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Abstract

Self—Learning Data—Driven Yield
Criteria for Anisotropic Materials

Kyungsuk Jang
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Yield criteria have been one of the essential theories for
structural analysis to prevent undesirable material behaviors.
Although the theories have been developed with high accuracy, many
anisotropic parameters are necessary to complete anisotropic yield
equations. Many experimental tests are required to obtain them due
to uncertainty of anisotropic materials. The major purpose of this
thesis is to propose a new methodology that can identify anisotropic
yield criterion of uncharacterized new materials. The new
methodology creates new yield criteria by means of two subsequent
steps: 1) self—learning inverse finite element (SELIFE) simulations
with minimal experimental measurements and 2) data—driven

mechanics approach. SELIFE can self—learn stress—strain time
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histories of any material behavior based on boundary reaction forces,
displacements and/or internal displacements from experiments.
Self—learning capability of material behavior in the SELIFE analysis
is enabled through adaptive progressive training of artificial neural
network (ANN)—based material constitutive models. From the self—
learned stress—strain data, sufficient initial yield stresses were
extracted in comprehensive stress increment directions. This is
called data—processing step. Following the data—processing,
symbolic regression via genetic programming is performed to derive
a new data—driven anisotropic yield criterion. For an example, Hill" s
anisotropic yield criterion is used, which is assumed as unknown. A
biaxial specimen was modeled subjected to four displacement
boundary conditions to get sufficient initial yield stress data. Finally,
the biaxial simulation was conducted with the data—driven yield
criterion in ABAQUS for verification. Through SELIFE simulation and
data—driven mechanics approach, a new anisotropic yield criterion

was obtained and compared with reference yield criteria.
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1. Introduction

1.1. Background and Motivation

Yield criteria have been developed to define the initiation of
plastic deformation with complex loading conditions and used in a
variety of structural engineering applications. Several
representations for the isotropic yield surface have been proposed
by Tresca, Von Mises [1], and Hosford [2]. Anisotropic yield
surfaces in stress space have also been studied by many researchers
such as Hill [3—5], Bassani [6], and Budiansky [7]. The theories to
describe an anisotropic initial yielding behavior are required to
predict failure prevention of structures and provide engineers with
information about the limit of elastic deformation. However, there are
still challenges associated with developing comprehensive yield
criteria for anisotropic material. Many efforts and costs are needed
to fit anisotropic parameters because of uncertainties from material
properties in any structures. In this paper, we propose a new
methodology for developing new yield criteria by using data—driven

mechanics and genetic programming.
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The self—learning data—driven mechanics should be emphasized
that it 1s able to train data itself by generating ample stress—strain
data from minimal experimental data and physics—based laws. This
capability of self—learning data—driven mechanics is unprecedented.
To demonstrate the ability of the proposed self —learning data—driven
mechanics, biaxial specimens made of anisotropic metal were
accepted with four boundary conditions. The proposed methodology
can self—learn any material behavior regardless of both elastic and

plastic characteristics.
1.2. Objectives and Thesis Overview

In this study, we aim to open a new research philosophy and
radical direction to discover new yield criteria for an anisotropic
metal under complex stress states. The proposed methodology is
based on finite element model with artificial neural network based
material constitutive model, self—learning vyield stress data of
anisotropic metal and mathematical formulation by evolutionary
genetic programming. The method consists of three major sequential
steps: Step 1) inverse identification of stress—strain data from self—

learning data—driven mechanics, Step 2) data analysis called the
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Data—processing to obtain yield stresses from the stress—strain
curves without any conventional yield criteria and Step 3) derivation
and formulation of physics—based law from mathematical symbolic
regression based on genetic programming. The driven equation is in
terms of the initial yield stress and the yield stress components which
is discovered from the Step 2). Finally, data—driven criteria is able
to obtain from the Step 3). Finally, in Step 4), data—driven criteria

can be obtained. Overview of the thesis is shown in Figure 1.1.

Unknown Experimental
material ‘::> test

Self-learning

inverse finite Genetic Data-driven
element (SELIFE) L Programming iteri

Simulation

Step 1) Step2) Step3) || Step4)

Figure 1.1 Overview

The proposed methodology has significant meaning. The
methodology can establish any criteria based on experimental test
data i.e. force and displacement measurements from unknown

material. In this thesis, a biaxial model is especially assumed that its

material property can be following Hill’s 48 anisotropic yield criterion.
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2. Data-Driven Mechanics and Artificial Neural
Network Material Models

2.1. Data-Driven Mechanics

Data—driven mechanics is one of the branch where the
underlying laws such as constraints, material constitutive law or
conservation law are replaced or collaborated with the experimental
data in non—conventional schemes. Material constitutive law is

relatively more subjected to errors or uncertainties than other

entailed physics—based law associated with boundary value problems.

Therefore, data—driven approach to the material constitutive
modeling is considered as an unprecedented idea and relatively new
promising direction. For example, Kirchdoerfer et al. proposed
computational algorithmic approach that can realize data—driven
modeling of material constitutive laws within the finite element
analysis framework [8]. Data from experiment tests have been
mainly used for parameter identification [9] or model updating within
the empiricism regime rather than replacing those laws or constraints
in the boundary value problems. In regards to material experimental

data, material informatics [10] entails applications of various
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statistical techniques such as principal component analysis, and
artificial intelligence such as neural network [11]; deep learning [12],
support vector machine [13], etc. Many researchers have used
statistical methods to apply to various research fields such as
multiscale material modeling [14—16], cyclic plasticity [17],
nonlinear multi—axial stress—strain behaviors of fiber—reinforced
plastic composites [18], rubber materials [19], and rate—dependent
materials [20]. Artificial intelligence in surrogate—type model has
shown superior predictability of materials’ physical properties

based on experimental data.
2.2. Artificial Neural Network Materials Models

On the other hand, artificial neural network (ANN) has also been
applied for substituting the empirical material constitutive models as
knowledge—based material constitutive model [21—-25]. ANN
material models are able to predict the nonlinear multi—axial stress—
strain relationships both under monotonic and cyclic loading [26].
Intrusive implementation technique of ANN material constitutive
model within finite element analysis codes is available [26, 27].The

