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Abstract 

Self-Learning Data-Driven Yield 

Criteria for Anisotropic Materials 

 

Kyungsuk Jang 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 
 

Yield criteria have been one of the essential theories for 

structural analysis to prevent undesirable material behaviors. 

Although the theories have been developed with high accuracy, many 

anisotropic parameters are necessary to complete anisotropic yield 

equations. Many experimental tests are required to obtain them due 

to uncertainty of anisotropic materials. The major purpose of this 

thesis is to propose a new methodology that can identify anisotropic 

yield criterion of uncharacterized new materials.  The new 

methodology creates new yield criteria by means of two subsequent 

steps: 1) self-learning inverse finite element (SELIFE) simulations 

with minimal experimental measurements and 2) data-driven 

mechanics approach. SELIFE can self-learn stress-strain time 
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histories of any material behavior based on boundary reaction forces, 

displacements and/or internal displacements from experiments. 

Self-learning capability of material behavior in the SELIFE analysis 

is enabled through adaptive progressive training of artificial neural 

network (ANN)-based material constitutive models. From the self-

learned stress-strain data, sufficient initial yield stresses were 

extracted in comprehensive stress increment directions. This is 

called data-processing step. Following the data-processing, 

symbolic regression via genetic programming is performed to derive 

a new data-driven anisotropic yield criterion. For an example, Hill’s 

anisotropic yield criterion is used, which is assumed as unknown. A 

biaxial specimen was modeled subjected to four displacement 

boundary conditions to get sufficient initial yield stress data. Finally, 

the biaxial simulation was conducted with the data-driven yield 

criterion in ABAQUS for verification. Through SELIFE simulation and 

data-driven mechanics approach, a new anisotropic yield criterion 

was obtained and compared with reference yield criteria.  
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1. Introduction 

 

1.1. Background and Motivation 

Yield criteria have been developed to define the initiation of 

plastic deformation with complex loading conditions and used in a 

variety of structural engineering applications. Several 

representations for the isotropic yield surface have been proposed 

by Tresca, Von Mises [1], and Hosford [2]. Anisotropic yield 

surfaces in stress space have also been studied by many researchers 

such as Hill [3-5], Bassani [6], and Budiansky [7]. The theories to 

describe an anisotropic initial yielding behavior are required to 

predict failure prevention of structures and provide engineers with 

information about the limit of elastic deformation. However, there are 

still challenges associated with developing comprehensive yield 

criteria for anisotropic material. Many efforts and costs are needed 

to fit anisotropic parameters because of uncertainties from material 

properties in any structures. In this paper, we propose a new 

methodology for developing new yield criteria by using data-driven 

mechanics and genetic programming. 
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The self-learning data-driven mechanics should be emphasized 

that it is able to train data itself by generating ample stress-strain 

data from minimal experimental data and physics-based laws. This 

capability of self-learning data-driven mechanics is unprecedented. 

To demonstrate the ability of the proposed self-learning data-driven 

mechanics, biaxial specimens made of anisotropic metal were 

accepted with four boundary conditions. The proposed methodology 

can self-learn any material behavior regardless of both elastic and 

plastic characteristics. 

1.2. Objectives and Thesis Overview 

In this study, we aim to open a new research philosophy and 

radical direction to discover new yield criteria for an anisotropic 

metal under complex stress states. The proposed methodology is 

based on finite element model with artificial neural network based 

material constitutive model, self-learning yield stress data of 

anisotropic metal and mathematical formulation by evolutionary 

genetic programming. The method consists of three major sequential 

steps: Step 1) inverse identification of stress-strain data from self-

learning data-driven mechanics, Step 2) data analysis called the 
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Data-processing to obtain yield stresses from the stress-strain 

curves without any conventional yield criteria and Step 3) derivation 

and formulation of physics-based law from mathematical symbolic 

regression based on genetic programming. The driven equation is in 

terms of the initial yield stress and the yield stress components which 

is discovered from the Step 2). Finally, data-driven criteria is able 

to obtain from the Step 3). Finally, in Step 4), data-driven criteria 

can be obtained. Overview of the thesis is shown in Figure 1.1. 

 

Figure 1.1 Overview 

The proposed methodology has significant meaning. The 

methodology can establish any criteria based on experimental test 

data i.e. force and displacement measurements from unknown 

material. In this thesis, a biaxial model is especially assumed that its 

material property can be following Hill’s 48 anisotropic yield criterion.  
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2. Data-Driven Mechanics and Artificial Neural 

Network Material Models 

2.1. Data-Driven Mechanics 

Data-driven mechanics is one of the branch where the 

underlying laws such as constraints, material constitutive law or 

conservation law are replaced or collaborated with the experimental 

data in non-conventional schemes. Material constitutive law is 

relatively more subjected to errors or uncertainties than other 

entailed physics-based law associated with boundary value problems. 

Therefore, data-driven approach to the material constitutive 

modeling is considered as an unprecedented idea and relatively new 

promising direction. For example, Kirchdoerfer et al. proposed 

computational algorithmic approach that can realize data-driven 

modeling of material constitutive laws within the finite element 

analysis framework [8]. Data from experiment tests have been 

mainly used for parameter identification [9] or model updating within 

the empiricism regime rather than replacing those laws or constraints 

in the boundary value problems. In regards to material experimental 

data, material informatics [10] entails applications of various 
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statistical techniques such as principal component analysis, and 

artificial intelligence such as neural network [11]; deep learning [12], 

support vector machine [13], etc. Many researchers have used 

statistical methods to apply to various research fields such as 

multiscale material modeling [14-16], cyclic plasticity [17], 

nonlinear multi-axial stress-strain behaviors of fiber-reinforced 

plastic composites [18], rubber materials [19], and rate-dependent 

materials [20]. Artificial intelligence in surrogate-type model has 

shown superior predictability of materials’ physical properties 

based on experimental data.  

2.2. Artificial Neural Network Materials Models 

On the other hand, artificial neural network (ANN) has also been 

applied for substituting the empirical material constitutive models as 

knowledge-based material constitutive model [21-25]. ANN 

material models are able to predict the nonlinear multi-axial stress-

strain relationships both under monotonic and cyclic loading [26]. 

Intrusive implementation technique of ANN material constitutive 

model within finite element analysis codes is available [26, 27].The 

ANN for knowledge based constitutive model has current strain, one 
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or a few prehistoric strains, and other internal variables as inputs and 

current stresses as output values so that they can be implemented in 

conventional nonlinear finite element tests. However, difficulty about 

ANN material model is preparations for comprehensive training data 

from experiments, which is formidable in usual material tests. For 

tackling such challenges of ANN models, Ghaboussi, et al. proposed 

an online training methodology called an autoprogressive training 

whereby ANN material constitutive models are automatically trained 

during nonlinear finite element analyses subjected to experimental 

boundary reaction forces and displacements [28]. This innovative 

idea has an advantage of generating sufficient stress-strain training 

data from minimal experimental measurements. Following work, Yun 

et al. proposed a strategic methodology for developing nonlinear 

material constitutive models by combining the online autoprogressive 

training of ANN material constitutive models with a symbolic 

regression, i.e., genetic programming technique [29]. Symbolic 

regression technique such as genetic programming is a useful 

approach for generating mathematical equations from experimental 

data [29]. Most of ANN material models are surrogate-type 
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predictive black box models for specific physical properties or 

material constitutive models that can predict nonlinear stress-strain 

relationships. The capability of ANN material models with the online 

autoprogressive training is far beyond inversely finding nonlinear 

stress-strain relationship. However, very few researches on its 

application to ANN based data-driven mechanics. As aforementioned, 

our focus is the application of ANN to development of new anisotropic 

initial yield criterion. 
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3. Self-Learning Inverse Finite Element (SELIFE) 

