
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


i 

공학석사학위논문 

 

자율주행을 위한 정지 장애물 맵과 GMFT 

융합 기반 이동 물체 탐지 및 추적 
 
 

Detection and Tracking of Moving Object based on 

Interaction of Static Obstacle Map and Geometric Model-

Free Tracking for autonomous driving 

 

 

 

 

 

2019년 8월 

 

 

 

서울대학교 대학원 

기계항공공학부 

윤  정  식 



 

 

i 

 

Abstract 

 

Detection and Tracking of Moving 

Object based on Interaction of Static 

Obstacle Map and Geometric Model-

Free Tracking for autonomous driving 

 

YOON JEONG SIK 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 Based on the high accuracy of LiDAR sensor, detection and tracking of 

moving objects(DATMO) have been advanced as an important branch of 

perception for an autonomous vehicle. However, due to crowded road 

circumstances by various kind of vehicles and geographical features, it is 
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necessary to reduce clustering fail case and decrease the computational burden. 

To overcome these difficulties, this paper proposed a novel approach by 

integrating DATMO and mapping algorithm. Since the DATMO and mapping 

are specialized to estimate moving object and static map respectively, these two 

algorithms can improve their estimation by using each other’s output. Whole 

perception algorithm is reconstructed using feedback loop structure includes 

DATMO and mapping algorithm. Moreover, mapping algorithm and DATMO 

are revised to innovative Bayesian rule-based Static Obstacle Map(SOM) and 

Geometric Model-Free Tracking(GMFT) to use each other’s output as the 

measurements of filtering process. The proposed study is evaluated via driving 

dataset collected by vehicles with RTK DGPS, RT-range and 2D LiDAR. 

Several typical clustering fail cases that had been observed in existing DATMO 

approach are reduced and code operation time over the whole perception 

process is decreased. Especially, estimation of moving vehicle’s state include 

position, velocity, and yaw angle show less error with references which are 

measured by RT-range. 

 

Keywords: LiDAR, mapping, Static Obstacle Map, Detection and Tracking of 

Moving Object, Geometric Model-Free Tracking, Bayesian rule 
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Chapter 1 

 

Introduction 

 

Establishing an accurate and robust perception algorithm using sensor 

information is essential to develop autonomous driving systems. Among the 

various sensors, LiDAR has been widely used due to its own characteristics 

such as high position accuracy. Thus, over the last years, many perception 

researches have been studied using LiDAR point cloud data as measurement 

and these researches are often divided into two categories. First is detection and 

tracking of moving objects(DATMO). Second is mapping method, which has 

been studied mainly in the field of robotics. 
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DATMO can be referred to as a process concerned with the states of 

objects that the robot or autonomous vehicle perceives in a dynamic 

environment. DATMO algorithm can be categorized according to the objective 

function that they purpose to optimize, or by the way in which they process the 

LiDAR point cloud data. Despite all these diversities, what it has in common is 

that DATMO estimates current states of moving targets and their respective 

trajectories based on their previously estimated states and the current scan of 

measurements, usually LiDAR point cloud. 

Mapping method is a representative algorithm for implementing 

environmental mapping. This approach assumes the environment as static, i.e. 

having only non-moving objects. Dynamic objects are regarded as noise 

sources. Recently, mapping is usually conducted through SLAM algorithm. 

Based on the assumption that the environment does not transform, SLAM 

estimates map and location simultaneously. However, this hypothesis is 

acceptable in some scenarios, but in most real-world environments where 

dynamic objects cannot be avoided, these approaches encounter errors reducing 

the overall map quality. 

As such, DATMO and mapping method focuses on different issues, state 

estimation of moving target and construction of static object map respectively, 

to perceive the world. Even though both are effective algorithms for perceiving 

surrounding environment, they often show failure in urban autonomous driving 
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situation when they applied independently. Vehicles in urban road meet various 

kind of object include static obstacles such as poles, buildings, and parked 

vehicles. This causes computational load in DATMO algorithm and reduces the 

quality of clustering, which is sub-function of DATMO for classifying LiDAR 

point of each target into the same bunch. Furthermore, the mapping method 

basically assumes that the world is static, which means ego vehicles consider 

the map never transform, thus the map result from this is distorted by any 

moving object. 

Some works have been conducted to simultaneously solve the SLAM and 

DATMO using LiDAR. However, detection accuracy and operation time are 

not presented ([1, 2]) or some paper showed solving two problems at the same 

time is too demanding due to computation load ([3]). Recently, SLAM in 

Dynamic Environments (SLAMIDE) has been studied, but following questions 

are still not solved: How to distinguish between static and dynamic objects, and 

how to track dynamic objects and predict their position ([4, 5, 6, 7]). 

Therefore, this paper proposes a novel approach to improve the estimation 

accuracy of moving targets and satisfy real-time operation based on the 

complementary property between DATMO and mapping. Two algorithms are 

combined into one integrated perception module. Data from each algorithm are 

used by another algorithm as input or measurement, constructing feedback loop 

structure. 
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DATMO and Mapping are not specific algorithms, but rather terms that 

classify perception algorithms in similar ways. Many algorithms have been 

proposed to implement each. In this study, GMFT was selected as the DATMO 

method. This helps to estimate and track a bunch of points without any 

assumption of the shape of a vehicle. New static obstacle map method also has 

been directly devised for mapping. Details are given in sections 3 and 4. 

