creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Sensor Fusion Algorithm

for Multi Pedestrians Tracking

20193 8 ¥



Abstract

Sensor Fusion Algorithm

for Multi Pedestrians Tracking

Jongsik Moon
Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Pedestrian detection and tracking algorithm using environmental sensors is one of the
most fundamental technology for safe urban autonomous driving. This paper presents a novel
sensor fusion algorithm for multi pedestrian tracking using commercial vision sensor, LIDAR
sensor, and digital HD map. The commercial vision sensor effectively detects pedestrian,
whereas LiDAR sensor accurately measures a distance. Our system uses commercial vision
sensor as detector and utilize LIDAR sensor to enhance estimation. In addition, digital HD
map is utilized to properly define Region of Interest (ROI) of LIDAR sensor point cloud data.
The detection performance is validated by about 4600 frames of SNU campus driving data
and estimation accuracy is calculated through driving experiment. The proposed algorithm

can be utilized for autonomous driving vehicles in various urban driving situation
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Chapter 1

Introduction

1. 1 Motivation

In a situation where technology level of ADAS (Active Driver Assistance System)
is rising, the demand of technology is turning into full self-driving technology, which
gives control to vehicles for safer driving than humans do. Social demands have also
been strengthened. ADAS technology has previously been required to respond to
scenarios in preparation for the behavior of forward vehicles which is important in
highway driving scenario. However, the technology is now additionally required to
cope with pedestrian scenarios. To prepare for this situation, the technology to
clearly detect and track pedestrians must be implemented.

In order to cope with this technical trend, various companies have begun selling
some modules with sensors which process data to detect objects in complex urban
driving environments. Mobileye vision sensor, which processes vision data and
hands over the state of object with classification label is a representative sensor for

self-driving technology. In addition, Ibeo ECU uses point cloud data to do same

1 .



operation.

However, these modules are also inherently adhering to the limits of the sensor.
Classification performance limits exist for LIDAR sensor, especially for 2D Lidar
sensor, with additional limits due to small vertical FOV. For vision sensor, accuracy
limits exist for estimation performance for states such as position, velocity, yaw
angle. Therefore, fusion between different sensors is essential to address these issues

[Wei 2018].



1. 2 Previous Researches

A number of studies have been introduced for the development of a sensor fusion
algorithm for multi pedestrian detection and tracking. Labayrade et al. [Labayrade
et al. 2005] presented a fusion algorithm between LiDAR sensor and stereo vision
sensor. This algorithm detects the lane using stereo vision sensor and find object
using LiDAR sensor. Cristiano et al. [Premebida et al. 2009] proposed a detection
level sensor fusion algorithm for pedestrian detection system. Some features of
LiDAR detection are utilized for classification and setting Region of Interest (ROI)
for vision sensor. Hyunggi Cho et al. [Cho et al. 2014] also presented vision, LiDAR,
radar sensor fusion algorithm for detection and tracking of moving object. Utilizing
a classification performance of vision sensor, they found objects and associated them
with LiDAR sensor and radar sensor data measurements. Garcia et al. [Chavez-
Garcia 2015] advanced fusion algorithm between LiDAR sensor, vision sensor, and
radar to frontal object tracking in detection level. LIDAR sensor detection sets up
Region of Interest (ROI) for vision sensor, and classification algorithm works in that
region. Fusion algorithm and Multi Target Tracking (MTT) algorithm is

implemented for after classification.



1. 3 Contributions

The cited approaches track only moving objects to avoid tracking static obstacles
and does not use commercial vision sensor which detects and measure the states of
pedestrians. The cited approaches can be used effectively on highways or in
relatively simple urban driving situations where a regularized road rule exists.
However, there are some situations where driving judgements should be carried out
through interaction rather than by a regular road rule. In order to implement safer
urban self-driving technologies in described situations, there is a need to construct
cognitive algorithms that take into account the characteristics of pedestrians who are
free to move and stop. Therefore, this paper proposes a commercial vision sensor,
2D LiDAR sensor, and digital HD map fusion architecture for pedestrian tracking
which can be operated in severe urban driving situations. Using commercial vision
sensor, LIDAR sensor measurement does not have to erase static point cloud data in
a region where vision sensor can guide the existence of pedestrian. In addition, the
prior knowledge of pedestrian existence can be used for clustering, and filtering
process of LiDAR track. This can lead an advancement for detection rate and
estimation accuracy.

