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ABSTRACT

A Product-of-Exponentials Kinematic Calibration

Algorithm for Serial Robots Using a Laser Pointer

by

Pubest Detdee

Department of Mechanical and Aerospace Engineering

Seoul National University

This thesis proposes a kinematic calibration algorithm for serial robots based on a

minimal product of exponentials (POE) forward kinematic model. Generally, robot

calibration requires the measurement of the end-effector frame (position and ori-

entation), which typically requires special measurement equipment. To avoid using

complex measurement devices and to make the calibration easy to implement for

even the most general serial robots, in our approach we attach a laser pointer to

the end-effector, which is then aimed at a set of fixed known reference points in

the plane. Treating the laser as a prismatic joint and the reference point as the
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tip, kinematic calibration is then performed by minimizing the Cartesian position

difference between the measured and estimated Cartesian tip position of the robot.

Our method is validated via simulations and experiments involving a seven-dof in-

dustrial robot arm.
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1
Introduction

Because of errors in the manufacturing and assembly process, the actual kinematic

parameters of a robot usually deviate from its nominal values. While directly mea-

suring a robot’s kinematic parameters is difficult, one can instead measure the pose

(e.g., position and orientation) of the end-effector to estimate the actual kinematic

parameter values; this process is referred to as kinematic calibration.

A typical kinematic calibration procedure begins by constructing a model of

the forward kinematics of a robot, which can be expressed as a function of the

form x = f(θ, p), where θ are the joint variables and p denote the kinematic pa-

rameters, and x represents the position and orientation of the end-effector. Cali-

bration typically proceeds by linearizing the forward kinematics as

dx =
∂f(θ, p)

∂θ
dθ +

∂f(θ, p)

∂p
dp,

where the terms dx, dθ, and dp can be viewed as errors between the actual and

1
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predicted parameter values:

dx , xactual − xpredicted,

dθ , θactual − θinput,

dp , pactual − pnominal.

Calibration involves taking measurements of the position and orientation of the

end-effector in various configurations, and then determining the optimal dθ and dp

that minimizes a suitable criterion. The most common criterion is a least-squares

criterion of the form

min
dp,dθ

n∑
i=1

∥∥∥∥dxi − ∂f(θi, p)

∂θ
dθ − ∂f(θi, p)

∂p
dp

∥∥∥∥2 ,
which is minimized with respect to dp and dθ.

It should be noted that x here is a local coordinate representation of the end-

effector position and orientation. More generally, an end-effector’s position and ori-

entation is represented as a homogeneous transformation matrix, also known as the

Special Euclidean group of rigid-body motions, denoted SE(3).

1.1 Existing Methods

The Denavit-Hartenberg (D-H) parameters [4] are widely used for modeling the

kinematics of a robot due to its minimal set of parameters in describing the robot

kinematics. However, the D-H parameters are singular when neighboring joint axes

are nearly parallel, which makes its error model discontinuous. Several modified

D-H parameters have been proposed to solve the singularity problem, such as the

Hayati model [5], the Veitschegger model [6], and CPC model [7]. These models

contain redundant parameters that are defined in an ad hoc fashion, and obtaining
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a closed-form expression for ∂f
∂p is not straightforward. It has further been pointed

out that these redundant parameters may limit the application of these models to

calibration [8].

Instead of focusing on the D-H parameters, Brockett [9] presents an alternative

way to describe the forward kinematics based on a modern Lie group representa-

tion of classical screw theory, in which the forward kinematics can be expressed as

a product of exponentials (POE). Unlike the D-H parameters, kinematic parame-

ters in the POE formula vary smoothly with changes in the joint axes, leading to

a singularity-free model. Okamura and Park [8] are the first to employ the POE

formula to serial robot kinematic calibration. They present a closed-form set of

equations for the linearization and also derive an iterative least-squares algorithm

for calibration. A more explicit form of the linearization is presented in He et al.

[10].

Generally, the calibration algorithm based on the POE formula requires the

operations of normalization and orthogonalization, which is used to adjust the up-

dated screw axes to satisfy the magnitude and pitch constraints. Yang et al. [3]

propose a minimal POE-based model, eliminates these constraints, and also show

that the identification process based on their model converges more rapidly than

the original algorithm proposed in [8].

For the measurement of the errors of the end-effector pose, there are generally

two methods. The open-loop method utilizes an external tool such as a ball-bar

[11], laser tracking systems [12], or coordinate measurement machines (CMMs) [13]

to measure the end-effector pose. On the other hand, the closed-loop method uti-

lizes constraints on the end-effector and then uses the joint angle measurements

alone to measure the errors of the end-effector pose. This closed-loop method is

simpler to implement compared to the open-loop method.
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Other approaches have imposed a physical constraint to the end-effector. For

example, Zhuang et al. [14] use a plane constraint on the end-effector, while Meg-

giolaro et al. [15] impose a single endpoint contact constraint on the end-effector.

However, such physical constraints lead to contact forces that can cause errors in

the joint measurements.

In order to avoid the effect from the forces, some other researchers choose al-

ternative processes such as adding visual tools or attaching sensors to the end-

effector. Gong et al. [16] use an optical sensor mounted on the end-effector to

measure the point on a calibration plate. Hu et al. [17] attach a laser pointer to

the end-effector and use a stationary camera to observe the laser’s position. Meng

et al. [18] propose a vision-based measurement method by attaching a camera to

the end-effector. However, these methods need prior calibration between the added

tools and the end-effector, which makes the calibration process more complicated.

