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ABSTRACT

A Product-of-Exponentials Kinematic Calibration
Algorithm for Serial Robots Using a Laser Pointer

by
Pubest Detdee

Department of Mechanical and Aerospace Engineering

Seoul National University

This thesis proposes a kinematic calibration algorithm for serial robots based on a
minimal product of exponentials (POE) forward kinematic model. Generally, robot
calibration requires the measurement of the end-effector frame (position and ori-
entation), which typically requires special measurement equipment. To avoid using
complex measurement devices and to make the calibration easy to implement for
even the most general serial robots, in our approach we attach a laser pointer to
the end-effector, which is then aimed at a set of fixed known reference points in

the plane. Treating the laser as a prismatic joint and the reference point as the



tip, kinematic calibration is then performed by minimizing the Cartesian position
difference between the measured and estimated Cartesian tip position of the robot.
Our method is validated via simulations and experiments involving a seven-dof in-

dustrial robot arm.
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Introduction

Because of errors in the manufacturing and assembly process, the actual kinematic
parameters of a robot usually deviate from its nominal values. While directly mea-
suring a robot’s kinematic parameters is difficult, one can instead measure the pose
(e.g., position and orientation) of the end-effector to estimate the actual kinematic
parameter values; this process is referred to as kinematic calibration.

A typical kinematic calibration procedure begins by constructing a model of
the forward kinematics of a robot, which can be expressed as a function of the
form x = f(0,p), where 6 are the joint variables and p denote the kinematic pa-
rameters, and x represents the position and orientation of the end-effector. Cali-
bration typically proceeds by linearizing the forward kinematics as

_9f(0,p) af(0,p)
=T T,

dx dp,

where the terms dx, df, and dp can be viewed as errors between the actual and
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predicted parameter values:

A
dr = Lactual — Lpredicted>

A
do = Hactual - einputa

d A
P = Pactual — Pnominal-

Calibration involves taking measurements of the position and orientation of the
end-effector in various configurations, and then determining the optimal df and dp
that minimizes a suitable criterion. The most common criterion is a least-squares

criterion of the form

n 2

91 (i,p)

do ap

min
dp,df 4
1=1

- 0f(6i,p)
dr; — 20 dp

which is minimized with respect to dp and df.

It should be noted that = here is a local coordinate representation of the end-
effector position and orientation. More generally, an end-effector’s position and ori-
entation is represented as a homogeneous transformation matrix, also known as the

Special Euclidean group of rigid-body motions, denoted SE(3).

1.1 Existing Methods

The Denavit-Hartenberg (D-H) parameters [4] are widely used for modeling the
kinematics of a robot due to its minimal set of parameters in describing the robot
kinematics. However, the D-H parameters are singular when neighboring joint axes
are nearly parallel, which makes its error model discontinuous. Several modified
D-H parameters have been proposed to solve the singularity problem, such as the
Hayati model [5], the Veitschegger model [6], and CPC model [7]. These models

contain redundant parameters that are defined in an ad hoc fashion, and obtaining
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a closed-form expression for g—g is not straightforward. It has further been pointed

out that these redundant parameters may limit the application of these models to
calibration [§].

Instead of focusing on the D-H parameters, Brockett [9] presents an alternative
way to describe the forward kinematics based on a modern Lie group representa-
tion of classical screw theory, in which the forward kinematics can be expressed as
a product of exponentials (POE). Unlike the D-H parameters, kinematic parame-
ters in the POE formula vary smoothly with changes in the joint axes, leading to
a singularity-free model. Okamura and Park [§] are the first to employ the POE
formula to serial robot kinematic calibration. They present a closed-form set of
equations for the linearization and also derive an iterative least-squares algorithm
for calibration. A more explicit form of the linearization is presented in He et al.
[10].

Generally, the calibration algorithm based on the POE formula requires the
operations of normalization and orthogonalization, which is used to adjust the up-
dated screw axes to satisfy the magnitude and pitch constraints. Yang et al. [3]
propose a minimal POE-based model, eliminates these constraints, and also show
that the identification process based on their model converges more rapidly than
the original algorithm proposed in [§].

For the measurement of the errors of the end-effector pose, there are generally
two methods. The open-loop method utilizes an external tool such as a ball-bar
[11], laser tracking systems [12], or coordinate measurement machines (CMMs) [13]
to measure the end-effector pose. On the other hand, the closed-loop method uti-
lizes constraints on the end-effector and then uses the joint angle measurements
alone to measure the errors of the end-effector pose. This closed-loop method is

simpler to implement compared to the open-loop method.



1.2. Contributions of This Thesis 4

Other approaches have imposed a physical constraint to the end-effector. For
example, Zhuang et al. [14] use a plane constraint on the end-effector, while Meg-
giolaro et al. [15] impose a single endpoint contact constraint on the end-effector.
However, such physical constraints lead to contact forces that can cause errors in
the joint measurements.

In order to avoid the effect from the forces, some other researchers choose al-
ternative processes such as adding visual tools or attaching sensors to the end-
effector. Gong et al. [16] use an optical sensor mounted on the end-effector to
measure the point on a calibration plate. Hu et al. [I7] attach a laser pointer to
the end-effector and use a stationary camera to observe the laser’s position. Meng
et al. [I8] propose a vision-based measurement method by attaching a camera to
the end-effector. However, these methods need prior calibration between the added
tools and the end-effector, which makes the calibration process more complicated.

Gatla et al. [19] propose a virtual closed kinematic chain, in which a laser
pointer attached to the end-effector aimed at a fixed point in a plane creates a
virtual closed kinematic chain. In their algorithm, kinematic parameters of the
laser pointer are also added into the error model. Hence, both of the kinematic

parameters of the robot and the laser pointer can be calibrated at the same time.

