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Abstract

Detection and Tracking of Moving
Object based on Interaction of Static
Obstacle Map and Geometric Model-

Free Tracking for autonomous driving

YOON JEONG SIK
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Based on the high accuracy of LIDAR sensor, detection and tracking of
moving objects(DATMO) have been advanced as an important branch of
perception for an autonomous vehicle. However, due to crowded road

circumstances by various kind of vehicles and geographical features, it is



necessary to reduce clustering fail case and decrease the computational burden.
To overcome these difficulties, this paper proposed a novel approach by
integrating DATMO and mapping algorithm. Since the DATMO and mapping
are specialized to estimate moving object and static map respectively, these two
algorithms can improve their estimation by using each other’s output. Whole
perception algorithm is reconstructed using feedback loop structure includes
DATMO and mapping algorithm. Moreover, mapping algorithm and DATMO
are revised to innovative Bayesian rule-based Static Obstacle Map(SOM) and
Geometric Model-Free Tracking(GMFT) to use each other’s output as the
measurements of filtering process. The proposed study is evaluated via driving
dataset collected by vehicles with RTK DGPS, RT-range and 2D LiDAR.
Several typical clustering fail cases that had been observed in existing DATMO
approach are reduced and code operation time over the whole perception
process is decreased. Especially, estimation of moving vehicle’s state include
position, velocity, and yaw angle show less error with references which are

measured by RT-range.

Keywords: LIiDAR, mapping, Static Obstacle Map, Detection and Tracking of
Moving Object, Geometric Model-Free Tracking, Bayesian rule
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Chapter 1. Introduction

Chapter 1

Introduction

Establishing an accurate and robust perception algorithm using sensor
information is essential to develop autonomous driving systems. Among the
various sensors, LIDAR has been widely used due to its own characteristics
such as high position accuracy. Thus, over the last years, many perception
researches have been studied using LiDAR point cloud data as measurement
and these researches are often divided into two categories. First is detection and
tracking of moving objects(DATMO). Second is mapping method, which has

been studied mainly in the field of robotics.



Chapter 1. Introduction

DATMO can be referred to as a process concerned with the states of
objects that the robot or autonomous vehicle perceives in a dynamic
environment. DATMO algorithm can be categorized according to the objective
function that they purpose to optimize, or by the way in which they process the
LiDAR point cloud data. Despite all these diversities, what it has in common is
that DATMO estimates current states of moving targets and their respective
trajectories based on their previously estimated states and the current scan of
measurements, usually LIDAR point cloud.

Mapping method is a representative algorithm for implementing
environmental mapping. This approach assumes the environment as static, i.e.
having only non-moving objects. Dynamic objects are regarded as noise
sources. Recently, mapping is usually conducted through SLAM algorithm.
Based on the assumption that the environment does not transform, SLAM
estimates map and location simultaneously. However, this hypothesis is
acceptable in some scenarios, but in most real-world environments where
dynamic objects cannot be avoided, these approaches encounter errors reducing
the overall map quality.

As such, DATMO and mapping method focuses on different issues, state
estimation of moving target and construction of static object map respectively,
to perceive the world. Even though both are effective algorithms for perceiving

surrounding environment, they often show failure in urban autonomous driving
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situation when they applied independently. Vehicles in urban road meet various
kind of object include static obstacles such as poles, buildings, and parked
vehicles. This causes computational load in DATMO algorithm and reduces the
quality of clustering, which is sub-function of DATMO for classifying LIDAR
point of each target into the same bunch. Furthermore, the mapping method
basically assumes that the world is static, which means ego vehicles consider
the map never transform, thus the map result from this is distorted by any
moving object.

Some works have been conducted to simultaneously solve the SLAM and
DATMO using LiDAR. However, detection accuracy and operation time are
not presented ([1, 2]) or some paper showed solving two problems at the same
time is too demanding due to computation load ([3]). Recently, SLAM in
Dynamic Environments (SLAMIDE) has been studied, but following questions
are still not solved: How to distinguish between static and dynamic objects, and
how to track dynamic objects and predict their position ([4, 5, 6, 7]).