Gatla et al. [19] propose a virtual closed kinematic chain, in which a laser

pointer attached to the end-effector aimed at a fixed point in a plane creates a

virtual closed kinematic chain. In their algorithm, kinematic parameters of the

laser pointer are also added into the error model. Hence, both of the kinematic

parameters of the robot and the laser pointer can be calibrated at the same time.

1.2 Contributions of This Thesis

In this thesis, we propose a new kinematic calibration algorithm for serial robots

that exploits the advantages of the minimal POE-based model [3] and the vir-

tual closed kinematic chain approach described in [19]. The main concept of our

approach is to attach a laser pointer to the end-effector, where the laser is then

aimed at a set of fixed known reference points in the plane. Treating the laser as
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a prismatic joint and the reference point as the tip, the forward kinematics is then

constructed by using the minimal POE formula. This method is relatively easy for

implementation and is suitable for any serial robots.

The thesis is organized as follows. In Chapter 2, we provide necessary back-

ground about Lie group formulations and a brief introduction of the POE formula,

and the kinematic calibration based on the POE formula. In Chapter 3, we de-

scribe our kinematic calibration method. The experimental results and discussions

are presented in Chapter 4. In Chapter 5, we summarize our method and also

discuss the advantages and limitations.



2
Kinematics Preliminaries

In this Chapter, we provide the necessary geometric background for the robot kine-

matics based on Lie group formulations. A brief introduction about the POE for-

mula, the minimal POE formula and the linearization of the forward kinematics

equations are also included in this chapter.

2.1 Geometric Background

In this section, we describe the motion of a rigid body (e.g., position, orientation),

referring to Lie group formulations. Details of this section can be referred to [2].

2.1.1 The Lie Group Formulations

In the robotics literature, we use the Special Euclidean Group SE(3) or also known

as the homogeneous transformation matrix, denoted T , to describe the orientation

and position of a rigid body in three-dimensional space, where T ∈ SE(3) is the

6
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set of all 4x4 real matrices of the form R p

0 1

 , (2.1.1)

where R ∈ SO(3) and p ∈ R3 are represented the orientation and position of the

rigid body, respectively. Here SO(3) refers to the group of 3x3 rotation matrices

and is defined as

SO(3) =
{
R ∈ R3×3 ∣∣RTR = I, detR = 1

}
. (2.1.2)

It should be noted that the rotation of the rigid body can be described by the

rotation around some unit axis ω ∈ R3 (i.e., ‖ω‖ = 1) with some angle θ ∈ R.

Thus, the rotation matrix R ∈ SO(3) can be expressed as

R = e[ω]θ = I + sin θ[ω] + (1− cos θ)[ω]2, (2.1.3)

where [ω] ∈ so(3). Here so(3) is 3x3 skew-symmetric which is known as the Lie

algebra of the Lie group SO(3), and is expressed as

[ω] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.1.4)

Similarly, given a vector S = (ω, v) ∈ R6 and θ ∈ R, where ω ∈ R3 is a unit vector

(i.e., ‖ω‖ = 1) and v ∈ R3. The homogeneous transformation matrix T ∈ SE(3)

can be described as

T = e[S]θ =

 e[ω]θ G(θ)v

0 1

 , (2.1.5)

where [S] ∈ se(3) and G(θ) is given by

G(θ) = Iθ + (1− cos θ)[ω] + (θ − sin θ)[ω]2. (2.1.6)
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Here se(3) is the Lie algebra of the Lie group SE (3) and is expressed as

[S] =

 [ω] v

0 0

 , (2.1.7)

where [ω] ∈ so(3) and v ∈ R3.

2.1.2 Screw Motions

For serial robots consist of n joint and n+1 links, the rotation from the revolute

joint or the translation from the prismatic joint can be described by the screw

motion as

T = e[S]θ ∈ SE(3), (2.1.8)

where [S] ∈ se(3) and θ ∈ R is a joint angle for a revolute joint or a translation

distance for a prismatic joint. Here S ∈ R6 denotes the screw axis.

For a given reference frame, the screw axis S can be expressed in the frame as

S =

 ω

v

 ∈ R6, (2.1.9)

where ω ∈ R3 and v ∈ R3.

To apply the screw motions to each joint in a robot, the screw axis has to

satisfy the constraints below.

• For a revolute joint, ω ∈ R3 is a unit vector in the positive direction of the

joint axis (i.e., positive rotation one defined in the right-hand sense, ‖ω‖ = 1) and

v = −ω × q, where q ∈ R3 is any point on the joint axis.

• For a prismatic joint, ω = 0 and v ∈ R3 is a unit direction in a positive

translation of the joint axis (i.e., ‖v‖ = 1).
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2.1.3 Adjoint Representation

We usually describe a vector in the space as expressed in some reference frame.

Given a reference frame {a} and {b}, we denote the screw axis S ∈ R6 as expressed

in frame {a} and {b} as Sa and Sb, respectively. The relationship between Sa and

Sb can be expressed as

Sb = [AdTba ]Sa, (2.1.10)

where [AdTba ] is the adjoint representation and is expressed as

[AdTba ] =

 Rba 0

[pba]Rba Rba

 ∈ R6×6, (2.1.11)

where Rba ∈ SO(3) and pba ∈ R3 are the orientation and position of frame {a}

expressed in frame {b}.