1.2 Contributions of This Thesis

In this thesis, we propose a new kinematic calibration algorithm for serial robots
that exploits the advantages of the minimal POE-based model [3] and the vir-
tual closed kinematic chain approach described in [19]. The main concept of our
approach is to attach a laser pointer to the end-effector, where the laser is then

aimed at a set of fixed known reference points in the plane. Treating the laser as
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a prismatic joint and the reference point as the tip, the forward kinematics is then
constructed by using the minimal POE formula. This method is relatively easy for
implementation and is suitable for any serial robots.

The thesis is organized as follows. In Chapter 2, we provide necessary back-
ground about Lie group formulations and a brief introduction of the POE formula,
and the kinematic calibration based on the POE formula. In Chapter 3, we de-
scribe our kinematic calibration method. The experimental results and discussions
are presented in Chapter 4. In Chapter 5, we summarize our method and also

discuss the advantages and limitations.



Kinematics Preliminaries

In this Chapter, we provide the necessary geometric background for the robot kine-
matics based on Lie group formulations. A brief introduction about the POE for-
mula, the minimal POE formula and the linearization of the forward kinematics

equations are also included in this chapter.

2.1 Geometric Background

In this section, we describe the motion of a rigid body (e.g., position, orientation),

referring to Lie group formulations. Details of this section can be referred to [2].

2.1.1 The Lie Group Formulations

In the robotics literature, we use the Special Euclidean Group SE(3) or also known
as the homogeneous transformation matrix, denoted T', to describe the orientation

and position of a rigid body in three-dimensional space, where T' € SE(3) is the
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set of all 4x4 real matrices of the form

R p
0 1

: (2.1.1)

where R € SO(3) and p € R? are represented the orientation and position of the
rigid body, respectively. Here SO(3) refers to the group of 3x3 rotation matrices

and is defined as
SO(3)={ReR¥? |R"TR=1, detR=1}. (2.1.2)

It should be noted that the rotation of the rigid body can be described by the
rotation around some unit axis w € R? (i.e., ||w| = 1) with some angle § € R.

Thus, the rotation matrix R € SO(3) can be expressed as
R=e? = T 4 sinfw] + (1 — cos 0)[w]?, (2.1.3)

where [w] € so(3). Here so(3) is 3x3 skew-symmetric which is known as the Lie

algebra of the Lie group SO(3), and is expressed as

0 —Wws w2
[w] = w3 0 —w1 . (214)
—wy Wi 0

Similarly, given a vector S = (w,v) € R® and 6 € R, where w € R? is a unit vector
(i.e., ||w|| = 1) and v € R3. The homogeneous transformation matrix 7' € SE(3)

can be described as

W (o
=Sl | ° (6)0 , (2.1.5)
0 1
where [S] € se(3) and G(6) is given by
G(0) = 10 + (1 — cos 0)[w] + (0 — sin 0)[w]*. (2.1.6)
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Here se(3) is the Lie algebra of the Lie group SE (3) and is expressed as
[S] = , (2.1.7)
where [w] € s0(3) and v € R3.

2.1.2 Screw Motions

For serial robots consist of n joint and n+1 links, the rotation from the revolute
joint or the translation from the prismatic joint can be described by the screw
motion as

T = el e SE(3), (2.1.8)

where [S] € se(3) and 6 € R is a joint angle for a revolute joint or a translation
distance for a prismatic joint. Here S € RS denotes the screw axis.

For a given reference frame, the screw axis S can be expressed in the frame as
S= € RS, (2.1.9)

where w € R? and v € R3.

To apply the screw motions to each joint in a robot, the screw axis has to
satisfy the constraints below.
e For a revolute joint, w € R? is a unit vector in the positive direction of the
joint axis (i.e., positive rotation one defined in the right-hand sense, ||w|| = 1) and
v = —w X q, where ¢ € R3 is any point on the joint axis.
e For a prismatic joint, w = 0 and v € R3 is a unit direction in a positive

translation of the joint axis (i.e., ||v]| = 1).
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2.1.3 Adjoint Representation

We usually describe a vector in the space as expressed in some reference frame.
Given a reference frame {a} and {b}, we denote the screw axis S € R® as expressed
in frame {a} and {b} as S, and Sj, respectively. The relationship between S, and
Sp can be expressed as

Sy = [Adqy, ]S, (2.1.10)

where [Adr, | is the adjoint representation and is expressed as

R 0
[Adg,,] = ’ € RO*6, (2.1.11)

[p ba] Rba Rba

where Ry, € SO(3) and py, € R? are the orientation and position of frame {a}

expressed in frame {b}.

2.2 Forward Kinematics

Forward kinematics refers to the use of kinematic parameters of a robot and its
joint values to calculate the position and orientation of the end-effector frame. In
this section, we describe the forward kinematics using the POE and the minimal
POE formula. More details of these formulations can be found in [2], [3], respec-

tively.

2.2.1 The Product of Exponentials Formula

To use the POE formula, only two coordinate frames need to be assigned. First, is
a fixed reference frame {s} which is usually attached to the robot’s base. Another

one is an end-effector frame {b} which is attached to the end-effector of the robot.
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6[8”’1 ]9"’16[5”]9’&“[ iN

elSn 2103 p[Sn-1]0n—1[Snlbn 1

Figure 2.1: An n-dof serial robot [2].

Let M € SE(3) denote the position and orientation of the end-effector frame rel-
ative to the fixed base frame when the robot is in its zero position (i.e., all the
joint variables are equal to zero).