ANN for knowledge based constitutive model has current strain, one
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or a few prehistoric strains, and other internal variables as inputs and
current stresses as output values so that they can be implemented in
conventional nonlinear finite element tests. However, difficulty about
ANN material model is preparations for comprehensive training data
from experiments, which is formidable in usual material tests. For
tackling such challenges of ANN models, Ghaboussi, et al. proposed
an online training methodology called an autoprogressive training
whereby ANN material constitutive models are automatically trained
during nonlinear finite element analyses subjected to experimental
boundary reaction forces and displacements [28]. This innovative
idea has an advantage of generating sufficient stress—strain training
data from minimal experimental measurements. Following work, Yun
et al. proposed a strategic methodology for developing nonlinear
material constitutive models by combining the online autoprogressive
training of ANN material constitutive models with a symbolic
regression, i.e., genetic programming technique [29]. Symbolic
regression technique such as genetic programming is a useful
approach for generating mathematical equations from experimental

data [29]. Most of ANN material models are surrogate—type
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predictive black box models for specific physical properties or
material constitutive models that can predict nonlinear stress—strain
relationships. The capability of ANN material models with the online
autoprogressive training is far beyond inversely finding nonlinear
stress—strain relationship. However, very few researches on its
application to ANN based data—driven mechanics. As aforementioned
our focus is the application of ANN to development of new anisotropic

initial yield criterion.
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3. Self-Learning Inverse Finite Element (SELIFE)
Simulation

3.1. ANN-Based Material Constitutive Model for Anisotropic

Materials

In order to achieve the single—valuedness between inputs and
outputs of the hysteretic ANN—based constitutive model, one internal
variable is included [30]. The internal variable has the physical
meaning of strain energy density. The ANN—based material model is
defined as following :

o, = onN([En €n1, On_1,Sn |: [NN Architecture]) (1)
where ¢, = 0,_1&,-1 + 0n_14Ag, is internal variable

Stress data from finite element analysis are fed into the ANN
recursively to make it robust from errors [30]. Hyperbolic tangent
function was implemented for an activation function in the ANN and
adaptive backpropagation called resilient back—propagation (RPROP)
was accepted for the error backpropagation [31]. Figure 3.1
describes the architecture of ANN; input and output node, two hidden
layers, and the activation function (hyperbolic tangent function).

Moreover, some ANN parameters are added as well; weight
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connections between each of the layers (wif,wgf, wif, and wi*").

- - U —
Input | Hidden Hidden Qutput
layer {layer B layer C layer

I}
o
k

]

ERE
)
2

ol

|

|
[

Qutput value : C,

‘ > :
/] \ NN s 2 o ;CB 2 3
NN AN T N ~ Op Weighted sum : wi;” * B,

Cx = tanh(B * wif * B;)

{1 Recurrent """

Figure 3.1 The architecture of artificial neural network

During the ANN-based FEA, ABAQUS calls the special user
subroutine which the ANN is inserted in order to predict stress
values and calculate material tangent stiffness matrix (Jacobian
matrix). It is updated using an explicit expression which is a function
of inputs and outputs as well as the ANN parameters such as weight

factors (wgf, W;sz,Wf}g» and Wg'sv ),

scale factors (S§7and Sf), the
derivation form of the activation function ( (1—f(¢)?)) and the
activation function values from each of the hidden layers in the given

ANN ("*1ghN n+le - and ™1'B,). Therefore, the Jacobian matrix [32

i1s formulated in terms of ANN parameters as following :
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n+1
ep _ oA o;
NN,ij — aAn+1£j

p NC

= Y (CERRES

k=1
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x { (1 _ (n+131)2) (ng;_g + Wgsv "a’iVN)}] >
3.2. Auto-Adaptive Training of ANN-Based Model

Experimental boundary measurements i.e. reaction forces and
displacements from a structural or material tests are required for
SELIFE simulations. Moreover, measured internal displacement field
data from a digital image correlation (DIC) equipment enhance an
accuracy of SELIFE. In this thesis, experimental data were
substituted with displacement and force data of experimental
reference simulations in order to compare the results from the

reference simulations with those from SELIFE.

SELIFE requires three additional iteration loops, which are NN
pass, NN step, and auto—adaptive training cycle. Sweeping all load

steps is called one NN Pass. Multiple NN passes are necessary since
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the ANN—based material model may not be trained with one NN pass.
In each of the load incremental steps, SELIFE runs two independent
finite element analysis. Force—controlled analysis (FEM—A) and
displacement—controlled analysis (FEM—-B) are performed
individually in each of the auto—adaptive training cycles The stresses
and strains are appended from FEM—A and FEM—B, respectively.
Based on the SELIFE hypotheses, stress data are extracted from
FEM—A while strains do from FEM—B. Multiple auto—adaptive cycles
are performed until the predetermined number is reached or a
convergence criterion is satisfied [33]. The displacement error,
which is difference between computed displacement from FEM—A
and the measured displacement, is checked as the criterion in each
of the auto—adaptive cycles. In this thesis, internal displacement data
are, especially, included in the displacement error calculation. A
computational flow chart, which includes the three additional loops

for SELIFE, is depicted in Figure 3.2.
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‘ Pretraining

'

| Fori=1:NNpass !4
| Forj=1:NNstep |=
| For autopcycle = 1: 2 I#
|
FEM-A : N-R iteration under FEM-B : N-R iteration under
j th Force data j th Disp data
{ Boundary } { Boundary + Internal }
| I
v
Append New Input to
Training DB

.

Run Auto-adaptive
training

Autopcycle =27 or

isp error|;< Tol 2

j = MNNstep ?

