
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 
 

i 

공학석사학위논문 

 

다중 보행자 인지를 위한 센서 융합 

알고리즘 개발 

 

Sensor Fusion Algorithm  

for Multi Pedestrians Tracking 

 

 

 

 

2019년 8월 

 

 

 

서울대학교 대학원 

기계항공공학부 

문종식 



 
 

ii 

 
Abstract 

Sensor Fusion Algorithm  

for Multi Pedestrians Tracking 

 

Jongsik Moon 

Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Pedestrian detection and tracking algorithm using environmental sensors is one of the 

most fundamental technology for safe urban autonomous driving. This paper presents a novel 

sensor fusion algorithm for multi pedestrian tracking using commercial vision sensor, LiDAR 

sensor, and digital HD map. The commercial vision sensor effectively detects pedestrian, 

whereas LiDAR sensor accurately measures a distance. Our system uses commercial vision 

sensor as detector and utilize LiDAR sensor to enhance estimation. In addition, digital HD 

map is utilized to properly define Region of Interest (ROI) of LiDAR sensor point cloud data. 

The detection performance is validated by about 4600 frames of SNU campus driving data 

and estimation accuracy is calculated through driving experiment. The proposed algorithm 

can be utilized for autonomous driving vehicles in various urban driving situation 
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Chapter 1 

 

Introduction 

 

1. 1 Motivation 

In a situation where technology level of ADAS (Active Driver Assistance System) 

is rising, the demand of technology is turning into full self-driving technology, which 

gives control to vehicles for safer driving than humans do. Social demands have also 

been strengthened. ADAS technology has previously been required to respond to 

scenarios in preparation for the behavior of forward vehicles which is important in 

highway driving scenario. However, the technology is now additionally required to 

cope with pedestrian scenarios. To prepare for this situation, the technology to 

clearly detect and track pedestrians must be implemented. 

In order to cope with this technical trend, various companies have begun selling 

some modules with sensors which process data to detect objects in complex urban 

driving environments. Mobileye vision sensor, which processes vision data and 

hands over the state of object with classification label is a representative sensor for 

self-driving technology. In addition, Ibeo ECU uses point cloud data to do same 
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operation.  

However, these modules are also inherently adhering to the limits of the sensor. 

Classification performance limits exist for LiDAR sensor, especially for 2D Lidar 

sensor, with additional limits due to small vertical FOV. For vision sensor, accuracy 

limits exist for estimation performance for states such as position, velocity, yaw 

angle. Therefore, fusion between different sensors is essential to address these issues 

[Wei 2018]. 
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1. 2 Previous Researches 

 

A number of studies have been introduced for the development of a sensor fusion 

algorithm for multi pedestrian detection and tracking. Labayrade et al. [Labayrade 

et al. 2005] presented a fusion algorithm between LiDAR sensor and stereo vision 

sensor. This algorithm detects the lane using stereo vision sensor and find object 

using LiDAR sensor. Cristiano et al. [Premebida et al. 2009] proposed a detection 

level sensor fusion algorithm for pedestrian detection system. Some features of 

LiDAR detection are utilized for classification and setting Region of Interest (ROI) 

for vision sensor. Hyunggi Cho et al. [Cho et al. 2014] also presented vision, LiDAR, 

radar sensor fusion algorithm for detection and tracking of moving object. Utilizing 

a classification performance of vision sensor, they found objects and associated them 

with LiDAR sensor and radar sensor data measurements. Garcia et al. [Chavez-

Garcia 2015] advanced fusion algorithm between LiDAR sensor, vision sensor, and 

radar to frontal object tracking in detection level. LiDAR sensor detection sets up 

Region of Interest (ROI) for vision sensor, and classification algorithm works in that 

region. Fusion algorithm and Multi Target Tracking (MTT) algorithm is 

implemented for after classification.  
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1. 3 Contributions 

 

The cited approaches track only moving objects to avoid tracking static obstacles 

and does not use commercial vision sensor which detects and measure the states of 

pedestrians. The cited approaches can be used effectively on highways or in 

relatively simple urban driving situations where a regularized road rule exists. 