Consider Figure if we assume joint n is rotated with some angle 6,,, the

end-effector frame {b} can be expressed as
T = elSulonpp, (2.2.12)

where T' € SE(3) represents the new configuration of the end-effector frame and
S,, is the screw axis of joint n as expressed in frame {s}.
Next, if we assume that joint n — 1 is also rotated with some angle 6,,_1, the

end-effector frame {b} can be then expressed as
T = elSetlins (clSilfar). (2.2.13)

Repeatedly applying these steps until the joint 1 is rotated with 61, the configu-

ration of the end-effector frame can be expressed as

T(6) = elS1101 | [Sn—1]0n-1[Snl0n p (2.2.14)
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Equation (2.2.14) is the product of exponentials formula describing the forward

kinematics of an n-dof serial robot.

2.2.2 The Minimal Product of Exponentials Formula

During the identification process, all kinematic parameters have to be updated at
the end of each iteration step. The screw axis of each joint in the POE formula has
to be adjusted to satisfy the joint constraints. This may decrease the performance
of the identification process [3]. According to [3], these constraints can be easily
eliminated by considering the screw axis in the link frame which is quite similar
to the D-H parameters. In this section, we will explain how to construct the link
frame into each link and also describe the forward kinematics using the minimal

POE formula. For more details, refer to [3].

Figure 2.2: Tllustration of a link frame {i} [3].

] LT
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2.2.2.1 Link Frame Establishment

The concept of this method is to attach a link frame into each link and then con-
sider the screw axis in its link frame, as shown in Figure The link frame can
be constructed by following the rules below.

For a revolute joint: given S; = (w;,v;) € RS is the screw axis of the joint i as
expressed in the base frame {s}.

e The unit direction of the joint axis w; is set as the z;-axis of a link frame {i}.
o If the z;-axis does not pass through the origin of the base frame (O) (see Figure
, we choose the origin of the link frame {i}, denoted g;, to be the intersection
point between the z;-axis and a plane which is perpendicular to the z;-axis and
passes through O.

By setting the unit vector along ¢; be the y;-axis, the x;-axis can be calculated
by —w; % q;/]|q;||- This vector can be regarded as a unit vector along wv,;. Hence,
the homogeneous transformation matrix of frame {i} relative to the base frame
{s} is given by

Vi q
Cvi w; q
T, — | Tl Tal ©0 9

0 0 0 1

>

(2.2.15)

e If the z-axis passes through the origin of the base frame (O) (see Figure [2.3),
we set g; be the same point as O. A link frame {i} can be then obtained by
rotating frame {s} about e-axis with an angle o, where e := [0,0,1]7 x w; and

a := arccos([0, 0, 1]w;). Hence, Ty; can be expressed as

I +sinale] + (1 —cosa)le]? 0
Tsi = le] + Jle] . (2.2.16)
0 1

For a prismatic joint: given S; = (0,v;) is the screw axis of the joint ¢ as

expressed in the base frame {s}.



2.2. Forward Kinematics 13

Figure 2.3: Illustration of the rotation of frame {s} [3].

e v; is set as the z;-axis of a link frame {i}.
e g, is chosen at the base origin O. Then, Ts; can be calculated in the same way

as a revolute joint that the z;-axis passes through O, but replacing w; with v;.

2.2.2.2 Forward Kinematics Using Minimal POE Formula

Let 8] be the screw axis of the joint ¢ as expressed in the link frame {i}. Using

the adjoint representation, the screw axis of joint ¢ can be expressed in frame {s}

as
S; = [Adr,]|S.. (2.2.17)

According to [3], we can choose a set of independent parameters n; = [v/,;, vz’ﬂ-]T
and n; = [W);, Wi, @bis 4] to describe the screw axis S of a prismatic joint and

a revolute joint, respectively. Note that, according to the link frame establishment
rules, the nominal parameters in 7, are all equal to zero.

Besides, it will be more convenient to write S; in a function of n; as follows.

.H e

H 8}

TU



2.3. Kinematic Error Model

For a revolute joint:

. — . — !
— S\ — sil™~1 T st
Si = Si(my) = [Adg,]S; = [Adg,]

For a prismatic joint:

Si = Si(n;) = [Adr,,]S] = [Adr,,]

14

. (2.2.18)

(2.2.19)

Substituting Equations (2.2.18]) and (2.2.19) into (2.2.14]). Hence, the forward

kinematics of an n-dof serial robot can be expressed by using the minimal POE

formula as

T(0) = elS1m)or .

2.3 Kinematic Error Model

. e[snfl(nnfl)]enfl e[Sn(nn)wn M

(2.2.20)

In this Section, we describe the error model based on the linearization of the for-

ward kinematics in Equation (2.2.20)). It is noted that there is no necessity to ob-

tain the error model, using this method. Some of the researchers also apply other

methods to create their error models, e.g., [19].
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2.3.1 Linearizing the Forward Kinematics

Note that M can be expressed using the screw motion as M = !l where Sy =

(war,var) € RO is denoted the initial screw axis, where wy; € R? and vy € R3.

Equation (2.2.20)) can be then rewritten as

T(9) = elS1 1 . o[Sn—1(mn-1)10n—1 [Sn(mn))0n o [Sh], (2.3.21)

By differentiating Equation (2.3.21)) and right multiplying with 7~!, the error

model can be expressed as

o1 05 or or ) T (2.3.22)

AT T ' = == ==dn + —df + ——d
<asan 1T 5970 T Bgy, oM

First, we consider the left-hand side of Equation (2.3.22) dT'T~! € se(3). Let
T, and T}, be the actual and nominal end-effector frames, respectively, where T} is
obtained from measurement data and 7T;, is calculated using the nominal parameter
values. Then dTT~! = (T, —T,,)T,;' = T,T,;;' —I. If the deviation between T, and
T,, are sufficiently small, then T,T,; ' = I+ 3+ 3%/2!4- -, where 8 = log(T,T; ).