Therefore, this paper proposes a novel approach to improve the estimation
accuracy of moving targets and satisfy real-time operation based on the
complementary property between DATMO and mapping. Two algorithms are
combined into one integrated perception module. Data from each algorithm are
used by another algorithm as input or measurement, constructing feedback loop

structure.
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DATMO and Mapping are not specific algorithms, but rather terms that
classify perception algorithms in similar ways. Many algorithms have been
proposed to implement each. In this study, GMFT was selected as the DATMO
method. This helps to estimate and track a bunch of points without any
assumption of the shape of a vehicle. New static obstacle map method also has
been directly devised for mapping. Details are given in sections 3 and 4.

The paper is organized as follows: In section 2, concrete structure of
interaction between DATMO and mapping algorithm is presented. In section 3,
mathematical process of the mapping expanded by the dynamic information of
each grid using the Bayesian rule. This dynamic information results from
DATMO. Details about the DATMO and its feedback input from the mapping
module are shown in section 4. Finally, the experiment in section 5
demonstrates the improvements in the proposed integrated perception module

by driving data.
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Chapter 2

Interaction of Mapping and

DATMO

Figure 1 presents proposed integrated perception algorithm. Some main
variables that play an important role in this algorithm are displayed. Inputs of
the algorithm are states consist of ego vehicle's position, velocity (X0t [K]), its

covariance (Pps¢ [K]), and Y[K], which is raw data of LiDAR point cloud.
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Chapter 2. Interaction of Mapping and DATMO

Outputs, the most important value in this algorithm, are P(xstatw[k])
called static obstacle map(SOM) and X,[k]. The whole space is divided into a

grid with side length dg;q4. %! K] refers to the state of j-th grid at time

static [

step k. This is a candidate for 0 or 1 according to whether the corresponding

grid is occupied by static objects or not. Thus, if j-th grid is more likely to be
occupied by static object than moving object or free space, P(xstatl Jkl=1)

would be over 0.5 and close to 1, and in the opposite case, P(xstatw[k] =1)
would be lower than 0.5 and close to 0. This is applied to all grid in the whole
space as the j changes. In general, {%,[k], Z,[k]}, set of each moving vehicles
are named track. Z,[k] are clusters of moving vehicles and their states,
covariance are X,[k], B,[k]. Now, we have all values we want to know from
this research. Key concept of this integrated perception algorithm is the
interaction between mapping and DATMO. As illustrated between two modules
in figure 1, they exchange their output or interim data with each other.

Following are 3 major steps of algorithm.

(1) Mapping module is started by prediction of SOM P(xstam[ ]). By

comparing with P(x [k]) and Y[K], tentative moving points

static

Yimoving [K] is selected and delivered to DATMO module. It will be
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)

®3)

covered in detail at section 3.1.

Clustering, sub-function that sorts points from one target into the same
categories, classifies Ypoping[K] into cluster Z[k]. Comparing it with
existing track {x,[k],Z,[k]}, Z[k] are assigned to existing Z,[k] or
generate new track Z,[k]. Lastly, iterative closest point (ICP) and
extended Kalman filter (EKF) estimate X, [k]. More concrete process is
discussed at section 4.

Through the DATMO, motion state of all Y[k] points are classified into
static, moving, and unknown. SOM is updated using motion state of the
corresponding grid, which is calculated based on the result of DATMO.
This measurement update process is conducted through newly devised

Bayesian rule which will be covered more detail at section 3.2.



Chapter 3. Mapping — Static Obstacle Map

Chapter 3

Mapping - Static Obstacle

Map

Static obstacle map refers to all static objects around of ego vehicle. The
whole space is divided into the square-shape grid of which the side is dgpq4,
which is a tuning variable. It seems like this SOM approach is identical with
occupancy grid map(OGM) in the mobile robotics, which is a foundation of

grid-based SLAM, but it is different from the OGM approach in some manners.
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OGM considered the whole map only on the global coordinate, while SOM
interprets all LIDAR point cloud data on the local coordinate of ego vehicle.