2.2 Forward Kinematics

Forward kinematics refers to the use of kinematic parameters of a robot and its

joint values to calculate the position and orientation of the end-effector frame. In

this section, we describe the forward kinematics using the POE and the minimal

POE formula. More details of these formulations can be found in [2], [3], respec-

tively.

2.2.1 The Product of Exponentials Formula

To use the POE formula, only two coordinate frames need to be assigned. First, is

a fixed reference frame {s} which is usually attached to the robot’s base. Another

one is an end-effector frame {b} which is attached to the end-effector of the robot.
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Figure 2.1: An n-dof serial robot [2].

Let M ∈ SE(3) denote the position and orientation of the end-effector frame rel-

ative to the fixed base frame when the robot is in its zero position (i.e., all the

joint variables are equal to zero).

Consider Figure 2.1; if we assume joint n is rotated with some angle θn, the

end-effector frame {b} can be expressed as

T = e[Sn]θnM, (2.2.12)

where T ∈ SE(3) represents the new configuration of the end-effector frame and

Sn is the screw axis of joint n as expressed in frame {s}.

Next, if we assume that joint n− 1 is also rotated with some angle θn−1, the

end-effector frame {b} can be then expressed as

T = e[Sn−1]θn−1

(
e[Sn]θnM

)
. (2.2.13)

Repeatedly applying these steps until the joint 1 is rotated with θ1, the configu-

ration of the end-effector frame can be expressed as

T (θ) = e[S1]θ1 · · · e[Sn−1]θn−1e[Sn]θnM. (2.2.14)
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Equation (2.2.14) is the product of exponentials formula describing the forward

kinematics of an n-dof serial robot.

2.2.2 The Minimal Product of Exponentials Formula

During the identification process, all kinematic parameters have to be updated at

the end of each iteration step. The screw axis of each joint in the POE formula has

to be adjusted to satisfy the joint constraints. This may decrease the performance

of the identification process [3]. According to [3], these constraints can be easily

eliminated by considering the screw axis in the link frame which is quite similar

to the D-H parameters. In this section, we will explain how to construct the link

frame into each link and also describe the forward kinematics using the minimal

POE formula. For more details, refer to [3].

Figure 2.2: Illustration of a link frame {i} [3].
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2.2.2.1 Link Frame Establishment

The concept of this method is to attach a link frame into each link and then con-

sider the screw axis in its link frame, as shown in Figure 2.2. The link frame can

be constructed by following the rules below.

For a revolute joint: given Si = (ωi,vi) ∈ R6 is the screw axis of the joint i as

expressed in the base frame {s}.

• The unit direction of the joint axis ωi is set as the zi-axis of a link frame {i}.

• If the zi-axis does not pass through the origin of the base frame (O) (see Figure

2.2), we choose the origin of the link frame {i}, denoted qi, to be the intersection

point between the zi-axis and a plane which is perpendicular to the zi-axis and

passes through O.

By setting the unit vector along qi be the yi-axis, the xi-axis can be calculated

by −ωi × qi/‖qi‖. This vector can be regarded as a unit vector along vi. Hence,

the homogeneous transformation matrix of frame {i} relative to the base frame

{s} is given by

Tsi =

 vi
‖vi‖

qi
‖qi‖

ωi qi

0 0 0 1

 . (2.2.15)

• If the zi-axis passes through the origin of the base frame (O) (see Figure 2.3),

we set qi be the same point as O. A link frame {i} can be then obtained by

rotating frame {s} about e-axis with an angle α, where e := [0, 0, 1]T × ωi and

α := arccos([0, 0, 1]ωi). Hence, Tsi can be expressed as

Tsi =

 I + sinα [e] + (1− cosα)[e]2 0

0 1

 . (2.2.16)

For a prismatic joint: given Si = (0,vi) is the screw axis of the joint i as

expressed in the base frame {s}.
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Figure 2.3: Illustration of the rotation of frame {s} [3].

• vi is set as the zi-axis of a link frame {i}.

• qi is chosen at the base origin O. Then, Tsi can be calculated in the same way

as a revolute joint that the zi-axis passes through O, but replacing ωi with vi.

2.2.2.2 Forward Kinematics Using Minimal POE Formula

Let S ′i be the screw axis of the joint i as expressed in the link frame {i}. Using

the adjoint representation, the screw axis of joint i can be expressed in frame {s}

as

Si = [AdTsi ]S ′i. (2.2.17)

According to [3], we can choose a set of independent parameters ηi = [v′xi, v
′
yi]
T

and ηi = [ω′xi, ω
′
yi, q

′
xi, q

′
yi]
T to describe the screw axis S ′i of a prismatic joint and

a revolute joint, respectively. Note that, according to the link frame establishment

rules, the nominal parameters in ηi are all equal to zero.

