v = 0, . . . , n− 1 do
15: dk(v) = min{Π(n− 1, v, µ, p) : p ≥ f − pvn, µ ≥ k + µvn}
16: zk = min

v∈V −(n)
{dk(v) + σ2

vn}

17: return z∗ = min
{

k√
zk

: k = 1, . . . , b− 1
}
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3.2 Exact Algorithm of CCO

The exact algorithm of CCO follows a procedure similar to the exact algorithm of

PCO. Given the deterministic nonlinear formulation of CCO

(CCO) maximize
∑
j∈N

pjxj

subject to
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj ≤ b, (3.5)

x ∈ X.

The constraint (3.5) is nonlinear and we can substitute it with the following three

inequalities.

∑
j∈N

µjxj ≤ t,

∑
j∈N

σ2
jxj ≤

(
b− t

Φ−1(ρ)

)2

, (3.6)

t ≤ b.

Due to the integrality of µj for all j ∈ N , we only need to consider integer values of t.

Since the coefficients of the constraint (3.6) are not integer, we define a subproblem

of CCO by switching (3.6) with the objective function of CCO. Then the subproblem
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can be constructed as

(Sub-CCO(f,t)) minimize
∑
j∈N

σ2
jxj

subject to
∑
j∈N

µjxj ≤ t,

∑
j∈N

pjxj ≥ f,

x ∈ X,

for f = 1, . . . , U =
∑
j∈N
|pj | and t = 1, . . . , b − 1. Then, we can obtain an optimal

solution of CCO by solving Sub-CCO(f,t) for f = U,U − 1, . . . in decreasing order

for all t = 1, . . . , b− 1 until we find a value f that satisfies

{
t : t+ Φ−1(ρ)

√
zf,t ≤ b, t = 1, . . . , b− 1

}
6= ∅, (3.7)

where zf,t is the optimal value of Sub-CCO(f,t) for f = 1, . . . , U and t = 1, . . . , b−1.

Since Sub-CCO(f,t) has the form of C-DCO and t ≤ b, we can solve each Sub-

CCO(f,t) in f(n, b, U) and (3.7) can be checked in O(b) for each f . Thus, the com-

plexity of the exact algorithm of CCO is O(bU · f(n, b, U)).

Algorithm 4 Exact Algorithm of CCO

1: procedure Algorithm
2: for f = U,U − 1, . . . , 1 (in decreasing order) do
3: for t = 1, . . . , b− 1 do
4: Solve Sub-CCO(f,t) and let zf,t be the optimal objective value.
5: if t+ Φ−1(ρ)

√
zf,t ≤ b then

6: Stop. It is optimal solution.
7: return f
8: else
9: Continue.
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Identically with PCO, we denote CCO with X = Bn by chance-constrained

knapsack problem (CKP) and CCO with X = Xst as chance-constrained shortest

path problem (CSP). Then, the corresponding subproblems are called as Sub-CKP

and Sub-CSP, and C-DCO as C-DKP and C-DSP, respectively. For CKP, the com-

plexity can be reduced to O(f(n, b, U)) similarly with the case of PKP. That is, we

can solve Sub-CKP(f,t) for all f = 1, . . . , U , t = 1, . . . , b simultaneously, by using

DP algorithm. As mentioned, there exists a DP algorithm that can solve C-DKP in

O(nbU) and thus, we can solve CKP in O(nbU).

Algorithm 5 Exact Algorithm of CKP

Define : Π(j, k, p) is the minimum value of
∑
j∈S

σ2
j of subset S ⊆ {1, . . . , j} of

which b−
∑
j∈S

µj ≥ k and
∑
j∈S

pj ≥ p, for j = 0, . . . , n, k = 0, . . . , b−1, and p = 0, . . . , U .

1: procedure DP Algorithm
2: Set f = U and do the line 2 to 21 of Algorithm 2
3: for f = U,U − 1, . . . , 1 (in decreasing order) do
4: for k = 1, . . . , b− 1 do
5: Set t = b− k
6: if t+ Φ−1(ρ)

√
Π(n, t, p) ≤ b then

7: Stop. It is optimal solution.
8: return f
9: else

10: Continue.

Also for the case of X = Xst, we can solve CSP in O(nmbU) adopting the DP

algorithm for C-DSP.
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Algorithm 6 Exact Algorithm of CSP

Define : Π(l, v, k, p) is the minimum value of
∑
j∈P

σ2
j for a simple path P

from 0 to v with at most l arcs that satisfies b −
∑
j∈P

µj ≥ k and
∑
j∈P

pj ≥ p, for

l = 0, . . . , n− 1,v = 0, . . . , n, k = 0, . . . , b− 1, and p = 0, . . . , U . Note that for j ∈ A
such that j = (u, v) for some u, v ∈ V , pj , µj , σj can be written as puv, µuv, σuv,
respectively.

1: procedure DP Algorithm
2: Set f = U and do the line 2 to 12 of Algorithm 3
3: for k = 1, . . . , b− 1 do
4: for p = 1, . . . , U do
5: Pi(n, n, k, p) = min

v∈V −(n)
:µvn≤b−k

[Π(n− 1, v, k + µvn,max{p− pvn, 0}) + σ2
vn]

6: for p = U,U − 1, . . . , 1 (in decreasing order) do
7: for k = 1, . . . , b− 1 do
8: Set t = b− k
9: if t+ Φ−1(ρ)

√
Π(n, n, t, p) ≤ b then

10: Stop. It is optimal solution.
11: return p
12: else
13: Continue.
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Chapter 4

Approximation Scheme for Probability
Maximizing Combinatorial Optimization Problem

This chapter suggests an approximation scheme for probability maximizing combi-

natorial optimization problem (PCO). For the approximation schemes, we use the

relation between PCO and the chance-constrained combinatorial optimization prob-

lem (CCO). Consider the decision problem of PCO

Instance : N = {1, . . . , n}, X ⊆ Bn, b, f ∈ Z, ρ ∈ [0.5, 1], pj ∈ Z, ∀j ∈ N

aj ∼ N(µj , σ
2
j ) where µj ∈ Z, σj ∈ R,∀j ∈ N

Question : ∃x ∈ X :
∑
j∈N

pjxj ≥ f, Pr

∑
j∈N

ajxj ≤ b

 ≥ ρ ? (4.1)

We assume that ∃S ⊆ N such that
∑
j∈S

µj ≤ b and
∑
j∈S

pj ≥ f , so that ρ ∈ [0.5, 1].