Figure 3.2 Flow chart for SELIFE simulation
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Schematic algorithm is contained for detail illustration of SELIFE
procedure in Figure 3.3. Rather than executing SELIFE without the
pretraining process, using pretraining data is recommend for accurate
results and faster convergence. The pretraining data could be
generated within linear elastic strain region [32] with assumed
elastic material properties or be prepared from experiment test data
in Figure 3.3 (a). A user defined ANN model is updated with the
pretraining data (Figure 3.3 (c)) to approximate elastic behavior
(Figure 3.3 (d)). Two ANN-based finite element models are
prepared in ABAQUS. One is subjected to the measured boundary
reaction forces called FEM—A (Figure 3.3 (e—a)). On the other hand,
the other is under the measured boundary deformations called FEM—
B (Figure 3.3 (e—b)). In the first NN step of SELIFE, the updated
ANN from the pretraining data can execute finite element analysis
with the first load steps of experimental data ( i.e. force boundary
and displacement boundary ) until satisfying the convergence
conditions of auto—adaptive training. After ANN—based FEA, stress
data from FEM—A and strain data from FEM—-B are extracted,

respectively (Figure 3.3 (f)). The stress—strain pairs are appended
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(Figure 3.3 (g)) in the training data set (Figure 3.3 (b)). ANN model

is gradually updated (Figure 3.3 (c)) by training data set with

appended dataset. This procedure is repeated until the last load step

(a) Preparation for pretraining

A constitutive model in linear

elastic region

(g - b) Append £ data

(b) Training data set

(g - a) Append o data

Pretlammg Append data from ‘
(f-b) € data data ANN-based FEA (f-a) O data
extraction extraction
Auto- adaptn‘e
(e - b) FEM-B training (e -a) FEM-A
apply displacement data 1 ] apply force data
_T'T i (c) Update ANN Model L I
Un : - Fn li j -
5 1
- T
I
I

ANN-based FEA

' ™
(d) ANN-based material
constitutive model

SELIFE

ANN-based FEA

n+1
ep aA™tlg,

NN~ Jantle.
L dA™ g,

oy

SELIFE

Figure 3.3 Schematic algorithm of SELIFE simulation
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In Figure 3.4, the iterl and iter?2 indicate gradual training of the
ANN model toward true stress—strain response through the auto
adaptive training. During the SELIFE, stress—strain history data at
all material points are appended into the training database. After
SELIFE training, the ANN model can be used in forward nonlinear FE
analysis. The concept of SELIFE generates material Big Data in
terms of stress—strain history data. Since function of ANN is the
primary components of the SELIFE analysis, ANN—based material
model will be highlighted.

i

i ™
Rezponze after pretraining

' i
| DP‘ Tter | Auto-Adaptive I{’\ Response
1 Learning | l | after NN Pass

/'LQ—I": Iter | Iterations I'\y’l

Rezponze after NN Pazs
L o

True response

¥

n Step

Figure 3.4 Schematic ANN model’s auto-adaptive learning for true material response
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4. Self-Learning Data-Driven Mechanics

4.1. Data-Processing Algorithm

To formulate appropriate data—driven yield criterion, the initial
yield stress data are necessary to be collected from all cases of
SELIFE. Data analysis, which we called Data—processing, discovers
yield stresses from stress—strain history without any conventional
yield criteria. The Data—processing is based on dealing with tangent
stiffness within stress—strain curves. The Data—processing
algorithm consists of two steps. The first step classifies plastic
history cases and elastic history cases from whole SELIFE data.
Next, the second step of the Data—processing determines which point
can be the yield stress point within whole range of the stress history.

The first step of Data—processing is shown in Figure 4.1. In the
beginning of the first step, stress and strain data are interpolated with
specific number for proper calculation of tangent stiffness called
interpolated tangent stiffness. The number of 50000 was used to
interpolate stress— strain history in this study. Next, interpolated
tangent stiffness is calculated with the interpolated stress— strain

history by the following equation ( 3 ). Moreover, initial tangent
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stiffness (4 ) is calculated based on the interpolated tangent stiffness
of the first two percent within whole interpolation interval.

The main key point of the first step of the Data—processing is
using an averaged ratio of tangent stiffness ( 6 ). It is able to classify
whether stress data is plastic history or elastic history. The values
of averaged ratio of tangent stiffness are one if the 1° step of the
Data—processing was conducted with the elastic stress history cases
because equations ( 3) and (4 ) were close to each other. However,
the values of (6 ) are out of one if the 1% step of the Data processing
was performed with the plastic stress history cases since
interpolated tangent stiffness values ( 3 ) are consistently changed
from the initial yield points. Therefore, the average of ratio of tangent
stiffness can separate plastic stress history cases from whole stress
histories. However, there is a limitation to find yield points only using
this step. A determination process of yield points needs to obtain

them from all plastic stress history cases.

i oitl—gl (3)
N=—g—g (i€(12..,N-1))
noAl (4)
A=2I=1
- n

. SEREE



si A (5)

z (i €(1,2..,N—1))

Yitet (6)

S >=
<>N

where n describes the size of the first two percent of interpolation
interval and N indicates the size of the interpolation number.

(a)

Data from selfsim : {c, £}

'

Data interpolation

)

Interpolated tangent stiffness, Al

Initial tangent, A
|

L

Ratio of tangent stiffness, &

]

Average of ratio of tangent stiffness, < 6§ >

Elastic data

Plastic history cases
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(b)

O —€ curve data

e

O —& curve data

~
Plastic stress
Elastic stress history cases
history cases , ,
Yield point: ?

-,

vy

Figure 4.1 Thefirst step of the Data-processing; (a) Flowchart for division plastic data from
all SELIFE data (b) schematic diagram to obtain plastic cases

Finally, yield points from the plastic history cases can be

captured by using the second step of the Data—processing. Yield

points were more prominently discovered from major stress

component than weak stress component. Therefore, comparison of

stress components to get the major stress was necessary. Instead of

i
using ratio of tangent stiffness ( 5 ) itself, |8 —1| was used to
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capture the first deviating point from the initial tangent stiffness.

Generally, the value about 0.7 for |8 l—1| was appreciable to obtain

the initial yield stresses from the group which characterizes plastic
behaviors. More detail description about the second step of the Data—

processing is shown in Figure 4.2 (a) and (b).

(a)

Plastic stress history cases

k 4

Find major stress component

!

> Fori=1:# of final interpolation

!

Ratio of tangent stiffness, 5t

|5i-1]| = 0.70?

Yield point
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(b) - ~
O —& curve data

P e ~
Plastic stress
Elastic stress history cases
history cases , ,
Yield point: ?
. y
\. J

O —€& curve data

- rd Y
Plastic stress

Elastic stress history cases
history cases

Yield point

vy

Figure 4.2 The second step of the Data-processing; (a) Flowchart to capture yield points (b)
schematic diagram to discover initial yield points

4.2. Symbolic Regression by Genetic Programming

The genetic program (GP) called GPTIPS [34], which is
implemented in MATLAB, is capable of regressing symbolic
equations by relating between input and output data. For effective
learning of the GP, data preparation process was necessary. Two

groups of dataset are prepared; one group is based on the initial yield
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stresses from all the reference simulations while the other group is
stemmed from the initial yield stresses from all SELIFE. All initial
yield stresses are obtained from the proposed Data—processing. The
two GP-—driven vyield criterion are visualized by using fimplicit3
function in MATLAB. Furthermore, comparison of Hill' s anisotropic
yield surface with the GP—driven yield surface is included to verify
the feasibility of the GP—driven yield surface. Finally, the GP—driven
yield criterion will be verified by conducting simulations with

different material orientation.