The paper is organized as follows: In section 2, concrete structure of 

interaction between DATMO and mapping algorithm is presented. In section 3, 

mathematical process of the mapping expanded by the dynamic information of 

each grid using the Bayesian rule. This dynamic information results from 

DATMO. Details about the DATMO and its feedback input from the mapping 

module are shown in section 4. Finally, the experiment in section 5 

demonstrates the improvements in the proposed integrated perception module 

by driving data. 
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Chapter 2 

 

Interaction of Mapping and 

DATMO 

 

Figure 1 presents proposed integrated perception algorithm. Some main 

variables that play an important role in this algorithm are displayed. Inputs of 

the algorithm are states consist of ego vehicle's position, velocity (𝑥ℎ𝑜𝑠𝑡[k]), its 

covariance (𝑃̂ℎ𝑜𝑠𝑡[k]), and Y[k], which is raw data of LiDAR point cloud. 
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Outputs, the most important value in this algorithm, are P(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k]) 

called static obstacle map(SOM) and 𝑥𝑛[𝑘]. The whole space is divided into a 

grid with side length 𝑑𝑔𝑟𝑖𝑑. 𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k] refers to the state of j-th grid at time 

step k. This is a candidate for 0 or 1 according to whether the corresponding 

grid is occupied by static objects or not. Thus, if j-th grid is more likely to be 

occupied by static object than moving object or free space, P(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k] = 1) 

would be over 0.5 and close to 1, and in the opposite case, P(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k] = 1) 

would be lower than 0.5 and close to 0. This is applied to all grid in the whole 

space as the j changes. In general, {𝑥𝑛[𝑘], 𝑍̂𝑛[𝑘]}, set of each moving vehicles 

are named track. 𝑍̂𝑛[𝑘]  are clusters of moving vehicles and their states, 

covariance are 𝑥𝑛[𝑘], 𝑃̂𝑛[𝑘]. Now, we have all values we want to know from 

this research. Key concept of this integrated perception algorithm is the 

interaction between mapping and DATMO. As illustrated between two modules 

in figure 1, they exchange their output or interim data with each other. 

Following are 3 major steps of algorithm. 

 

(1) Mapping module is started by prediction of SOM P(𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k]) . By 

comparing with P(𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k])  and Y[k] , tentative moving points 

Y𝑚𝑜𝑣𝑖𝑛𝑔[k]  is selected and delivered to DATMO module. It will be 
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covered in detail at section 3.1. 

(2) Clustering, sub-function that sorts points from one target into the same 

categories, classifies Y𝑚𝑜𝑣𝑖𝑛𝑔[k] into cluster 𝑍[𝑘]. Comparing it with 

existing track {𝑥̅𝑛[𝑘], 𝑍̅𝑛[𝑘]}, 𝑍[𝑘] are assigned to existing 𝑍̅𝑛[𝑘] or 

generate new track 𝑍𝑛[𝑘] . Lastly, iterative closest point (ICP) and 

extended Kalman filter (EKF) estimate 𝑥𝑛[𝑘]. More concrete process is 

discussed at section 4. 

(3) Through the DATMO, motion state of all Y[k] points are classified into 

static, moving, and unknown. SOM is updated using motion state of the 

corresponding grid, which is calculated based on the result of DATMO. 

This measurement update process is conducted through newly devised 

Bayesian rule which will be covered more detail at section 3.2. 
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Chapter 3 

 

Mapping – Static Obstacle 

Map 

 

Static obstacle map refers to all static objects around of ego vehicle. The 

whole space is divided into the square-shape grid of which the side is 𝑑𝑔𝑟𝑖𝑑, 

which is a tuning variable. It seems like this SOM approach is identical with 

occupancy grid map(OGM) in the mobile robotics, which is a foundation of 

grid-based SLAM, but it is different from the OGM approach in some manners. 
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OGM considered the whole map only on the global coordinate, while SOM 

interprets all LiDAR point cloud data on the local coordinate of ego vehicle. 

Each grid of SOM has its own probability of static objects exist in it 

(P(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k] = 1)). This probability is predicted and updated at every time step 

k. Figure 2(b) shows a visualization of SOM for all grid in the local coordinate 

by histogram method. The closer the color is to yellow, the closer the value is 

to 1. It means that the corresponding grid is more likely to be occupied by static 

obstacles such as sidewalks, poles, buildings or parked vehicles. It is easily 

confirmed that the blue clusters of two moving vehicles in front of ego vehicle 

in figure 2-(a) are eliminated by the proposed integrated perception algorithm 

in figure 2-(b). 
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3.1 Prediction of SOM 

 

Since SOM is generated on local coordinate, it needs to be predicted 

considering consecutive ego vehicle’s motion. The process, which corresponds 

to time update in Kalman filter, is shown in figure 3. The red and black grid 

represent previous and current SOM, respectively. Geometric relationship 

Fig. 2 (a) Green is LiDAR raw data(Y[k]), gray means grid satisfies 

P(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k] = 1) > 0.8 , blue is moving target {𝑥𝑛[𝑘], 𝑍̂𝑛[𝑘]}  from 

DATMO. (b) Probability of corresponding grid is occupied static, which 

means static obstacle map. 
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between them can be calculated precisely through a simple transformation 

matrix since the velocity and yaw rate of ego vehicle is measured and logged 

by chassis sensor in real time. Four grids of previous SOM enclose the j-th grid 

of current SOM should be considered to calculating probability of current SOM. 