We can answer to this decision problem by solving CCO, and compare the optimal

objective value to f . The lower and upper bound of the optimal objective value ρ∗ of

PCO can be updated to tighten the range depending on the answer of (4.1). Thus, we

can obtain an optimal solution of PCO by iteratively solving CCO with ρ ∈ [0.5, 1].

However, since ρ is a real number and there is no other algorithm known so far

that gives an lower bound of the gap between the possible values of Pr

(∑
j∈S

aj ≤ b

)
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for all S ⊆ N , we have to check all the values of ρ that corresponds to 2n subset

S ⊆ N to obtain an exact solution. Therefore, we attempt to attain an approximate

solution.

Before we explain the approximation scheme, we first define the δ-approximation

scheme of CCO and the δ-approximation scheme of PCO.

Definition 4.1. A δ-approximation scheme of CCO is the algorithm that gives a

solution that satisfies

x ∈ X, Pr

∑
j∈N

ajxj ≤ b

 ≥ ρ− δ,
for a given value δ ∈ (0, ρ).

A δ-approximation scheme of PCO is the algorithm that gives a solution that

guarantees the absolute error of the resulting objective value ρ to the optimal value

ρ∗ is at most δ;

ρ∗ − δ ≤ ρ,

for any given value δ ∈ (0, ρ).

Now, suppose that the optimal value of PCO is ρ∗. Then, we suggest a δ-

approximation scheme that guarantees to find a solution with the objective value

ρ that has at most δ > 0 absolute error from ρ∗; ρ∗ − ρ ≤ δ. This can be also

interpreted as (1− 2δ)-approximation as the ratio since ρ∗ ≥ 0.5 and thus,

ρ∗ − δ = ρ∗(1− δ

ρ∗
) ≥ ρ∗(1− 2δ).
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The overall structure of the approximation scheme is as follows.

1. Do bisection of the possible interval of the value of ρ to choose a value ρ.

2. Solve CCO with the chosen ρ.

3. Update the interval and repeat until the length of the interval is small enough,

i.e., less than δ.

The following sections in this chapter are composed of the steps of the approxima-

tion scheme. In Section 4.1, we first cover the bisection procedure of ρ and how to

update the interval, which are step 1 and 3 of the approximation scheme. Then,

in Section 4.2, we provide an approximation scheme of CCO for step 2. In Section

4.3, variation of the bisection procedure to reduce the practical computational time

of the approximation scheme is presented. Lastly, in Section 4.4, we compare our

approximation scheme to the approximation scheme of Nikolova (2009).
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4.1 Bisection Procedure of ρ

In the approximation scheme, we set ρ as a specific value considering the range of the

possible value and solve CCO. Then we adjust the range according to the objective

value obtained by solving CCO. To validate the bisection procedure, we first check

the monotone condition of ρ.

Proposition 4.2. For 0.5 ≤ ρ1, ρ2 < 1, if ρ1 > ρ2, thenx ∈ X : ρ1 ≤ Pr

∑
j∈N

ajxj ≤ b

 ⊆
x ∈ X : ρ2 ≤ Pr

∑
j∈N

ajxj ≤ b

 .

Due to Proposition 4.2, we can do bisection on the range of ρ and update lower

and upper bound depending on the answer of the decision problem (4.1). By the

assumption that ρ∗ ∈ [0.5, 1], we initially set the lower bound LB0 = 0.5 and the

upper bound UB0 = 1.

Suppose that we have an exact algorithm to solve CCO. In each iteration k, we

are given the lower bound LBk−1 and the upper bound UBk−1 of the possible value

of ρ. Then we solve CCO with ρk =
LBk−1+UBk−1

2 and update the interval.

• If zk ≥ f , then LBk = ρk, UBk = UBk−1

• else if zk < f , then LBk = LBk−1, UBk = ρk

where zk is the optimal value of CCO with ρk. Then we repeat the iteration until

we have UBm − LBm ≤ δ. This guarantees a solution that has at most δ absolute

error from the optimal value ρ∗. Since the length of the interval is reduced by half
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in each iteration, the total number of iterations m satisfies

(1− 0.5) ·
(

1

2

)m
≤ δ ⇒ m ≥ log2

(
1

δ

)
− 1.

Thus, the total number of the iterations is O(log(1
δ )).

However, if we use the exact algorithm of CCO given in Section 3.2, the complex-

ity of the approximation scheme is O(bU log(1
δ )f(n, b, U)), which is worse than the

complexity of the exact algorithm of PCO given in Section 3.1. Thus, we generate

a new approximation scheme that in each iteration we solve CCO approximately,

rather than solving it exactly.

Consider the case of which we have an α-approximation scheme of CCO that

gives the solution that guarantees the following bound

x ∈ X : Pr

∑
j∈N

ajxj ≤ b

 ≥ ρ− α, (4.2)

for any α ∈ (0, ρ). In each iteration k, apply the approximation scheme of CCO with

ρk ∈ [LBk−1, UBk−1] and update the interval as the following.

• If zk ≥ f , then LBk = ρk − α, UBk = UBk−1

• else if zk < f , then LBk = LBk−1, UBk = ρk,

where zk is the objective value of the α-approximate solution of CCO. We stop the

iteration when we have UBm − LBm ≤ δ.

Now, we have to derive the method to select the value of ρk from the range

[LBk−1, UBk−1] to reduce the range efficiently. Suppose that in each iteration k we

can reduce the length of the interval to be at most βk(< 1) times the length prior

47



to the iteration. Then, the following two conditions should be satisfied.

(ρk − LBk−1) ≤ βk · (UBk−1 − LBk−1) ⇒ ρk ≤ βk · UBk−1 + (1− βk) · LBk−1,

(4.3)

(UBk−1 − ρk + α) ≤ βk · (UBk−1 − LBk−1) ⇒ ρk ≥ (1− βk) · UBk−1 + βk · LBk−1 + α.

(4.4)

Since the upper bound and the lower bound of ρk given in (4.3) and (4.4), respec-

tively, have to satisfy

(1− βk) · UBk−1 + βk · LBk−1 + α ≤ βk · UBk−1 + (1− βk) · LBk−1

to guarantee the existence of such ρk, we can generate an additional condition

(2βk − 1) · (UBk−1 − LBk−1) ≥ α. (4.5)

Thus, while (4.5) is satisfied, we can reduce the range of possible ρ values by the

factor of βk if we set ρk as the value that satisfied (4.3) and (4.4). We let βk =

1
2 + α

2(UBk−1−LBk−1) , and it induces

ρk =
UBk−1 + LBk−1 + α

2
. (4.6)

Proposition 4.3. If we have an α-approximation scheme of CCO, then we can

generate a tα-approximation scheme of PCO that runs the α-approximation scheme

of CCO O(log( 1
α)) times, for any fixed t > 1.