Anisotropic constant parameters (F,G,H, and N) from the Hill’
s 48 anisotropic yield criterion are necessary to express anisotropic
plastic characteristics. Experimental specimen tests should take
several times in order to obtain accurate F,G,H, and N values since
the anisotropic characteristics are significantly different depending
on material properties and the material orientations, that is, F,G,H,
and N strongly depend on material properties.

The proposed methodology using the GP, however, has strong
advantages of formulating anisotropic yield criterion without F,G,H,

and N constants from experimental tests. The GP can produce
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proper constants only by relating between the input data and the
output data. Those data are based on the data—processed initial yield
stresses and the given initial yield stress. In general GP relation for

anisotropic yield criterion can be defined as :

J122 = f(%go'azzz'ﬂzb (011 '022)2) (7)
030 indicates the initial yield stress of the given material and o*izj
indicates the data—processed initial yield stresses. As seen equation

(7)), F,G,H, and N values were not involved in the general GP

relation.
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5. Verification of SELIFE and Self-Learning Data-
Driven Yield Criterion

5.1. \erification of SELIFE from the Uniaxial Tensile Experimental

Measurements

Before the demonstration of the proposed methodology, SELIFE
simulation with experimental measurements is verified. The SELIFE
simulation is conducted with the uniaxial tensile experimental
measurements of flat specimen [35]. Force—displacement data were
extracted by digitizer program and applied to SELIFE simulation. To
examine only initial yield stress behavior, specific displacement
interval raining from 0.00 [mm] to 0.25[mm] was only accepted and
the force—displacement measurements were interpolated within the
interval. Total 11 pairs of force—displacement data were used for
SELIFE simulation. The detail image of the force—displacement data
is shown in Figure 5.1. The given equation ( 8 ) is ANN structure
which was used for SELIFE simulation. Plane stress condition was
assumed and reduced integration scheme was accepted to

demonstrate uniaxial tensile simulation.

On = 0-NN([En: €n-1,0n-1,6n ]: [12 —25-25- 3]) (8)
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=@=FRaw data —8— nterpolated data

Figure 5.1 Interpolated force-displacement measurement for SELIFE

simulation

SELIFE simulation was conducted with parameters shown in
Table 5—1. Total 10 NN passes were used for the SELIFE but 5 NN
passes are sufficient to extract reasonable force—displacement data.
The results of the SELIFE simulation is shown in Figure 5.2. There
is not dramatic change after the 3" pass.

Table 5-1 Parameters for SELIFE simulations

Number Number of Displacement NN epochs for NN epochs for auto—
of NNpass elementsfortrain errortolerance  pre—training adaptive training
10 264 0.03 1000 60
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Figure 5.2 Force-displacement results of the SELIFE simulation by NN passes

Based on the stress—strain curves, the Data—processing was
executed to capture the initial yield stress points. The points were
positioned on the Von Mises surface. The material of the model is
2024-T351 aluminum alloy [35] and its initial yield stress is 330
[Mpa]. The data—processed initial yield stress points properly
reflect on the tendency of the uniaxial tensile test. The plotted initial
yield stresses are illustrated in Figure 5.3. The stress—strain data

are from the results of the 5™ NN pass.
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Figure 5.3 Data-processed initial yield stresses which are located on the Von

Mises surface
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The difference is defined as equation (9 ).

(9)

\/(alyl)z — (alylazyz) + (023’2)2 + 30‘13’22 — 0y = Dif ference
Based on this, all data—processed initial yield stresses are put into
the Von Mises vyield criterion to check the distribution of the
difference. 1.4% of the average error was obtained. The detail image

of the difference distribution is shown in Figure 5.4.
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Average Error : 1.3759(%)

1BFmM
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|
]
J
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Frequency
=
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1
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MR 1 7m 17 1
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Figure 5.4 Distribution of numerical difference
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5.2.  Experimental Reference Simulations with Anisotropic

Material

In addition to the isotropic material, in this section, anisotropic
material is used for SELIFE simulations. In contrast with the previous
section, reference simulations with anisotropic material were
necessary to verify some results from SELIFE simulations by
comparing force—displacement curves and stress—strain curves. In
order to demonstrate reference simulations, a biaxial specimen made
of anisotropic material with zero degree material orientation was
chosen and simulated under several boundary conditions. Detail
image for the biaxial specimen including some specific regions is
shown in Figure 5.5. Four types of displacement boundary conditions
(DBC) were defined to obtain sufficient initial yield stress in various
stress states. 0.0lmm magnitude for displacement was applied in
Region A and B. The DBCs are arranged in Table 5—2. Fixed
boundary conditions, however, were defined for the Region C and D.
For stress—strain data extraction, the Region E was defined but sub—
region of it was considered to save compute time of SELIFE.

Furthermore, the sub—region of the Region E brought advantage for
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balance between plastic stress history and elastic history within
whole dataset. Specific elements where plasticity is likely to occur
easily were set as the sub—region of the Region E. Total 220
elements for the sub—region, which are about 86% out of the Region
E, were picked. Stress and strain dataset were extracted from the
sub—region by using ABAQUS Python codes after each of the two
ANN-based FEM i.e. FEM—A and FEM—B. The biaxial specimen was
modeled in ABAQUS with material properties [36] shown in Table
5—3. For the experimental reference simulations, Hill = s 48
anisotropic yield criterion was accepted. In addition, 2D plane stress
condition was assumed for all reference simulations as well as
SELIFE since the biaxial specimen assumed that it has the relatively
small length in z—direction than the other directions (x and y—

direction).
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Figure 5.5 Boundary conditions for the biaxial specimen; Region A and B for the

displacement boundary conditions; Region C and D for the fixed boundary

conditions; Region E (256 elements) for data extraction

Table 5-2 Four types of displacement boundary conditions

Boundary types Region A Region B
Type 1 Tension Tension
Type 2 Compression Compression
Type 3 Compression Tension
Type 4 Tension Compression
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Table 5-3 Material properties of anisotropic metal (DDQ mild steel [36] )

Young’s modulus, E [GPa] 206

Poisson’s ratio, v 0.3

Initial yield stress, oy, [MPal 152.0

Lankford ratios : 1y, 145, Tog 2.64,1.57, 2.17

State of anisotropy of the material

Hill' s 48 anisotropic yield criterion [37] was accepted to
demonstrate anisotropic behavior of the material and the equation is

defined as follows:

f(o) = JF(Uzz — 033)2 + G(033 — 011)% + H(0y; — 055)% + 2Lo3° + 2Mas,® + 2Noy,” ( 10 )
o;; are the stress components and F,G,H,L,M,and N are constants
parameters that express current state of anisotropic behavior. They

can be defined as using combinations of yield stress ratio R;; or using

measured yields stress ), and the material yield stress ay,.