Besides, it will be more convenient to write Si in a function of ηi as follows.
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For a revolute joint:

Si = Si(ηi) = [AdTsi ]S ′i = [AdTsi ]




ω′xi

ω′yi√
1− ω′2xi − ω′2yi



−


ω′xi

ω′yi√
1− ω′2xi − ω′2yi

×

q′xi

q′yi

0




. (2.2.18)

For a prismatic joint:

Si = Si(ηi) = [AdTsi ]S ′i = [AdTsi ]



0

0

0

v′xi

v′yi√
1− v′2xi − v′2yi


. (2.2.19)

Substituting Equations (2.2.18) and (2.2.19) into (2.2.14). Hence, the forward

kinematics of an n-dof serial robot can be expressed by using the minimal POE

formula as

T (θ) = e[S1(η1)]θ1 · · · e[Sn−1(ηn−1)]θn−1e[Sn(ηn)]θnM. (2.2.20)

2.3 Kinematic Error Model

In this Section, we describe the error model based on the linearization of the for-

ward kinematics in Equation (2.2.20). It is noted that there is no necessity to ob-

tain the error model, using this method. Some of the researchers also apply other

methods to create their error models, e.g., [19].
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2.3.1 Linearizing the Forward Kinematics

Note that M can be expressed using the screw motion as M = e[SM ], where SM =

(ωM , vM ) ∈ R6 is denoted the initial screw axis, where ωM ∈ R3 and vM ∈ R3.

Equation (2.2.20) can be then rewritten as

T (θ) = e[S1(η1)]θ1 · · · e[Sn−1(ηn−1)]θn−1e[Sn(ηn)]θne[SM ]. (2.3.21)

By differentiating Equation (2.3.21) and right multiplying with T−1, the error

model can be expressed as

dT T−1 =

(
∂T

∂S
∂S
∂η

dη +
∂T

∂θ
dθ +

∂T

∂SM
dSM

)
T−1. (2.3.22)

First, we consider the left-hand side of Equation (2.3.22) dT T−1 ∈ se(3). Let

Ta and Tn be the actual and nominal end-effector frames, respectively, where Ta is

obtained from measurement data and Tn is calculated using the nominal parameter

values. Then dT T−1 = (Ta−Tn)T−1n = TaT
−1
n −I. If the deviation between Ta and

Tn are sufficiently small, then TaT
−1
n = I+β+β2/2!+ · · · , where β = log(TaT

−1
n ).

Then, with the first-order approximation, we have

dT T−1 = β = log(TaT
−1
n ). (2.3.23)

By taking several measurements of the end-effector pose, the kinematic param-

eters can be then determined by

min
dη,dθ,dSM

∥∥∥∥dT T−1 − (∂T∂S ∂S∂η dη +
∂T

∂θ
dθ +

∂T

∂SM
dSM

)
T−1

∥∥∥∥2 . (2.3.24)

Next, we consider the right-hand side of Equation (2.3.22). Here, we define the

operator ∨ which maps : se(3)→ R6. According to [10] and [3], the explicit form
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of dT T−1 is given by[
dT T−1

]∨
=[(de[S1]θ1)e[−S1]θ1 ]∨ + [Ade[S1]θ1 ][(de[S2]θ2)e[−S2]θ2 ]∨

+ · · ·+ [Ad
e[S1]θ1 ···e[Sn−1]θn−1 ][(de[Sn]θn)e[−Sn]θn ]∨

+ [Ade[S1]θ1 ···e[Sn]θn ][(de[SM ])e[−SM ]]∨,

(2.3.25)

where

[(de[Si]θi)e[−Si]θi ]∨ = AiBidηi + Sidθi, (2.3.26)

where for a revolute joint,

Ai = θiI6 +
4− αi sinαi − 4 cosαi

2‖ωi‖2
Ωi +

4αi − 5 sinαi + αi cosαi
2‖ωi‖3

Ωi
2

+
2− αi sinαi − 2 cosαi

2‖ωi‖4
Ωi

3 +
2αi − 3 sinαi + αi cosαi

2‖ωi‖5
Ωi

4,

and

Ωi =

[ωi] 0

[vi] [ωi]

 , ‖ωi‖ = (ω2
xi + ω2

yi + ω2
zi)

1/2
, αi = ‖ωi‖θi,

and

Bi =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

0 0 0 0


,
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and for a prismatic joint,

Ai = θiI6, Bi =



0 0

0 0

0 0

1 0

0 1

0 0


.

Besides,

[(de[SM ])e[−SM ]]∨ = AMdSM , (2.3.27)

where

AM = I6 +
4− αM sinαM − 4 cosαM

2α2
M

ΩM +
4αM − 5 sinαM + αM cosαM

2α3
M

Ω2
M

+
2− αM sinαM − 2 cosαM

2α4
M

Ω3
M +

2αM − 3 sinαM + αM cosαM
2α5

M

Ω4
M ,

and

ΩM =

[ωM ] 0

[vM ] [ωM ]

 , αM = (ω2
Mx + ω2

My + ω2
Mz)

1/2
.

For simplicity, letting

Ji =


[A1B1,S1] for i = 1[

Ad( i−1∏
k=1

e[Sk]θk

) ][AiBi,Si] for 1 < i ≤ n

JM =
[

Ad( n∏
k=1

e[Sk]θk

) ]AM .