Proof. In each iteration, set ρk as (4.6) and apply the α-approximation of CCO. If

48



the objective value of the solution zk ≥ f , then let LBk = ρk − α, UBk = UBk−1

and otherwise, let LBk = LBk−1, UBk = ρk. Then, in either of the case, we have

UBk − LBk = βk · (UBk−1 − LBk−1),

where βk = 1
2 + α

2(UBk−1−LBk−1) .

To guarantee tα-approximation of PCO, we do the iteration until we have

UBm − LBm ≤ tα. (4.7)

Note that the reduction ratio βk of the length of the interval [LBk−1, UBk−1] is

inverse proportional to the length. Thus, we have

βk ≤ βk+1, ∀k ≥ 1. (4.8)

Let m be the total number of the iterations, then we have

UBm−1 − LBm−1 > tα, UBm − LBm ≤ tα.

Thus,

βm =
1

2
+

α

2(UBm−1 − LBm−1)
<

1

2
+

1

2t
=
t+ 1

2t
,

and due to (4.8),

βk <
t+ 1

2t
, ∀k = 1, . . . ,m. (4.9)
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Then for any fixed t > 1, we have the following by (4.9).

(1− 0.5) ·
(
t+ 1

2t

)m
≤ tα ⇒ m ≥ log 2t

t+1

(
1

2tα

)
,

that is m = O(log( 1
α)).

Thus, we can generate a tα-approximation scheme of PCO that requires the

α-approximation scheme of CCO O(log( 1
α)) times, for any fixed t > 1. Since our

goal is to generate a δ-approximation of PCO, we need an α-approximation scheme

of CCO that satisfies tα = δ for a fixed t > 1. Suppose that the correspond-

ing α-approximation scheme of CCO has the complexity of h(n, b, U). Then the

δ-approximation scheme of PCO has the complexity of O(log(1
δ ) · h(n, b, U)).

Algorithm 7 δ-Approximation Scheme of PCO

1: procedure Bisection
2: Initialize LB0 = 0.5 and UB0 = 1
3: while UBk−1 − LBk−1 ≥ δ do

4: Set ρk =
UBk−1+LBk−1+α

2 .
5: Apply the α-approximation scheme to CCO with ρk and let the value

of Pr

z ≤ b−
∑
j∈N

µjxj√ ∑
j∈N

σ2
jx)j

 of the optimal solution be ρ′.

6: if zk ≥ f then
7: Save ρ′ as current optimal value ρ∗ of PCO.
8: Update LBk = ρk − α and UBk = UBk−1.
9: else

10: Update LBk = LBk−1 and UBk = ρk.

11: return ρ∗
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4.2 Approximation Scheme of CCO

In this section, we suggest an α-approximation scheme of CCO, which is an extension

of the approximation scheme of CKP in Han et al. (2016) to the general combina-

torial optimization problem with X ⊆ Bn, CCO. We first define a deterministic

combinatorial optimization problem (DCO) as

(DCO) minimize
∑
j∈N

wjxj

subject to
∑
j∈N

pjxj ≥ f,

x ∈ X.

It is obvious that DCO is a special case of C-DCO of which the second constraint of

C-DCO, i.e.,
∑
j∈N

µjxj ≤ t, is redundant. We assume that there is an exact algorithm

of DCO with the complexity g(n, b, U), where b is an upper bound of
∑
j∈N

wjxj and

U is an upper bound of
∑
j∈N

pjxj for x ∈ X. For the case of X = Bn, which we denote

by the deterministic knapsack problem (DKP), the algorithm can be a DP algorithm

that runs in O(nU). Note that by extending the DP algorithm, C-DKP can be solved

in O(nbU). We propose an approximation scheme of CCO, which iteratively uses

the exact algorithm of DCO.
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Remind the deterministic nonlinear formulation of CCO

(CCO) maximize
∑
j∈N

pjxj

subject to
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj ≤ b,

x ∈ X.

The feasible set of CCOx ∈ X :
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj ≤ b


can be reformulated as x ∈ X :

∑
j∈N

ajxj ≤ b,∀a ∈ U

 , (4.10)

where

U =

µ+ Φ−1(ρ)Σ1/2ε :
∑
j∈N

ε2j ≤ (Φ−1(ρ))2

 , µ =


µ1

...

µn

 ,Σ =


σ2

1

. . .

σ2
n

 .

Then, define a loss function f(εj) = ε2j and approximate it by a piecewise linear

function as shown in Figure 4.1.

The interval [0,
(
Φ−1(ρ)

)2
] along the vertical axis is divided into m segments

of equal length, [π0
j = 0, π1

j ], [π
1
j , π

2
j ], . . . , [π

m−1
j , πmj =

(
Φ−1(ρ)

)2
], and every two

successive points are connected by a straight line. Then, define a piecewise linear
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Figure 4.1: Approximation of quadratic loss function when ρ = 0.95 and m = 5

loss function lm(·) over [0,Φ−1(ρ)] as

lm(εj) =
πmj
m

k − 1 +
εj −

√
πk−1
j√

πkj −
√
πk−1
j

 , if
√
πk−1
j ≤ εj ≤

√
πkj for k ∈M,

where M = {1, . . . ,m} is a set of the linear segments. Then the ellipsoidal uncer-

tainty set U can be approximated by Um :

Um :=

µ+ Σ1/2ε :
∑
j∈N

lm(εj) ≤
(
Φ−1(ρ)

)2 .

Since the loss function f(·) is convex, the piecewise linear approximation function

lm(·) is also a convex function and thus Um is a bounded convex polyhedron. Fur-

thermore, it satisfies

Um =
{
µ+ Σ1/2ε : ε ∈ conv(ε)

}
, (4.11)
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where

ε =

ε ∈ Rn :
∑
j∈N

lm(εj) ≤
(
Φ−1(ρ)

)2
, εj ∈

{
0,
√
π1
j , . . . ,

√
πmj

}
,∀j ∈ N

 .

Now, define RCOm, the robust approximation of CCO, which is a robust combina-

torial optimization problem with a polyhedral uncertainty set Um as (4.11).

(RCOm) maximize
∑
j∈N

pjxj

subject to
∑
j∈N

ajxj ≤ b, ∀a ∈ Um, (4.12)

x ∈ X.