However, there are some situations where driving judgements should be carried out 

through interaction rather than by a regular road rule. In order to implement safer 

urban self-driving technologies in described situations, there is a need to construct 

cognitive algorithms that take into account the characteristics of pedestrians who are 

free to move and stop. Therefore, this paper proposes a commercial vision sensor, 

2D LiDAR sensor, and digital HD map fusion architecture for pedestrian tracking 

which can be operated in severe urban driving situations. Using commercial vision 

sensor, LiDAR sensor measurement does not have to erase static point cloud data in 

a region where vision sensor can guide the existence of pedestrian. In addition, the 

prior knowledge of pedestrian existence can be used for clustering, and filtering 

process of LiDAR track. This can lead an advancement for detection rate and 

estimation accuracy.  

To validate fusion algorithm, the track initializing & association probability along 

longitudinal distance was calculated to properly set FOV of the algorithm. Next, 

detection rate of a vision track, association rate of each track was calculated based 

on driving experiment and SNU Campus driving data. Finally, the error of estimated 

x, y position states are analyzed to see the accuracy of the final state. 
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1. 4 Thesis Outline 

 

Section 1 covers the vehicle platform and the entire algorithm architecture for the 

implementation of the algorithm. Section 3 and 4 will describe algorithms that track 

vision and lidar tracks, respectively, while Section 5 shows an explanation of how to 

associate and fuse the two tracks. The result of the actual data simulation of the 

algorithms are in Section 6 and are described in Section 7 as a final conclusion and 

a further complement. 
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Chapter 2 

 

System Architecture 

 

2. 1 Vehicle Sensor Configuration 

The vehicles used in this study are Hyundai IONIQ vehicles which equipped with 

sensors for autonomous driving. The configuration is as shown in Fig.1 through 2.  

The Commercial Vision sensor uses Mobileye sensor. This vision sensor detects 

pedestrian and measures the position of pedestrian in local coordinate. Nevertheless, 

due to the limits of sensor FOV and inaccuracy of velocity measurements, the data 

from this sensor requires an additional tracking algorithm. Meanwhile, the LiDAR 

sensor uses IBEO lux, which covers about 110 degrees horizontally and 6 degrees 

vertically. Using six LiDAR sensors, all the horizontal FOVs are covered, but not 

fully covered in vertical direction. Due to these characteristics, it is difficult to 

recognize pedestrians by LiDAR alone. In addition, the position, yaw angle, and 

velocity states of vehicle is measured by GPS, RT-3002.  
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Fig. 1 Vehicle platform and sensor configuration 

 
 
 
 

 
Fig. 2 Sensor Field of View (FOV) 
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2. 2 Fusion Architecture 

 
Fig. 3 shows the schematic of our proposed sensor fusion architecture. The 

algorithm receives position information & classification information from vision 

sensor, digital maps, and point cloud data from LiDAR sensor. In order to utilize an 

accurate classification performance of vision sensor, vision-only track is initialized 

and sets up a ROI for LiDAR sensor. Using the point cloud in the ROI, LiDAR 

sensor detection and tracking algorithm operates with proper parameter for 

pedestrian detection and tracking. The final two states are associated with GNN 

(Global nearest neighbor) algorithm [Baig 2012, Blackman 2004] and fused using 

Covariance Intersection (CI) algorithm [Julier and Uhlmann 2009]. At this time, 2D 

LiDAR sensor uses only the data inside the road by setting an additional ROI based 

on the digital HD Map, since it is difficult to use data outside the road, especially on 

the sidewalk. Vision track, which is not fused, can be tracked with vision-only 

measurement to enhance robustness of algorithm. Based on this, states of pedestrian 

can be tracked so that planning algorithms for autonomous driving can operate. 

 

Fig. 3 Fusion system architecture for pedestrian detection and tracking 



 
 

9 

 

 

Chapter 3 

 

Vision Track Management & Filtering 

 
Based on the MTT method, the position data of the commercial vision sensor are 

used to estimate the status of pedestrians. The overall schematic diagram is as shown 

in Fig.4 below.  

The MTT algorithm refers to the process of estimating a state through filtering 

while managing the track by creating possible tracks based on measurement values 

and continuously assigning them measurement [Bar-Shalom 1990, Blackman et al. 

1999, Thrun 2005]. For vision sensor tracking algorithm, Extended Kalman Filter 

(EKF) is used as filtering method, and GNN algorithm is utilized as data association 

algorithm required for track management. 

Fig. 4 Vision Track Management & Filtering architecture 
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3. 1 Filtering for Target Tracking 

The states of each track are estimated by EKF algorithm. The process model and 

measurement are described in 3.1.1, 3.1.2 respectively. 