(2.3.28)

Hence, Equation (2.3.25) can be expressed as

y = Jx, (2.3.29)
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where

y = [dT T−1]∨ ∈ R6, (2.3.30)

J = [J1,J2, · · · ,Jn,JM ] ∈ R6×(5r+3p+6), (2.3.31)

x = [dηT1 , dθ1, · · · , dηTn , dθn, dSTM ]T ∈ R5r+3p+6, (2.3.32)

where r and p are the number of revolute joints and prismatic joints, respectively.

Equation (2.3.29) is the error model for an n-dof serial robot based on the minimal

POE formula.



3
Calibration Methodology

In this chapter, we describe our kinematic calibration in this thesis in detail. The

chapter begins with the concept of our method, followed by the calibration algo-

rithm.

3.1 The Concept of the Method

Our method merges the advantages of the minimal POE-based model [3] and the

virtual closed kinematic chain approach described in [19]. The minimal POE-based

model is used for representing the forward kinematics. The idea of using a laser

pointer in a virtual closed kinematic chain approach is used for calibration. In this

session, we will explain these processes in detail.

3.1.1 Forward Kinematics of a Robot With a Laser Pointer

The kinematic calibration process starts by constructing the forward kinematics.

Figure 3.1 shows that the laser pointer attached to the end-effector is pointing to

19
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Figure 3.1: A fixed reference frame and an end-effector frame of the robot.

the fixed reference point in the plane. In order to identify the location of the laser

spot in the plane, we attach a fixed reference frame {s} at the robot’s base and

attach an end-effector frame {b} at the fixed reference point. Treating the laser

as a prismatic joint and the reference point as the tip, the forward kinematics for

an n-dof serial robot can be expressed as

T (θ) = e[S1(η1)]θ1 · · · e[Sn(ηn)]θne[Sp(ηp)]θpM, (3.1.1)

where θp ∈ R is referred to the length of the laser and Sp = (0, vp) ∈ R6 denotes

the screw axis of the laser (i.e., a prismatic joint), where the nominal values of

vp is set as the same as the direction of the joint axis n. Here T (θ) is represented

the orientation and the position of the laser spot in the plane.

3.1.2 The Error Model for Calibration

The error model in Section 2.3.1 requires both orientation and position data as in-

put for calibration algorithm. However, our method can only measure the position
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of the reference point. Therefore, we adopt the concept of the calibration model

in [20], which need only the position data into our method.

For simplicity we denote

h(θ) = e[S1(η1)]θ1 · · · e[Sn(ηn)]θne[Sp(ηp)]θp =

Rh ph

0 1

 , (3.1.2)

and M ∈ SE(3) is expressed as

M =

 RM pM

0 1

 , (3.1.3)

where RM and pM are the orientation and position of the end-effector frame {b}

expressed in frame {s}, respectively.

Let pt be the tip’s position as expressed in frame {s}. Using the forward kine-

matics in Equation (3.1.1), pt is calculated by

 pt
1

 = h

 RM pM

0 1




0

0

0

1


= h

 pM
1

 .
(3.1.4)

Differentiating (3.1.4): dpt

0

 = (dh h−1)h

 pM
1

+ h

 dpM

0


= (dh h−1)

 pt
1

+ h

 dpM

0

 (3.1.5)

i.e., dpt = [ −[pt], I3 ](dh h−1)∨ +RhdpM , (3.1.6)
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where [pt] is the skew-symmetric of pt. Here, dpt ∈ R3 is the Cartesian posi-

tion difference between the actual and nominal tip’s position. Note that in our

approach, we treat the reference point as the tip. Hence, dpt is expressed as

dpt = pat − pnt ∈ R3, (3.1.7)

where pat is the measured position of the references point, and pnt is the calculated

position of the references point using nominal parameter values.

According to [20, 10], it points out that dθ and dSM cannot be identified in

the same error model. In our approach, we assume that there are only dS and

dSM exist. Thus, dθ can be excluded from the error model. Hence, dhh−1 can be

expressed as

dh h−1 =

(
∂T

∂S
∂S
∂η

dη

)
h−1. (3.1.8)

By converting dh h−1 to an equivalent form as expressed in Section 2.3.1. The

explicit form of dpt can be expressed as

z = K1dη1 + · · ·+ Kndηn + Kpdηp + KMdpM , (3.1.9)

where

z = dpt = pat − pnt , (3.1.10)

Ki =


[ −[pt], I3 ][A1B1] for i = 1

[ −[pt], I3 ]
[

Ad( i−1∏
k=1

e[Sk]θk

) ][AiBi] for i = 2, 3, · · · , n, p
(3.1.11)

KM = Rh. (3.1.12)

For simplicity, letting

K = [K1, · · · ,Kn,Kp,KM ] ∈ R3×(4r+2(p+1)+3), (3.1.13)
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x = [dηT1 , · · · , dηTn , dηTp , dpTM ]T ∈ R4r+2(p+1)+3. (3.1.14)

Hence, Equation (3.1.9) can be expressed as

z = Kx. (3.1.15)

Calibration process is operated by aiming the laser at a fixed known reference

point in the plane with several m configurations and combining the error vector

zi and the Jacobians Ki into a single equation:
z1
...

zm

 =


K1

...

Km

x, (3.1.16)

or more compactly,

z̃ = K̃x. (3.1.17)

The least-squares solution for x is

x = (K̃
T
K̃)−1K̃

T
z̃. (3.1.18)

The details about the identification process are discussed in the next section.