Let zCCO and zRCOm be the optimal values of CCO and RCOm, respectively, for a

given threshold probability ρ and the number of linear segment m. Then by Han

et al. (2016), we have

zCCO ≤ zRCOm .

Moreover, let Fm be the feasible solution set to RCOm and

ρm := inf
x∈Fm

P

∑
j∈N

ajxj ≤ b

 .

Then, it is proven in Han et al. (2016) that lim
m→∞

ρm = ρ and

ρm ≥ ρ−
1√
2π

Φ−1(ρ)

(
1−

√
1− n

4m

)
e−(Φ−1(ρ))

2
(1− n

4m)/2. (4.13)
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Thus by solving RCOm, we can obtain an approximation solution that guarantees

Pr

∑
j∈N

ajxj ≤ b

 ≥ ρm, x ∈ X,
with ρm that satisfies (4.13). Suppose that αm = ρ− ρm, where m is the number of

linear segments in Um. In Han et al. (2016), they provided an upper bound of αm as

αm ≤
1√
2π

Φ−1(ρ)

(
1−

√
1− n

4m

)
,

which is dependent on ρ. However, we propose an upper bound that is independent

of the value of ρ.

Proposition 4.4. For m, the number of linear segments, we can guarantee

ρ− ρm = αm ≤
n√

2πe(4m− n)
. (4.14)

Proof. Let C(ρ) = 1√
2π

Φ−1(ρ), then (4.13) is

αm ≤ C(ρ)

(
1−

√
1− n

4m

)
e−(Φ−1(ρ))2(1− n

4m
)/2.

Since ln(·) is a nondecreasing function,

lnαm ≤ ln (C(ρ)) + ln

(
1−

√
1− n

4m

)
−
(
Φ−1(ρ)

)2 (
1− n

4m

)
/2

= ln (C(ρ)) + ln

(
1−

√
1− n

4m

)
− π (C(ρ))2

(
1− n

4m

)
.
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Let t = 1− n
4m and u = C(ρ), and then we obtain following inequality

lnαm ≤ lnu+ ln
(

1−
√
t
)
− πtu2. (4.15)

Define a function f(u) as

f(u) = lnu+ ln
(

1−
√
t
)
− πtu2.

Then we have

f ′(u) =
1

u
− 2πtu,

f ′′(u) = − 1

u2
− 2πt < 0.

Therefore, f(u) is an concave function that has maximum value at u = 1√
2πt

. Since

u = C(ρ) ∈ [0,∞) when ρ ∈ [0, 1], there can be a value of ρ with u = 1√
2πt

. Applying

this to (4.15), we have

lnαm ≤ lnu+ ln
(

1−
√
t
)
− πtu2

≤ ln

(
1√
2πt

)
− πt 1

2πt
+ ln

(
1−
√
t
)

= ln

(
1−
√
t√

2πte

)
.

By converting t back to 1− n
4m , we have

lnαm ≤ ln

 1−
√

1− n
4m√

2πe
(
1− n

4m

)


⇔ αm ≤
1−

√
1− n

4m√
2πe

(
1− n

4m

) .
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Since

1−
√

1− n
4m√

2πe
(
1− n

4m

) =
n

4m√
2πe

(
1− n

4m

) (
1 +

√
1− n

4m

)
≤

n
4m√

2πe
(
1− n

4m

)
≤

n
4m√

2πe
(
1− n

4m

)
=

n√
2πe(4m− n)

.

Thus, we have the following final inequality

αm ≤
n√

2πe(4m− n)
.

Corollary 4.5. The number of linear segments m is O(nα).

Proof. By (4.14) of Proposition 4.4, it is sufficient to setm that satisfies the condition

α ≥ n√
2πe(4m− n)

to guarantee the absolute error less than α. Thus,

m ≥
√

2πe+ 1
α

4
√

2πe
n,

which is m = O(nα).

Now, we describe how to solve RCOm. The procedure is the extension of that in
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Han et al. (2016) from X = Bn to the general set X ⊆ Bn. First, reformulate Um as

Um =

{
a ∈ Rn : aj = µj +

∑
k∈M

dkj z
k
j , ∀j ∈ N, z ∈ conv(Z)

}
, (4.16)

where

Z := {z ∈ Bmn :
∑
j∈N

∑
k∈M

zkj ≤ m, zkj ≤ zk−1
j ,∀j ∈ N, k ∈M\{1}} (4.17)

and dkj = σj

(√
πkj −

√
πk−1
j

)
for all j ∈ N and k ∈ M . Then, using (4.16), RCOm

can be restated a mixed integer linear program with the number of variables and

constraints polynomially bounded by m and n.

(RCOm) maximize
∑
j∈N

pjxj

subject to
∑
j∈N

µjxj + β(x,m) ≤ b,

x ∈ X,

where

β(x,m) = maximize
∑
j∈N

∑
k∈M

dkjxjz
k
j

subject to
∑
j∈N

∑
k∈M

zkj ≤ m,

zkj ≤ zk−1
j , j ∈ N, k ∈M\{1},

zkj ∈ {0, 1}, ∀j ∈ N, k ∈M.
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Since d1
j ≥ . . . ≥ dmj for all j ∈ N , optimal value of β(x,m) for a nonnegative x is

equal to that of its linear relaxation. Thus, by using the dual of the linear relaxation

of β(x,m), we can reformulate RCOm with 2mn+1 variables and nm+1 constraints.

(RCOm) maximize
∑
j∈N

pjxj

subject to
∑
j∈N

µjxj +my +
∑
j∈N

∑
k∈M

vkj ≤ b,

y − wk+1
j + vkj ≥ dkjxj , ∀j ∈ N, k = 1,

y + wkj − wk+1
j + vkj ≥ dkjxj , ∀j ∈ N, k = 2, . . . ,m− 1,

y + wkj + vkj ≥ dkjxj , ∀j ∈ N, k = m,

wkj ≥ 0, ∀j ∈ N, k ∈M\{1},

vkj ≥ 0, ∀j ∈ N, k ∈M,

y ≥ 0,

x ∈ X.