Simulation 

3.1. ANN-Based Material Constitutive Model for Anisotropic 

Materials 

In order to achieve the single-valuedness between inputs and 

outputs of the hysteretic ANN-based constitutive model, one internal 

variable is included [30]. The internal variable has the physical 

meaning of strain energy density. The ANN-based material model is 

defined as following : 

where 𝜍𝑛 = 𝜎𝑛−1𝜀𝑛−1 + 𝜎𝑛−1Δ𝜀𝑛 is internal variable 

Stress data from finite element analysis are fed into the ANN 

recursively to make it robust from errors [30]. Hyperbolic tangent 

function was implemented for an activation function in the ANN and 

adaptive backpropagation called resilient back-propagation (RPROP) 

was accepted for the error backpropagation [31]. Figure 3.1 

describes the architecture of ANN; input and output node, two hidden 

layers, and the activation function (hyperbolic tangent function). 

Moreover, some ANN parameters are added as well; weight 

 𝛔n = 𝛔NN([𝜺𝑛, 𝜺𝑛−1, 𝝈𝑛−1, 𝜍𝑛 ]: [𝑁𝑁 𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒]) ( 1 ) 
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connections between each of the layers ( 𝑤𝑖𝑘
𝝈𝐶 , 𝑤𝑘𝑙

𝐶𝐵, 𝑤𝑙𝑗
𝐵𝜺, and 𝑤𝑙𝑗

𝐵𝑺𝑽 ). 

 

Figure 3.1 The architecture of artificial neural network 

 

During the ANN-based FEA, ABAQUS calls the special user 

subroutine which the ANN is inserted in order to predict stress 

values and calculate material tangent stiffness matrix (Jacobian 

matrix). It is updated using an explicit expression which is a function 

of inputs and outputs as well as the ANN parameters such as weight 

factors (  𝑤𝑖𝑘
𝝈𝐶 , 𝑤𝑘𝑙

𝐶𝐵, 𝑤𝑙𝑗
𝐵𝜺, and 𝑤𝑙𝑗

𝐵𝑺𝑽 ), scale factors ( 𝑆𝑖
𝝈 and 𝑆𝑗

𝜺 ), the 

derivation form of the activation function (  (1 − 𝑓(•)2) ) and the 

activation function values from each of the hidden layers in the given 

ANN ( 𝝈𝑖
𝑁𝑁𝑛+1 , 𝐶𝑘

𝑛+1 , and 𝐵𝑙  𝑛+1 ). Therefore, the Jacobian matrix [32] 

is formulated in terms of ANN parameters as following : 
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3.2. Auto-Adaptive Training of ANN-Based Model 

Experimental boundary measurements i.e. reaction forces and 

displacements from a structural or material tests are required for 

SELIFE simulations. Moreover, measured internal displacement field 

data from a digital image correlation (DIC) equipment enhance an 

accuracy of SELIFE. In this thesis, experimental data were 

substituted with displacement and force data of experimental 

reference simulations in order to compare the results from the 

reference simulations with those from SELIFE.  

SELIFE requires three additional iteration loops, which are NN 

pass, NN step, and auto-adaptive training cycle. Sweeping all load 

steps is called one NN Pass. Multiple NN passes are necessary since 

 𝐷𝑁𝑁,𝑖𝑗
𝑒𝑝

=
∂∆𝑛+1𝝈𝑖

∂∆𝑛+1𝜺𝑗
 

              =
𝑆𝑖

𝝈

𝑆𝑗
𝜺 𝛽3 ∑ ( {(1 − ( 𝝈𝑖

𝑁𝑁𝑛+1 )
2

) 𝑤𝑖𝑘
𝝈𝐶}

𝑁𝐶

𝑘=1

×  [∑  { (1 − ( 𝐶𝑘
𝑛+1 )

2
) 𝑤𝑘𝑙

𝐶𝐵 }

𝑁𝐵

𝑙=1

× { (1 − ( 𝐵𝑙
𝑛+1 )

2
) (𝑤𝑙𝑗

𝐵𝜺 + 𝑤𝑙𝑗
𝐵𝑺𝑽 𝝈𝑖

𝑁𝑁𝑛 )}] )  

 

( 2 ) 
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the ANN-based material model may not be trained with one NN pass. 

In each of the load incremental steps, SELIFE runs two independent 

finite element analysis. Force-controlled analysis (FEM-A) and 

displacement-controlled analysis (FEM-B) are performed 

individually in each of the auto-adaptive training cycles The stresses 

and strains are appended from FEM-A and FEM-B, respectively. 

Based on the SELIFE hypotheses, stress data are extracted from 

FEM-A while strains do from FEM-B. Multiple auto-adaptive cycles 

are performed until the predetermined number is reached or a 

convergence criterion is satisfied [33]. The displacement error, 

which is difference between computed displacement from FEM-A 

and the measured displacement, is checked as the criterion in each 

of the auto-adaptive cycles. In this thesis, internal displacement data 

are, especially, included in the displacement error calculation. A 

computational flow chart, which includes the three additional loops 

for SELIFE, is depicted in Figure 3.2. 
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Figure 3.2 Flow chart for SELIFE simulation  
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Schematic algorithm is contained for detail illustration of SELIFE 

procedure in Figure 3.3. Rather than executing SELIFE without the 

pretraining process, using pretraining data is recommend for accurate 

results and faster convergence. The pretraining data could be 

generated within linear elastic strain region [32] with assumed 

elastic material properties or be prepared from experiment test data 

in Figure 3.3 (a). A user defined ANN model is updated with the 

pretraining data (Figure 3.3 (c)) to approximate elastic behavior 

(Figure 3.3 (d)). Two ANN-based finite element models are 

prepared in ABAQUS. One is subjected to the measured boundary 

reaction forces called FEM-A (Figure 3.3 (e-a)). On the other hand, 

the other is under the measured boundary deformations called FEM-

B (Figure 3.3 (e-b)). In the first NN step of SELIFE, the updated 

ANN from the pretraining data can execute finite element analysis 

with the first load steps of experimental data ( i.e. force boundary 

and displacement boundary ) until satisfying the convergence 

conditions of auto-adaptive training. After ANN-based FEA, stress 

data from FEM-A and strain data from FEM-B are extracted, 

respectively (Figure 3.3 (f)). The stress-strain pairs are appended 
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(Figure 3.3 (g)) in the training data set (Figure 3.3 (b)). ANN model 

is gradually updated (Figure 3.3 (c)) by training data set with 

appended dataset. This procedure is repeated until the last load step. 

Figure 3.3 Schematic algorithm of SELIFE simulation 
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In Figure 3.4, the iter1 and iter2 indicate gradual training of the 

ANN model toward true stress-strain response through the auto 

adaptive training. During the SELIFE, stress-strain history data at 

all material points are appended into the training database. After 

SELIFE training, the ANN model can be used in forward nonlinear FE 

analysis. The concept of SELIFE generates material Big Data in 

terms of stress-strain history data. Since function of ANN is the 

primary components of the SELIFE analysis, ANN-based material 

model will be highlighted. 