3.2 Calibration Algorithm

To solve x from the equation (3.1.18), we need all joint measurement data as input

for calibration algorithm. θ1− θn can be obtained directly from the controller. For

θp, we may need an external tool or advance laser pointer to measure the length.

In order to simplify the calibration process, we propose the method to estimate

the length of the laser in this section. We also describe in detail on the identifi-

cation process for our calibration algorithm.
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Figure 3.2: Estimation method of the length of the laser.

3.2.1 The Estimation Method of the Length of the Laser

According to Figure 3.2, the length of the laser (θp) can be estimated by calcu-

lating the distance between pat and pe as

θp ≈ ‖pat − pe‖, (3.2.19)

where

• pat is the position of the reference point which can be obtained from the

measurement.

• pe is the position of the end-effector frame without the laser pointer (i.e.,

θp = 0) which can be calculated by the forward kinematics using θ1 − θn.

However, pe and θp are the unknown parameters in the calibration algorithm.

After testing the idea, we find out that our algorithm cannot identify these two

parameters at the same time. In order to solve this problem, the element of the

end-effector position that follows the direction of the laser line has to be fixed as

a constant during the identification process.
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Figure 3.3: Robot at its zero position.

As shown in Figure 3.3, the direction of the laser line follows the z-axis when

the robot is at zero position. In this case, the pMz has to be measured and fixed

as a constant during the identification process.

3.2.2 Identification Process

By using the estimated length of the laser in Equation (3.2.19), x can be solved

by the least-squares iteration, as shown in Figure 3.4.

At the end of each iteration step, the kinematic parameters are updated by x.

For the next iteration, Tsi and also θp are recalculated according to the updated

Si. ηi is reset to its nominal values which is all parameters in ηi are equal to zero.

The iteration process is terminated when ‖x‖ becomes sufficiently small.

However, using the estimated length of the laser instead of its actual value may

decrease the performance on the identification process.

Treating the error of the length of the laser line as a joint offset error (dθp).

According to [20, 3], it points out that the joint offset errors (dθ) can be con-

verted into dS and dSM (see Appendix A). This means that the performance of
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our algorithm depends on the accuracy of the estimated length of the laser.

It should be noted that this algorithm is just an estimation method. The more

accurate measurement data are used, the more accurate results are obtained. In

order to earn better accuracy result, the number of joint configurations should be

equal or over the number of the identified parameters in the algorithm which is

4r + 2(p+ 1) + 3.

Additionally, the reference point locations in the plane should cover most of

the robot’s workspace. We suggest that the reference points should be located on

the right, left, and front of the robot’s workspace as shown in Figure 3.5.
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Figure 3.4: Calibration algorithm.
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Figure 3.5: 3 Fixed point locations in a plane.



4
Experiments

4.1 Simulation 1: 6-Dof Robot With Precise Data

In order to verify our calibration algorithm, we calibrate a 6-dof Puma 560 robot

to compare the robot accuracy before and after calibration. For this verifying pro-

cess, we set the parameters identically to the second simulation in [1].

We also assume that there is no error in the joint offset (dθ) and the rotation

part of the end-effector frame (dRM ). The nominal and actual kinematic param-

eters of the robot can be referred to as Table 4.1.

In this simulation, we select 3 fixed reference points in the plane which are

P1(400, 150, 0) mm, P2(500, 0, 0) mm, P3(400, -150, 0) mm with respect to the

robot’s base. The pMz is needed to be fixed constantly to its actual value. The

actual kinematic parameters are used to calculate joint configurations in order to

aim the laser at the fixed reference points. 30 joint configurations per each fixed

point will be collected and used in the calibration. We aim to collect 90 joint con-

figurations in total. The results are shown in Table 4.2.

29
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Table 4.1: Kinematic parameters of Puma 560 robot (unit: mm)

Nominal Values Actual Values

S1 [0, 0, 1, 0, 0, 0]T [0.04,−0.02, 0.999, 0.02, 0.04, 0]T

S2 [0,−1, 0, 0, 0, 0]T [0,−1, 0,−0.02, 0, 0.05]T

S3 [0,−1, 0, 0, 0,−100]T [0.178,−0.984,−0.01,−0.0842, 0.0874,−101]T

S4 [0, 0,−1,−50, 250, 0]T [0.062, 0.013,−0.0998,−51, 249, 0.0752]T

S5 [0,−1, 0,−20, 0,−250]T [0.001,−1, 0,−20.6,−0.0206,−249]T

S6 [0, 0,−1,−50, 250, 0]T [0.095, 0.031,−0.0995,−51.27, 248.91, 2.86]T

Sp [0, 0, 0, 0, 0,−1]T [0, 0, 0, 0.095, 0.031,−0.995]T

M


1 0 0 250

0 1 0 50

0 0 1 −20

0 0 0 1




1 0 0 249

0 1 0 51

0 0 1 −20.6

0 0 0 1



To test the performance of our algorithm, we need to compare the estimated

length of the laser to its actual value in each configuration. Additionally, we also

need to compare the absolute position errors of the end-effector frames from the

calculation of the identified parameters and the actual parameters.

According to Figure 4.1, after 500 iterations, the results show only small dif-

ferences between the estimated length of the laser to its actual value. They also

show that the position errors of the end-effector frames between the identified pa-

rameters and the actual parameters are pretty much the same.