Figure 3 shows these geometric process intuitively. The midpoint of j-th grid of 

current SOM is 𝑙𝑖  away from each i-th grid of previous SOM. Therefore, 

predicted probability of j-th grid is weighted average with weighting factor 

1 𝑙𝑖⁄ , which is reasonable since nearby grid should more influence. If any 𝑙𝑖 is 

zero, the probability of previous grid is the same with current grid. The process 

so far is summarized in the following formula (1). 

 

 

𝐿 =∑𝑙𝑖
−1

4

𝑖=1

 

𝑃(𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 1) =

{
 
 

 
 

∑
𝑙𝑖
−1

𝐿
𝑃(𝑥𝑠𝑡𝑎𝑡𝑖𝑐

𝑖 [𝑘 − 1] = 1)

4

𝑖=1

 (∀ 𝑙𝑖 ≠ 0)

𝑃(𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐
𝑖 [𝑘 − 1] = 1)   (∃ 𝑖 𝑠. 𝑡 𝑙𝑖 = 0)

 

(1) 

 



Chapter 3. Mapping – Static Obstacle Map 

 
13 

 

 

Fig. 3 Prediction of SOM by the relationship between local coordinate of 

current and previous step. 
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3.2 Measurement update of SOM 

 

Measurement update of SOM updates probability of the static obstacles 

exist in the corresponding grid(P(𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [k] = 1)) using measurement 𝑧𝑛. In 

this paper, measurement 𝑧𝑛 is defined by DATMO based on the method shown 

in figure 4. 

As already shown in figure 1, DATMO classifies LiDAR point cloud into 

moving point, static point and unclassified. These motion states of point cloud 

Fig. 4 Newly defined measurement 𝑧𝑠𝑡𝑎𝑡𝑖𝑐 of motion state of each grid based on 

point classification of DATMO. 
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are passed to measurement update of SOM. Green, black, blue points in the left 

of figure 4 indicate unclassified, moving, static point, determined by DATMO 

module. As detailed in the right side of figure 4, each grid is classified into 4 

categories according to the motion state of point cloud in itself. As a result, each 

j-th grid is assigned newly defined measurement 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗

 : 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 = 0 

represents free grid, 1 for unclassified grid, 2 is moving grid and 3 is static grid. 

After the measurement of each grid( 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗

 ) is determined by the above 

description, the SOM is updated by the following Bayesian rule using predicted 

SOM and the likelihood of measurement 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗

. 

SOM for all j-th grid 𝑃(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 1) is calculated through following 

formula (2), based on the motion state of corresponding grid, 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘]. 𝑟 is 

assigned one of the value among 0, 1, 2, 3, which indicate the motion state of 

each grid, as mentioned above.  

 

𝑃(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 1|𝑧𝑠𝑡𝑎𝑡𝑖𝑐

𝑗 [𝑘] = 𝑟)

=
𝑃(𝑧𝑠𝑡𝑎𝑡𝑖𝑐

𝑗 [𝑘] = 𝑟|𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 1)𝑃(𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐

𝑗 [𝑘] = 1)

∑ 𝑃(𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 𝑟|𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐

𝑗 [𝑘] = 𝑖)𝑃(𝑥̅𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 𝑖)𝑖=0,1

 

𝑃(𝑥𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 1) = 𝑃(𝑥𝑠𝑡𝑎𝑡𝑖𝑐

𝑗 [𝑘] = 1|𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 𝑟) 

                 𝑖𝑓 𝑧𝑠𝑡𝑎𝑡𝑖𝑐
𝑗 [𝑘] = 𝑟 𝑓𝑜𝑟 𝑟 = 0, 1, 2, 3 

(2) 
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Chapter 4 

 

DATMO – Geometric Model-

Free Tracking 

 

In this section, Geometric Model Free Tracking (GMFT) will be explained 

in detail. GMFT uses the non-static points extracted from SOM to track the 

moving objects and estimate its state. Through this process, it is possible to 

construct correspondences of non-static points in the consecutive scan and to 

update the SOM by estimating the motion state of each point based on this 
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correspondence. In our approach, unlike the previous studies, each point is 

treated dependently via clustering using Euclidean distance. Since the 

correspondence between points is derived based on the distance between the 

mean points of the cluster and the similarity of shape, it is possible to establish 

the correspondence between points in consecutive scans even with a small 

calculation. After establishing the correspondence, the matching using ICP is 

performed for each cluster, and the states of the moving objects are estimated 

through the EKF using the moving distance and direction of the cluster mean. 