Each grid of SOM has its own probability of static objects exist in it

(P(J?gt atic K] = 1)). This probability is predicted and updated at every time step
k. Figure 2(b) shows a visualization of SOM for all grid in the local coordinate
by histogram method. The closer the color is to yellow, the closer the value is
to 1. It means that the corresponding grid is more likely to be occupied by static
obstacles such as sidewalks, poles, buildings or parked vehicles. It is easily
confirmed that the blue clusters of two moving vehicles in front of ego vehicle

in figure 2-(a) are eliminated by the proposed integrated perception algorithm

in figure 2-(b).

10
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(a) LiDAR point cloud and moving target (b) SOM of (a)

Fig. 2 (a) Green is LiDAR raw data(Y[k]), gray means grid satisfies
P(%.,,.;.[kl=1) > 08, blue is moving target {%,[k],Z,[k]} from

static

DATMO. (b) Probability of corresponding grid is occupied static, which
means static obstacle map.

3.1 Prediction of SOM

Since SOM is generated on local coordinate, it needs to be predicted
considering consecutive ego vehicle’s motion. The process, which corresponds
to time update in Kalman filter, is shown in figure 3. The red and black grid

represent previous and current SOM, respectively. Geometric relationship

) A2l &k
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between them can be calculated precisely through a simple transformation
matrix since the velocity and yaw rate of ego vehicle is measured and logged
by chassis sensor in real time. Four grids of previous SOM enclose the j-th grid
of current SOM should be considered to calculating probability of current SOM.
Figure 3 shows these geometric process intuitively. The midpoint of j-th grid of
current SOM is [; away from each i-th grid of previous SOM. Therefore,
predicted probability of j-th grid is weighted average with weighting factor
1/1;, which is reasonable since nearby grid should more influence. If any [; is
zero, the probability of previous grid is the same with current grid. The process

so far is summarized in the following formula (1).

4

L ZZIL'_:L

i=1

(1

i=1

(
| gt
P(xstauc = 1) = {z L P(xstatu: —-1] = 1) (v l; # 0)
|
\

P(%iqriclk—11=1) @ istl;=0)

12
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Fig. 3 Prediction of SOM by the relationship between local coordinate of
current and previous step.
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Fig. 4 Newly defined measurement Zzg,:;. of motion state of each grid based on
point classification of DATMO.

3.2 Measurement update of SOM

Measurement update of SOM updates probability of the static obstacles
exist in the corresponding grid(P(f;'mtiC k] = 1)) using measurement z,. In
this paper, measurement z, is defined by DATMO based on the method shown

in figure 4.
As already shown in figure 1, DATMO classifies LIDAR point cloud into

moving point, static point and unclassified. These motion states of point cloud

14
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are passed to measurement update of SOM. Green, black, blue points in the left
of figure 4 indicate unclassified, moving, static point, determined by DATMO
module. As detailed in the right side of figure 4, each grid is classified into 4

categories according to the motion state of point cloud in itself. As a result, each

7’ .. =0

j
j-th grid is assigned newly defined measurement z static

static -

represents free grid, 1 for unclassified grid, 2 is moving grid and 3 is static grid.

After the measurement of each grid(z

Statlc) is determined by the above

description, the SOM is updated by the following Bayesian rule using predicted

SOM and the likelihood of measurement Zstatlc

SOM for all j-th grid P( Rerariclkl = 1) is calculated through following

formula (2), based on the motion state of corresponding grid, Zstatw[k]‘ T is

assigned one of the value among 0, 1, 2, 3, which indicate the motion state of

each grid, as mentioned above.

P( statlc = 1|Z!tatic[k] = T)

P(Z

staticl r|x

_ staticlkl = 1)P(xstatlc [k] = 1)
Z:i=f~').1P(Zstatic[k rlxstatlc = l)P(xstatic ] = i) (2)

P(xstatlc - 1) P()’C\statlc k] = 1| statlc - T')

if statlc[k] =r for r=0,1,2,3
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Chapter 4