The above formulation cannot be solved in polynomial time and has weak theoretical

lower bounds. Thus, we decompose RCOm so that we can rather solve (nm−m+ 1)

DCOs. Let D = {(j, k) : j ∈ N, k ∈ M} be the set of all linear segments, and

D+ = D ∪ {(n+ 1, 1)}, with an artificial segment (n+ 1, 1) such that d1
n+1 = 0. For

S ⊆ N , define D(S) = {(j, k) ∈ D : j ∈ S}, then |D(S)| ≥ m if S 6= ∅. For each

(j, k) ∈ D+, let rkj = |{(p, q) ∈ D+ : dqp > dkj }| + |{(p, q) ∈ D+ : dqp = dkj , p ≤ j}|.
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Then we have

1 ≤ rkj ≤ nm+ 1, (4.18)

(j, k) 6= (p, q) ⇒ rkj 6= rqp. (4.19)

For l ∈ {1, . . . , nm+ 1}, let hl = dkj such that l = rkj and let Dl = {(j, k) ∈ D : dkj >

hl}. Then, we have the following proposition.

Proposition 4.6. Let T be the set of feasible solutions to RCOm, then

T = ∪l∈{m,m+1,...,nm−1,nm+1}Tl, (4.20)

where Tl = {x ∈ X :
∑
j∈N

µjxj +
∑

(j,k)∈Dl
(dkj − hl)xj ≤ b−mhl}.

Proof. Let V be the set of feasible solutions to RCOm when X = Bn and let Vl =

{x ∈ Bn :
∑
j∈N

µjxj +
∑

(j,k)∈Dl
(dkj − hl)xj ≤ b−mhl}. Then, we have

T = V ∩X, Tl = Vl ∩X, ∀l ∈ {m,m+ 1, . . . , nm− 1, nm+ 1}. (4.21)

By Han et al. (2016), it is proven that

V = ∪l∈{m,m+1,...,nm−1,nm+1}Vl,
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and thus,

T = V ∩X

=
(
∪l∈{m,m+1,...,nm−1,nm+1}Vl

)
∩X

= ∪l∈{m,m+1,...,nm−1,nm+1}(Vl ∩X)

= ∪l∈{m,m+1,...,nm−1,nm+1}Tl

Proposition 4.6 induces that RCOm can be solved by solving (nm − m + 1)

combinatorial optimization problem COl, l = m,m+ 1, . . . , nm− 1, nm+ 1, defined

as the following.

(COl) maximize
∑
j∈N

pjxj (4.22)

subject to
∑
j∈N

µjxj +
∑

(j,k)∈Dl

(dkj − hl)xj ≤ b−mhl, (4.23)

x ∈ X.

Finally, by switching the objective function (4.22) and the constraint (4.23), we

obtain the formulation of Sub-CO(l,f) as

(Sub-CO(l,f)) minimize
∑
j∈N

µjxj +
∑

(j,k)∈Dl

(dkj − hl)xj

subject to
∑
j∈N

pjxj ≥ f,

x ∈ X,
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for l = m,m+ 1, . . . , nm− 1, nm+ 1 and f = 1, . . . , U =
∑
j∈N
|pj |. Thus, by solving

Sub-CO(l,f) for f = U,U − 1, . . . in decreasing order until we have a solution with

the objective value z(l,f) ≤ b−mhl for each l, we can attain an optimal solution of

COl. Note that Sub-CO(l,f) has the form of DCO that was defined earlier. Since we

assumed that there exists an exact algorithm that solves each DCO in g(n, b, U), we

can solve a single Sub-CO(l,f) in g(n, b, U).

To organize,

• We can obtain an α-approximation solution of CCO by solving RCOm.

• The solution of RCOm can be attained by solving (nm − m + 1) COl for

l = m,m+ 1, . . . , nm− 1, nm+ 1.

• Each COl for a fixed l ∈ {m,m+1, . . . , nm−1, nm+1} can be solved by solving

Sub-CO(l,f) for f = U,U−1, . . . , 1 until we have a solution that satisfies (4.23),

which is at most U times.

• Each Sub-CO(l,f) has the form of DCO which has an algorithm with of the

complexity g(n, b, U).

Consequently, we have an α-approximation scheme of CCO that solves Sub-CO(l,f)

at most (nm−m+ 1)U times, with complexity of O(nmU · g(n, b, U)).

In addition, due to Corollary 4.5, the number of the linear segments m defined

to approximate the uncertainty set can be represented as O(nα). Thus, we have the

complexity of the α-approximation scheme of CCO as O(n2U 1
α · g(n, b, U)).
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Algorithm 8 α-Approximation scheme of CCO

1: procedure Algorithm
2: for j = 1, . . . , n do
3: for k = 1, . . . ,m do

4: Calculate dkj = σj(
√
πkj −

√
πk−1
j ), where πkj = k

m(Φ−1(ρ))2.

5: Define D and D+.
6: for (j, k) ∈ D+ do
7: Calculate rkj = |{(p, q) ∈ D+ : dqp > dkj }|+|{(p, q) ∈ D+ : dqp = dkj , p ≤ j}|.
8: for l ∈ {m, . . . , nm− 1, nm+ 1} do
9: Let hl = dkj for l = rkj

10: Define Dl = {(j, k) ∈ D : dkj > hl}.
11: for f = U,U − 1, . . . (in decreasing order) do
12: Formulate and solve Sub-CO(l,f). Let the optimal value be z(l,f).
13: if z(l,f) ≤ b−mhl then
14: Stop. Set fl = f .
15: else
16: Continue.
17: return z∗ = max{fl : l = m,m+ 1, . . . , nm− 1, nm+ 1}.

Combining Algorithm 7 and Algorithm 8, we have a δ-approximation scheme of

PCO with complexity O(n2U 1
δ log(1

δ ) · g(n, b, U)), where δ = tα for a fixed t > 1.
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4.3 Variation of the Bisection Procedure of ρ

The approximation scheme of PCO takes much computational time for several rea-

sons. We propose a variation of the bisection procedure to reduce the practical

computational time.

Remind the bound of the number of linear segments m to guarantee the absolute

error of the probability ρ of CCO is at most α, given in Section 4.1.

m ≥
√

2πe+ 1
α

4
√

2πe
n = O(n/α), (4.24)

which is independent of ρ. Since it is inversely proportional to α, the smaller α is,

the larger m is needed to guarantee the error less than α. This implies that we need

to solve more combinatorial optimization problems to approximate CCO, which can

be α-approximated by solving (nm − m + 1) ordinary combinatorial optimization

problems.

Therefore, to reduce the time of the approximation scheme of CCO, and that of

the approximation scheme of PCO as well, we set the value of α according to the

length of the interval in each iteration, rather than using fixed value which is very

small. We previously checked that the reduction ratio in iteration k is

βk =
1

2
+

α

2(UBk−1 − LBk−1)
(4.25)

and it increases as k becomes larger, since the interval UBk−1 − LBk−1 decrease.