GMFT uses two coordinates, which are shown in figure 5. 𝑋𝐺𝑌𝐺 is a fixed 

global coordinate system and 𝑋𝐿𝑌𝐿 is a local moving coordinate system that 

moves with the rear axle of the ego vehicle. There are seven states 𝑥 =

[𝑝𝑛,𝑥 , 𝑝𝑛,𝑦 , 𝜃𝑛, 𝑣𝑛,𝑥 , 𝛾𝑛, 𝑎𝑛,𝑥 , 𝛾̇𝑛] and one cluster (𝑍̅𝑛, 𝑍̂𝑛) for expressing the n-

th track. {𝑝𝑛,𝑥 , 𝑝𝑛,𝑦} represent the mean position of the cluster respect to 𝑋𝐿𝑌𝐿. 

After completing measurement update at every step, if the cluster point 

configuration changes, it is replaced with the new mean point. 𝜃𝑛 means the 

yaw angle of the moving object respect to 𝑋𝐿𝑌𝐿. 𝑣𝑛,𝑥 means the velocity in 

the direction respect to 𝑋𝐿𝑌𝐿 . 𝛾𝑛, 𝑎𝑛,𝑥  , and 𝛾̇𝑛  represent yaw rate, 

acceleration, and angular acceleration respect to 𝑋𝐺𝑌𝐺  , respectively. 𝑣𝑥 , 𝛾 

represent velocity and yaw rate of ego vehicle at 𝑋𝐺𝑌𝐺, respectively. 𝑍̅𝑛, 𝑍̂𝑛 

denote the predicted cumulative cluster and the updated cumulative cluster of 

n-th track, respectively. 
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4.1 Prediction of target state 

 

The prediction of each track is conducted by discretizing the model (3). 

Discretization has been done up to the second order, and details are given in [8]. 

The difference from the references is how to update each point of the cluster. 

In this study, (3) is applied independently for all points, assuming that the points 

in the same cluster have the same state except position. In this case, the shape 

of clusters can be changed theoretically, but it does not have a significant effect 

on the actual situation because it predicts only the measurement interval of 80 

msec (Frequency of IBEO LiDAR is 12.5Hz). 

It is necessary to convert the clusters at previous step to local coordinate 

𝑋𝐿𝑌𝐿  of current step to initialize the tracks and to estimate the velocity of 

moving objects. This process is referred to as Ego-motion compensation in 

Fig. 5 Local, global coordinate for GMFT and relationship between hunter and target 

vehicle using RT range 
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figure 1 and only used in order to initialize new track. The clusters of the 

previous step (𝑍[𝑘 − 1]) are converted to clusters of the local coordinate at 

current step(𝑍̅[𝑘 − 1]) using dead reckoning via velocity and yaw rate of ego 

vehicle under the static assumption. 

 

 

𝑥̇𝑛 = 𝑓(𝑥𝑛, 𝑢) + 𝑞 = [𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7]
𝑇 + 𝑞 

u = [𝑣𝑥 , γ], 𝑞~𝑁(0, 𝑄) 

𝑓1 = 𝑣𝑛,𝑥𝑐𝑜𝑠𝜃𝑛 − 𝑣𝑥 + 𝑝𝑛,𝑦𝛾 

𝑓2 = 𝑣𝑛,𝑥𝑠𝑖𝑛𝜃𝑛 − 𝑝𝑛,𝑥𝛾 

𝑓3 = 𝛾𝑛 − γ, 𝑓4 = 𝑎𝑛,𝑥 

𝑓5 = 𝛾̇𝑛, 𝑓6 = −𝑘𝑎, 𝑓7 = −𝑘𝛾̇ 

(3) 

 

4.2 Track management 

 

Track management is a task that assigning the clusters of current step to 

the predicted tracks, generating new tracks using clusters not assigned to the 

any predicted tracks, and removing the tracks that have not been updated for a 

certain period. The assignment of the clusters to the predicted track is 

performed via Global Nearest Neighbor (GNN). For a detailed description of 

track management, we need to explain the meaning of 𝑍̅[𝑘 − 1], 𝑍[𝑘] , and 
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{𝑍̅𝑛[𝑘]}, the input of track management. 

𝑍̅[𝑘 − 1], the previous cluster, consists of p clusters, {𝑌̅1, ⋯ , 𝑌̅𝑖 ,⋯ , 𝑌̅𝑝}. 

𝑍[𝑘] , the current cluster, consists of q clusters, {𝑌1, ⋯ , 𝑌𝑗 , ⋯ , 𝑌𝑞} . Last, 

{𝑍̅𝑛[𝑘]}  is a member of predicted N clusters that mean predicted N target 

vehicles, {𝑍̅1,⋯ , 𝑍̅𝑛, ⋯ , 𝑍̅𝑁} . The feature vector ℱ  for each cluster ℳ  for 

GNN is defined as (4). The feature vector is a 4D vector consisting of mean 

point and eigenvalues of covariance matrix of the clusters. The eigenvalues 

represent the information of the shape. In a 4D feature space, a weighted 2-

norm is defined as a distance, and when the distance between 𝑍̅𝑛 and 𝑌𝑗  is 

less than a predefined threshold, 𝑌𝑗  is assigned to a measurement of n-th track 

𝑍𝑛. 