DATMO - Geometric Model-

Free Tracking

In this section, Geometric Model Free Tracking (GMFT) will be explained
in detail. GMFT uses the non-static points extracted from SOM to track the
moving objects and estimate its state. Through this process, it is possible to
construct correspondences of non-static points in the consecutive scan and to

update the SOM by estimating the motion state of each point based on this
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correspondence. In our approach, unlike the previous studies, each point is
treated dependently via clustering using Euclidean distance. Since the
correspondence between points is derived based on the distance between the
mean points of the cluster and the similarity of shape, it is possible to establish
the correspondence between points in consecutive scans even with a small
calculation. After establishing the correspondence, the matching using ICP is
performed for each cluster, and the states of the moving objects are estimated
through the EKF using the moving distance and direction of the cluster mean.
GMFT uses two coordinates, which are shown in figure 5. X;Y; is a fixed
global coordinate system and X;Y; is a local moving coordinate system that
moves with the rear axle of the ego vehicle. There are seven states x =
[Pnx) Prys Ons Unxr Yo Onoxr Vo] and one cluster (Zn, Z n) for expressing the n-
th track. {pnx,Pny} represent the mean position of the cluster respect to X, V;.
After completing measurement update at every step, if the cluster point
configuration changes, it is replaced with the new mean point. 6, means the
yaw angle of the moving object respect to X, Y;. v, , means the velocity in
the direction respect to X, Y, . ¥n,a,,, and ¥, represent yaw rate,
acceleration, and angular acceleration respect to X;Y;, respectively. v,y
represent velocity and yaw rate of ego vehicle at X;Y;, respectively. Z,, Z,
denote the predicted cumulative cluster and the updated cumulative cluster of

n-th track, respectively.
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inal Rangeé

XYy, coordinate

Hunter(IONIQ) XGYG coordinate Target(K5)

Fig. 5 Local, global coordinate for GMFT and relationship between hunter and target
vehicle using RT range

4.1 Prediction of target state

The prediction of each track is conducted by discretizing the model (3).
Discretization has been done up to the second order, and details are given in [8].
The difference from the references is how to update each point of the cluster.
In this study, (3) is applied independently for all points, assuming that the points
in the same cluster have the same state except position. In this case, the shape
of clusters can be changed theoretically, but it does not have a significant effect
on the actual situation because it predicts only the measurement interval of 80
msec (Frequency of IBEO LiDAR is 12.5Hz).

It is necessary to convert the clusters at previous step to local coordinate
X, Y, of current step to initialize the tracks and to estimate the velocity of

moving objects. This process is referred to as Ego-motion compensation in
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figure 1 and only used in order to initialize new track. The clusters of the
previous step (Z[k — 1]) are converted to clusters of the local coordinate at
current step(Z[k — 1]) using dead reckoning via velocity and yaw rate of ego

vehicle under the static assumption.

dn=fnwW+a=1fi o fzs fa fs fo 11" +q
u = [vy,v], ¢~N(0,Q)
fi= U xCOSOp — vy + PnyY
| 3)
f2 = Vn,xSlnen — PnxV

f3 =Yn—Y, f4 = Aanx

fs =Vn» fo = —kas fr =k

4.2 Track management

Track management is a task that assigning the clusters of current step to
the predicted tracks, generating new tracks using clusters not assigned to the
any predicted tracks, and removing the tracks that have not been updated for a
certain period. The assignment of the clusters to the predicted track is
performed via Global Nearest Neighbor (GNN). For a detailed description of

track management, we need to explain the meaning of Z[k — 1], Z[k], and
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{Z,[k]}, the input of track management.

Z[k — 1], the previous cluster, consists of p clusters, {¥1,--,¥;, -, ¥,}.
Z[k], the current cluster, consists of q clusters, {Yy,-,Y;, -, Y;}. Last,
{Z,[k]} is a member of predicted N clusters that mean predicted N target
vehicles, {Z;,-**,Zy,**,Zy}. The feature vector F for each cluster M for
GNN is defined as (4). The feature vector is a 4D vector consisting of mean
point and eigenvalues of covariance matrix of the clusters. The eigenvalues
represent the information of the shape. In a 4D feature space, a weighted 2-
norm is defined as a distance, and when the distance between Z, and Y; is
less than a predefined threshold, Y; is assigned to a measurement of n-th track
Zy.