Note that the reduction ratio in last iteration m is at most t+1
2t , where tα = δ with
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a fixed t > 1, and we have

β1 ≤ β2 ≤ · · · ≤ βm ≤
t+ 1

2t
.

In the variation of the bisection procedure of ρ, we fix the ratio of the reduction

of the interval by t+1
2t and define αk as a function of UBk−1−LBk−1 in each iteration.

We choose ρk by the same method as in Section 4.1, except that α is not fixed. We

have

ρk =
LBk−1 + UBk−1 + αk

2

and update the value of LBk and UBk as

• if objk ≥ f : LBk = ρk − αk, UBk = UBk−1,

• if objk < f : LBk = LBk−1, UBk = ρk.

Then in the either case, the interval length changes as

UBk−1 − LBk−1 → UBk−1 − LBk−1 + αk
2

.

Thus, to have the fixed reduction ratio t+1
2t , the following equation has to be satisfied.

UBk−1 − LBk−1 + αk
2

=
t+ 1

2t
(UBk−1 − LBk−1),

which gives the function of αk as

αk =
1

t
(UBk−1 − LBk−1).
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Then, we have

ρk =
(t+ 1)UBk−1 + (t− 1)LBk−1

2t
.

Figure 4.2 shows how we select ρk and update the lower and upper bound of ρ in

each iteration k, for the case of t = 2.

LBk−1 UBk−1
ρk =

3UBk−1+LBk−1

2

UBkLBk

If objk ≥ f

UBkLBk

If objk < f

αk = (LBk−1 + UBk−1)/2

Figure 4.2: Bisection with the fixed reduction ratio t+1
2t , where t = 2

Since the initial lower and upper bounds are LB0 = 0.5 and UB0 = 1, we have

ρ1 =
(t+ 1) · 1 + (t− 1) · 0.5

2t
=

3t+ 1

4t
, α1 =

1− 0.5

t
=

1

2t
.

The interval of possible ρ value is reduced by the ratio of t+1
2t and thus, the value of

αk decreases by the factor of t+1
2t .

α1 =
1

2t
, α2 =

t+ 1

(2t)2
, α3 =

(t+ 1)2

(2t)3
, . . . , αl =

(t+ 1)l−1

(2t)l
≥ δ.

We have the number of iteration l ≤ log 2t
t+1

( 1
t+1) + log 2t

t+1
(1
δ ) = O(log(1

δ )), for any
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fixed t > 1.

By the inequality (4.24), we have the number of linear segments mk in each

iteration k as

mk ≥
n

4
+

n

4
√

2πe
· 1

αk
.

That is

m1 = dn
4

+
tn

2
√

2πe
e, m2 = dn

4
+

2t

t+ 1
· tn

2
√

2πe
e, . . . , ml = dn

4
+ (

2t

t+ 1
)l−1 · tn

2
√

2πe
e.

Now we compare the two bisection procedures. To compare the two bisection

procedures, we clarify the number of the iterations and the number of the segments

in each iteration of the two procedures. We call the two procedures as the original

and the variation, and indicate as O and V , respectively.

We first calculate the exact number of the iterations needed to guarantee the

absolute error at most δ of PCO, where δ = tα for a fixed t > 1 with the α-

approximation scheme of CCO.

Following the original procedure, in iteration k, we set ρk as

ρk =
UBk−1 + LBk−1 + α

2
,

and this guarantees the reduction ratio of the length of the interval as

βk =
UBk−1 − LBk−1 + α

2(UBk−1 − LBk−1)
.
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Thus, we have the length of the interval lk of the possible value of ρ as

l0 = UB0 − LB0,

l1 = (UB0 − LB0)× β1 =
UB0 − LB0 + α

2
,

l2 = (UB1 − LB1)× β2 =
UB0−LB0+α

2 + α

2
=
UB0 − LB0 + (22 − 1)α

22
,

l3 = (UB2 − LB2)× β3 =
UB2−LB2+α

2 + α

2
=
UB0 − LB0 + (23 − 1)α

23
,

...

lIO−1 = (UBIO−2 − LBIO−2)× βIO−1 =
UB0 − LB0 + (2IO−1 − 1)α

2IO−1
≥ δ,

lIO = (UBIO−1 − LBIO−1)× βIO =
UB0 − LB0 + (2IO − 1)α

2IO
< δ,

where IO is the total number of the iterations in the original procedure. Since we

initialize as LB0 = 0.5 and UB0 = 1, IO can be obtained by the following.

0.5 + (2IO − 1)α

2IO
< δ ⇔ 0.5 + (2IO − 1)α < 2IO tα

⇔ 0.5− α < (t− 1)2IOα

⇔ 1

t− 1

(
1

2α
− 1

)
< 2IO

⇔ IO > log2

(
1

t− 1

(
1

2α
− 1

))
.

Thus, the total number of the iterations in the original bisection procedure is

IO =

⌈
log2

(
1

t− 1

(
1

2α
− 1

))⌉
. (4.26)

Now, we check the total number of the iterations required in the variation pro-
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cedure to assure that the absolute error is at most δ for the PCO. In the iteration

k, the ρk is given as

ρk =
(t+ 1)UBk−1 + (t− 1)LBk−1

2t
,

and the corresponding value of αk is

αk =
UBk−1 − LBk−1

t
. (4.27)

In each iteration, we checked that the length of the interval is reduced by the factor

of t+1
2t than the length prior to the iteration. Thus, the length of the interval lk is

lk = (UB0 − LB0)×
(
t+ 1

2t

)k
, ∀k = 0, . . . , IV (4.28)

where IV is the number of the iterations in the variation procedure. Since the follow-

ing two inequalities should be satisfied due to the ending criterion of the bisection

procedure,

lIV −1 = (UB0 − LB0)×
(
t+ 1

2t

)IV −1

≥ δ, lIV = (UB0 − LB0)×
(
t+ 1

2t

)IV
< δ

and LB0 = 0.5 and UB0 = 1, we have

0.5×
(
t+ 1

2t

)IV
< tα ⇔ IV > log 2t

t+1

(
1

2tα

)
.
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Thus, we set the number of the iterations as

IV =

⌈
log 2t

t+1

(
1

2tα

)⌉
. (4.29)

Next, we compare the total number of segments, which affects the total number

of DCOs to solve, that is necessary in the δ-approximation of PCO. As mentioned,

the number of the segments m required for α-approximation of CCO satisfies

m ≥
√

2πe+ 1
α

4
√

2πe
n.

Thus, we choose to have the number of segments as

m =

⌈√
2πe+ 1

α

4
√

2πe
n

⌉
.