3. 1. 1 Process Model 

In this paper, Kim’s proposed process model is utilized [Kim et al. 2014]. The 

continuous process model is as follows. 

Fig. 5 Physical meaning of each variable 

 

In order to describe all the motions, the state and input vector are defined as 

follows: 

 

xn 	= 	 #𝑝%,'				𝑝%,(				𝜃%				𝑣%,'				𝛾%				𝑎%				𝛾̇%.
/ 

u = [𝑣'				𝛾]/ 

 

(3.1) 
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where subscript 𝑥  and 𝑦  denotes longitudinal, and lateral axis of vehicle 

coordinate. Another subscript n denotes n-th target. 𝑝 denotes a relative position. 

𝜃 denotes relative yaw angle. 𝛾 denotes yaw angle rate, 𝑎 denotes acceleration. 

These parameters are described in Fig. 5. 

 Using the state and input vector above, process model can be defined as  

 

ẋ% = 	a(x%,	u) + q 

= [a7    a8     a9    a:    a;    a<    a=]/ + q 

a7 = 𝑣%,' cos 𝜃A − 𝑣' + 𝑝%,( ∙ 𝛾 

a8 = 𝑣%,' sin 𝜃A − 𝑝%,' ∙ 𝛾 

a9 = 𝛾% − 𝛾 

a: = 𝑎%,' 

a; = 𝛾̇% 

a< = −𝑘G 

a= = −𝑘Ḣ 

 

where 𝑘G denotes a decay rate of acceleration and 𝑘Ḣ denotes a decay rate of yaw 

acceleration. Above continuous process model can be discretized via Taylor methods 

as follows [Kazantzis’99]: 

 

x%[𝑘 + 1] = x%(𝑡 + Δ𝑇) 

= x%(𝑡) +
𝑑
𝑑𝑡
x% ∙ Δ𝑇 +

1
2
𝑑8

𝑑𝑡8
x% ∙ Δ𝑇8 + h.o.t. 

	≅ x%(𝑡) + {a(x%,	u) + 𝐪} ∙ Δ𝑇 +
1
2
𝑑
𝑑𝑡
{a(x%,	u) + 𝐪} ∙ Δ𝑇8 

(3.2) 

(3.3) 
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= Yx%(𝑡) + {a(x%,	u) + 𝐪} ∙ Δ𝑇 +
1
2
Z
𝜕
𝜕x%

a(x%,	u) ∙ 𝒙%̇ +
𝜕
𝜕u
a(x%,	u) ∙ u̇] ∙ Δ𝑇8^ 

= _x%(𝑡) + a(x%,	u) ∙ Δ𝑇 +
1
2
Z
𝜕
𝜕x%

a(x%,	u) ∙ 𝒙%̇ +
𝜕
𝜕u
a(x%,	u) ∙ u̇] ∙ Δ𝑇8

+ `Δ𝑇 ∙ I +
Δ𝑇8

2
∙
𝜕
𝜕x%

a(x%,	u)b qd 

= f(x%[𝑘],	u[𝑘]) + w[𝑘] 

= [f7 f8 f9 f: f; f< f=]𝑻 + w[𝑘] 

 

where 

 

f7 = −

⎝

⎜
⎜
⎛

𝛾klmn(𝑝%,'𝛾klmn − 𝑣%sin	(𝜃%))
2

−
𝑎% cos(𝜃%)

2 +
𝛾%𝑣%sin	(𝜃%)

2

+
𝑎klmn
2 −

𝑝%,(𝛾̇klmn	
2 ⎠

⎟
⎟
⎞
Δ𝑇8 + r

𝑝%,(𝛾klmn − 𝑣klmn
+𝑣%cos	(𝜃%)

s Δ𝑇 + 𝑝%,' 

f8 = −t

𝑎%sin	(𝜃%)
2 +

𝛾%𝑣%cos	(𝜃%)
2 +

𝑝%,'𝛾̇klmn
2

−
𝛾klmn(𝑝%,(𝛾klmn − 𝑣klmn + 𝑣%cos	(𝜃%))