When the above assignment to the predicted tracks is finished, the track 

initialization and removing are conducted. If the track is not updated for more 

than 30% of the lifetime, or continuously three steps, the track is removed. 

Track initialization means creating a new track using clusters (𝑌̅𝑖 , 𝑌𝑗 ) that are 

not assigned to exist tracks. If the distance between 𝑌̅𝑖 and 𝑌𝑗  is smaller than 

the predefined threshold, a correspondence is established to generate the new 

track. 𝑌̅𝑖  and 𝑌𝑗   become 𝑍𝑚[𝑘 − 1]  and 𝑍𝑚[𝑘] , respectively, shown in 

figure 1. The position, velocity, and yaw are initialized via ICP matching. 
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ℱ ≜ [𝑥, 𝑦, 𝜆𝑚𝑎𝑥 , 𝜆𝑚𝑖𝑛] 

[𝑥, 𝑦] = 𝑚𝑒𝑎𝑛(ℳ) 

[𝜆𝑚𝑎𝑥 , 𝜆𝑚𝑖𝑛] = 𝑒𝑖𝑔(𝑐𝑜𝑣(ℳ)) 

(4) 

 

4.3 Measurement update of target state 

 

EKF is applied for measurement update of clusters. In the proposed 

approach, the three measurements obtained from 𝑍𝑛 are the position and yaw 

angle of the moving objects. In formula (5), measurement for the EKF is 𝑧𝑛 

that is expressed as 3D vector and each element of 𝑧𝑛 represents the position 

of mean point and yaw angle of the moving object at 𝑋𝐿𝑌𝐿, respectively. The 

position measurement of n-th track is considered as the mean of the matched 

𝑍̅𝑛, after matching 𝑍̅𝑛 to 𝑍𝑛 by ICP algorithm. The moving direction of the 

object is the direction of the displacement vector from the mean of 𝑍̂𝑛[𝑘 − 1] 

to the mean of matched 𝑍̅𝑛[k]. This process is visualized in figure 6, and the 

measurement model using these measurements is composed of a linear model 

as shown in (5), assuming that the measured values have white Gaussian noise 

with covariance matrix of 𝑉𝑛. 
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𝑧𝑛[𝑘] = 𝐻𝑛𝑥𝑛[𝑘] + 𝑣𝑛[𝑘] 

𝑣𝑛[𝑘] ~ 𝑁(0, 𝑉𝑛[𝑘]) 

𝐻𝑛 = [
1
0
0
  
0
1
0
  
0
0
1
  
0
0
0
  
0
0
0
  
0
0
0
  
0
0
0
] 

(5) 

 

Fig. 6 The measurement of n-th track from corresponding cluster and its matching 

process. 
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Chapter 5 

 

Experimental Results 

 

The only difference of existing GMFT and proposed approach is whether 

or not it is fused and interacted with mapping method. Considering the error of 

state estimation, code operation time, detection rate and fail cases are important, 

the proposed approach is verified by comparing with the case where GMFT is 

used alone. 
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5.1 Vehicles and sensors configuration 

 

Driving data is obtained at the Nambu-Beltway using IONIQ and K5, 

which play a role as ego(hunter) vehicle and target vehicle, respectively. The 

hunter, IONIQ has 6 IBEO 2D LiDAR sensor. To compare the performance of 

proposed perception algorithm and existing GMFT algorithm, it is necessary to 

collect reference data of the target. Thus, two vehicles are equipped with RT-

GPS for precise localization and RT-Range for time sync of these two RT-GPS. 

Vehicles and sensors configuration are summarized in figure 5, 7, 8. All 

communication, algorithm, and computation are operated on Matlab-Labview 

environment with Intel Core i7-4790 4.00GHz CPU. 
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Fig. 7 Sensor configuration. 
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Fig. 8 FOV and detection limit of LiDAR 



Chapter 5. Experimental Results 

 
27 

 

 

5.2 Detection rate of moving object 

 

Figure 9, 10 shows representative detection fail case of GMFT and its 

improvement by proposed approach. In figure 10 where the stationary vehicle 

Fig. 10 Improvement of fail case – Median separator 

Fig. 9 Improvement of fail case – Parking lot 
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on the right side, the median separator on the left side, and the moving vehicle 

is located in the vicinity, conventional GMFT fails to classify the LiDAR points 

into true clusters and to detect them by tying the wrong points together. On the 

other hand, since the proposed approach transmits predicted obstacle 

information before the DATMO module is activated, it excludes them in 

advance and starts clustering, which shows much better detection results. 

Figure 9 shows a parking lot with many stopped vehicles. All vehicles are about 

20cm apart and it is very difficult for GMFT algorithm to classify them into 

different clusters and conclude that they are not moving vehicles. This error 

comes from a variety of factors, such as clustering error since each vehicle is 

too close with each other. Moreover, points that start from a certain time in a 

blind spot may look like a moving vehicle. The proposed approach resolves this 

problem successfully. Since the proposed method stores probability values for 

every grid, it judges that it is a stop point based on the Bayesian rule even if 

there are sudden arising points from the blind spot. Thus, obviously, DATMO 

gets to knows that these vehicles are not moving vehicles, so it can easily detect 

the vehicles that are really moving around.  