Then, with the first-order approximation, we have
dT T~! = B = log(T, T, }). (2.3.23)

By taking several measurements of the end-effector pose, the kinematic param-

eters can be then determined by

2

min  ||dT T ! - <8Ta‘gdn + 8—Td@ + 8TdSM> 71

(2.3.24)
dn,d9,dS g

oS on 00 OSnmr

Next, we consider the right-hand side of Equation (2.3.22)). Here, we define the
operator V which maps : se(3) — RC. According to [10] and [3], the explicit form
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of dT' T~ is given by

[dT T*l]V =[(delS10n)el=S1lonv o [Ade[sl]al][(de[52]92)e[*52}92]v
oot [Ad s, i5n_110ny |[(delSr10n )= Sn1En)Y
+ [Ad, 5,10, . gisnion | [(delSMD) =SV
where

[(delS10)e[=S:l0:)V — A, Bydn; + Sid6;,

where for a revolute joint,

4 — oy sina; — 4cosaqy 4oy; — 5sin o + o coS oy

7

Q2

)

A =0, + Q; +
P 2w 2 Z 2|3
2 —aqisino; —2cosay 3 205 —3sinoy +ajcosoy Ly
+ 4 i 5 J
2||will 2||wi|
and
[wi] 0 1/2
Q= Newill = (@2 + w2+ w2, 4 = |lwill6s,
vl w;
and ~ _
1 0 0 O
01 0 0
00 0 O
Bi: ’
00 0 1
0O 0 -1 0
(00 0 0|

,a-'g O

16

(2.3.25)

(2.3.26)
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and for a prismatic joint,

_ 0 0 -
0 0
0 0
A; =01, B; =
10
01
L 0 0 -
Besides,
[(delSMD)el=SMl]Y — A 3,dSyy, (2.3.27)
where
Ay = Is+ 4 — aMsina]\;[ — 4cosaMQM N dopy — 5sina]\43+ aMcosaMQ?V[
205, 203,
n 2— aMSinaAjf — 2COSQMQ§’\4 n 20 — 3sinaM5+oncosaMﬂ4 7
20y, 200y,
and
[wM] 0
Qy = y OM = (w%lz+w12\4y+w%4z)l/2'
[om]  [wwm]
For simplicity, letting
[AlBl,Sl] for i =1
J; =
’ [Ad i1 }[AZ-BZ',SZ-] for 1<i<n
( I1 emm) (2.3.28)
k=1
Iy = [Ad . ]A .
M ( I1 e[sk]gk) M
k=1
Hence, Equation (2.3.25)) can be expressed as
y =Jx, (2.3.29)
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where
y=dT T~ e R®, (2.3.30)
J=[J1,J2, -, Ty, Tpy] € ROXOTH3046) (2.3.31)
x = [dnt,d@,,--- ,dnl,d8,,dS,|T € RO T3PH6 (2.3.32)

where r and p are the number of revolute joints and prismatic joints, respectively.
Equation (2.3.29) is the error model for an n-dof serial robot based on the minimal
POE formula.



Calibration Methodology

In this chapter, we describe our kinematic calibration in this thesis in detail. The
chapter begins with the concept of our method, followed by the calibration algo-

rithm.

3.1 The Concept of the Method

Our method merges the advantages of the minimal POE-based model [3] and the
virtual closed kinematic chain approach described in [19]. The minimal POE-based
model is used for representing the forward kinematics. The idea of using a laser
pointer in a virtual closed kinematic chain approach is used for calibration. In this

session, we will explain these processes in detail.

3.1.1 Forward Kinematics of a Robot With a Laser Pointer

The kinematic calibration process starts by constructing the forward kinematics.

Figure [3.1] shows that the laser pointer attached to the end-effector is pointing to

19
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Figure 3.1: A fixed reference frame and an end-effector frame of the robot.

the fixed reference point in the plane. In order to identify the location of the laser
spot in the plane, we attach a fixed reference frame {s} at the robot’s base and
attach an end-effector frame {b} at the fixed reference point. Treating the laser
as a prismatic joint and the reference point as the tip, the forward kinematics for

an n-dof serial robot can be expressed as

T(0) = elS10m0r .. o[Sn(1m)]0n [Sp (mp)10p p (3.1.1)
where 6, € R is referred to the length of the laser and S, = (0,v,) € R® denotes
the screw axis of the laser (i.e., a prismatic joint), where the nominal values of
vp is set as the same as the direction of the joint axis n. Here T'(#) is represented
the orientation and the position of the laser spot in the plane.

3.1.2 The Error Model for Calibration

The error model in Section requires both orientation and position data as in-

put for calibration algorithm. However, our method can only measure the position

.H e

H 8}

TU
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of the reference point. Therefore, we adopt the concept of the calibration model
in [20], which need only the position data into our method.

For simplicity we denote

B(0) = eSO . S lSymn — [T P (312)
0 1
and M € SE(3) is expressed as
R
M= | M PVl (3.1.3)
0 1

where R); and p,, are the orientation and position of the end-effector frame {b}
expressed in frame {s}, respectively.
Let p, be the tip’s position as expressed in frame {s}. Using the forward kine-

matics in Equation (3.1.1)), p, is calculated by

o
Pe | _ Ry puy 0
1 0 1 0
- 3.1.4
1 (3.1.4)
— Dy
1
Differentiating (3.1.4]):
d d
Pt ann iy | PV 4 | P
0 1 0
(3.1.5)
d
—@nn | P en | P
1 0
/L"e‘a dpt = [_[pt]7I3](dh’ hil)v—i_thpMﬂ (316)
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where [p,] is the skew-symmetric of p,. Here, dp, € R? is the Cartesian posi-
tion difference between the actual and nominal tip’s position. Note that in our

approach, we treat the reference point as the tip. Hence, dp, is expressed as
dp, = p} — p}' € R, (3.1.7)

where p¢ is the measured position of the references point, and p} is the calculated
position of the references point using nominal parameter values.