To validate fusion algorithm, the track initializing & association probability along
longitudinal distance was calculated to properly set FOV of the algorithm. Next,
detection rate of a vision track, association rate of each track was calculated based
on driving experiment and SNU Campus driving data. Finally, the error of estimated

X, y position states are analyzed to see the accuracy of the final state.



1. 4 Thesis Outline

Section 1 covers the vehicle platform and the entire algorithm architecture for the
implementation of the algorithm. Section 3 and 4 will describe algorithms that track
vision and lidar tracks, respectively, while Section 5 shows an explanation of how to
associate and fuse the two tracks. The result of the actual data simulation of the
algorithms are in Section 6 and are described in Section 7 as a final conclusion and

a further complement.



Chapter 2

System Architecture

2.1 Vehicle Sensor Configuration

The vehicles used in this study are Hyundai IONIQ vehicles which equipped with
sensors for autonomous driving. The configuration is as shown in Fig.1 through 2.

The Commercial Vision sensor uses Mobileye sensor. This vision sensor detects
pedestrian and measures the position of pedestrian in local coordinate. Nevertheless,
due to the limits of sensor FOV and inaccuracy of velocity measurements, the data
from this sensor requires an additional tracking algorithm. Meanwhile, the LIDAR
sensor uses IBEO lux, which covers about 110 degrees horizontally and 6 degrees
vertically. Using six LiDAR sensors, all the horizontal FOVs are covered, but not
fully covered in vertical direction. Due to these characteristics, it is difficult to
recognize pedestrians by LiDAR alone. In addition, the position, yaw angle, and

velocity states of vehicle is measured by GPS, RT-3002.



Micro Autobox

Front Camera

- =
[Mobileye] A
--M%

3 LiDAR
[IBEO]

computer

Chassis
[IBEO) Sensor

RT GPS

Fig. 1 Vehicle platform and sensor configuration

Front camera
E‘ - Range : 5m~inf
- FOV : +/- 30 deg

6 IBEO LiDAR
- Range : ~100m
- FOV: +/- 60 deg

Fig. 2 Sensor Field of View (FOV)

L=

-

’ 2 A S

; 1_-_]'| '@} T



2. 2 Fusion Architecture

Fig. 3 shows the schematic of our proposed sensor fusion architecture. The
algorithm receives position information & classification information from vision
sensor, digital maps, and point cloud data from LiDAR sensor. In order to utilize an
accurate classification performance of vision sensor, vision-only track is initialized
and sets up a ROI for LiDAR sensor. Using the point cloud in the ROI, LiDAR
sensor detection and tracking algorithm operates with proper parameter for
pedestrian detection and tracking. The final two states are associated with GNN
(Global nearest neighbor) algorithm [Baig 2012, Blackman 2004] and fused using
Covariance Intersection (CI) algorithm [Julier and Uhlmann 2009]. At this time, 2D
LiDAR sensor uses only the data inside the road by setting an additional ROI based
on the digital HD Map, since it is difficult to use data outside the road, especially on
the sidewalk. Vision track, which is not fused, can be tracked with vision-only
measurement to enhance robustness of algorithm. Based on this, states of pedestrian

can be tracked so that planning algorithms for autonomous driving can operate.

Host Vehicle Pedestrian Perception Module

State:
%P, [k I
X, B, K] | Vision Only:

Mobileye Data: Vision Track / 280w K]
Z,y el K] Management & Filtering C i

Digital HD Map: B, [k
Map
LiDAR Vision Guided Vision Guided LiDAR Track
Pointcloud Data: LiDAR Pointcloud »| Management & Filtering
Y, o LK1 ROI Selection Y, [k] i
L rort™

5B, 0K | %7, K]
A

Fusion:
2.5, 1K]

Vision Track / Lidar Track
Association & Fusion

Fig. 3 Fusion system architecture for pedestrian detection and tracking
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Chapter 3

Vision Track Management & Filtering

Based on the MTT method, the position data of the commercial vision sensor are
used to estimate the status of pedestrians. The overall schematic diagram is as shown
in Fig.4 below.

The MTT algorithm refers to the process of estimating a state through filtering
while managing the track by creating possible tracks based on measurement values
and continuously assigning them measurement [Bar-Shalom 1990, Blackman et al.
1999, Thrun 2005]. For vision sensor tracking algorithm, Extended Kalman Filter
(EKF) is used as filtering method, and GNN algorithm is utilized as data association
algorithm required for track management.