Beyond this simple example, a full evaluation of the detection rate is 

shown in figure 11. In a complex urban road, all the vehicles inside the 

surrounding ROI are checked by manual operation. After both the proposed 

approach and the existing approach are performed, the detection results are 
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recorded as shown in the figure. All of the above steps are conducted at every 

frame and summed up. Total results for all frames with respect to each driving 

scenario are summarized in the top of table 1. Furthermore, these are 

recalculated to performance indicator, Precision, Recall, and F1 score. 

 

 

 

Fig. 11 Evaluation of detection rate with complex traffic, at Nambu-Beltway. 

Actual moving targets are labeled by manually, and black arrows are detected 

moving target through proposed approach. Blue means cluster of tracks, 

green is LiDAR point cloud, gray is SOM. 
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Table 1 Detection result of moving vehicles and evaluation by three 

performance indicators 

 

Performance indicators are expressed at the bottom of table 1. Precision is 

the ratio of correctly predicted value to the total predicted value (correctly 

detected/detected), Recall is the ratio of correctly predicted value to the all 

value in actual class (correctly detected/actual), and F1 Score is the weighted 

average of Precision and Recall (2*Recall * Precision / (Recall + Precision)). 

All indicators are improved by 15~30% for all scenarios. An increase of 

Precision means that the number of false alarm has decreased, and larger Recall 

means that the frequency of false negative has been reduced. 

 

Method Scenario 
Actual 

moving target 
Detected 

moving target 
Correctly 
detected 

Proposed 

LK 1843 1780 1723 

LC 664 611 569 

TI 286 269 257 

Existing 
(GMFT only) 

LK 1843 1749 1414 

LC 664 631 496 

TI 286 265 199 

Method Scenario Precision Recall F1 score 

Proposed 

LK 0.9680 0.9349 0.9511 

LC 0.9313 0.8569 0.8925 

TI 0.9554 0.8986 0.9261 

Existing 

(GMFT only) 

LK 0.8085 0.7672 0.7873 

LC 0.7861 0.7470 0.7660 

TI 0.7509 0.6958 0.7223 
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5.3 State estimation accuracy of moving object  

 

In this section, estimated position, velocity, and yaw angle of target vehicle 

are validated using reference data from RT-range for 3 different scenarios, Lane 

Keeping(LK), Lane Change(LC), and Turning at the Intersection(TI), 

respectively. Driving data had to be collected considering that the main 

contribution of this study is to distribute mapping function to separated module 

(SOM). Thus, all scenarios selected to include both moving vehicles and static 

obstacle such as pole, curb, stopped vehicles. Each scenario is conducted 10 

times and the speed is controlled within 50kph due to the traffic condition of 

Nambu-Beltway. 

Histogram of error distribution is indicated in figure 12 with respect to 

each scenario. Blue and red denote proposed DATMO + Mapping (GMFT + 

SOM) approach and conventional DATMO (GMFT) only, respectively. As 

shown in the histogram, some bias exists due to the fact that the mounting 

position of GPS antenna does not coincide with the center of the vehicle and 

unique characteristic of RT-range by calibration. Thus, the standard deviation 

is valid as the main indicator to evaluate the estimation accuracy. 
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GMFT+SOM shows better standard deviation as shown in table 2. For all 

scenarios and all states, the standard deviation is larger for the case of the 

existing method than the proposed algorithm. Especially, in the case of figure 

12-(c), (f), the significant mean error of yaw angle occurs in the existing method. 

This is because the median strip that exists at the left side of target vehicle 

disturbs clustering. In accordance with the intention of this study, the proposed 

algorithm help clustering to avoids from being disturbed by peripheral static 

obstacles, thus indicating less mean error and less standard deviation. 

 

Table 2 Estimation accuracy of main states 

 

In general, due to the limit of 2D LiDAR itself, point cloud of static 

obstacle can be observed like a moving object even though the points are of a 

static object. In some case, as the moving vehicle moves past, the part of static 

obstacle that was blind begins to be observed, thus it can be seen as a moving 

object in the existing method. This is because the GMFT judges whether or not 

it is moving based on the flow of points. However, the proposed algorithm can 

Method 
Standard deviation 

of state 
LK LC TI 

Proposed 

Position 0.0869  0.1423  0.1363  

Velocity 0.2122  0.2426  0.2690  

Yaw angle 1.7097  1.5219  2.0865  

Existing 
(GMFT only) 

Position 0.2397  0.2412  0.1505  

Velocity 0.5380  0.4825  0.5514  

Yaw angle 2.6306  3.2052  2.3101  
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be free from this problem because the SOM maintains the probability of static 

obstacle for all grid in advance, thus GMFT can eliminate unnecessary points 

before clustering. It is reasonable that this leads to improvements in state 

estimation accuracy of moving vehicles. 