According to [20, [I0], it points out that df and dSj; cannot be identified in
the same error model. In our approach, we assume that there are only dS and

dS ) exist. Thus, d@ can be excluded from the error model. Hence, dhh™' can be
oT 9§

dhh™t = s5—dn|h . 3.1.8

(5 poin) (319

By converting dh h~! to an equivalent form as expressed in Section The

expressed as

explicit form of dp, can be expressed as

z = Kydn, + -+ Kudn,, + Kydn, + Kydpy,, (3.1.9)
where
z = dp, = p{ — py, (3.1.10)
[ —[p], I3 ][A1By] for i =1

K; = , (3.1.11)

[_[pt]713][Ad i=1 }[AZB’L] for 7122,3,“',71,]9

(1)
k=1

Ku = Ry (3.1.12)

For simplicity, letting

K=K, -, K, K, Ky € R¥>*@+2p+)+3), (3.1.13)
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x=[dn{, - ,dnk,dnl, dp},)" € R T2 TDTS, (3.1.14)
Hence, Equation (3.1.9) can be expressed as
z = Kx. (3.1.15)

Calibration process is operated by aiming the laser at a fixed known reference
point in the plane with several m configurations and combining the error vector

z; and the Jacobians K; into a single equation:

Z1 K1
=1 ' |x (3.1.16)
Zm, K,
or more compactly,
7z = Kx. (3.1.17)
The least-squares solution for x is
x= (K K)'K'z (3.1.18)

The details about the identification process are discussed in the next section.

3.2 Calibration Algorithm

To solve x from the equation , we need all joint measurement data as input
for calibration algorithm. 6; —6,, can be obtained directly from the controller. For
p, we may need an external tool or advance laser pointer to measure the length.

In order to simplify the calibration process, we propose the method to estimate
the length of the laser in this section. We also describe in detail on the identifi-

cation process for our calibration algorithm.
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Figure 3.2: Estimation method of the length of the laser.

3.2.1 The Estimation Method of the Length of the Laser

According to Figure the length of the laser (6,) can be estimated by calcu-

lating the distance between p{ and p, as

Op ~ [P} — Pell; (3.2.19)
where

e p? is the position of the reference point which can be obtained from the

measurement.

e p. is the position of the end-effector frame without the laser pointer (i.e.,

6, = 0) which can be calculated by the forward kinematics using 6, — 6,,.

However, p, and 0, are the unknown parameters in the calibration algorithm.
After testing the idea, we find out that our algorithm cannot identify these two
parameters at the same time. In order to solve this problem, the element of the
end-effector position that follows the direction of the laser line has to be fixed as

a constant during the identification process.

qe

| &% 3w
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? Pmx
M= Ry | puy
] Pmz _
0 1

Figure 3.3: Robot at its zero position.

As shown in Figure the direction of the laser line follows the z-axis when
the robot is at zero position. In this case, the p;,, has to be measured and fixed

as a constant during the identification process.

3.2.2 Identification Process

By using the estimated length of the laser in Equation , x can be solved
by the least-squares iteration, as shown in Figure

At the end of each iteration step, the kinematic parameters are updated by x.
For the next iteration, Ty; and also ¢, are recalculated according to the updated
Si. m; is reset to its nominal values which is all parameters in 0, are equal to zero.
The iteration process is terminated when ||x| becomes sufficiently small.

However, using the estimated length of the laser instead of its actual value may
decrease the performance on the identification process.

Treating the error of the length of the laser line as a joint offset error (d@,).
According to [20] [3], it points out that the joint offset errors (d@) can be con-
verted into dS and dS); (see Appendix . This means that the performance of
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our algorithm depends on the accuracy of the estimated length of the laser.

It should be noted that this algorithm is just an estimation method. The more
accurate measurement data are used, the more accurate results are obtained. In
order to earn better accuracy result, the number of joint configurations should be
equal or over the number of the identified parameters in the algorithm which is
dr+2(p+1)+3.

Additionally, the reference point locations in the plane should cover most of
the robot’s workspace. We suggest that the reference points should be located on

the right, left, and front of the robot’s workspace as shown in Figure
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Nominal values

S;,M

v

Measurement data

91‘ Bn > PMz

A

\ 4

Estimate the length of the laser

6p = llpt' — pell

A 4
Calculate T;; according to S;

v

Identification

x=(KTK)"'K "2

Update
Pm= Pm +dpum
S; = [Adr,,]S](dm;)

Terminate

Figure 3.4: Calibration algorithm.
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Figure 3.5: 3 Fixed point locations in a plane.
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Experiments

4.1 Simulation 1: 6-Dof Robot With Precise Data

In order to verify our calibration algorithm, we calibrate a 6-dof Puma 560 robot
to compare the robot accuracy before and after calibration. For this verifying pro-
cess, we set the parameters identically to the second simulation in [1].