F_ay0<1+1 1) 1(1 1)
2 5222 6323 5121 2 R22 R33 R112

g (1 1 1 1 1
6=—>\zz%t77 7z 2
033 011 02 R33 R11 R22
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vo 3B A)-3(E)- 2 (11)
V3 Gf) 2\ Gh)  2Ry,°

As seen equation ( 11 ), yield stress ratios R;; are defined as the

ratio of the measured yield stress g;; to material initial yield stress

Ty0-

R;i =24 (for ij =11, 22, and 33)
G'yo

3 - 12
Rij = i (for ij =12, 13, and 23) (12)

where 7,0 = %

ABAQUS anisotropic simulations are taken into account using
only yield stress ratios R;j.Since the plane stress condition was
applied to all simulations, it is convenient to assume R;; as following
[15, 38]. The 22, 33, and 12 components of yield stress ratios can

be defined in terms of the Lankford ratios.

Ri1=Ri3=Ry =1
R _ T9o(To+1) R _ Too(To+1) R _ 3790(19+1) ( 13)
22 7o(r90+1)’ 33 To+Tog 12 (21r9+1)(ro+790)
Moreover, equation ( 10 ) can be reduced by equation ( 14 ).
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Thus, F,G,H, and N are only necessary to complete equation ( 14 ).

14
f (o) :\/Fazzz+GU121+H(U11—0'22)2+2N0'122 (1)

Therefore, the following yield criterion is used for the anisotropic

yield simulations based on equation ( 14 ).

JFok + Go? + H(ayy — 02)% + 2Nak — ayo < 0 : Elastic deformation (15)

JFok + Gal + H(ayy — 055)2 + 2Nof, — 0,9 = 0 : Plastic deformation (16)
Equation ( 16 ) is, in particularly, converted to equation ( 17 ), which
is Hill' s 48 anisotropic yield criterion.

FUZZZ + 60-121 + H(O-ll - 0-22)2 + 2N0-122 = O-_’)%O ( 17 )

By using Lankford values in Table 5—3 and ( 13 ), the yield stress
ratios can be obtained. Then, based on equation ( 17 ), the elliptic
shape for anisotropic yield surface could be displayed in the stress
space {071,072, and, oy,). The image of the yield surface is shown in

Figure 5.6
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Figure 5.6 Hill’s 48 anisotropic yield surface under the plane stress condition

The intersections between the yield surface and the each of axes
are the measured yield stresses. This relation will be used for the
verification of GP driven anisotropic equations. By putting ¢,, = gy, =

0 in equation ( 17 ), the 11 component of the measured yield stress

can be obtained.

, Oy (19)
MT G H)

Oy0
o1 =% 2

vG +H

_ 20
= t0y0 Ri1 = 1011 (20)
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Similarly, the 22 component of the measured yield stress can be computed.

Oy0
0'22:+ Y

"VF+H

_ 21
= 10,9 Ry, = 10,; (21)

The measured yield stress for the 12 component can be calculated

from the similar approach.

2
, _ Oy (23)

013 ﬁ
o o Oy O 24
S I ) i (24)

Therefore, measured yield stresses can be achieved based on
equation (20 ), (21 ), and ( 24 ). Both yield stress ratios measured
yield stresses are arranged by the each of the components in Table
5—4. In addition to using equation ( 20 ), ( 21 ), and ( 24 ), the
intersection points were numerically calculated by finding the points
which are minimum distance between the surface and axes. In order
to show the obtained intersection values, those values are displayed
with the Hill' s 48 anisotropic yield surface in Figure 5.7. The same

values of the measured yield stresses could be achieved.
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Table 5-4 Calculated yield stress ratios and measured yield stress

Yield stress ratios Measured yield

Components
stresses [Mpal
11 component R;; = 1.0000 0,1 = £152
22 component R,, = 0.9715 0., = 1147.6680
12 component Ry, = 1.0909 0,5, = £95.7344
120
I 95.7344
60
T 147,008
= 0 152
N
-
- _147.668

240

O55 [Mpa] 240 240 Ty [Mpa]

Figure 5.7 Hill’s 48 anisotropic yield surface with intersections
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To verify anisotropic yield response, the reference simulation
with boundary type 1 was investigated. The resultant force—
displacement curve is shown in Figure 5.8(a). The forces from both
the Region A and B change differently after the specific point due to
Hill ° s anisotropic vyield criterion. Figure 5.8 (b) is force—
displacement curve from simulation with Von Mises yield criterion.

Forces from both the Region A and B are no difference after specific

point.
800 800
>
- . {
&
600 600
400 400
200 | 200 |
——Region A —=—Region B +—Region A -=—Region B
0 | | D | 1
0 0.0025 0.005 0.0075 0.01 0 0.0025 0.005 0.0075 0.01

(a) (b)

Figure 5.8 Force-displacement curves from (a) Hill’s anisotropic yield criterion and (b) Von
Mises yield criterion

As mentioned earlier, all experimental boundary

measurements 1.e. global reaction forces, displacements, and
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internal displacements were substituted with the FE reference

simulations of experiment.

5.3. ANN Architecture and Self-Learning Parameters

SELIFE simulations were performed with all four boundary types
individually. Twelve input nodes were required to learn stress, strain,
and internal variable data and three output nodes to predict stress
data. In addition, thirty hidden nodes of the ANN were chosen as an
experiment. The same ANN architecture shown in equation ( 25 )
was used for all SELIFE.

on = ONN([€ns €n-1,0n-1,6n |: [12 = 30 — 30 = 3]) (25)

SELIFE simulations from the each of the boundary types were
conducted with the proposed parameters which are arranged in Table
5—5. Based on the proposed ANN architecture and SELIFE
parameters, the results of the SELIFE with boundary typel
(Tension—Tension DBC) will be shown in the next section.