2

uΔ𝑇8 − r
𝑝%,'𝛾klmn

−𝑣%sin	(𝜃%)
s Δ𝑇 + 𝑝%,( 

f9 =
𝛾̇%
2 Δ𝑇

8 + 𝛾%Δ𝑇 + 𝜃% 

f: = −
𝑎%𝑘G
2 Δ𝑇8 + 𝑎%Δ𝑇 + 𝑣% 

f; = −
𝑘Ḣ𝛾̇%
2 Δ𝑇8 + 𝛾%̇Δ𝑇 + 𝛾% 

f< =
𝑎%
2
(𝑘G8Δ𝑇8 − 2𝑘GΔ𝑇 + 2) 

f= =
𝛾%̇
2 v𝑘Ḣ

8Δ𝑇8 − 2𝑘ḢΔ𝑇 + 2w 

 

(3.4) 
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w[𝑘]~(0,	W[𝑘]) 

W[𝑘] = 𝑬[w	∙	w/] 

= 𝐸 }_`Δ𝑇 ∙ I +
Δ𝑇8

2
∙
𝜕
𝜕x%

a(x%,	u)b qd [… ]/� 

= `Δ𝑇 ∙ I +
Δ𝑇8

2
∙
𝜕
𝜕x%

a(x%,	u)b E[q	∙	q/]{… }/ 

= `Δ𝑇 ∙ I +
Δ𝑇8

2
∙
𝜕
𝜕x%

a(x%,	u)b Q{… }/�x��x�[�]
u�u[�]

 

u̇ =
𝑑
𝑑𝑡
([𝑣' 𝛾]/) = [𝑎' 𝛾̇]/ 

 

3. 1. 2 Measurement Model 

Commercial vision sensor detects pedestrian and measure a relative distance. 

Therefore, the measurement vector can be defined as follows: 

 

zn 	= 	 #𝑝%,'				𝑝%,(	.
/ 

 

Using the state, measurement model can be defined as  

 

zn[𝑘] = 	H%x%[𝑘] +	v%[𝑘] 

v%[𝑘]	~	(0,V%[𝑘]) 

H% = �1	0	0	0	0	0	00	1	0	0	0	0	0� 

 

V%[𝑘] is calculated based on driving experiment data.  

(3.5) 

(3.6) 
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3. 2 Data Association 

One of the essential methodologies for track management is the data association 

algorithm. Various algorithms have been presented such as Joint Probability Data 

Association Filter (JPDAF), Multiple Hypothesis Tracking (MHT). In this paper, 

Global Nearest Neighborhood algorithm is utilized for vision-only tracking 

algorithm. Commercial vision sensor data has little noise. Therefore, a strong 

association algorithm for can be utilized without degrading a performance [Bar-

Shalom 1990, Bar-Shalom 1995]. For GNN algorithm, a cost matrix 𝑨 = [𝒄A�] for 

associating track to measurement should be defined. We defined the cost for 

associating as  

 

𝒄A� = 𝛇��[𝑘]/ ∙W ∙ 𝜻A�[𝑘] 

𝛇��[𝑘] = zi[𝑘] −H�x��[𝑘] = [Δx					Δy] 

 

which denotes 2-norm position difference which is called as Mahalanobis Distance 

(MD). 

  Using GNN algorithm, the detected measurement is assigned to the track, or 

initialize a new track. In this paper, an initialized track lasts about 1 second after 

final data assignment. 

 

 

 

 

 

(3.7) 
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Chapter 4 

 

Vision Guided LiDAR Track  

Management & Filtering 

 
LiDAR sensor measures the surrounding environment in the form of a point cloud. 

This type of data is difficult to handle individually and must be clustered. Using the 

center of cluster as position data, MTT algorithm is implemented for LiDAR track 

[Blackman 2004]. 

Since 2D LiDAR sensor is not efficient sensor for classification, the detected data 

is noisy. Given this situation, it can be determined that the Multiple Hypothesis 

Tracking (MHT) method, which produces possible hypothetical tracks based on 

Fig. 6 Vision Guided LiDAR Track Management & Filtering architecture 
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measurements, continuously compares them with measurements, and uses only 

reliable tracks with increased reliability, is suitable for tracking. In addition, EKF 

algorithm also implemented for filtering process of MHT. The overall schematic is 

as shown in Fig.6. 
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4. 1 Cluster Validation 

Before using MHT algorithm for tracking, clustering algorithm must operate. In 

this process, the feature of the cluster allows for simple verification of whether it is 

a suitable cluster for pedestrians. Three features used for validation are stated in 

Table 1. 