We also assume that there is no error in the joint offset (d@) and the rotation
part of the end-effector frame (dRjs). The nominal and actual kinematic param-
eters of the robot can be referred to as Table 4.1l

In this simulation, we select 3 fixed reference points in the plane which are
P1(400, 150, 0) mm, P2(500, 0, 0) mm, P3(400, -150, 0) mm with respect to the
robot’s base. The p,,, is needed to be fixed constantly to its actual value. The
actual kinematic parameters are used to calculate joint configurations in order to
aim the laser at the fixed reference points. 30 joint configurations per each fixed
point will be collected and used in the calibration. We aim to collect 90 joint con-

figurations in total. The results are shown in Table

29
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Table 4.1: Kinematic parameters of Puma 560 robot (unit: mm)

Nominal Values

Actual Values

S [0,0,1,0,0,0]" [0.04, —0.02,0.999, 0.02, 0.04, 0]
S, [0,-1,0,0,0,0]" [0,~1,0,-0.02,0,0.05]"
Sy [0,-1,0,0,0,—100]7  [0.178,—0.984, —0.01, —0.0842, 0.0874, —101]”
Sy [0,0,-1,-50,250,0]T  [0.062,0.013, —0.0998, —51,249,0.0752]T
S5 [0,-1,0,-20,0, 2507 [0.001, 1,0, —20.6, —0.0206, —249]”
S5 [0,0,—1,-50,250,0]  [0.095,0.031, —0.0095, —51.27, 248.91, 2.86]7
S, [00000 17 [0,0,0,0.095,0.031, —0.995]7
1 0 0 250] (1 0 0 249
oot s 010 5l
001 —20 00 1 —20.6
000 1 000 1 |

30

To test the performance of our algorithm, we need to compare the estimated

length of the laser to its actual value in each configuration. Additionally, we also

need to compare the absolute position errors of the end-effector frames from the

calculation of the identified parameters and the actual parameters.

According to Figure after 500 iterations, the results show only small dif-

ferences between the estimated length of the laser to its actual value. They also

show that the position errors of the end-effector frames between the identified pa-

rameters and the actual parameters are pretty much the same.

As there are no significant differences between the results of the end-effector
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frame position with the actual and identified parameters, we can then use the es-

timated length of the laser line to calculate in our calibration algorithm.

Table 4.2: Identified parameters of Puma 560 robot (unit: mm)

Identified Values

S1

0.03996, —0.0199, 0.999, 0.04128,0.0610, —0.00043]"

So

0,—1,0,-0.0243,0,0.0706]7

Ss3

0.17795, —0.98404, —0.000974, —0.0877,0.0841, —101]7

Sy

S5

0.000949, —1,0, —20.598, —0.02612, —249]7

S

0.09502, 0.030983, —0.99499, —51.275, 248.92, 2.8542]

[
[
[
[0.0620,0.0129, —0.9979, —51.01, 249, 0.067884]T
[
[
[

0,0,0,0.095017,0.030972, —0.99499]7

1 0 0 249 |
0 1 0 51003
00 1 —206
000 1 |

4.2 Simulation 2: 6-Dof Robot With Noisy Data

In reality, it will be quite difficult to manually aim the laser to point at the cen-

ter of the fixed reference point precisely. In order to simulate that situation, we

added Gaussian noise with a specific variance to the fixed reference points every

time before calculating the joint configurations.
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Figure 4.1: Experimental errors in simulation 1 with (a) length of the laser mea-

surement and (b) position measurement.

In this section, we conduct 4 simulations with different noise variances (0.1

mm, 1 mm, 2 mm and 3 mm). We apply these 4 simulations to our calibration

algorithm and all the cases successfully converged.

We also test this with other 100 joint configurations with the same process in

&8t
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the previous session to ensure our calibration algorithm is working properly.
According to Figure we find that the added noises also affect the error of
the estimated length of the laser and the end-effector frame position. However, the
average of the errors in the length of the laser and also the end-effector frame posi-
tion are not significantly different when compared to the added noise. This means
that even though there is some noise on the measurement process, this method

still provides a relatively good performance.
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Figure 4.2: Experimental errors in simulation 2 with (a) length of the laser mea-

surement and (b) position measurement.
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4.3 Experiments on a 7-Dof Robot

In this experiment, we calibrate a 7-dof Panda robot with our method as follows:

(i) Attach a laser pointer to the end-effector and ensure that it is aligned with

the joint axis 7 as much as possible.
(ii) Measure the position of p,,, at the zero position.

(iii) Select 3 fixed reference points in the plane; P1(521, 200, -8) mm, P2(436, 0,
-8) mm, P3(521, -200, -8) mm with respect to the robot’s base.

(iv) Aim the laser at the fixed reference points with 15 configurations per fixed
point and collect their joint configurations. (In case the robot is not applica-
ble for manual control by the operator, the teach-pendant process is needed

for this step).

The processes are shown in Figure The results of this experiment are also
shown in Table [4.3]

To verify the accuracy of the robot, we randomly pick P4(441, 160, -8) mm as
a fixed reference point in the plane. We calculate 60 joint configurations from the
nominal parameters and other 60 joint configurations from the identified parame-
ters.

Although all configurations are calculated to aim the laser at the same fixed
point in the plane, the results show that the laser spots are landed in various
locations in the plane. We take top-view photos of each laser spot and input them
to the software called “ImageJ” to estimate the locations of these laser spots. The
processes are shown in Figure [£.4] The estimated locations of the laser spots are

plotted in MATLAB to demonstrate the scattering of these lasers. The results are
shown in Figure
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After calibration, the mean of the radius of laser scattering is improved from
6.86 mm to 1.11 mm while the standard deviation is shifted from 5.016 mm to
1.00 mm.

We also calculate those laser positions with a fixed point to identify the abso-
lute position error. We find that the maximum error is improved from 26.993 to
4.92 mm. The mean error is also shifted from 9.76 to 1.057 mm. The results are

shown in Figure [4.6



4.3. Experiments on a 7-Dof Robot 36

(c)

Figure 4.3: Measurement process: (a) robot with a laser pointer at zero position
(Par> = 825 mm), (b) 3 fixed reference point locations in the plane, and (c) aiming

the laser at the fixed reference point.
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Table 4.3: Kinematic parameters of 7-dof Panda robot (unit: mm)