Vision Track Management & Filtering

Host Vehicle State:
5B, K]

IS PTAY
EALIRALI) Measurement
7 [k update(EKF)
Mobileye Data: ALY} P Vision Track:
Z il K] Track 3B, k]
» management
X onl KL Z i LK} Initialization

Prediction (EKF) /Deletion

Fig. 4 Vision Track Management & Filtering architecture



3. 1 Filtering for Target Tracking

The states of each track are estimated by EKF algorithm. The process model and

measurement are described in 3.1.1, 3.1.2 respectively.

3.1.1 Process Model

In this paper, Kim’s proposed process model is utilized [Kim et al. 2014]. The

continuous process model is as follows.

Fig. 5 Physical meaning of each variable

In order to describe all the motions, the state and input vector are defined as

follows:

. 1T
Xy = [pn,x Pny On Unx Vn Qn Vn]

3.1)

u=[v, y]

10 : ’H _-L'I:r_ ]_..” :fl _T]'I_



where subscript x and y denotes longitudinal, and lateral axis of vehicle
coordinate. Another subscript n denotes n-th target. p denotes a relative position.
6 denotes relative yaw angle. y denotes yaw angle rate, a denotes acceleration.
These parameters are described in Fig. 5.

Using the state and input vector above, process model can be defined as

X, = a(x,,u) +q

— T
=[a; a, a; a, ag a; a;] +q
A = Upx COSO; — Uy +Ppy ¥

A; = Vpyx sin6; — Pnx Y

A3 =Yn Y 32)
Ay = Anx

a5 = Yy

a, = —k,

a; = —k;

where k, denotes a decay rate of acceleration and k; denotes a decay rate of yaw

acceleration. Above continuous process model can be discretized via Taylor methods

as follows [Kazantzis’99]:

X,k + 1] = x,,(t + AT)
2

d 1
=x,(t) + precl AT + =——X,, - AT? + h.o.t.

2dt? (3.3)

1d
= x,(t) + {a(x,, u) + q} - AT + Ea{a(xn, u) + q} - AT?
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{i a(x,,u) X, + ia(xn, u) -'u} . ATz]

= [xn (©) +{a(x,, w) + q} - AT +1 0%, Ju

2

= [xn(t) + a(xn, U) AT + l{ia(xru U) ' 'x:n + ia(Xn; U) ' U} ' ATZ

2 0%, Jdu
AT -1 AT? 0 ( )
+ + 2 %, a(x,,u)rq

= f(xn[k], u[k]) + w[k]

=[f f, 5 f, f5 fo £]" +wlk]

where

Yhost (pn,xyhost - UnSil’l (en))

2
a, cos(0,)  Ynvpsin (6,) 2 (Pn,y)/host - vhost)
f, = — > + 5 AT“ + +v,,c05 (6,) AT + Pnx
QApost _ pn,y)}host
+ 2 2
anSin (en) YnVnCOS (971) pn,x]}host
— 2 2 2 2 ( PnxVhost )
f, =— AT — . AT +
2 _ Yhost (pn,yyhast — Vpost T VnCOS (6,)) —Upsin (6,,) Py
2
]./Tl 2

T2
a,k

f, = ———2AT? AT

4 > + a,AT + v, (3.4)
ky, .

fy = —%AT2+ynAT+yn

a
f, = 7” (k2AT? — 2k AT + 2)

Y
f, =5 (kZAT? — 2k AT + 2)
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wk]~(0, W[k])

W[k] = E[w-wT]

2 9
_ g H{AT 14 % 3 u)} q] [...]T]

AT? 0
— {AT 14+ — . Ea(xn, ll)} E[q- qT]{"'}T

_ AT2 9 .
= {AT I+ - Ea(xn, u)} Q{..}

Xn=Xn[k]
u=ulk]

W= D =lac 7T

3. 1.2 Measurement Model

Commercial vision sensor detects pedestrian and measure a relative distance.

Therefore, the measurement vector can be defined as follows:

T
7, = [pn,x pn,y] 3.5)

Using the state, measurement model can be defined as

zy[k] = Hpxp[k] + vp[k]

Vn [k] ~ (01 Va [k])

1000000 3.6)
H, = ]

10100000

V.,.[k] is calculated based on driving experiment data.
13



3. 2 Data Association

One of the essential methodologies for track management is the data association
algorithm. Various algorithms have been presented such as Joint Probability Data
Association Filter (JPDAF), Multiple Hypothesis Tracking (MHT). In this paper,
Global Nearest Neighborhood algorithm is utilized for vision-only tracking
algorithm. Commercial vision sensor data has little noise. Therefore, a strong
association algorithm for can be utilized without degrading a performance [Bar-
Shalom 1990, Bar-Shalom 1995]. For GNN algorithm, a cost matrix A = [¢;;] for
associating track to measurement should be defined. We defined the cost for

associating as

cij = Gi[k]" - W g;;[k]
(3.7)

Gjlk] = z;[k] — Hjx; [k] = [Ax  Ay]

which denotes 2-norm position difference which is called as Mahalanobis Distance
(MD).