 

Figure 3.4 Schematic ANN model’s auto-adaptive learning for true material response 
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4. Self-Learning Data-Driven Mechanics 

4.1. Data-Processing Algorithm 

To formulate appropriate data-driven yield criterion, the initial 

yield stress data are necessary to be collected from all cases of 

SELIFE. Data analysis, which we called Data-processing, discovers 

yield stresses from stress-strain history without any conventional 

yield criteria. The Data-processing is based on dealing with tangent 

stiffness within stress-strain curves. The Data-processing 

algorithm consists of two steps. The first step classifies plastic 

history cases and elastic history cases from whole SELIFE data. 

Next, the second step of the Data-processing determines which point 

can be the yield stress point within whole range of the stress history. 

The first step of Data-processing is shown in Figure 4.1. In the 

beginning of the first step, stress and strain data are interpolated with 

specific number for proper calculation of tangent stiffness called 

interpolated tangent stiffness. The number of 50000 was used to 

interpolate stress- strain history in this study. Next, interpolated 

tangent stiffness is calculated with the interpolated stress- strain 

history by the following equation ( 3 ). Moreover, initial tangent 
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stiffness ( 4 ) is calculated based on the interpolated tangent stiffness 

of the first two percent within whole interpolation interval.  

The main key point of the first step of the Data-processing is 

using an averaged ratio of tangent stiffness ( 6 ). It is able to classify 

whether stress data is plastic history or elastic history. The values 

of averaged ratio of tangent stiffness are one if the 1st step of the 

Data-processing was conducted with the elastic stress history cases 

because equations ( 3 ) and ( 4 ) were close to each other. However, 

the values of ( 6 ) are out of one if the 1st step of the Data processing 

was performed with the plastic stress history cases since 

interpolated tangent stiffness values ( 3 ) are consistently changed 

from the initial yield points. Therefore, the average of ratio of tangent 

stiffness can separate plastic stress history cases from whole stress 

histories. However, there is a limitation to find yield points only using 

this step. A determination process of yield points needs to obtain 

them from all plastic stress history cases. 

∆i=
σi+1 − σi

ϵi+1 − ϵi
   ( 𝑖 ∈ ( 1, 2, … , N − 1) ) 

( 3 ) 

∆=
∑ ∆j𝑛

𝑗=1

𝑛
 

( 4 ) 
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𝛿𝑖 =
∆i

∆
    ( 𝑖 ∈ (1, 2 … , N − 1) ) 

( 5 ) 

< 𝛿 >=
∑ 𝛿i𝑁−1

𝑖=1

𝑁
 

( 6 ) 

where 𝒏 describes the size of the first two percent of interpolation 

interval and 𝐍 indicates the size of the interpolation number. 
 

(a) 



 

 30 

(b) 

Figure 4.1 The first step of the Data-processing; (a) Flowchart for division plastic data from 

all SELIFE data (b) schematic diagram to obtain plastic cases 

 

Finally, yield points from the plastic history cases can be 

captured by using the second step of the Data-processing. Yield 

points were more prominently discovered from major stress 

component than weak stress component. Therefore, comparison of 

stress components to get the major stress was necessary. Instead of 

using ratio of tangent stiffness ( 5 ) itself, |δ
𝑖
-1| was used to 
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capture the first deviating point from the initial tangent stiffness. 

Generally, the value about 0.7 for |δ
𝑖
-1| was appreciable to obtain 

the initial yield stresses from the group which characterizes plastic 

behaviors. More detail description about the second step of the Data-

processing is shown in Figure 4.2 (a) and (b). 

(a) 



 

 32 

(b) 

Figure 4.2 The second step of the Data-processing; (a) Flowchart to capture yield points (b) 

schematic diagram to discover initial yield points 

 

4.2. Symbolic Regression by Genetic Programming 

The genetic program (GP) called GPTIPS [34], which is 

implemented in MATLAB, is capable of regressing symbolic 

equations by relating between input and output data. For effective 

learning of the GP, data preparation process was necessary. Two 

groups of dataset are prepared; one group is based on the initial yield 
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stresses from all the reference simulations while the other group is 

stemmed from the initial yield stresses from all SELIFE. All initial 

yield stresses are obtained from the proposed Data-processing. The 

two GP-driven yield criterion are visualized by using fimplicit3 

function in MATLAB. Furthermore, comparison of Hill’s anisotropic 

yield surface with the GP-driven yield surface is included to verify 

the feasibility of the GP-driven yield surface. Finally, the GP-driven 

yield criterion will be verified by conducting simulations with 

different material orientation. 

Anisotropic constant parameters (𝐹, 𝐺, 𝐻, and 𝑁) from the Hill’

s 48 anisotropic yield criterion are necessary to express anisotropic 

plastic characteristics. Experimental specimen tests should take 

several times in order to obtain accurate 𝐹, 𝐺, 𝐻, and 𝑁 values since 

the anisotropic characteristics are significantly different depending 

on material properties and the material orientations, that is, 𝐹, 𝐺, 𝐻, 

and 𝑁 strongly depend on material properties.  

The proposed methodology using the GP, however, has strong 

advantages of formulating anisotropic yield criterion without 𝐹, 𝐺, 𝐻, 

and 𝑁  constants from experimental tests. The GP can produce 
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proper constants only by relating between the input data and the 

output data. Those data are based on the data-processed initial yield 

stresses and the given initial yield stress. In general GP relation for 

anisotropic yield criterion can be defined as : 

𝜎12
2 = 𝑓(𝜎𝑦𝑜

2 , 𝜎22
2 , 𝜎11

2 , (𝜎11-𝜎22)2) ( 7 ) 

𝜎𝑦𝑜
2  indicates the initial yield stress of the given material and 𝜎𝑖𝑗

2  

indicates the data-processed initial yield stresses. As seen equation 

( 7 ), 𝐹, 𝐺, 𝐻, and 𝑁  values were not involved in the general GP 

relation. 
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5. Verification of SELIFE and Self-Learning Data-

Driven Yield Criterion 

5.1. Verification of SELIFE from the Uniaxial Tensile Experimental 

Measurements 

Before the demonstration of the proposed methodology, SELIFE 

simulation with experimental measurements is verified. The SELIFE 

simulation is conducted with the uniaxial tensile experimental 

measurements of flat specimen [35]. Force-displacement data were 

extracted by digitizer program and applied to SELIFE simulation. To 

examine only initial yield stress behavior, specific displacement 

interval raining from 0.00[mm] to 0.25[mm] was only accepted and 

the force-displacement measurements were interpolated within the 

interval. Total 11 pairs of force-displacement data were used for 

SELIFE simulation. The detail image of the force-displacement data 

is shown in Figure 5.1. The given equation ( 8 ) is ANN structure 

which was used for SELIFE simulation. Plane stress condition was 

assumed and reduced integration scheme was accepted to 

demonstrate uniaxial tensile simulation.  

σn = σNN([εn, εn−1, σn−1, ςn ]: [12 − 25 − 25 − 3]) ( 8 ) 
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Figure 5.1 Interpolated force-displacement measurement for SELIFE 

simulation  

SELIFE simulation was conducted with parameters shown in 

Table 5-1. Total 10 NN passes were used for the SELIFE but 5 NN 

passes are sufficient to extract reasonable force-displacement data. 

The results of the SELIFE simulation is shown in Figure 5.2. There 

is not dramatic change after the 3rd pass.  