Nominal Values

Identified Values

S [0,0,1,0,0,0]" [0.0046, 0.00126,0.9999, 0.54439, —0.1662, —0.00229]
S, [0,1,0,-333,0,0]T [-0.00768, 0.9999, 0.00027, —334.33, —2.5714,2.1275]T
Sy [0,0,1,0,0,0]" [0.000705,0.00132, 1, —0.20847, —0.42849, 0.00071403]”
Sy [0,-1,0,649,0,-82.5]T  [0.01345, —0.99991, 0.001986, 651.46, 8.5964, —85.454]T
S5 [0,0,1,0,0,0]" [-0.00128,0.00278, 1, —1.4658, —6.2373, 0.015641]T
S5 [0,-1,0,1033,0,0]7  [0.017924, —0.99982,0.005839, 1032.7, 18.492, —3.8108]”
Sr [0,0,-1,0,88,0]T [-0.008532, —0.001502, —0.9999, —0.591, 82.83, —0.11947
S, [0,0,0,0,0,1]” [0,0,0,0.2478, 0.006871, —0.99967]7

1 0 0 s8] (1 0 0 89.506 |
oot 0 1 0 0.19809

00 1 825 001 8%

000 1] 000 1

d
File Edit Font Results

[stdDev_[Min Max  |Angle |Length |

191493 10807 160712 208141 O 10.000
181.537 61379 90497 234758 180 2335
3 209656 8958 188188 225501 90 30m

Figure 4.4: Estimated location of the laser spot using ImageJ software.
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Figure 4.5: The scattering of the laser spot in the plane.
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Conclusion

This thesis proposes a new way of a kinematic calibration algorithm for serial
robots that merges the advantages of the minimal POE-based model and the ap-
proach of the virtual closed kinematic chain method. To calibrate a robot with our
method, we attached a laser pointer to the end-effector. The pointer is set to aim
at three fixed known reference points in the plane with various configurations. The
results of the joint configurations are applied to our calibration algorithm. Treat-
ing the laser as a prismatic joint and the reference point as the tip, we can identify
the optimal kinematic parameters by minimizing the Cartesian position difference
between the measured and estimated Cartesian tip position of the robot.

The simulations result in chapter 4 also shows that we can use the estimated
length of the laser in our calibration algorithm. Additionally, after testing our
calibration algorithm with the real robot, the experimental results demonstrate
the significant improvement of the robot’s accuracy. However, this method may
contain some errors such as the human-errors and the errors from the estimated

length of the laser line. These errors may affect the performances of our method.

39



40

Accordingly to the experiment with the real robot in chapter 4, we find that
the robot’s position accuracy rate after calibration is ranged between 1-5 mm. As
a result, if the robots have the position accuracy rate under 5 mm, they may not
receive significant accuracy improvement with this calibration method.

The kinematic calibration algorithm in this thesis is mainly focused on the er-
rors that are caused by geometrical effects. The errors from non-geometrical effects
discussed in [21I] such as gear transmission, backlash, and joint compliance can also
be integrated into our algorithm to deliver more accurate results.

In conclusion, despite some minor errors, our method is easy to implement as
the process only requires the use of a laser pointer and a simple observation plane
to operate. Consequently, our method is also considered as a cost-efficient way to

deliver effective results for robots’ performance accuracy.



Appendix

A.1 Conversion From dq to dS and dS), [1]

Assume there exists the joint offset errors for each joint in the forward kinematics,

denoted df;. Then Equation (2.2.14)) can be written as

T(9) = elS11(01+d01) [S2](02+d02) . | | o[Sn](On+dOn) o[Sn]

(A.1.1)
e e[Sl]ele[Sl]del 6[82}926[82](192 P e[Sn]ene[Sn]dene[SM]'

According to the fact that if M € SE(3) and p € se(3), then MeP M~ = ¢MpM ™!

MpM~1

which can be regarded as the identity MeP = e M. Therefore, Equation

(A.1.1) can be rewritten as

T(0) = elSho (el [S2)e=S10901)05 [S1)d01 ([Sald0s . ([Su100n o[Su1d0n fSua] (A 1.9)

MpM~—

By repeatedly applying the identity MeP = e "M and using adjoint represen-

tation, we have

T(6) = 1510185102 .. ([8110m oISh], (A.1.3)

41



A.1. Conversion From dq to dS and dSps [1] 42

where

for i=1

(A.1.4)
_ S; for 1<i<n
H Sk]9k>

~1og ((H s ) ) | (A19

If we denote S! = S;+dS; and S); = Sy+dShr, then Equation (A.1.1)) is equivalent
to

T(9> — 6[$1+d$1}916[32+d52]92 L. €[$n+d8nwn6[8M+d$M].

(A.16)



1]

[3]

[6]

Bibliography

Liao Wu, Xiangdong Yang, Ken Chen, and Hongliang Ren. A minimal
poe-based model for robotic kinematic calibration with only position mea-
surements. IEEE Transactions on Automation Science and FEngineering,

12(2):758-763, 2014.

Kevin M.. Lynch and Frank Chongwoo Park. Modern Robotics: Mechanics,

Planning, and Control. Cambridge University Press, 2017.

Xiangdong Yang, Liao Wu, Jinquan Li, and Ken Chen. A minimal kinematic
model for serial robot calibration using poe formula. Robotics and Computer-

Integrated Manufacturing, 30(3):326-334, 2014.

Jacques Denavit. A kinematic notation for low pair mechanisms based on

matrices. ASME J. Appl. Mech., 22:215-221, 1955.

Samad A Hayati. Robot arm geometric link parameter estimation. In The
22nd IEEE Conference on Decision and Control, pages 1477-1483. IEEE,
1983.

W Veitschegger and Chi-Haur Wu. Robot accuracy analysis based on kine-
matics. IEEE Journal on Robotics and Automation, 2(3):171-179, 1986.

Hanqgi Zhuang, Zvi S Roth, and Fumio Hamano. A complete and parametri-
cally continuous kinematic model for robot manipulators. IEEE Transactions

on Robotics and Automation, 8(4):451-463, 1992.