Table 5-5 Parameters for SELIFE simulations

Displacement Number Number of Displacement NNepochsfor NN epochs for
Boundary type of NNpass elementsfortrain  errortolerance  pre—training autop training
Typel (T-T) 8 220 0.01 1000 70

Type2 C-C) 8 220 0.01 1000 70
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Type3 C-T) 5 220 0.015 1000 90

Type4 (T-O 5 220 0.015 1000 90

5.4. Results from SELIFE Simulation with Tension-

Tension Displacement Boundary Condition

In order to illustrate plastic area in Region E, an effective plastic
strain contour based on the reference simulation with tension—
tension displacement boundary condition (the boundary type 1) are
added in Figure 5.9. The image is from the last analysis step. Two

specific elements were chosen to examine stress—strain history

curves. One is from the 138" element which has elastic characteristic.

On the other hand, the 132™ element shows plastic behavior. From
the each element, stress—strain curves are plotted together to show
the update of ANN-—-based constitutive model during the multiple
SELIFE NN passes.

Figure 5.10 and Figure 5.11 illustrate the global responses of the
biaxial specimen by SELIFE NN passes. Figure 5.10 explains the
global responses from the Region A. Reaction force—displacement
curves in x—direction are shown in Figure 5.10 (a) while reaction

force history in the y—direction and reaction moment history are
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shown in Figure 5.10 (b) and Figure 5.10 (c), respectively. Since the
Region A can move only in x—direction but fixed in y—direction, only
force—displacement curve in x—direction could be obtained. Because
of material anisotropy and effects of deformation in the other
direction, reaction moment was occurred during the SELIFE.

On the other hand, Figure 5.11 account the global responses from
the Region B. Force—displacement curves in the y—direction are
included in Figure 5.11 (b). Reaction force history in x direction and
reaction moment history are depicted in Figure 5.11 (a) and Figure
5.11 (c), respectively. As seen the change of the global responses
by SELIFE NN passes from Figure 5.10 and Figure 5.11, all curves
approach their target curves as NN pass increasing.

For stress contour comparison, Figure 5.12, Figure 5.13, and
Figure 5.14 are also included. Comparing with the results from the
reference simulation, SELIFE was capable of producing similar stress
contours.

In order to verify the effect of multiple NN passes, stress—strain
curves were investigated as well. The plastic behavior of the 132™

element could be updated by repetitive NN passes as seen Figure
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5.15. Similarly, in Figure 5.16, the elastic stress history from the

138" element was able to be revised by the iterative stress—strain

training. As the NN pass increasing, the accuracy of stresses tended

to improve. The ANN-—based constitutive model allows the FE model

of the SELIFE to demonstrate complex material behavior based on

trained data. As seen Figure 5.15 and Figure 5.16, SELIFE is able to

learn stress data regardless of material behavior. Similar update by

the several SELIFE NN passes also appeared in the other SELIFE.
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*

'
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Figure 5.9 Effective plastic strain contour from the reference simulation under

tension-tension displacement boundary condition (boundary type 1)

. B L



(a)

Force [N]
e o (=2} ~ [+
[=] (=3 Q o [=3
o (=] (=] o o

w
Q
=]

200

oo

(b)

0.002

0.006 0.008

Displacement [mm]

0.004

0.01

=20

-40 -

Force [N]

-100

-120 |

-60

-80

—@— Reference
—@— 1pass
e 3 pass
~—#— 5 pass

6 pass
~—~—— 8 pass

o

(c)

0.2

0;4 0.‘6 O.l8
Time (step)

1400

1200

Q
S
=]

Moment [N-mm]

»
8

g

o
8

-]
8

—@— Reference
—&— 1pass
—+— 3pass
=i 5 pass
6 pass
—%— 8 pass

0

0.2

04 06 08
Time (step)

1

Figure 5.10 Curves from the Region A by SELIFE NN passes; (a) reaction force-

displacement curve in x direction, (b) reaction force history curve iny direction,

and (c) reaction moment history curve
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simulation and (b) result of SELIFE simulation at the last pass (the 8" pass)
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Figure 5.13 Stress (S22) contour comparison; (a) result of the reference
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Figure 5.14 Stress (S12) contour comparison; (a) result of the reference
simulation and (b) result of SELIFE simulation at the last pass (the 8" pass)
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Figure 5.15 Stress-strain curves at the 3™ gauss point in the 132" element by
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5.5. Data—Processing

Stress—strain curves from the SELIFE with boundary type 1
were used to demonstrate the Data—processing algorithm. Two types
of the initial yield stress are compared. One is calculated based on
Hill" s anisotropic yield criterion. The other is, however, obtained by
Data—processing. The two yield stresses were plotted on the each
of the same stress—strain curves in Figure 5.17. The three specific
gauss points in the Region E were chosen to illustrate the comparison
of the initial yield stress. The circle blue dots on the each of the
stress—strain curves are the initial yield points satisfying Hill" s 48
anisotropic yield criterion while the asterisk red dots are obtained
from the Data—processing. Comparing with each two initial yield
points on the each of the curves, the yield stresses obtained by the
Data—processing were located at reasonable yield positions. The
majority of the data—processed initial yield stresses was close to the

initial yield stress satisfying Hill' s anisotropic yield criterion.
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In order to verify the feasibility of the Data—processing, two
groups of the initial yield stresses were set and the values were
plotted on the Hill’ s anisotropic yield surface for appreciable
comparison. The group one consisted of the data—processed initial
yield stresses from all reference simulations and the other group
contained the data—processed initial yield stresses from the self—
learned stress—strain curves. Furthermore, all data—processed
initial yield stress were put into the Hill' s anisotropic yield criterion
( 14 ) to investigate the distribution of the numerical difference, that
is, equation ( 26 ) was introduced to calculate the difference between
Hill" s anisotropic yield surface and the data—processed initial yield

stresses. o7, indicates the discovered initial yield stresses by means
of the Data—processing, gy, represents initial yield stress of the

given material, and F,G,H, and N are anisotropic parameters.