Table 5-1 Parameters for SELIFE simulations 

 

Number  

of NN pass 

Number of 

elements for train 

Displacement 

error tolerance 

NN epochs for 

pre-training 

NN epochs for auto-

adaptive training 

10 264 0.03 1000 60 
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Figure 5.2 Force-displacement results of the SELIFE simulation by NN passes 

Based on the stress-strain curves, the Data-processing was 

executed to capture the initial yield stress points. The points were 

positioned on the Von Mises surface. The material of the model is 

2024-T351 aluminum alloy [35] and its initial yield stress is 330 

[Mpa]. The data-processed initial yield stress points properly 

reflect on the tendency of the uniaxial tensile test. The plotted initial 

yield stresses are illustrated in Figure 5.3. The stress-strain data 

are from the results of the 5th NN pass. 
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(a) 

 

(b) 

 

Figure 5.3 Data-processed initial yield stresses which are located on the Von 

Mises surface  

 



 

 39 

The difference is defined as equation ( 9 ).  

√(𝜎11
𝑦

)2 − (𝜎11
𝑦

𝜎22
𝑦

) + (𝜎22
𝑦

)2 + 3𝜎12
𝑦 2

− 𝜎𝑦0 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
( 9 ) 

Based on this, all data-processed initial yield stresses are put into 

the Von Mises yield criterion to check the distribution of the 

difference. 1.4% of the average error was obtained. The detail image 

of the difference distribution is shown in Figure 5.4. 

 

Figure 5.4 Distribution of numerical difference 
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5.2. Experimental Reference Simulations with Anisotropic 

Material 

In addition to the isotropic material, in this section, anisotropic 

material is used for SELIFE simulations. In contrast with the previous 

section, reference simulations with anisotropic material were 

necessary to verify some results from SELIFE simulations by 

comparing force-displacement curves and stress-strain curves. In 

order to demonstrate reference simulations, a biaxial specimen made 

of anisotropic material with zero degree material orientation was 

chosen and simulated under several boundary conditions. Detail 

image for the biaxial specimen including some specific regions is 

shown in Figure 5.5. Four types of displacement boundary conditions 

(DBC) were defined to obtain sufficient initial yield stress in various 

stress states. 0.01mm magnitude for displacement was applied in 

Region A and B. The DBCs are arranged in Table 5-2. Fixed 

boundary conditions, however, were defined for the Region C and D. 

For stress-strain data extraction, the Region E was defined but sub-

region of it was considered to save compute time of SELIFE. 

Furthermore, the sub-region of the Region E brought advantage for 
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balance between plastic stress history and elastic history within 

whole dataset. Specific elements where plasticity is likely to occur 

easily were set as the sub-region of the Region E. Total 220 

elements for the sub-region, which are about 86% out of the Region 

E, were picked. Stress and strain dataset were extracted from the 

sub-region by using ABAQUS Python codes after each of the two 

ANN-based FEM i.e. FEM-A and FEM-B. The biaxial specimen was 

modeled in ABAQUS with material properties [36] shown in Table 

5-3. For the experimental reference simulations, Hill ’ s 48 

anisotropic yield criterion was accepted. In addition, 2D plane stress 

condition was assumed for all reference simulations as well as 

SELIFE since the biaxial specimen assumed that it has the relatively 

small length in z-direction than the other directions (x and y-

direction). 
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Figure 5.5 Boundary conditions for the biaxial specimen; Region A and B for the 

displacement boundary conditions; Region C and D for the fixed boundary 

conditions; Region E (256 elements) for data extraction 

 

Table 5-2 Four types of displacement boundary conditions 

Boundary types Region A Region B 

Type 1 Tension Tension 

Type 2 Compression Compression 

Type 3 Compression Tension 

Type 4 Tension Compression 
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Table 5-3 Material properties of anisotropic metal (DDQ mild steel [36] ) 

 

Hill’s 48 anisotropic yield criterion [37] was accepted to 

demonstrate anisotropic behavior of the material and the equation is 

defined as follows: 

𝜎𝑖𝑗 are the stress components and 𝐹, 𝐺, 𝐻, 𝐿, 𝑀, and 𝑁 are constants 

parameters that express current state of anisotropic behavior. They 

can be defined as using combinations of yield stress ratio 𝑅𝑖𝑗 or using 

measured yields stress 𝜎̅𝑦0 and the material yield stress 𝜎𝑦0. 

Young’s modulus, E [GPa] 206 

Poisson’s ratio, ν 0.3 

Initial yield stress, 𝜎𝑦0 [MPa] 152.0 

Lankford ratios : 𝑟0, 𝑟45, 𝑟90 

State of anisotropy of the material 

2.64, 1.57, 2.17 

𝑓(𝜎) = √𝐹(𝜎22 − 𝜎33)2 + 𝐺(𝜎33 − 𝜎11)2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝐿𝜎23
2 + 2𝑀𝜎31

2 + 2𝑁𝜎12
2 

( 10 ) 

F =  
𝜎𝑦0

2
 (

1

𝜎̅22
2 +

1

𝜎̅33
2 −

1

𝜎̅11
2 ) =  

1

2
 (

1

𝑅22
2 +

1

𝑅33
2 −

1

𝑅11
2)  

G =  
𝜎𝑦0

2
 (

1

𝜎̅33
2 +

1

𝜎̅11
2 −

1

𝜎̅22
2 ) =  

1

2
 (

1

𝑅33
2 +

1

𝑅11
2 −

1

𝑅22
2)  

H =  
𝜎𝑦0

2
 (

1

𝜎̅11
2 +

1

𝜎̅22
2 −

1

𝜎̅33
2 ) =  

1

2
 (

1

𝑅11
2 +

1

𝑅22
2 −

1

𝑅33
2) 

 

L =  
3

2
(

𝜎𝑦0
2

√3
 

1

𝜎̅23
2 ) =  

3

2
( 

𝜏𝑦0
2

𝜎̅23
2 ) =  

3

2𝑅23
2 
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As seen equation ( 11 ), yield stress ratios 𝑅𝑖𝑗 are defined as the 

ratio of the measured yield stress 𝜎̅𝑖𝑗 to material initial yield stress 

𝜎𝑦0.  

ABAQUS anisotropic simulations are taken into account using 

only yield stress ratios 𝑅𝑖𝑗 .Since the plane stress condition was 

applied to all simulations, it is convenient to assume 𝑅𝑖𝑗 as following 

[15, 38]. The 22, 33, and 12 components of yield stress ratios can 

be defined in terms of the Lankford ratios. 

 

Moreover, equation ( 10 ) can be reduced by equation ( 14 ). 

M =  
3

2
(

𝜎𝑦0
2

√3
 

1

𝜎̅13
2 ) =  

3

2
( 

𝜏𝑦0
2

𝜎̅13
2 ) =

3

2𝑅13
2 

 

N =  
3

2
(

𝜎𝑦0
2

√3
 

1

𝜎̅12
2 ) =  

3

2
( 

𝜏𝑦0
2

𝜎̅12
2 ) =  

3

2𝑅12
2 

( 11 ) 

𝑅𝑖𝑗 =
𝜎̅𝑖𝑗

𝜎𝑦0
 (for 𝑖𝑗 =11, 22, and 33) 

 

𝑅𝑖𝑗 =
𝜎̅𝑖𝑗

𝜏𝑦0
 (for 𝑖𝑗 =12, 13, and 23) 

where 𝜏𝑦0 =
𝜎𝑦0

√3
 

( 12 ) 

𝑅11 = 𝑅13 = 𝑅23 = 1  

𝑅22 = √
𝑟90(𝑟0+1)

𝑟0(𝑟90+1)
, 𝑅33 = √

𝑟90(𝑟0+1)

𝑟0+𝑟90
, 𝑅12 = √

3𝑟90(𝑟0+1)

(2𝑟0+1)(𝑟0+𝑟90)
 

( 13 ) 
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Thus, 𝐹, 𝐺, 𝐻, and 𝑁 are only necessary to complete equation ( 14 ). 