When the above assignment to the predicted tracks is finished, the track
initialization and removing are conducted. If the track is not updated for more
than 30% of the lifetime, or continuously three steps, the track is removed.
Track initialization means creating a new track using clusters (¥}, Y;) that are
not assigned to exist tracks. If the distance between ¥; and Y; is smaller than
the predefined threshold, a correspondence is established to generate the new
track. ¥; and Y; become Z,,[k— 1] and Z,[k], respectively, shown in

figure 1. The position, velocity, and yaw are initialized via ICP matching.
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F £ [x, Y, Amaxr Amin]
[x,¥] = mean(M) 4)

[Amaxs Amin] = eig(cov(M))

4.3 Measurement update of target state

EKF is applied for measurement update of clusters. In the proposed
approach, the three measurements obtained from Z,, are the position and yaw
angle of the moving objects. In formula (5), measurement for the EKF is z,
that is expressed as 3D vector and each element of z, represents the position
of mean point and yaw angle of the moving object at X;Y;, respectively. The
position measurement of n-th track is considered as the mean of the matched
Z,, after matching Z, to Z, by ICP algorithm. The moving direction of the
object is the direction of the displacement vector from the mean of Z,[k — 1]
to the mean of matched Z,[Kk]. This process is visualized in figure 6, and the
measurement model using these measurements is composed of a linear model
as shown in (5), assuming that the measured values have white Gaussian noise

with covariance matrix of V,.
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zp[k] = Hpxp[k] + vy [K]

vnlk] ~ N(O,V,[k])

®)
10 00 0 00
H,=[0 1. 0 0 0 0 0
0 01 00 O0UO
[
) ® 7, [k1]
) ® >
‘.. ° hn,l: hn,z ® Zn[k]
ovHl Zy[k]
° e ... ® matching Z,[k] to Z,,[k] by ICP
P .- Ry, hy 2 position
o hy 3 hy 3 yaw angle

Fig. 6 The measurement of n-th track from corresponding cluster and its matching
process.
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Chapter 5

Experimental Results

The only difference of existing GMFT and proposed approach is whether
or not it is fused and interacted with mapping method. Considering the error of
state estimation, code operation time, detection rate and fail cases are important,
the proposed approach is verified by comparing with the case where GMFT is

used alone.
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5.1 Vehicles and sensors configuration

Driving data is obtained at the Nambu-Beltway using IONIQ and KS5,
which play a role as ego(hunter) vehicle and target vehicle, respectively. The
hunter, [ONIQ has 6 IBEO 2D LiDAR sensor. To compare the performance of
proposed perception algorithm and existing GMFT algorithm, it is necessary to
collect reference data of the target. Thus, two vehicles are equipped with RT-
GPS for precise localization and RT-Range for time sync of these two RT-GPS.
Vehicles and sensors configuration are summarized in figure 5, 7, 8. All
communication, algorithm, and computation are operated on Matlab-Labview

environment with Intel Core 17-4790 4.00GHz CPU.
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RT range

3 LiDAR
Front Camera [IBEO]

(Webcam)

Micro Autobox
Chassis o

3 LiDAR Sensor ";’93%6
[IBEO] 7

Fig. 7 Sensor configuration.
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Fig. 8 FOV and detection limit of LIDAR

26

fin At gw

S, SEOUL NATIONAL .|'*l rEF::rIT

=



Chapter 5. Experimental Results

? BRI

e

| | | l .
y ! o4
0.3 !
l'. .: \-:\I’
e
Y ;
- .