Using GNN algorithm, the detected measurement is assigned to the track, or
initialize a new track. In this paper, an initialized track lasts about 1 second after

final data assignment.

14



Chapter 4

Vision Guided LiDAR Track

Management & Filtering

LiDAR sensor measures the surrounding environment in the form of a point cloud.

This type of data is difficult to handle individually and must be clustered. Using the

center of cluster as position data, MTT algorithm is implemented for LiDAR track

[Blackman 2004].

Since 2D LiDAR sensor is not efficient sensor for classification, the detected data

is noisy. Given this situation, it can be determined that the Multiple Hypothesis

Tracking (MHT) method, which produces possible hypothetical tracks based on

Host Vehicle
_State:
x, b, [k]

Vision Guided Lidar Track Management & Filtering

ROI-Selected
Pointcloud:

yR()l[k]

>

5 [k],I;[k]} Measurement
- - Update
(Z,[k]} (EKP)
Z[k]
Clustering/Validation Track
management

LiDAR Track:
B (K]

(Z,[k—1).Z,[k]}

— {E,[k],ﬁ,[k]} Initialization
Prediction(EKF)

Fig. 6 Vision Guided LiDAR Track Management & Filtering architecture
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measurements, continuously compares them with measurements, and uses only
reliable tracks with increased reliability, is suitable for tracking. In addition, EKF
algorithm also implemented for filtering process of MHT. The overall schematic is

as shown in Fig.6.

16 .



4. 1 Cluster Validation

Before using MHT algorithm for tracking, clustering algorithm must operate. In
this process, the feature of the cluster allows for simple verification of whether it is
a suitable cluster for pedestrians. Three features used for validation are stated in

Table 1.

Table 1. Features for cluster-validation

Feature Condition
The number of points 2<n<150
Maximum eigenvalue 0.001 < 4 <0.5

Eigenvalue difference
AA <0.1
between max and min

17



4. 2 Filtering for Target Tracking

The process model and measurement model are described in 4.2.1 and 4.2.2

respectively.

4. 2.1 Process Model

Vision track and LiDAR track utilize same process model which is presented by

Kimetal at3.1.1.

4. 2.2 Measurement Model

Measurement model for LIDAR track utilizes additional measurements: heading
angle and 2-norm velocity. Therefore, the measurement vector can be defined as

follows:

z, = [pn,x Pny On 17n,x]T 4.1

Using the state, measurement model can be defined as

zy[k] = Hpxp[k] + vp[k]

valk] ~ (0, Vo [K]) 4.2)
1000000
H. = 0100000
n—10010000
0001000

18



4. 3 Track Management Rule

LiDAR track management is implemented using MHT algorithm. Measurements
are assigned to a track that is previously tracked and within a certain distance.
Unassociated measurements initiate a new track, and unassociated tracks can be
deleted if no measurements are assigned to the track more than three consecutive
times or if no measurements are assigned for more than 30% of the time of track

existence.

19 1 &



Chapter 5

Fusion Method

5.1 Track Association

Track states are not noisy neither. Therefore, GNN algorithm which is a strong

association method can be utilized. The cost for cost matrix A = [¢;;] is defined as
follows:
cij = G[k]" - W - Gy [k]

1 n 5.1
511 =~ 1l Puisionlt] = Privarlt] I
t=1

where p denotes 2 by 1 relative position vector. In addition, to prevent vision tracks
from being associated with tracks that are so far away, the cost ¢;; has an upper

limit.

20 .



5. 2 State Fusion

Since commercial vision sensor measurement and LiDAR sensor measurement
have a correlation value that cannot be calculated because they process data using
same vehicle information. This unknown correlation not only degrades the
performance of fusion process, but also causes it to diverge in severe cases [Bar-
Shalom 1981]. To this end, fusion of the two states is carried out using the algorithm
of Covariance Intersection (CI), which can be used when the correlation value is not

known. Using CI algorithm, the fusion state can be defined as follows:
Xfus = Pfus(wpl_lxl + (1 - 00)P2_1X2)

Prs— (0P 4+ (1 — 0)P; 1)t (5.2)

@ = arg miny,e[o,1] tr{(wP;*+ (1 —w)P; )™}
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Chapter 6

Experimental Result

To validate the proposed algorithm from the driver’s point of view, we calculated
three factors: track initializing & association probability along longitudinal distance,
detection & association rate in the FOV, and error of estimated states.