Therefore, the following yield criterion is used for the anisotropic 

yield simulations based on equation ( 14 ). 

Equation ( 16 ) is, in particularly, converted to equation ( 17 ), which 

is Hill’s 48 anisotropic yield criterion.  

 

By using Lankford values in Table 5-3 and ( 13 ), the yield stress 

ratios can be obtained. Then, based on equation ( 17 ), the elliptic 

shape for anisotropic yield surface could be displayed in the stress 

space {𝜎11, 𝜎22, and, 𝜎12}. The image of the yield surface is shown in 

Figure 5.6 

𝑓(𝜎) = √𝐹𝜎22
2 + 𝐺𝜎11

2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝑁𝜎12
2  

( 14 ) 

√𝐹𝜎22
2 + 𝐺𝜎11

2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝑁𝜎12
2 −  𝜎𝑦0 < 0 : Elastic deformation ( 15 ) 

√𝐹𝜎22
2 + 𝐺𝜎11

2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝑁𝜎12
2 −  𝜎𝑦0 = 0 : Plastic deformation ( 16 ) 

𝐹𝜎22
2 + 𝐺𝜎11

2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝑁𝜎12
2 = 𝜎𝑦0

2  ( 17 ) 
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Figure 5.6 Hill’s 48 anisotropic yield surface under the plane stress condition 

 

The intersections between the yield surface and the each of axes 

are the measured yield stresses. This relation will be used for the 

verification of GP driven anisotropic equations. By putting 𝜎22 = 𝜎12 =

0 in equation ( 17 ), the 11 component of the measured yield stress 

can be obtained. 

(𝐺 + 𝐻)𝜎11
2 = 𝜎𝑦0

2  ( 18 ) 

𝜎11
2 =

𝜎𝑦0
2

(𝐺 + 𝐻)
 

( 19 ) 

𝜎11 = ±
𝜎𝑦0

√𝐺 + 𝐻
= ±𝜎𝑦0 𝑅11 = ±𝜎11 

( 20 ) 
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Similarly, the 22 component of the measured yield stress can be computed. 

 

The measured yield stress for the 12 component can be calculated 

from the similar approach. 

 

Therefore, measured yield stresses can be achieved based on 

equation ( 20 ), ( 21 ), and ( 24 ). Both yield stress ratios measured 

yield stresses are arranged by the each of the components in Table 

5-4. In addition to using equation ( 20 ), ( 21 ), and ( 24 ), the 

intersection points were numerically calculated by finding the points 

which are minimum distance between the surface and axes. In order 

to show the obtained intersection values, those values are displayed 

with the Hill’s 48 anisotropic yield surface in Figure 5.7. The same 

values of the measured yield stresses could be achieved. 

𝝈𝟐𝟐 = ±
𝝈𝒚𝟎

√𝑭 + 𝑯
= ±𝝈𝒚𝟎 𝑹𝟐𝟐 = ±𝝈̅𝟐𝟐 

( 21 ) 

2𝑁𝜎12
2 = 𝜎𝑦0

2  ( 22 ) 

𝜎12
2 =

𝜎𝑦0
2

2𝑁
 

( 23 ) 

𝜎12 = ±
𝜎𝑦0

√2𝑁
= ±

𝜎𝑦0

√3
𝑅12 = ±

𝜎𝑦0

√3

𝜎12

𝜏𝑦0
= ±𝜎12 

( 24 ) 
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Table 5-4 Calculated yield stress ratios and measured yield stress 

 

 

Figure 5.7 Hill’s 48 anisotropic yield surface with intersections 

  

Components Yield stress ratios Measured yield 

stresses [Mpa] 

11 component 𝑅11 = 1.0000 𝜎̅11 = ±152 

22 component 𝑅22 = 0.9715 𝜎̅22 = ±147.6680 

12 component 𝑅12 = 1.0909 𝜎̅12 = ±95.7344 
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To verify anisotropic yield response, the reference simulation 

with boundary type 1 was investigated. The resultant force-

displacement curve is shown in Figure 5.8(a). The forces from both 

the Region A and B change differently after the specific point due to 

Hill ’ s anisotropic yield criterion. Figure 5.8 (b) is force-

displacement curve from simulation with Von Mises yield criterion. 

Forces from both the Region A and B are no difference after specific 

point. 

Figure 5.8 Force-displacement curves from (a) Hill’s anisotropic yield criterion and (b) Von 

Mises yield criterion 

 

As mentioned earlier, all experimental boundary 

measurements i.e. global reaction forces, displacements, and 

(a) (b) 
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internal displacements were substituted with the FE reference 

simulations of experiment.  

5.3. ANN Architecture and Self-Learning Parameters 

SELIFE simulations were performed with all four boundary types 

individually. Twelve input nodes were required to learn stress, strain, 

and internal variable data and three output nodes to predict stress 

data. In addition, thirty hidden nodes of the ANN were chosen as an 

experiment. The same ANN architecture shown in equation ( 25 ) 

was used for all SELIFE. 

SELIFE simulations from the each of the boundary types were 

conducted with the proposed parameters which are arranged in Table 

5-5. Based on the proposed ANN architecture and SELIFE 

parameters, the results of the SELIFE with boundary type1 

(Tension-Tension DBC) will be shown in the next section. 

Table 5-5 Parameters for SELIFE simulations 

σn = σNN([εn, εn−1, σn−1, ςn ]: [12 − 30 − 30 − 3]) ( 25 ) 

Displacement 

Boundary type 

Number  

of NN pass 

Number of 

elements for train 

Displacement 

error tolerance 

NN epochs for 

pre-training 

NN epochs for 

autop training 

Type 1 (T-T) 8 220  0.01 1000 70 

Type 2 (C-C) 8 220  0.01 1000 70 
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5.4. Results from SELIFE Simulation with Tension-

Tension Displacement Boundary Condition 

In order to illustrate plastic area in Region E, an effective plastic 

strain contour based on the reference simulation with tension-

tension displacement boundary condition (the boundary type 1) are 

added in Figure 5.9. The image is from the last analysis step. Two 

specific elements were chosen to examine stress-strain history 

curves. One is from the 138th element which has elastic characteristic. 

On the other hand, the 132nd element shows plastic behavior. From 

the each element, stress-strain curves are plotted together to show 

the update of ANN-based constitutive model during the multiple 

SELIFE NN passes. 

Figure 5.10 and Figure 5.11 illustrate the global responses of the 

biaxial specimen by SELIFE NN passes. Figure 5.10 explains the 

global responses from the Region A. Reaction force-displacement 

curves in x-direction are shown in Figure 5.10 (a) while reaction 

force history in the y-direction and reaction moment history are 

Type 3 (C-T) 5 220  0.015 1000 90 

Type 4 (T-C) 5 220  0.015 1000 90 
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shown in Figure 5.10 (b) and Figure 5.10 (c), respectively. Since the 

Region A can move only in x-direction but fixed in y-direction, only 

force-displacement curve in x-direction could be obtained. Because 

of material anisotropy and effects of deformation in the other 

direction, reaction moment was occurred during the SELIFE.  