As there are no significant differences between the results of the end-effector
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frame position with the actual and identified parameters, we can then use the es-

timated length of the laser line to calculate in our calibration algorithm.

Table 4.2: Identified parameters of Puma 560 robot (unit: mm)

Identified Values

S1 [0.03996,−0.0199, 0.999, 0.04128, 0.0610,−0.00043]T

S2 [0,−1, 0,−0.0243, 0, 0.0706]T

S3 [0.17795,−0.98404,−0.000974,−0.0877, 0.0841,−101]T

S4 [0.0620, 0.0129,−0.9979,−51.01, 249, 0.067884]T

S5 [0.000949,−1, 0,−20.598,−0.02612,−249]T

S6 [0.09502, 0.030983,−0.99499,−51.275, 248.92, 2.8542]T

Sp [0, 0, 0, 0.095017, 0.030972,−0.99499]T

M


1 0 0 249

0 1 0 51.003

0 0 1 −20.6

0 0 0 1



4.2 Simulation 2: 6-Dof Robot With Noisy Data

In reality, it will be quite difficult to manually aim the laser to point at the cen-

ter of the fixed reference point precisely. In order to simulate that situation, we

added Gaussian noise with a specific variance to the fixed reference points every

time before calculating the joint configurations.
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(a)

(b)

Figure 4.1: Experimental errors in simulation 1 with (a) length of the laser mea-

surement and (b) position measurement.

In this section, we conduct 4 simulations with different noise variances (0.1

mm, 1 mm, 2 mm and 3 mm). We apply these 4 simulations to our calibration

algorithm and all the cases successfully converged.

We also test this with other 100 joint configurations with the same process in
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the previous session to ensure our calibration algorithm is working properly.

According to Figure 4.2, we find that the added noises also affect the error of

the estimated length of the laser and the end-effector frame position. However, the

average of the errors in the length of the laser and also the end-effector frame posi-

tion are not significantly different when compared to the added noise. This means

that even though there is some noise on the measurement process, this method

still provides a relatively good performance.

(a)

(b)

Figure 4.2: Experimental errors in simulation 2 with (a) length of the laser mea-

surement and (b) position measurement.
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4.3 Experiments on a 7-Dof Robot

In this experiment, we calibrate a 7-dof Panda robot with our method as follows:

(i) Attach a laser pointer to the end-effector and ensure that it is aligned with

the joint axis 7 as much as possible.

(ii) Measure the position of pMz at the zero position.

(iii) Select 3 fixed reference points in the plane; P1(521, 200, -8) mm, P2(436, 0,

-8) mm, P3(521, -200, -8) mm with respect to the robot’s base.

(iv) Aim the laser at the fixed reference points with 15 configurations per fixed

point and collect their joint configurations. (In case the robot is not applica-

ble for manual control by the operator, the teach-pendant process is needed

for this step).

The processes are shown in Figure 4.3. The results of this experiment are also

shown in Table 4.3.

To verify the accuracy of the robot, we randomly pick P4(441, 160, -8) mm as

a fixed reference point in the plane. We calculate 60 joint configurations from the

nominal parameters and other 60 joint configurations from the identified parame-

ters.

Although all configurations are calculated to aim the laser at the same fixed

point in the plane, the results show that the laser spots are landed in various

locations in the plane. We take top-view photos of each laser spot and input them

to the software called “ImageJ” to estimate the locations of these laser spots. The

processes are shown in Figure 4.4. The estimated locations of the laser spots are

plotted in MATLAB to demonstrate the scattering of these lasers. The results are

shown in Figure 4.5.
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After calibration, the mean of the radius of laser scattering is improved from

6.86 mm to 1.11 mm while the standard deviation is shifted from 5.016 mm to

1.00 mm.

We also calculate those laser positions with a fixed point to identify the abso-

lute position error. We find that the maximum error is improved from 26.993 to

4.92 mm. The mean error is also shifted from 9.76 to 1.057 mm. The results are

shown in Figure 4.6.



4.3. Experiments on a 7-Dof Robot 36

(a) (b)

(c)

Figure 4.3: Measurement process: (a) robot with a laser pointer at zero position

(pMz = 825 mm), (b) 3 fixed reference point locations in the plane, and (c) aiming

the laser at the fixed reference point.
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Table 4.3: Kinematic parameters of 7-dof Panda robot (unit: mm)

Nominal Values Identified Values

S1 [0, 0, 1, 0, 0, 0]T [0.0046, 0.00126, 0.9999, 0.54439,−0.1662,−0.00229]T

S2 [0, 1, 0,−333, 0, 0]T [−0.00768, 0.9999, 0.00027,−334.33,−2.5714, 2.1275]T

S3 [0, 0, 1, 0, 0, 0]T [0.000705, 0.00132, 1,−0.20847,−0.42849, 0.00071403]T

S4 [0,−1, 0, 649, 0,−82.5]T [0.01345,−0.99991, 0.001986, 651.46, 8.5964,−85.454]T

S5 [0, 0, 1, 0, 0, 0]T [−0.00128, 0.00278, 1,−1.4658,−6.2373, 0.015641]T

S6 [0,−1, 0, 1033, 0, 0]T [0.017924,−0.99982, 0.005839, 1032.7, 18.492,−3.8108]T

S7 [0, 0,−1, 0, 88, 0]T [−0.008532,−0.001502,−0.9999,−0.591, 82.83,−0.1194T

Sp [0, 0, 0, 0, 0,−1]T [0, 0, 0, 0.2478, 0.006871,−0.99967]T

M


1 0 0 88

0 1 0 0

0 0 1 825

0 0 0 1




1 0 0 89.506

0 1 0 0.19809

0 0 1 825

0 0 0 1



Figure 4.4: Estimated location of the laser spot using ImageJ software.
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Figure 4.5: The scattering of the laser spot in the plane.