Track initializing & association probability along longitudinal distance must be
calculated to properly set the FOV and plan longitudinal control strategy. We
validated the detection rate of LiDAR track and association rate for track fusion
algorithm in the FOV using SNU campus driving data. Finally, an accuracy of

estimated fusion is presented.

22 .



6. 1 Track Initializing and Association Probability along

Longitudinal Distance

Next Left Lane

Next Right Lane

Fig. 7 Experiment for track initializing distance

To specify the FOV of vision sensor, a longitudinal distance of first sensing
moment is required. Therefore, we set the pedestrian to standstill on the specific lane
and moved vehicle toward the pedestrian to measure the first detected moment. This
method is described in Fig. 7. We calculated the track initializing probability along
longitudinal by repeating this method 12 times for five lateral distance. The
experimental result for track initializing & association probability along longitudinal

distance is described in Fig. 8.

i 8 A 2
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Fig. 8 Vision track initializing & two track association probability along

longitudinal distance

X-axis denotes a longitudinal distance from host vehicle, and y-axis denotes a
probability. Legends shows a lateral distance. As Fig. 8 denotes, track initializing
probability where distance is more than 30m does not guarantee proper performance,
which is less than 60%. Assuming that the detection performance has been reduced
due to pedestrian being stopped, we set longitudinal distance of FOV less than 30m.
In terms of association probability, the distance of 30m provides sufficient
probability nearly more than 50 % for the three most important lanes for safe driving:

host vehicle lane, right lane, left lane.
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6. 2 Detection & Association Rate in SNU Campus Driving

Data

In experiments 6.1, pedestrian stood still. Therefore, we additionally validated

our algorithm with SNU campus driving data which can be more suitable to describe

the actual movement of pedestrians. Simulation result is presented at Table 2.

The values in the table mean the number of frames. If pedestrian is in the FOV

of vision sensor and is tracked using vision sensor measurements, the number is

counted as detection, or non-detection if it does not be tracked. For LiDAR track,

existence of pedestrian is guaranteed by vision track. Therefore, false positive cases

are not counted. To summarize the result, precision, recall and accuracy are

calculated in Table 2.

Table 2 Simulation result for vision track

Sensor Data Existence Detection Non-Detection Recall Accuracy
Target Exist 460 34
Vision Sensor 93.12% 99.27%
Target Non-Exist 0 4151
LiDAR Sensor Target Exist 141 10 93.38% X
Associated Non-Associated
Vision & LiDAR Two Tracks Exists 137 3 97.90% X

25
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6. 3 Error of States

Fig. 9 Experiment for error of estimated states

To evaluate the accuracy of estimated states, we conducted additional experiment
to obtain ground truth value. The procedure of experiment is described in Fig 9. A
Sick Lidar is utilized for ground truth value. Sick LiDAR is more accurate to
measure distance nearby pedestrians than IBEO values moving at long distances.

We measured various movement of pedestrian, and the result is described in Fig.
10 and Table 3. Using fusion algorithm, longitudinal position error reduced

drastically.
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Fig. 10 Histogram of estimated X and Y states error

Table 3 Mean and std of error

Vision Fusion

X Error mean 0.6196 -0.1565

X Error std 1.1714 0.3027

Y Error mean -0.2557 -0.2694

Y Error std 0.4843 0.4864
27
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Chapter 7

Conclusion

In this paper, we presented a sensor fusion algorithm using commercial vision
sensor, 2D Lidar sensor and Digital HD map. Using MTT algorithm, we robustly
tracked a vision sensor data and vision track states set ROI for LiDAR track. MHT
algorithm is utilized for LiDAR data tracking algorithm, and two tracks are
associated using GNN algorithm. Two track’s states are fused by CI algorithm.
We validated the algorithm using various driving data. Using an outstanding
classification performance of commercial vision sensor and highly accurate point
cloud data, we effectively detected pedestrian and tracked the target robustly and
accurately regardless movement of a pedestrian. The presented algorithm can be
utilized in severely complex urban driving situation to robustly track multi
pedestrians. In addition, by installing additional vision sensors, the limits of vision

sensor FOV can be overcome.
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