Fig. 10 Improvement of fail case — Median separator

5.2 Detection rate of moving object

Figure 9, 10 shows representative detection fail case of GMFT and its

improvement by proposed approach. In figure 10 where the stationary vehicle
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on the right side, the median separator on the left side, and the moving vehicle
is located in the vicinity, conventional GMFT fails to classify the LIDAR points
into true clusters and to detect them by tying the wrong points together. On the
other hand, since the proposed approach transmits predicted obstacle
information before the DATMO module is activated, it excludes them in
advance and starts clustering, which shows much better detection results.
Figure 9 shows a parking lot with many stopped vehicles. All vehicles are about
20cm apart and it is very difficult for GMFT algorithm to classify them into
different clusters and conclude that they are not moving vehicles. This error
comes from a variety of factors, such as clustering error since each vehicle is
too close with each other. Moreover, points that start from a certain time in a
blind spot may look like a moving vehicle. The proposed approach resolves this
problem successfully. Since the proposed method stores probability values for
every grid, it judges that it is a stop point based on the Bayesian rule even if
there are sudden arising points from the blind spot. Thus, obviously, DATMO
gets to knows that these vehicles are not moving vehicles, so it can easily detect
the vehicles that are really moving around.

Beyond this simple example, a full evaluation of the detection rate is
shown in figure 11. In a complex urban road, all the vehicles inside the
surrounding ROI are checked by manual operation. After both the proposed

approach and the existing approach are performed, the detection results are
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recorded as shown in the figure. All of the above steps are conducted at every
frame and summed up. Total results for all frames with respect to each driving
scenario are summarized in the top of table 1. Furthermore, these are

recalculated to performance indicator, Precision, Recall, and F1 score.

Lo
-
TR
-Ilt
>
r'-h

Ty : i .Q

20 15 10 5

Fig. 11 Evaluation of detection rate with complex traffic, at Nambu-Beltway.
Actual moving targets are labeled by manually, and black arrows are detected
moving target through proposed approach. Blue means cluster of tracks,
green is LIDAR point cloud, gray is SOM.
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Table 1 Detection result of moving vehicles and evaluation by three
performance indicators

Method Scenario Actual Dc?tected Correctly
moving target | moving target detected
LK 1843 1780 1723
Proposed LC 664 611 569
TI 286 269 257
Existing LK 1843 1749 1414
(GMFT only) LC 664 631 496
TI 286 265 199
Method Scenario Precision Recall F1 score
LK 0.9680 0.9349 0.9511
Proposed LC 0.9313 0.8569 0.8925
TI 0.9554 0.8986 0.9261
Existing LK 0.8085 0.7672 0.7873
(GMFT only) LC 0.7861 0.7470 0.7660
TI 0.7509 0.6958 0.7223

Performance indicators are expressed at the bottom of table 1. Precision is
the ratio of correctly predicted value to the total predicted value (correctly
detected/detected), Recall is the ratio of correctly predicted value to the all
value in actual class (correctly detected/actual), and F'/ Score is the weighted
average of Precision and Recall (2*Recall * Precision | (Recall + Precision)).
All indicators are improved by 15~30% for all scenarios. An increase of
Precision means that the number of false alarm has decreased, and larger Recall

means that the frequency of false negative has been reduced.
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5.3 State estimation accuracy of moving object

In this section, estimated position, velocity, and yaw angle of target vehicle
are validated using reference data from RT-range for 3 different scenarios, Lane
Keeping(LK), Lane Change(LC), and Turning at the Intersection(TI),
respectively. Driving data had to be collected considering that the main
contribution of this study is to distribute mapping function to separated module
(SOM). Thus, all scenarios selected to include both moving vehicles and static
obstacle such as pole, curb, stopped vehicles. Each scenario is conducted 10
times and the speed is controlled within 50kph due to the traffic condition of
Nambu-Beltway.

Histogram of error distribution is indicated in figure 12 with respect to
each scenario. Blue and red denote proposed DATMO + Mapping (GMFT +
SOM) approach and conventional DATMO (GMFT) only, respectively. As
shown in the histogram, some bias exists due to the fact that the mounting
position of GPS antenna does not coincide with the center of the vehicle and
unique characteristic of RT-range by calibration. Thus, the standard deviation

is valid as the main indicator to evaluate the estimation accuracy.
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GMFT+SOM shows better standard deviation as shown in table 2. For all
scenarios and all states, the standard deviation is larger for the case of the
existing method than the proposed algorithm. Especially, in the case of figure
12-(c), (f), the significant mean error of yaw angle occurs in the existing method.
This is because the median strip that exists at the left side of target vehicle
disturbs clustering. In accordance with the intention of this study, the proposed
algorithm help clustering to avoids from being disturbed by peripheral static

obstacles, thus indicating less mean error and less standard deviation.