 

 

 

Table 1. Features for cluster-validation 

Feature Condition 

The number of points 2 < n < 150 

Maximum eigenvalue 0.001 < 𝜆 < 0.5 

Eigenvalue difference 

between max and min 
Δ𝜆 < 0.1 
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4. 2 Filtering for Target Tracking 

The process model and measurement model are described in 4.2.1 and 4.2.2 

respectively. 

4. 2. 1 Process Model 

Vision track and LiDAR track utilize same process model which is presented by 

Kim et al at 3.1.1.  

4. 2. 2 Measurement Model 

Measurement model for LiDAR track utilizes additional measurements: heading 

angle and 2-norm velocity. Therefore, the measurement vector can be defined as 

follows: 

 

zn 	= 	 #𝑝%,'				𝑝%,(				𝜃%				𝑣%,'.
/ 

Using the state, measurement model can be defined as  

 

zn[𝑘] = 	H%x%[𝑘] +	v%[𝑘] 

v%[𝑘]	~	(0,V%[𝑘]) 

H% = �
1	0	0	0	0	0	0
0	1	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	1	0	0	0

� 

 

 

(4.1) 

(4.2) 
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4. 3 Track Management Rule 

LiDAR track management is implemented using MHT algorithm. Measurements 

are assigned to a track that is previously tracked and within a certain distance. 

Unassociated measurements initiate a new track, and unassociated tracks can be 

deleted if no measurements are assigned to the track more than three consecutive 

times or if no measurements are assigned for more than 30% of the time of track 

existence. 
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Chapter 5 

 

Fusion Method 

 

5. 1 Track Association 

Track states are not noisy neither. Therefore, GNN algorithm which is a strong 

association method can be utilized. The cost for cost matrix 𝑨 = [𝒄A�] is defined as 

follows: 

𝒄A� = 𝛇��[𝑘]/ ∙W ∙ 𝜻A�[𝑘] 

𝛇��[𝑘] =
1
𝑛
� ∥ 𝑝�AmAl%[𝑡] −	𝑝�A���[𝑡] ∥8

%

n�7

	 

 

where p denotes 2 by 1 relative position vector. In addition, to prevent vision tracks 

from being associated with tracks that are so far away, the cost 𝒄A� has an upper 

limit.   

 

(5.1) 
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5. 2 State Fusion 

Since commercial vision sensor measurement and LiDAR sensor measurement 

have a correlation value that cannot be calculated because they process data using 

same vehicle information. This unknown correlation not only degrades the 

performance of fusion process, but also causes it to diverge in severe cases [Bar-

Shalom 1981]. To this end, fusion of the two states is carried out using the algorithm 

of Covariance Intersection (CI), which can be used when the correlation value is not 

known. Using CI algorithm, the fusion state can be defined as follows: 

 

𝐱��� = 𝐏���(𝜔𝐏7�7𝐱7 + (1 − ω)𝐏8�7𝐱8) 

𝐏����(𝜔𝐏7�7 + (1 − ω)𝐏8�7)�7 

𝜔 = arg min¢∈[¤,7] 𝑡𝑟{(𝜔𝐏7�7 + (1 − ω)𝐏8�7)�7} 

 

 

 

 

 

 

 

 

 

 

 

 

(5.2) 
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Chapter 6 

 

Experimental Result 

 
To validate the proposed algorithm from the driver’s point of view, we calculated 

three factors: track initializing & association probability along longitudinal distance, 

detection & association rate in the FOV, and error of estimated states. 

Track initializing & association probability along longitudinal distance must be 

calculated to properly set the FOV and plan longitudinal control strategy. We 

validated the detection rate of LiDAR track and association rate for track fusion 

algorithm in the FOV using SNU campus driving data. Finally, an accuracy of 

estimated fusion is presented. 



 
 

23 

6. 1 Track Initializing and Association Probability along 

Longitudinal Distance 

 

To specify the FOV of vision sensor, a longitudinal distance of first sensing 

moment is required. Therefore, we set the pedestrian to standstill on the specific lane 

and moved vehicle toward the pedestrian to measure the first detected moment. This 

method is described in Fig. 7. We calculated the track initializing probability along 

longitudinal by repeating this method 12 times for five lateral distance. The 

experimental result for track initializing & association probability along longitudinal 

distance is described in Fig. 8.  

 

Fig. 7 Experiment for track initializing distance 
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Fig. 8 Vision track initializing & two track association probability along 

longitudinal distance 

 

X-axis denotes a longitudinal distance from host vehicle, and y-axis denotes a 

probability. Legends shows a lateral distance. As Fig. 8 denotes, track initializing 

probability where distance is more than 30m does not guarantee proper performance, 

which is less than 60%. Assuming that the detection performance has been reduced 

due to pedestrian being stopped, we set longitudinal distance of FOV less than 30m. 