(26)

\/F 023/22 +G alylz + H(crly1 — azyz)z + 2Nc71yz2 — ay9 = Dif ference
Based on the data—processed initial yield stresses from the
reference stress—strain data, the points were plotted on the

anisotropic yields surface in Figure 5.18 (a). Moreover, the
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histogram which shows the distribution of the difference between the
initial yield stresses and Hill' s anisotropic yield surface is included
in Figure 5.18 (b). Most of the initial yield stresses are close to the
yield surface and the average percent of the difference distribution
i1s 0.9730 %. The proposed data—processing algorithm has
reasonable to acquire the initial yield stresses from any stress—

strain curves which includes the plastic behavior.
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Figure 5.18 Investigation of data-processed initial yield stresses based on all reference
simulations; (a) data-processed initial yield stresses on the Hill’s yield surface, (b)
distribution of numerical difference between data-processed initial yield stress and the

Hill’s anisotropic yield criterion
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Note that the four colors were chosen to distinguish which
boundary conditions caused the initial yield stress points. Red dots
represent initial yield stresses from boundary type 1 (Tension—
Tension DBC). Blue ones are from boundary type 2 (Compression—
Compression DBC), Green from the boundary type 3 (Compression—
Tension DBC), and Yellow from the boundary type 4 (Tension—
Compression DBC), respectively. However, all black dots are the
initial yield stresses satisfying the Hill' s anisotropic yield criterion
(17).

Similarly, the data—processed initial yield stresses based on the
self—learned stress—strain data were plotted on the same yield
surface. The results are shown in Figure 5.19 (a). The histogram to
illustrate the distribution of the difference is depicted in Figure 5.19
(b). Average value of the difference distribution somewhat increased
but most of the initial yield stresses are reasonably located on the

Hill’ s anisotropic yield surface.
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Figure 5.19 Investigation of data—processed initial yield stresses based on all

SELIFE simulations; (a) data—processed initial yield stresses on the Hill' s

yield surface, (b) distribution of numerical difference between data—processed

initial yield stress and the Hill' s anisotropic yield criterion
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5.6. Data Preparation for Genetic Programming

As aforementioned, the general GP relation for anisotropic yield
criterion is able to be defined as ( 7 ). The inputs are combinations
of quadratic terms of 074,07, and gy,. On the other hand, for the
output of the GP, 2, was chosen and arranged in ascending order
for effective GP training. Corresponding input datasets were
arranged as pairs of the output dataset. Input dataset and output
dataset for the GP are arranged in Table 5—6.

Table 5—6 Input datasets and output dataset for the genetic program

Input datasets Output dataset
X1 =02 X2 =02 X3 =02 X4= (0, —0y)* Y1 =03
corresponding input data for minimum o¢f value Minimum
l
( Ascending order )
I
corresponding input data for maximum o¢? value Maximum

The GP [34] requires both a training dataset and a test dataset.
The former dataset is for learning a relationship between input and

output while the latter dataset is to validate the relationship. The
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training dataset was prepared from the data—processed initial yield
stresses but the test dataset was based on initial yield stresses
satisfying the Hill’ s 48 anisotropic yield equation ( 17 ). Both
training and test dataset were arranged as following Table 5—6.
Several parameters affecting the results of the GP training are
shown in Table 5—7 and the operational functions shown in Table
5—8 were activated to drive appreciable yield criterion. Two groups
of the initial yield stress database were arranged as the proposed
method depicted in Table 5—6 and trained under the same conditions

as following Table 5—7 and Table 5—8.

Table 5-7 Parameters for genetic program

Parameter description Value
Number of population size 50
Number of generation 50
Maximum number of genes per individual 3
Maximum depth for gene 5

Table 5-8 Activated functions for the genetic program

Activated function name Symbols
Times X
Minus -
Plus +
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5.7. Self-Learning Data-Driven Anisotropic Yield Criterion

from the Reference Simulations

First, the symbolic regression was conducted with the database
based on the initial yield stresses captured from all the reference
simulations by means of the data—processing. The data—driven

anisotropic yield criterion is driven by the GP.

0.31260%, + 0.2514 67, + 0.7566(011 —052)* + 2.816707, = 0%, (27)

Based on equation ( 27 ), the GP driven anisotropic yield surface
i1s visualized by using the fimplicit3 function in MATLAB. To proper
comparison, the Hill ' s anisotropic yield surface is displayed
together. Both anisotropic yield surfaces are shown in Figure 5.20.
The blue surface is Hill" s anisotropic yield surface while the red one
is stemmed from the GP driven criterion. In order to compare the
results in more detail, yield surface images from both stress space

(3D) and stress plane (2D) were included.
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Figure 5.20 Comparison of anisotropic yield surfaces; (a) in the 3D stress space

and (b) on the 2D stress plane
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The prediction results from the GP are shown in Figure 5.21 (a)
and (b). All upper graphs are from the results of training dataset
while the bottom graphs are from those of test dataset. Figure 5.21
(a) illustrates the predictive performance by each of data.
Furthermore, Figure 5.21 (b) indicates the relations between the
predicted output values and actual output values. The closer the blue
dots are to the linear line, the better the GP results can be expected.
The accuracies of the training dataset and the test dataset are
94.2325% and 97.825%, respectively. Since the initial yield stresses
which satisfies the Hill’ s 48 anisotropic yield criterion were used as

the test dataset, the better performance was achieved.
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Figure 5.21 GP prediction performance of data-processed initial yield database

based on reference simulations (training data for upper plot and test data for

the bottom plots); (a) data-output plot, and (b) actual — predicted graph
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Considering the results from Figure 5.20 and Figure 5.21, we
confirmed that the GP is capable of generating a proper anisotropic
yield criterion without any anisotropic parameters (F,G,H, and N).
The GP driven anisotropic yield surface shows reasonable results

comparing with Hill" s anisotropic yield criterion.

5.8. Self-Learning Data-Driven Anisotropic Yield Criterion from

SELIFE Simulations

Next, based on the data—processed initial yield stress data from
the self—learned stress—strain curves, other equation ( 28 ) can be
obtained from the GP.