Figure 4.6: Maximum and mean position errors of the laser spot.



5
Conclusion

This thesis proposes a new way of a kinematic calibration algorithm for serial

robots that merges the advantages of the minimal POE-based model and the ap-

proach of the virtual closed kinematic chain method. To calibrate a robot with our

method, we attached a laser pointer to the end-effector. The pointer is set to aim

at three fixed known reference points in the plane with various configurations. The

results of the joint configurations are applied to our calibration algorithm. Treat-

ing the laser as a prismatic joint and the reference point as the tip, we can identify

the optimal kinematic parameters by minimizing the Cartesian position difference

between the measured and estimated Cartesian tip position of the robot.

The simulations result in chapter 4 also shows that we can use the estimated

length of the laser in our calibration algorithm. Additionally, after testing our

calibration algorithm with the real robot, the experimental results demonstrate

the significant improvement of the robot’s accuracy. However, this method may

contain some errors such as the human-errors and the errors from the estimated

length of the laser line. These errors may affect the performances of our method.

39
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Accordingly to the experiment with the real robot in chapter 4, we find that

the robot’s position accuracy rate after calibration is ranged between 1-5 mm. As

a result, if the robots have the position accuracy rate under 5 mm, they may not

receive significant accuracy improvement with this calibration method.

The kinematic calibration algorithm in this thesis is mainly focused on the er-

rors that are caused by geometrical effects. The errors from non-geometrical effects

discussed in [21] such as gear transmission, backlash, and joint compliance can also

be integrated into our algorithm to deliver more accurate results.

In conclusion, despite some minor errors, our method is easy to implement as

the process only requires the use of a laser pointer and a simple observation plane

to operate. Consequently, our method is also considered as a cost-efficient way to

deliver effective results for robots’ performance accuracy.



A
Appendix

A.1 Conversion From dq to dS and dSM [1]

Assume there exists the joint offset errors for each joint in the forward kinematics,

denoted dθi. Then Equation (2.2.14) can be written as

T (θ) = e[S1](θ1+dθ1)e[S2](θ2+dθ2) · · · e[Sn](θn+dθn)e[SM ]

= e[S1]θ1e[S1]dθ1e[S2]θ2e[S2]dθ2 · · · e[Sn]θne[Sn]dθne[SM ].
(A.1.1)

According to the fact that if M ∈ SE(3) and p ∈ se(3), then MepM−1 = eMpM−1

which can be regarded as the identity Mep = eMpM−1
M . Therefore, Equation

(A.1.1) can be rewritten as

T (θ) = e[S]1θ1e(e
[S1]dθ1 [S2]e−[S1]dθ1 )θ2e[S1]dθ1e[S2]dθ2 · · · e[Sn]θne[Sn]dθne[SM ]. (A.1.2)

By repeatedly applying the identity Mep = eMpM−1
M and using adjoint represen-

tation, we have

T (θ) = e[S
′
1]θ1e[S

′
2]θ2 · · · e[S′n]θne[S′M ], (A.1.3)

41
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where

[S ′i] =


[S1] for i = 1
Ad(i−1∏

k=1
e[Sk]θk

)
Si

 for 1 < i ≤ n
(A.1.4)

[S ′M ] = log

((
n∏
k=1

e[Sk]dθk

)
e[SM ]

)
. (A.1.5)

If we denote S ′i = Si+dSi and S ′M = SM+dSM , then Equation (A.1.1) is equivalent

to

T (θ) = e[S1+dS1]θ1e[S2+dS2]θ2 · · · e[Sn+dSn]θne[SM+dSM ]. (A.1.6)
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국문초록

위 논문은 Minimal POE (product of exponentials) 정기구학 모델에 기반한 직렬로

봇 캘리브레이션 알고리즘을 제안한다. 일반적으로 로봇 캘리브레이션은 엔드이펙터

프레임의 위치와 방향을 측정하는 작업을 수행해야 하는데, 이는 특별한 측정장비를

필요로 한다. 복잡한 측정장비의 사용 회피와 다양한 형태의 직렬로봇에 쉽게 응용하

기 위해, 이번 논문에서는 엔드이펙터에 레이저포인터를 부착하여 평면 위의 위치가

알려진 참조점들을 추적하여 캘리브레이션을 수행하는 방법을 제시한다. 캘리브레이

션은 레이저포인터와 참조점을 각각 선형조인트와 팁으로 생각하여 로봇 팁 위치의

측정값과 추정값의 차이를 최소화하는 과정으로 진행된다. 7자유도 산업용 로봇 팔에

대해 시뮬레이션과 실제 공간에서의 실험을 통해 캘리브레이션 방식을 검증했다.

주요어: 키네마틱 캘리브레이션, POE, 레이져 포인터.

학번: 2017-24281
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