Koichiro Okamura and Frank C Park. Kinematic calibration using the prod-

uct of exponentials formula. Robotica, 14(4):415-421, 1996.

43



BIBLIOGRAPHY 44

[9]

[11]

[12]

[13]

[14]

Roger W Brockett. Robotic manipulators and the product of exponentials
formula. In Mathematical theory of networks and systems, pages 120-129.
Springer, 1984.

Ruibo He, Yingjun Zhao, Shunian Yang, and Shuzi Yang. Kinematic-
parameter identification for serial-robot calibration based on poe formula.

IEEE Transactions on Robotics, 26(3):411-423, 2010.

Ambarish Goswami, Arthur Quaid, and Michael Peshkin. Identifying robot
parameters using partial pose information. IEEE Control Systems Magazine,

13(5):6-14, 1993.

Johann P Prenninger. Contactless position and orientation measurement of
robot end-effectors. In [1993] Proceedings IEEE International Conference on
Robotics and Automation, pages 180-185. IEEE, 1993.

Morris R Driels, W Swayze, and S Potter. Full-pose calibration of a robot
manipulator using a coordinate-measuring machine. The International Journal

of Advanced Manufacturing Technology, 8(1):34-41, 1993.

Hangi Zhuang, Shui H Motaghedi, and Zvi S Roth. Robot calibration with
planar constraints. In Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No. 99CH36288C), volume 1, pages 805-810.
IEEE, 1999.

Marco A Meggiolaro, Guglielmo Scriffignano, and Steven Dubowsky. Manip-
ulator calibration using a single endpoint contact constraint. In Proceedings

of ASME Design Engineering Technical Conference, Baltimore, USA, 2000.



BIBLIOGRAPHY 45

[16]

[19]

[20]

[21]

Chunhe Gong, Jingxia Yuan, and Jun Ni. A self-calibration method for
robotic measurement system. Journal of manufacturing science and engineer-

ing, 122(1):174-181, 2000.

Jwu-Sheng Hu, Jyun-Ji Wang, and Yung-Jung Chang. Kinematic calibration
of manipulator using single laser pointer. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 426-430. IEEE, 2012.

Yan Meng and Hanqgi Zhuang. Autonomous robot calibration using vision
technology. Robotics and Computer-Integrated Manufacturing, 23(4):436-446,
2007.

Chandra Sekhar Gatla, Ron Lumia, John Wood, and Greg Starr. An auto-
mated method to calibrate industrial robots using a virtual closed kinematic

chain. IEEE Transactions on Robotics, 23(6):1105-1116, 2007.

Yunjiang Lou, Tieniu Chen, Yuanqing Wu, Zhibin Li, and Shilong Jiang. Im-
proved and modified geometric formulation of poe based kinematic calibration
of serial robots. In 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5261-5266. IEEE, 2009.

JM Hollerbach. A survey of kinematic calibration the robotics review 1 ed o

khatib, jj craig and t lozano, 1989.



o 7%

ol
=

S}
ol

Minimal POE (product of exponentials) % 7]=-

9 w=re

W 919] 91707}

8

hiE

Aeolg e o] ol AEAEE F2toto]

W

=23t Ak Aol

7

H: 2017-24281

it

46



	1 Introduction
	1.1 Existing Methods
	1.2 Contributions of This Thesis

	2 Kinematics Preliminaries
	2.1 Geometric Background
	2.1.1 The Lie Group Formulations
	2.1.2 Screw Motions 
	2.1.3 Adjoint Representation

	2.2 Forward Kinematics
	2.2.1 The Product of Exponentials Formula
	2.2.2 The Minimal Product of Exponentials Formula

	2.3 Kinematic Error Model
	2.3.1 Linearizing the Forward Kinematics


	3 Calibration Methodology
	3.1 The Concept of the Method
	3.1.1 Forward Kinematics of a Robot With a Laser Pointer
	3.1.2 The Error Model for Calibration

	3.2 Calibration Algorithm
	3.2.1 The Estimation Method of the Length of the Laser
	3.2.2 Identification Process


	4 Experiments
	4.1 Simulation 1: 6-Dof Robot With Precise Data
	4.2 Simulation 2: 6-Dof Robot With Noisy Data
	4.3 Experiments on a 7-Dof Robot

	5 Conclusion
	A Appendix
	A.1 Conversion From dq to dS and dSM [1]

	Bibliography
	Abstract


<startpage>10
1 Introduction 1
 1.1 Existing Methods 2
 1.2 Contributions of This Thesis 4
2 Kinematics Preliminaries 6
 2.1 Geometric Background 6
  2.1.1 The Lie Group Formulations 6
  2.1.2 Screw Motions  8
  2.1.3 Adjoint Representation 9
 2.2 Forward Kinematics 9
  2.2.1 The Product of Exponentials Formula 9
  2.2.2 The Minimal Product of Exponentials Formula 11
 2.3 Kinematic Error Model 14
  2.3.1 Linearizing the Forward Kinematics 15
3 Calibration Methodology 19
 3.1 The Concept of the Method 19
  3.1.1 Forward Kinematics of a Robot With a Laser Pointer 19
  3.1.2 The Error Model for Calibration 20
 3.2 Calibration Algorithm 23
  3.2.1 The Estimation Method of the Length of the Laser 24
  3.2.2 Identification Process 25
4 Experiments 29
 4.1 Simulation 1: 6-Dof Robot With Precise Data 29
 4.2 Simulation 2: 6-Dof Robot With Noisy Data 31
 4.3 Experiments on a 7-Dof Robot 34
5 Conclusion 39
A Appendix 41
 A.1 Conversion From dq to dS and dSM [1] 41
Bibliography 43
Abstract 46
</body>