Table 2 Estimation accuracy of main states

Method Standard deviation LK LC TI

of state

Position 0.0869 0.1423 0.1363

Proposed Velocity 0.2122 0.2426 0.2690

Yaw angle 1.7097 1.5219 2.0865

- Position 0.2397 0.2412 0.1505

(Gﬁ‘ﬁlgﬁm Velocity 0.5380 | 0.4825 | 0.5514

Yaw angle 2.6306 3.2052 2.3101

In general, due to the limit of 2D LiDAR itself, point cloud of static
obstacle can be observed like a moving object even though the points are of a
static object. In some case, as the moving vehicle moves past, the part of static
obstacle that was blind begins to be observed, thus it can be seen as a moving
object in the existing method. This is because the GMFT judges whether or not

it is moving based on the flow of points. However, the proposed algorithm can
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be free from this problem because the SOM maintains the probability of static
obstacle for all grid in advance, thus GMFT can eliminate unnecessary points
before clustering. It is reasonable that this leads to improvements in state

estimation accuracy of moving vehicles.

5.4 Code operation time

Algorithms are run on the platform described in 5.1. Code operation time is
recorded at every time step and the results for two approaches are summarized
in table 3, which includes all scenario LK, LC, and TI. While the existing
method is operated with GMFT only, results of the proposed approach are
separated into sub-function in order. The proposed approach consumes a certain
amount of time in the sub-function. However, in the GMFT process of the
proposed approach, time is dramatically reduced enough to offset the loss in the
other sub-functions. This result accurately confirms the intention of the
interaction between DATMO and SOM, which distributing the roles performed
by DATMO (GMFT) in the existing research, thereby reducing the calculation
burden. As a result, the total elapsed time for the whole perception algorithm is
greatly reduced. This also satisfies to maintain operation time less than 80 msec,

which corresponds to the operation frequency of IBEO LiDAR, 12.5Hz.
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Table 3 Code operation time of sub-function

. SOM GMFT SOM
Method Time Track Total
(ms) | Predict | Clustering Update | (ms)
management

Proposed Mean 8.1 5.7 24.8 6.2 44.8
p Max | 132 15.9 75.5 85 |113.1
Existing | Mean - 13.7 86.4 - 100.1
(GMFT only)| Max - 31.5 125.7 - 157.2
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, a novel fusion approach based on the interaction between
Static Obstacle Map (SOM) method and Geometric Model-Free Tracking
(GMFT) algorithm is presented to improve detection and tracking performance
for real-time, urban autonomous driving. Interaction concept is designed to

divide the role of the construction of a map that consists of static objects only
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and the role of tracking of moving objects such as moving vehicles. Detection
rate of moving objects, state estimation accuracy of target, and calculation
burden have shown problems under the existing approach, which is a
conventional method using only DATMO algorithm, and much of them are
solved by the proposed approach.

The main contribution of this study is distributing roles of algorithms
according to the motion state of the LIDAR point cloud. Thus, advantages of
the proposed approach are more evident in complicated driving situation
include moving objects and static obstacles include poles, cones, curbs,
sidewalks, stop vehicles and all geographic features. The comparative
advantage of the proposed method may be relatively small in an uncrowded
road situation, but under such circumstances, the existing method also shows

good performance and is less likely to cause problems.

6.2 Future works

The GMFT algorithm, which is selected for achieving DATMO, assumes
that the shape of consecutive LiDAR point does not change dramatically.

However, in real driving circumstances, above assumption does not match due

to FOV (Field of View) of LiDAR, blind spot by any objects, or in case of
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moving vehicle passes ego vehicle by very high speed. Therefore, Geometric
Model-Based Tracking (GMBT) or feature-based matching approach need to be
dealt with in future work.

In addition, shape extraction is helpful if it is added to this study. Due to
the geometric relationship, the center of vehicles is varied according to whether
the classified clusters consist of only one side of vehicles, or it includes both
side and the back side of vehicles. This would improve estimation accuracy of

position and yaw angle than this study.
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