On the other hand, Figure 5.11 account the global responses from 

the Region B. Force-displacement curves in the y-direction are 

included in Figure 5.11 (b). Reaction force history in x direction and 

reaction moment history are depicted in Figure 5.11 (a) and Figure 

5.11 (c), respectively. As seen the change of the global responses 

by SELIFE NN passes from Figure 5.10 and Figure 5.11, all curves 

approach their target curves as NN pass increasing. 

For stress contour comparison, Figure 5.12, Figure 5.13, and 

Figure 5.14 are also included. Comparing with the results from the 

reference simulation, SELIFE was capable of producing similar stress 

contours.  

In order to verify the effect of multiple NN passes, stress-strain 

curves were investigated as well. The plastic behavior of the 132nd 

element could be updated by repetitive NN passes as seen Figure 
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5.15. Similarly, in Figure 5.16, the elastic stress history from the 

138th element was able to be revised by the iterative stress-strain 

training. As the NN pass increasing, the accuracy of stresses tended 

to improve. The ANN-based constitutive model allows the FE model 

of the SELIFE to demonstrate complex material behavior based on 

trained data. As seen Figure 5.15 and Figure 5.16, SELIFE is able to 

learn stress data regardless of material behavior. Similar update by 

the several SELIFE NN passes also appeared in the other SELIFE. 

 

 

Figure 5.9 Effective plastic strain contour from the reference simulation under 

tension-tension displacement boundary condition (boundary type 1)  
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Figure 5.10 Curves from the Region A by SELIFE NN passes; (a) reaction force-

displacement curve in x direction, (b) reaction force history curve in y direction, 

and (c) reaction moment history curve  

（ａ） 

（ｂ） 

（ｃ） 
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Figure 5.11 Curves from the Region B by SELIFE NN passes; (a) reaction force history 

curve in x direction, (b) reaction force-displacement curve in y direction, and (c) reaction 

moment history curve  

（ａ） 

（ｂ） 

（ｃ） 
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（ａ） 

（ｂ） 

Figure 5.12 Stress (S11) contour comparison; (a) result of the reference 

simulation and (b) result of SELIFE simulation at the last pass (the 8th pass)  
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（ａ） 

（ｂ） 

Figure 5.13 Stress (S22) contour comparison; (a) result of the reference 

simulation and (b) result of SELIFE simulation at the last pass (the 8th pass)  
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（ａ） 

（ｂ） 

Figure 5.14 Stress (S12) contour comparison; (a) result of the reference 

simulation and (b) result of SELIFE simulation at the last pass (the 8th pass)  
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（ａ） 

（ｂ） 

（ｃ） 

Figure 5.15 Stress-strain curves at the 3rd gauss point in the 132nd element by 

SELIFE NN passes  
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（ａ） 

（ｂ） 

 

（ｃ） 

Figure 5.16 Stress-strain curves at the 2nd gauss point in the 138th element by 

SELIFE NN passes  
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5.5. Data-Processing  

Stress-strain curves from the SELIFE with boundary type 1 

were used to demonstrate the Data-processing algorithm. Two types 

of the initial yield stress are compared. One is calculated based on 

Hill’s anisotropic yield criterion. The other is, however, obtained by 

Data-processing. The two yield stresses were plotted on the each 

of the same stress-strain curves in Figure 5.17. The three specific 

gauss points in the Region E were chosen to illustrate the comparison 

of the initial yield stress. The circle blue dots on the each of the 

stress-strain curves are the initial yield points satisfying Hill’s 48 

anisotropic yield criterion while the asterisk red dots are obtained 

from the Data-processing. Comparing with each two initial yield 

points on the each of the curves, the yield stresses obtained by the 

Data-processing were located at reasonable yield positions. The 

majority of the data-processed initial yield stresses was close to the 

initial yield stress satisfying Hill’s anisotropic yield criterion. 
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(a) 

(b) 

(c) 

Figure 5.17 Comparison of the initial yield stress positions; (a) at the 2nd gauss point in the 

131st element, (b) at the 2nd gauss point in the 184th element, and (c) at the 2nd gauss point in the 

240th element 
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In order to verify the feasibility of the Data-processing, two 

groups of the initial yield stresses were set and the values were 

plotted on the Hill’ s anisotropic yield surface for appreciable 

comparison. The group one consisted of the data-processed initial 

yield stresses from all reference simulations and the other group 

contained the data-processed initial yield stresses from the self-

learned stress-strain curves. Furthermore, all data-processed 

initial yield stress were put into the Hill’s anisotropic yield criterion 

( 14 ) to investigate the distribution of the numerical difference, that 

is, equation ( 26 ) was introduced to calculate the difference between 

Hill’s anisotropic yield surface and the data-processed initial yield 

stresses. 𝜎𝑖𝑗
𝑦
 indicates the discovered initial yield stresses by means 

of the Data-processing, 𝜎𝑦0  represents initial yield stress of the 

given material, and 𝐹, 𝐺, 𝐻, and 𝑁 are anisotropic parameters. 

√𝐹 𝜎22
𝑦 2

+ 𝐺 𝜎11
𝑦 2

+ 𝐻(𝜎11
𝑦

− 𝜎22
𝑦

)
2

+ 2𝑁𝜎12
𝑦 2

− 𝜎𝑦0 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
( 26 ) 

 

Based on the data-processed initial yield stresses from the 

reference stress-strain data, the points were plotted on the 

anisotropic yields surface in Figure 5.18 (a). Moreover, the 
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histogram which shows the distribution of the difference between the 

initial yield stresses and Hill’s anisotropic yield surface is included 

in Figure 5.18 (b). Most of the initial yield stresses are close to the 

yield surface and the average percent of the difference distribution 

is 0.9730 %. The proposed data-processing algorithm has 

reasonable to acquire the initial yield stresses from any stress-

strain curves which includes the plastic behavior. 
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(a) 

(b) 

 

Figure 5.18 Investigation of data-processed initial yield stresses based on all reference 

simulations; (a) data-processed initial yield stresses on the Hill’s yield surface, (b) 

distribution of numerical difference between data-processed initial yield stress and the 

Hill’s anisotropic yield criterion  
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Note that the four colors were chosen to distinguish which 

boundary conditions caused the initial yield stress points. Red dots 

represent initial yield stresses from boundary type 1 (Tension–

Tension DBC). Blue ones are from boundary type 2 (Compression-

Compression DBC), Green from the boundary type 3 (Compression-

Tension DBC), and Yellow from the boundary type 4 (Tension-

Compression DBC), respectively. However, all black dots are the 

initial yield stresses satisfying the Hill’s anisotropic yield criterion 

( 17 ). 

Similarly, the data-processed initial yield stresses based on the 

self-learned stress-strain data were plotted on the same yield 

surface. The results are shown in Figure 5.19 (a). The histogram to 

illustrate the distribution of the difference is depicted in Figure 5.19 

(b). Average value of the difference distribution somewhat increased 

but most of the initial yield stresses are reasonably located on the 

Hill’s anisotropic yield surface. 
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(a) 

(b) 

Figure 5.19 Investigation of data-processed initial yield stresses based on all 

SELIFE simulations; (a) data-processed initial yield stresses on the Hill’s 

yield surface, (b) distribution of numerical difference between data-processed 

initial yield stress and the Hill’s anisotropic yield criterion 
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5.6. Data Preparation for Genetic Programming 

As aforementioned, the general GP relation for anisotropic yield 

criterion is able to be defined as ( 7 ). The inputs are combinations 

of quadratic terms of 𝜎11, 𝜎22, and 𝜎𝑦𝑜 . On the other hand, for the 

output of the GP, 𝜎12
2  was chosen and arranged in ascending order 

for effective GP training. Corresponding input datasets were 

arranged as pairs of the output dataset. Input dataset and output 

dataset for the GP are arranged in Table 5-6. 