 

5.4 Code operation time 

 

Algorithms are run on the platform described in 5.1. Code operation time is 

recorded at every time step and the results for two approaches are summarized 

in table 3, which includes all scenario LK, LC, and TI. While the existing 

method is operated with GMFT only, results of the proposed approach are 

separated into sub-function in order. The proposed approach consumes a certain 

amount of time in the sub-function. However, in the GMFT process of the 

proposed approach, time is dramatically reduced enough to offset the loss in the 

other sub-functions. This result accurately confirms the intention of the 

interaction between DATMO and SOM, which distributing the roles performed 

by DATMO (GMFT) in the existing research, thereby reducing the calculation 

burden. As a result, the total elapsed time for the whole perception algorithm is 

greatly reduced. This also satisfies to maintain operation time less than 80 msec, 

which corresponds to the operation frequency of IBEO LiDAR, 12.5Hz. 
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Table 3 Code operation time of sub-function 

Method 
Time 

(ms) 

SOM GMFT SOM 
Total 

(ms) Predict Clustering 
Track 

management 
Update 

Proposed 
Mean 8.1 5.7 24.8 6.2 44.8 

Max 13.2 15.9 75.5 8.5 113.1 

Existing 

(GMFT only) 

Mean –  13.7 86.4 – 100.1 

Max – 31.5 125.7 – 157.2 
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Chapter 6 

 

Conclusion and Future Work 

 

6.1 Conclusion 

 

In this paper, a novel fusion approach based on the interaction between 

Static Obstacle Map (SOM) method and Geometric Model-Free Tracking 

(GMFT) algorithm is presented to improve detection and tracking performance 

for real-time, urban autonomous driving. Interaction concept is designed to 

divide the role of the construction of a map that consists of static objects only 
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and the role of tracking of moving objects such as moving vehicles. Detection 

rate of moving objects, state estimation accuracy of target, and calculation 

burden have shown problems under the existing approach, which is a 

conventional method using only DATMO algorithm, and much of them are 

solved by the proposed approach. 

The main contribution of this study is distributing roles of algorithms 

according to the motion state of the LiDAR point cloud. Thus, advantages of 

the proposed approach are more evident in complicated driving situation 

include moving objects and static obstacles include poles, cones, curbs, 

sidewalks, stop vehicles and all geographic features. The comparative 

advantage of the proposed method may be relatively small in an uncrowded 

road situation, but under such circumstances, the existing method also shows 

good performance and is less likely to cause problems. 

 

6.2 Future works 

 

The GMFT algorithm, which is selected for achieving DATMO, assumes 

that the shape of consecutive LiDAR point does not change dramatically. 

However, in real driving circumstances, above assumption does not match due 

to FOV (Field of View) of LiDAR, blind spot by any objects, or in case of 
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moving vehicle passes ego vehicle by very high speed. Therefore, Geometric 

Model-Based Tracking (GMBT) or feature-based matching approach need to be 

dealt with in future work. 

In addition, shape extraction is helpful if it is added to this study. Due to 

the geometric relationship, the center of vehicles is varied according to whether 

the classified clusters consist of only one side of vehicles, or it includes both 

side and the back side of vehicles. This would improve estimation accuracy of 

position and yaw angle than this study. 



Bibliography 

 
39 

 

 

 

 

Bibliography 

 

[1]  Wang, Chieh-Chih, et al. "Simultaneous localization, mapping and 

moving object tracking." The International Journal of Robotics 

Research 26.9 (2007): 889-916. 

[2]  Moosmann, Frank, and Christoph Stiller. "Joint self-localization and 

tracking of generic objects in 3D range data." 2013 IEEE International 

Conference on Robotics and Automation. IEEE, 2013. 

[3]  Siew, Peng Mun, Richard Linares, and Vibhor Bageshwar. 

"Simultaneous Localization and Mapping with Moving Object 

Tracking in 3D Range Data using Probability Hypothesis Density 

(PHD) Filter." 2018 AIAA Information Systems-AIAA Infotech@ 

Aerospace. 2018. 0507. 

[4]  Lidoris, Georgios, Dirk Wollherr, and Martin Buss. "Bayesian state 



Bibliography 

 
40 

 

estimation and behavior selection for autonomous robotic exploration 

in dynamic environments." 2008 IEEE/RSJ International Conference 

on Intelligent Robots and Systems. IEEE, 2008. 

[5]  Vu, Trung-Dung, Julien Burlet, and Olivier Aycard. "Grid-based 

localization and local mapping with moving object detection and 

tracking." Information Fusion 12.1 (2011): 58-69. 

[6]  Wolf, Denis, and Gaurav S. Sukhatme. "Online simultaneous 

localization and mapping in dynamic environments." IEEE 

International Conference on Robotics and Automation, 2004. 

Proceedings. ICRA'04. 2004. Vol. 2. IEEE, 2004. 

[7]  Pancham, Ardhisha, Nkgatho Tlale, and Glen Bright. "Literature 

review of SLAM and DATMO." (2011). 

[8]  Kim, B., Yi, K., Yoo, H. J., Chong, H. J., & Ko, B. (2014). An 

IMM/EKF approach for enhanced multitarget state estimation for 

application to integrated risk management system. IEEE Transactions 

on Vehicular Technology, 64(3), 876-889. 