0.29220%, + 0.2346 of; + 0.7345(01,-0,2)* + 3.15630¢, = 05, (28)

Though the parameters characterizing anisotropic yield behavior
are slightly different comparing with equation ( 27 ), equation ( 28 )
is able to produce reasonable elliptic shape. The other anisotropic
yield surface from equation ( 28 ) is displayed in the stress space
{041,095,012} and on the stress plane {0y,,0,,} for the detail
comparison with Hill’ s anisotropic yield surface in Figure 5.22 (a)

and (b), respectively.
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Figure 5.22 Comparison of anisotropic yield surfaces; (a) in the 3D stress space
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The prediction performance of the GP slightly decreased when
the database were based on the SELIFE as shown in Figure 5.23.
Using the SELIFE simulations, however, is meaningful since it can
find stress and strain data from the unknown material with minimal
mechanical properties. In this thesis, young s elastic modulus,
poisson’ s ratio, and the initial yield stress of given material were
only used in order to develop the GP-—driven anisotropic yield

criterion.
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Figure 5.23 GP prediction performance of data-processed initial yield database
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5.9. Verification of the GP Driven Yield Criterion

Based on the anisotropic parameters (F,G,H, and N) of the GP
driven equations i.e. equation ( 27 ), equation ( 28 ), measured yield
stress can be obtained by equation ( 20 ), (21 ), and ( 24 ). Then,
yield stress ratios (Ry;, Ry, and R;,) were calculated following by
equation ( 12 ) and are arranged in Table 5—9. Comparing with the
original yield stress ratios, both groups of yield stress ratios were
calculated similarly. Especially, the obtained yield stress ratios from
the GP data driven equation Table 5—9 is close to the values of

original yield stress ratios.

Table 5-9 Calculated yield stress ratios (R11, R;2, and R5)

Ry R, Ry,
Original material from Table 5—3 and 1.0000 0.9715 1.0909
(17)
GP data driven equation ( 27 ) 0.9960 0.9671 1.0320
GP data driven equation ( 28 ) 1.0158 0.9869 0.9750

To verify the GP—driven yield equations, the other simulations
were conducted with 22.5 degree of material orientation in ABAQUS.

The calculated anisotropic yield stress ratios in Table 5—9 were used

3§ 53 17
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for the verification simulations. Three lines are plotted together. All
black solid lines are the results of the simulation with anisotropic
yield criterion based on the original material given in Table 5—3.
However, all blue lines are the results from the simulation based on
the GP driven anisotropic yield equation ( 27 ) which is based on the
initial yield stresses extracted from four reference simulations, and
all red lines are the results from the simulation with the GP driven
anisotropic yield criterion ( 28 ) which is stemmed from the initial
yield stresses from four SELIFE.

The simulation with tension—tension displacement boundary
condition was executed with 0.01[mm] displacement for the
verification. Force—displacement data were extracted from the
Region A and Region B and Figure 5.24 shows force—displacement

comparison.
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Figure 5.24 Force-displacement comparison from (a) the Region Aand (b) the Reg

ion B

Moreover, stress—strain data were obtained from the specific

elements and those are shown in Figure 5.25, Figure 5.26, and Figure

5.27. For elastic behavior case (Figure 5.25), there is no significant

80 ) ,H <



difference among stress—strain curves. For plastic behavior case,
however, slightly different plastic behavior appears in Figure 5.26
and Figure 5.27. It is based on the inherent error during the GP
training as seen in Figure 5.23 (b) but stress history data had a
similar material behavior comparing with the simulation with original

anisotropic parameters.
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Figure 5.25 Comparison of stress-strain curves at the 2nd gauss point in the 51st element
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6. Conclusion and Future Works

6.1. Conclusion

This thesis presented a novel methodology which is able to
establish criteria from unknown material. The methodology mainly
consist of data—driven approach i.e. self—learning inverse finite
element (SELIFE) simulation, Data—processing, and genetic
programming (GP). SEFIFE was able to gradually learn any material
behavior based on the experimental measurements. Data—
processing could find most of the initial yield stress points without
any conventional yield criteria. Lastly, GP was capable of
generating certain criteria in terms of the data—processed data.

In order to get sufficient initial yield stresses under various
stress states, the biaxial specimen was modeled and simulated with
four displacement boundary conditions: Tension—Tension,
Compression—Compression, Compression—"Tension, and Tension—
Compression. Hill’s 48 anisotropic yield criterion was assumed for
the material behavior. Furthermore, experimental test data were
substituted with the resultant force and displacement from the

reference simulations which contain anisotropic yield behavior.
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SELIFE simulations were carried out with the four displacement
boundary conditions. The comparison of data curves illustrates that
SELIFE is able to track the each of the corresponding target curves
from repetitive stress—strain data learning. Effect of appending
stress—strain data from FEM—A and FEM—B at the each of the
loading steps allows artificial neural network to demonstrate more
complex material behavior.

Initial yield stresses were generally captured by the Data—
processing algorithm. Those initial yield data plotted on the Hill" s
yield surface. Most of the data appeared near to the Hill' s yield
surface. Genetic programming was capable of formulate anisotropic
yield equation without any anisotropic parameters. Moreover, new
anisotropic yield surface was plotted based on the driven equation.
The new vyield surface had similar elliptic shape comparing with the
Hill" s yields surface.

From unknown material, the proposed methodology could
discover not only curves, that is, reaction force—displacement curve
and stress—strain curve but also anisotropic yield criterion. Force—

displacement curve and stress—strain curve were obtained during
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the SELIFE based analysis. As NN pass increasing, trained ANN is
getting to be helpful to execute nonlinear finite element analysis.
Anisotropic yield criterion, however, were discovered from the

symbolic regression by means of the GP.

6.2. Future Works

The GP results from the data based on the four reference
simulations tended to be more accurate than those from the SELIFE.
It means that more accurate stress—strain prediction of the SELIFE
i1s required to achieve more precise anisotropic yield parameters and
have more reasonable anisotropic yield surface. To overcome this
limitation, more than one history will be included to improve the
performance of stress prediction. Furthermore, state—of—the—art
technique for Deep Learning will be accepted such as ADAM
optimizer [39] and batch normalization [40]. Those technique is
possible to enhance ANN accuracy with less computing time.

The proposed methodology will be extended to other anisotropic
yield criteria researched by Hill [3—5], Bassani [6], and Budiansky
[7]. Instead of using only a biaxial specimen, more complex stress

behaviors can be considered by a triaxial experimental test [41].

87 -":rx E "";i' 1_-“



Criteria can be developed with multiple stress components together

from the test. Moreover, it will be applied to composite structures to

establish failure criteria such as Tsai—Hill criterion or Tsai—Wu

criterion [42].
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