Table 5-6 Input datasets and output dataset for the genetic program  

 

The GP [34] requires both a training dataset and a test dataset. 

The former dataset is for learning a relationship between input and 

output while the latter dataset is to validate the relationship. The 

Input datasets Output dataset 

𝑋1 = 𝜎𝑦𝑜
2  𝑋2 = 𝜎22

2  𝑋3 = 𝜎11
2  𝑋4 =  (𝜎11-𝜎22)2 𝑌1 = 𝜎12

2  

corresponding input data for minimum 𝜎12
2  value Minimum  

 

…
 

 ↓ 

( Ascending order )  

↓ 

corresponding input data for maximum 𝜎12
2  value Maximum 
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training dataset was prepared from the data-processed initial yield 

stresses but the test dataset was based on initial yield stresses 

satisfying the Hill’s 48 anisotropic yield equation ( 17 ). Both 

training and test dataset were arranged as following Table 5-6. 

Several parameters affecting the results of the GP training are 

shown in Table 5-7 and the operational functions shown in Table 

5-8 were activated to drive appreciable yield criterion. Two groups 

of the initial yield stress database were arranged as the proposed 

method depicted in Table 5-6 and trained under the same conditions 

as following Table 5-7 and Table 5-8. 

 

Table 5-7 Parameters for genetic program 

 

Table 5-8 Activated functions for the genetic program 

Parameter description Value 

Number of population size  50 

Number of generation 50 

Maximum number of genes per individual 3 

Maximum depth for gene 5 

Activated function name Symbols 

Times × 

Minus − 

Plus + 
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5.7. Self-Learning Data-Driven Anisotropic Yield Criterion 

from the Reference Simulations 

First, the symbolic regression was conducted with the database 

based on the initial yield stresses captured from all the reference 

simulations by means of the data-processing. The data-driven 

anisotropic yield criterion is driven by the GP. 

0.3126𝜎22
2 + 0.2514 σ11

2 + 0.7566(σ11-σ22)2 + 2.8167σ12
2 = σyo

2  
( 27 ) 

 

Based on equation ( 27 ), the GP driven anisotropic yield surface 

is visualized by using the fimplicit3 function in MATLAB. To proper 

comparison, the Hill ’ s anisotropic yield surface is displayed 

together. Both anisotropic yield surfaces are shown in Figure 5.20. 

The blue surface is Hill’s anisotropic yield surface while the red one 

is stemmed from the GP driven criterion. In order to compare the 

results in more detail, yield surface images from both stress space 

(3D) and stress plane (2D) were included. 

  



 

 71 

(a) 

(b) 

Figure 5.20 Comparison of anisotropic yield surfaces; (a) in the 3D stress space 

and (b) on the 2D stress plane 
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The prediction results from the GP are shown in Figure 5.21 (a) 

and (b). All upper graphs are from the results of training dataset 

while the bottom graphs are from those of test dataset. Figure 5.21 

(a) illustrates the predictive performance by each of data. 

Furthermore, Figure 5.21 (b) indicates the relations between the 

predicted output values and actual output values. The closer the blue 

dots are to the linear line, the better the GP results can be expected. 

The accuracies of the training dataset and the test dataset are 

94.2325% and 97.825%, respectively. Since the initial yield stresses 

which satisfies the Hill’s 48 anisotropic yield criterion were used as 

the test dataset, the better performance was achieved.  
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(a) 

(b) 

Figure 5.21 GP prediction performance of data-processed initial yield database 

based on reference simulations (training data for upper plot and test data for 

the bottom plots); (a) data-output plot, and (b) actual – predicted graph 
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Considering the results from Figure 5.20 and Figure 5.21, we 

confirmed that the GP is capable of generating a proper anisotropic 

yield criterion without any anisotropic parameters (𝐹, 𝐺, 𝐻, and 𝑁). 

The GP driven anisotropic yield surface shows reasonable results 

comparing with Hill’s anisotropic yield criterion. 

5.8. Self-Learning Data-Driven Anisotropic Yield Criterion from 

SELIFE Simulations 

Next, based on the data-processed initial yield stress data from 

the self-learned stress-strain curves, other equation ( 28 ) can be 

obtained from the GP. 

0.2922𝜎22
2 + 0.2346 𝜎11

2 + 0.7345(𝜎11-𝜎22)2 + 3.1563𝜎12
2 = σyo

2  ( 28 ) 

 

Though the parameters characterizing anisotropic yield behavior 

are slightly different comparing with equation ( 27 ), equation ( 28 ) 

is able to produce reasonable elliptic shape. The other anisotropic 

yield surface from equation ( 28 ) is displayed in the stress space 

{ 𝜎11, 𝜎22, 𝜎12 } and on the stress plane { 𝜎11, 𝜎22 } for the detail 

comparison with Hill’s anisotropic yield surface in Figure 5.22 (a) 

and (b), respectively. 
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(a) 

(b) 

 

Figure 5.22 Comparison of anisotropic yield surfaces; (a) in the 3D stress space 

and (b) on the 2D stress plane 
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The prediction performance of the GP slightly decreased when 

the database were based on the SELIFE as shown in Figure 5.23. 

Using the SELIFE simulations, however, is meaningful since it can 

find stress and strain data from the unknown material with minimal 

mechanical properties. In this thesis, young’s elastic modulus, 

poisson’s ratio, and the initial yield stress of given material were 

only used in order to develop the GP-driven anisotropic yield 

criterion.  
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(a) 

 

(b) 

 

Figure 5.23 GP prediction performance of data-processed initial yield database 

based on SELIFE simulations (training data for upper plot and test data for the 

bottom plots); (a) data-output plot, and (b) actual – predicted graph 
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5.9. Verification of the GP Driven Yield Criterion  

Based on the anisotropic parameters (𝐹, 𝐺, 𝐻, and 𝑁) of the GP 

driven equations i.e. equation ( 27 ), equation ( 28 ), measured yield 

stress can be obtained by equation ( 20 ), ( 21 ), and ( 24 ). Then, 

yield stress ratios (𝑅11, 𝑅22, and 𝑅12) were calculated following by 

equation ( 12 ) and are arranged in Table 5-9. Comparing with the 

original yield stress ratios, both groups of yield stress ratios were 

calculated similarly. Especially, the obtained yield stress ratios from 

the GP data driven equation Table 5-9 is close to the values of 

original yield stress ratios.  

Table 5-9 Calculated yield stress ratios (𝑹𝟏𝟏, 𝑹𝟐𝟐, and 𝑹𝟏𝟐) 

 

To verify the GP-driven yield equations, the other simulations 

were conducted with 22.5 degree of material orientation in ABAQUS. 

The calculated anisotropic yield stress ratios in Table 5-9 were used 

 𝑹𝟏𝟏 𝑹𝟐𝟐 𝑹𝟏𝟐 

Original material from Table 5-3 and 

( 17 ) 

1.0000 0.9715 1.0909 

GP data driven equation ( 27 ) 0.9960 0.9671 1.0320 

GP data driven equation ( 28 ) 1.0158 0.9869 0.9750 
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for the verification simulations. Three lines are plotted together. All 

black solid lines are the results of the simulation with anisotropic 

yield criterion based on the original material given in Table 5-3. 