In terms of association probability, the distance of 30m provides sufficient 

probability nearly more than 50 % for the three most important lanes for safe driving: 

host vehicle lane, right lane, left lane. 
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6. 2 Detection & Association Rate in SNU Campus Driving 

Data 

In experiments 6.1, pedestrian stood still. Therefore, we additionally validated 

our algorithm with SNU campus driving data which can be more suitable to describe 

the actual movement of pedestrians. Simulation result is presented at Table 2. 

The values in the table mean the number of frames. If pedestrian is in the FOV 

of vision sensor and is tracked using vision sensor measurements, the number is 

counted as detection, or non-detection if it does not be tracked. For LiDAR track, 

existence of pedestrian is guaranteed by vision track. Therefore, false positive cases 

are not counted. To summarize the result, precision, recall and accuracy are 

calculated in Table 2. 

 

Table 2 Simulation result for vision track 
Sensor Data Existence Detection Non-Detection Precision Recall Accuracy 

Vision Sensor 
Target Exist 460 34 

100% 93.12% 99.27% 
Target Non-Exist 0 4151 

LiDAR Sensor Target Exist 141 10 x 93.38% x 

 Associated Non-Associated    

Vision & LiDAR Two Tracks Exists 137 3 x 97.90% x 
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6. 3 Error of States 

To evaluate the accuracy of estimated states, we conducted additional experiment 

to obtain ground truth value. The procedure of experiment is described in Fig 9. A 

Sick Lidar is utilized for ground truth value. Sick LiDAR is more accurate to 

measure distance nearby pedestrians than IBEO values moving at long distances. 

We measured various movement of pedestrian, and the result is described in Fig. 

10 and Table 3. Using fusion algorithm, longitudinal position error reduced 

drastically. 

 

 

 

 

 

 

 

 

Fig. 9 Experiment for error of estimated states 
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Fig. 10 Histogram of estimated X and Y states error 

 

 

 

 

Table 3 Mean and std of error 

 Vision Fusion 

X Error mean 0.6196 -0.1565 

X Error std 1.1714 0.3027 

Y Error mean -0.2557 -0.2694 

Y Error std 0.4843 0.4864 
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Chapter 7 

 

Conclusion 

 
In this paper, we presented a sensor fusion algorithm using commercial vision 

sensor, 2D Lidar sensor and Digital HD map. Using MTT algorithm, we robustly 

tracked a vision sensor data and vision track states set ROI for LiDAR track. MHT 

algorithm is utilized for LiDAR data tracking algorithm, and two tracks are 

associated using GNN algorithm. Two track’s states are fused by CI algorithm. 

We validated the algorithm using various driving data. Using an outstanding 

classification performance of commercial vision sensor and highly accurate point 

cloud data, we effectively detected pedestrian and tracked the target robustly and 

accurately regardless movement of a pedestrian. The presented algorithm can be 

utilized in severely complex urban driving situation to robustly track multi 

pedestrians. In addition, by installing additional vision sensors, the limits of vision 

sensor FOV can be overcome. 
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초 록 

 

다중 보행자 추적을 위한 센서 융합 알고리즘 개발 

 

 환경 센서를 이용하여 보행자를 인지하고 추적하는 알고리즘은 안전한 

도심 자율주행을 위해 가장 중요한 기술 중 하나이다. 본 논문은 상업용 

비전 센서, 라이다 센서, 그리고 디지털 지도 정보를 융합해 보행자를 

추적하는 새로운 알고리즘을 제시한다. 상업용 비전 센서는 보행자를 효

과적으로 탐지하는 반면 라이다 센서는 거리를 정확하게 측정한다. 본 

시스템은 상업용 비전 센서를 이용해 보행자를 탐지하며, 라이다 센서를 

이용하여 상태 추정 성능을 향상시켰다. 또한 디지털 지도를 이용해 라

이다 센서의 관심 영역을 설정하였다. 탐지 결과는 서울대학교 캠퍼스에

서 약 4600프레임 주행 데이터로, 추정의 정확성은 주행 실험을 통해 검

증하여 복잡한 도심 주행 상황에서도 본 알고리즘이 유용함을 검증하였

다. 
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