Then, we can generate the number of segments in each iterations for the both of the

bisection procedures.

The original procedure uses fixed value α, and thus we have the number of the

segments in each iteration k as

mO
k =

⌈√
2πe+ 1

α

4
√

2πe
n

⌉
, ∀k = 1, . . . , IO. (4.30)

On the other hand, the variation procedure uses different αk given as (4.27).

Since we know the length of the interval in each iteration is as (4.28), we have

αk =
UBk−1 − LBk−1

t
=

1

t
· (UB0 − LB0)×

(
t+ 1

2t

)k−1

=
1

2t
×
(
t+ 1

2t

)k−1

.

(4.31)
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By applying (4.31), the number of the segments in each iteration k is

mV
k =

⌈√
2πe+ 1

αk

4
√

2πe
n

⌉
=

⌈
n

4
+

nt

2
√

2πe
×
(

2t

t+ 1

)k−1
⌉
, ∀k = 1, . . . , IV . (4.32)

Finally, we calculate the total number of segments required to obtain a δ-approximation

solution of PCO. Using the number of the iterations IO and IV given as (4.26) and

(4.29), and the number of the segments in each iteration k, mO
k and mV

k as (4.30)

and (4.32), respectively, the following is attained.

MO =

IO∑
k=1

mO
k = IO ×

⌈√
2πe+ 1

α

4
√

2πe
n

⌉

≈ IO ×

(√
2πe+ 1

α

4
√

2πe
n

)
=

(
IO
4

+
IO

4
√

2πe
· 1

α

)
· n,

and

MV =

IV∑
k=1

mV
k =

IV∑
k=1

⌈
n

4
+

nt

2
√

2πe
×
(

2t

t+ 1

)k−1
⌉

≈
IV∑
k=1

(
n

4
+

nt

2
√

2πe
×
(

2t

t+ 1

)k−1
)

=

IV
4

+
t

2
√

2πe
·

(
2t
t+1

)IV
− 1

2t
t+1 − 1

 · n.
We calculated the number of the iterations and the corresponding number of the

total segments for some values of t and α. The results is given in Table 4.1 and Table

4.2. We can discover that the variation rule becomes better than the original rule as

t and α have larger values.
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4.4 Comparison to the Approximation Scheme of Nikolova

Nikolova (2009) approximated the two problems that are closely related to PCO

and CCO under a similar condition of ours. Recall the two problems that Nikolova

(2009) suggested the approximation schemes of.

(N-PCO) maximize

b−
∑
j∈N

µjxj√∑
j∈N

σ2
jxj

subject to x ∈ F ,

and

(N-CCO) minimize
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj

subject to x ∈ F ,

where F ⊆ Rn. By setting F as

F =

∑
j∈N

pjxj ≥ f, x ∈ X

 ,

the approximation solution of N-PCO satisfies

(1− ε)z∗ ≤
b−

∑
j∈N

µjxj√∑
j∈N

σ2
jxj

, x ∈ X ⇒ Pr

z ≤ (1− ε)
b−

∑
j∈N

µjxj√∑
j∈N

σ2
jxj

 ≥ ρ∗, x ∈ X,

where z∗ is the objective value of the given solution of N-PCO and ρ∗ is the corre-
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sponding probability value of Pr (z ≤ z∗) with z ∼ N(0, 1). Similarly, the approxi-

mation solution of N-CCO satisfies

(1 + ε)z∗ ≥
∑
j∈N

µjxj + Φ−1(ρ)

√∑
j∈N

σ2
jxj , x ∈ X

⇒ Pr

∑
j∈N

ajxj ≤ (1 + ε)b

 ≥ ρ∗, x ∈ X,
where z∗ is the objective value of N-CCO and ρ∗ is the corresponding probability

value of Pr

(∑
j∈N

ajxj ≤ z∗
)

.

On the other hand, both approximation solutions of our approximation schemes

of PCO and CCO satisfy

Pr

∑
j∈N

ajxj ≤ b

 ≥ ρ− δ, x ∈ X,
which implies that our solution guarantees the absolute error of the probability of

the solution.

The comparison between the solution of CCO attained by our approximation

scheme and the solution of N-CCO attained by that of Nikolova is not suitable.

However, we can compare the performances of the approximation schemes of PCO

and N-PCO by adjusting the value of δ and ε, the approximation parameter of our

scheme and that of Nikolova respectively, for some values of ρ. First consider the

complexities of the two approximation schemes. Assume pj ∈ Z and wj ∈ R for all

j ∈ N , and U =
∑
j∈N
|pj | and b =

∑
j∈N
|wj |. Suppose that there is an algorithm of
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solving

min
∑
j∈N

wjxj

s.t.
∑
j∈N

pjxj ≥ f,

x ∈ X,

with the algorithm complexity O(g(n, b, U)). Then the complexities of the approx-

imation schemes of CCO and PCO for our study and Nikolova (2009) are given as

the following.

Table 4.3: Comparison of the Complexities of the Approximation Schemes

Complexity Ours Nikolova

(N-)CCO O
(
n2 1

δUg(n, b, U)
)

O
(

(1 + 1
ε log( fufl ))(1 +

log( 1
ε2

)

log(1+ε) )g(n, b, U)
)
a

(N-)PCO O
(
n2 1

δ log( 1
δ )Ug(n, b, U)

)
O
(

log( smax

smin
) log( fufl ) 1

ε2 g(n, b, U)
)
b

a smax, smin : the maximum and minimum values of
∑
j∈N

σ2
jxj for x ∈ F

b fu, fl : the maximum and minimum values of
∑
j∈N

µjxj + Φ−1
√ ∑
j∈N

σ2
jxj for x ∈ F

For some fixed values of ρ, we can calculate the value of ε that gives the equivalent

approximation solution to the value of each δ. By this procedure, we can compare the

computation time of two approximation schemes. Tabel 4.4 shows the complexities

of two approximation schemes, of which the logarithmic terms of the complexity of

the scheme of Nikolova (2009) are ignored.
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Table 4.4: Computation Times of the Approximation Schemes for values of ρ

ρ z δ ε Ours Nikolova

0.55 0.1257
10−2 0.2013 O

(
100n2U · g(n, b, U)

)
O (25 · g(n, b, U))

10−3 0.0207 O
(
1000n2U · g(n, b, U)

)
O (2337 · g(n, b, U))

10−4 0.0024 O
(
10000n2U · g(n, b, U)

)
O (175561 · g(n, b, U))

0.65 0.3853
10−2 0.0696 O

(
100n2U · g(n, b, U)