However, all blue lines are the results from the simulation based on 

the GP driven anisotropic yield equation ( 27 ) which is based on the 

initial yield stresses extracted from four reference simulations, and 

all red lines are the results from the simulation with the GP driven 

anisotropic yield criterion ( 28 ) which is stemmed from the initial 

yield stresses from four SELIFE. 

The simulation with tension-tension displacement boundary 

condition was executed with 0.01[mm] displacement for the 

verification. Force-displacement data were extracted from the 

Region A and Region B and Figure 5.24 shows force-displacement 

comparison. 
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(a)  

(b)  

 

Figure 5.24 Force-displacement comparison from (a) the Region A and (b) the Region B 

 

Moreover, stress-strain data were obtained from the specific 

elements and those are shown in Figure 5.25, Figure 5.26, and Figure 

5.27. For elastic behavior case (Figure 5.25), there is no significant 
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difference among stress-strain curves. For plastic behavior case, 

however, slightly different plastic behavior appears in Figure 5.26 

and Figure 5.27. It is based on the inherent error during the GP 

training as seen in Figure 5.23 (b) but stress history data had a 

similar material behavior comparing with the simulation with original 

anisotropic parameters. 
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Figure 5.25 Comparison of stress-strain curves at the 2nd gauss point in the 51st element 
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Figure 5.26 Comparison of stress-strain curves at the 4th gauss point in the 338th element 
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Figure 5.27 Comparison of stress-strain curves at the 3rd gauss point in the 186th element 
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6. Conclusion and Future Works 

6.1. Conclusion 

This thesis presented a novel methodology which is able to 

establish criteria from unknown material. The methodology mainly 

consist of data-driven approach i.e. self-learning inverse finite 

element (SELIFE) simulation, Data-processing, and genetic 

programming (GP). SEFIFE was able to gradually learn any material 

behavior based on the experimental measurements. Data-

processing could find most of the initial yield stress points without 

any conventional yield criteria. Lastly, GP was capable of 

generating certain criteria in terms of the data-processed data. 

In order to get sufficient initial yield stresses under various 

stress states, the biaxial specimen was modeled and simulated with 

four displacement boundary conditions: Tension-Tension, 

Compression-Compression, Compression-Tension, and Tension-

Compression. Hill’s 48 anisotropic yield criterion was assumed for 

the material behavior. Furthermore, experimental test data were 

substituted with the resultant force and displacement from the 

reference simulations which contain anisotropic yield behavior. 
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SELIFE simulations were carried out with the four displacement 

boundary conditions. The comparison of data curves illustrates that 

SELIFE is able to track the each of the corresponding target curves 

from repetitive stress-strain data learning. Effect of appending 

stress-strain data from FEM-A and FEM-B at the each of the 

loading steps allows artificial neural network to demonstrate more 

complex material behavior. 

Initial yield stresses were generally captured by the Data-

processing algorithm. Those initial yield data plotted on the Hill’s 

yield surface. Most of the data appeared near to the Hill’s yield 

surface. Genetic programming was capable of formulate anisotropic 

yield equation without any anisotropic parameters. Moreover, new 

anisotropic yield surface was plotted based on the driven equation. 

The new yield surface had similar elliptic shape comparing with the 

Hill’s yields surface.  

From unknown material, the proposed methodology could 

discover not only curves, that is, reaction force-displacement curve 

and stress-strain curve but also anisotropic yield criterion. Force-

displacement curve and stress-strain curve were obtained during 
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the SELIFE based analysis. As NN pass increasing, trained ANN is 

getting to be helpful to execute nonlinear finite element analysis. 

Anisotropic yield criterion, however, were discovered from the 

symbolic regression by means of the GP.  

6.2. Future Works 

The GP results from the data based on the four reference 

simulations tended to be more accurate than those from the SELIFE. 

It means that more accurate stress-strain prediction of the SELIFE 

is required to achieve more precise anisotropic yield parameters and 

have more reasonable anisotropic yield surface. To overcome this 

limitation, more than one history will be included to improve the 

performance of stress prediction. Furthermore, state-of-the-art 

technique for Deep Learning will be accepted such as ADAM 

optimizer [39] and batch normalization [40]. Those technique is 

possible to enhance ANN accuracy with less computing time. 

The proposed methodology will be extended to other anisotropic 

yield criteria researched by Hill [3-5], Bassani [6], and Budiansky 

[7]. Instead of using only a biaxial specimen, more complex stress 

behaviors can be considered by a triaxial experimental test [41]. 
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Criteria can be developed with multiple stress components together 

from the test. Moreover, it will be applied to composite structures to 

establish failure criteria such as Tsai-Hill criterion or Tsai-Wu 

criterion [42]. 
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국문초록 

비등방성 재료에 대한 자가 학습 

데이터 기반의 항복 조건 
 

 

장 경 석 

기계항공공학부 

서울대학교 대학원 
 

항복 기준은 원하지 않은 물질적 거동을 막기 위한 구조 분석에 

필수적인 이론 중 하나이다. 비록 이 이론들이 높은 정확도로 

개발되었지만, 비등방성 항복 기준식을 완성하기 위해서는 많은 

비등방성 변수가 필요하다. 그리고 비등방성 물질의 불확실성으로 인해 

많은 실험 테스트가 필요하다. 본 논문의 주요 목적은 특징 없는 새로운 

물성의 비등방성 항복 기준을 식별할 수 있는 새로운 방법론을 제안하는 

것이다. 새로운 방법론은 1) 최소한의 실험 측정을 통한 자기 학습 유한 

요소 SELIFE 시뮬레이션과 2) 데이터 기반 역학 접근의 두 가지 

단계를 통해 새로운 항복 기준을 생성한다. SELIFE는 경계 힘 조건, 

경계 변위 조건 및/또는 실험으로부터 내부 변위에 기초한 모든 물질 

거동의 응력-변형 시간 이력을 스스로 학습할 수 있다. SELIFE 

분석에서 물질 거동의 자기 학습 능력은 인공신경망 기반 물질 구성 
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모델의 적응적 진행적 훈련을 통해 활성화된다. 자체 학습된 응력-

변형률 데이터로부터, 충분한 초기 항복 응력을 포괄적인 응력 증가 

방향으로 추출했다. 이것을 데이터 처리 단계라고 한다. 데이터 처리 

이후에는 새로운 데이터 기반 비등방성 항복 기준을 도출하기 위해 

유전자 프로그래밍을 통한 심볼릭 회귀 분석을 수행한다. 예를 들어, 

Hill의 비등방성 항복 기준식이 사용되는데, 이 기준식은 알려지지 않은 

것으로 가정한다. 충분하고 다양한 초기 항복 응력 데이터를 얻기 위해 

이축 시편에 4개의 변위 경계 조건을 적용하여 시뮬레이션 하였다. 

마지막으로, ABAQUS에 데이터 기반 항복 기준식을 사용하여 이축 

시뮬레이션이 실행되었다. SELIFE 시뮬레이션과 데이터 기반 역학 

접근법을 통해 새로운 비등방성 항복 기준식을 얻어 기준 항복 기준식과 

비교했다.  
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기준, 초기 항복 응력, 이축 시편 
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