[9]  Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic 

robotics. MIT press, 2005. 

[10]  Wang, Chieh-Chih, et al. "Simultaneous localization, mapping and 

moving object tracking." The International Journal of Robotics 

Research 26.9 (2007): 889-916. 



Bibliography 

 
41 

 

[11]  Bouzouraa, Mohamed Essayed, and Ulrich Hofmann. "Fusion of 

occupancy grid mapping and model based object tracking for driver 

assistance systems using laser and radar sensors." 2010 IEEE 

Intelligent Vehicles Symposium. IEEE, 2010. 

[12]  Saval-Calvo, Marcelo, et al. "A review of the Bayesian occupancy 

filter." Sensors 17.2 (2017): 344. 

[13]  Sualeh, Muhammad, and Gon-Woo Kim. "Dynamic Multi-LiDAR 

Based Multiple Object Detection and Tracking." Sensors 19.6 (2019): 

1474. 

[14]  Na, Kiin, et al. "RoadPlot-DATMO: Moving object tracking and track 

fusion system using multiple sensors." 2015 International Conference 

on Connected Vehicles and Expo (ICCVE). IEEE, 2015. 

[15]  Magnier, Valentin, Dominique Gruyer, and Jerome Godelle. 

"Automotive LIDAR objects detection and classification algorithm 

using the belief theory." 2017 IEEE Intelligent Vehicles Symposium 

(IV). IEEE, 2017. 

[16]  Zhang, Liang, et al. "Multiple vehicle-like target tracking based on the 

velodyne lidar." IFAC Proceedings Volumes 46.10 (2013): 126-131. 

[17]  Hwang, Soonmin, et al. "Fast multiple objects detection and tracking 

fusing color camera and 3D LIDAR for intelligent vehicles." 2016 13th 

International Conference on Ubiquitous Robots and Ambient 



Bibliography 

 
42 

 

Intelligence (URAI). IEEE, 2016. 

[18]  Vaquero, Victor, Ely Repiso, and Alberto Sanfeliu. "Robust and real-

time detection and tracking of moving objects with minimum 2D 

LIDAR information to advance autonomous cargo handling in 

ports." Sensors 19.1 (2019): 107. 

[19]  Asvadi, Alireza, et al. "3D Lidar-based static and moving obstacle 

detection in driving environments: An approach based on voxels and 

multi-region ground planes." Robotics and Autonomous Systems 83 

(2016): 299-311. 

[20]  Llamazares, Ángel, Eduardo J. Molinos, and Manuel Ocaña. 

"Detection and Tracking of Moving Obstacles (DATMO): A 

Review." Robotica: 1-14. 

 

 

 

 

 

 

 



초   록 

 
43 

 

초   록 
 

자율주행을 위한 정지 장애물 맵과 GMFT 

융합 기반 이동 물체 탐지 및 추적 
 

라이다 센서의 측정 정밀성을 기반으로 하여 DATMO, 즉 이동 

물체 탐지 및 추적은 자율주행 인지 분야의 매우 중요한 주제로 발

전되어 왔다. 그러나 다양한 종류의 차량에 의해 도로 상황이 복잡

한 점 및 도로 특유의 복잡한 지형적 특성 때문에 클러스터링

(Clustering)의 실패 사례가 종종 발생할 뿐만 아니라 인지 알고리즘

의 계산 부담도 증가한다. 이러한 문제를 극복하기 위해 이 논문에

서는 DATMO 알고리즘과 맵핑 알고리즘을 통합하여 새로운 접근법

을 제시하였다. DATMO 와 맵핑 알고리즘은 각각 이동 물체와 정지 

물체의 상태를 추정하는데에 특화되어있기 때문에 두 알고리즘은 

서로의 출력을 입력으로 사용하여 추정 성능을 향상시킬 수 있다. 

전체 인지 알고리즘은 DATMO 와 맵핑 알고리즘을 포함하는 피드백 

루프 구조로 재구성된다. 또한 두 알고리즘은 각각 Geometric Model-

Free Tracking(GMFT)과 베이지안 룰 기반의 혁신적인 Static Obstacle 
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Map(SOM)으로 수정되어 서로의 출력을 필터링 프로세스의 측정값

으로 사용한다. 이 연구에서 제시한 통합 인지 알고리즘은 RTK 

DGPS 와 RT Range 장비, 그리고 2 차원 LiDAR 를 장착한 차량을 이

용하여 수집한 데이터를 통해 성능을 평가하였다. 기존의 DATMO 

연구에서 발생했던 몇 가지 일반적인 클러스터링 실패 사례가 감소

하였고 전체 통합 인지 과정에 대한 알고리즘 작동 시간이 감소함

을 확인하였다. 특히, 이동하는 물체의 위치, 속도, 방향을 추정한 

결과는 RT Range 장비로 측정한 실제 값과 기존 방식 대비 더욱 적

은 오차를 보여주었다. 

 

 

 

 

 

 

 

주요어: 라이다, 맵핑, 정지 장애물 맵, 이동 물체 탐지 및 추적, 

Geometric Model-Free Tracking, 베이지안 룰 
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