)
O (207 · g(n, b, U))

10−3 0.0070 O
(
1000n2U · g(n, b, U)

)
O (20364 · g(n, b, U))

10−4 0.0005 O
(
10000n2U · g(n, b, U)

)
O (3711402 · g(n, b, U))

0.75 0.6745
10−2 0.0463 O

(
100n2U · g(n, b, U)

)
O (467 · g(n, b, U))

10−3 0.0047 O
(
1000n2U · g(n, b, U)

)
O (44429 · g(n, b, U))

10−4 0.0004 O
(
10000n2U · g(n, b, U)

)
O (5055003 · g(n, b, U))

0.85 1.0364
10−2 0.0404 O

(
100n2U · g(n, b, U)

)
O (611 · g(n, b, U))

10−3 0.0041 O
(
1000n2U · g(n, b, U)

)
O (60891 · g(n, b, U))

10−4 0.0004 O
(
10000n2U · g(n, b, U)

)
O (6713281 · g(n, b, U))

0.95 1.6449
10−2 0.0548 O

(
100n2U · g(n, b, U)

)
O (333 · g(n, b, U))

10−3 0.0059 O
(
1000n2U · g(n, b, U)

)
O (28756 · g(n, b, U))

10−4 0.0006 O
(
10000n2U · g(n, b, U)

)
O (2705696 · g(n, b, U))

We can see that the tendency of the relative complexity of our scheme to that

of Nikolova (2009) gets better as the ρ value increases and the delta decreases.

Additionally, we propose the following proposition of the relation between ε and δ.

Proposition 4.7. As ε → 0, ε is nearly linear to δ which gives the equivalent

approximation solution.

Proof. Suppose that t > 0 is given. Then

δ = Pr ((1− ε)t ≤ z ≤ t)

=

∫ t

(1−ε)t

1√
2π
e−

1
2
x2dx

=
1√
2π

(
x− x3

6
+
x5

40
− x7

336
+ · · ·

)
|t(1−ε)t (Taylor expansion)

≈ 1√
2π
εt, if ε� 1.
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Chapter 5

Conclusion

5.1 Concluding Remarks

In this thesis, we studied the combinatorial optimization problems with uncertainty

from the stochastic optimization point of view. Specifically, we assumed the uncer-

tain data follows normal distributions without correlation. We defined two general

form of the stochastic optimization problem using the probability of satisfying the

constraint of the deterministic combinatorial problem (DCO), which are the prob-

ability maximizing combinatorial optimization (PCO) and the chance-constrained

combinatorial optimization (CCO). We proved that both PCO and CCO are NP-

hard in general, and additionally analyzed the complexities of them in the special

cases. In particular, we found out that PCO and CCO can be NP-hard, even in the

condition that DCO is polynomial time solvable. We also proposed exact algorithms

of PCO and CCO that attain the exact solutions by iteratively solving DCO with

an additional capacity constraint. Moreover, we derived an approximation scheme of

PCO, and also an approximation scheme of CCO that is required in the process of

the approximation of PCO. Both the approximation schemes repeatedly solve DCO

and obtain a solution that guarantees the absolute error of the probability to be less

than a given threshold. Especially, the approximation schemes are fully polynomial
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time approximation scheme (FPTAS) for both PCO and CCO in some special cases

that we proved to be NP-hard in Chapter 2. Furthermore, variation of the bisection

procedure in the approximation scheme of PCO has been provided, with tables com-

paring the approximated number of total iterations and the number of times solving

DCO of the two bisection procedures. Finally, we analyzed the difference between

the approximation scheme of Nikolova (2009) and our scheme, and compared the

computational times of the equivalent approximation for some ρ values.
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5.2 Future Works

As the future works, the experimental study is required to compare the practical

computation times of the algorithms. Since the algorithmic complexities of the exact

algorithm and the approximation scheme depend on different parameters, various

types of instances should be tested. The computational time of the approximation

scheme with the two bisection procedures also need to be compared. Additionally,

the complexity analysis for special cases of PCO and CCO other than the knapsack

problem or the shortest path problem has not been done much yet. Thus, not much

of the complexity of the special cases are known and more researches are required.

Furthermore, the complexities of PCO and CCO in the case of X = Bn with values

of pj for j ∈ N polynomially bounded by n is unknown. Thus, the complexity of this

case is an open question. Moreover, there is a possibility of other algorithms that

solve PCO and CCO exactly or approximately with better algorithm complexity.

There can be faster algorithms that deal with the special cases of PCO and CCO

with some assumptions of the problems. By confining the problem to the knapsack

problem, shortest path problem, or other well known combinatorial optimization

problems, there can be algorithms with better performance.

Further extensions of the research include the variations of the probability dis-

tributions of the data with uncertainty. We assumed that aj for all j ∈ N follows

a normal distribution that is independent to the other values. However, we can as-

sume that there are correlations between the values of aj , j ∈ N , which is at least

as hard as the problem without correlation. Else, other probability distribution can

be assumed to the uncertain data rather than the normal distribution. Lastly, the
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study of combinatorial optimization problems that has more than one type of data

with uncertainty can be a future extension direction.
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국문초록

본 논문에서는 일반적인 조합 최적화 문제(deterministic combinatorial optimization

problem : DCO)에서 데이터의 불확실성이 존재할 때를 다루는 문제로, 총 수익을

주어진 상수 이상으로 보장하면서 용량 제약을 만족시킬 확률을 최대화하는 확률 최

대화 조합 최적화 문제(probability maximizing combinatorial optimization problem

: PCO)을 다룬다. PCO와 매우 밀접한 관계가 있는 문제로, 총 수익을 최대화하면서

용량 제약을 만족시킬 확률이 일정 값 이상이 되도록 보장하는 확률 제약 조합 최적화

문제(chance-constrained combinatorial optimization problem : CCO)가있다.우리는

두 문제의 관계에 대하여 논의하고 특정 조건 하에서 두 문제의 복잡도를 분석하였다.

또한,제약식이하나추가된 DCO를반복적으로풀어 PCO와 CCO의최적해를구하는

유사 다항시간 알고리즘을 제안하였다. 더 나아가, PCO가 NP-hard인 특별한 인스

턴스들에 대해서 완전 다항시간 근사해법(FPTAS)가 되는 근사해법을 제안하였다. 이

근사해법을 유도하는 과정에서 CCO의 근사해법 또한 고안하였다.

주요어:불확실성을고려한조합최적화,확률최대화조합최적화문제,확률제약조합

최적화 문제, 이분법

학번: 2017-29219
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