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In recent years, smart city projects have drawn significant attention as
initiatives for enhancing urban development and regeneration. Many studies
have incorporated technical and non-technical enablers to better control the
design, planning, and progress management of smart cities. However, despite
considerable efforts and achievements, the direct and indirect effects of smart
city enablers on urban performances have not been quantified comprehensively.
Thus, due to this lack of in-depth quantification and understanding, urban leaders
encounter difficulties in establishing proper strategies and policies for the

successful development of smart cities. To address this issue, the present study
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has used Structural Equation Modeling (SEM) to identify the critical enablers of
smart cities and to quantify their dynamic effects (i.e., direct and indirect effects)
on the performances of such cities. More specifically, the authors applied SEM
to test and estimate the relationships between four enabler clusters (i.e.,
technological infrastructure, open governance, intelligent community, and
innovative economy) and four performance objectives (i.e., efficiency,
sustainability, livability, and competitiveness) using the actual data of 50 smart
cities. The statistical results demonstrated that non-technical enabler clusters (i.e.,
open governance, intelligent community, and innovative economy), as well as
the technical drivers (i.e., technological infrastructure), have significant impacts
on the performances of smart cities with their highly interrelated, synergetic
dynamics. The high percentage of variance explained for performance objectives,
which varied from about 71% to 91%, was indicative of good explanatory power.
Based on those mathematical findings, urban leaders can enhance strategic

planning for smart city transitions through proper policy management.

Keywords: Smart City, Project Management, Urban Development, Urban
Regeneration, Development Enablers, Performance Objectives, Structural
Equation Modeling

Student Number: 2017-22145



Contents

Chapter 1 Introduction.................cccoocvviiiiinii e 1
1.1 Research Background............c.ccooeiiiiiiiiiiciiiicc 1
1.2 Problem Statement ..........cccoovevireiiieninie e 4
1.3 Research ObjectiVe.......ccvviiiiiiiiiiiiiiii e 6
1.4 Research SCOPE .....oovvriiiiiiiiieeee e 7
1.5 Research Process ........ccocooiiieiiiiiiieiiiic s 8
Chapter 2 Literature Review ..............ccccovviiiiiiiiine i, 9
2.1 Identification of Smart City Enablers............ccccvvvvniiiirnnnn. 9
2.2 Quantification of Enablers’ Direct Effects ..........cccccceevnnnen. 11
2.3 Limitations of Quantification Strategies ...........cccccvvvvrinnne 13
Chapter 3 Quantification Model Development.................... 15
3.1 Research OVEIVIEW .......cccciiiiiiiiiiiiciini e 15
3.2 Latent Variables Specification...........ccccceeviiiiiiiiciiciinnnn 17
3.3 Hypothetical Model Establishment..............ccccoociiiiiiinnnnn. 22
3.4 Structural Equation Modeling (SEM) .........cccoiiiiininninnns 25
Chapter 4 Model Testing and Results ........................oe. 31
4.1 Data Collection and Preparation ............cc.coevivvniverieniieennnn. 31
4.2 SEM ANALYSIS ...vviiiiiiieiiieiee e 36
4.3 Results and DiSCUSSIONS ........ccceeriiriiieiiiiiiieiieeseeseenae 43
i %



Chapter 5 Model Applications ...............ccccocovviiiiiicnnnnn 52

5.1  Smart City Maturity ASSESSMENt.......ccevvvverrveeirieesrineeninens 52
5.2 Smart City Macro Trends Analysis .........ccccovvveiiiieiniennnnnnn. 55
Chapter 6 Conclusion ..............ccccooeeviiiiiii 58
6.1  Summary and Contributions............ccceervrverieenisieeneereneene 58
6.2 Limitations and Future Study ..........ccocooiiiiiiiiiiiiciiin 60
Bibliography......cccooieeiiiiiie e 62
APPENAIX A ..o 69
APPendiX B ....ooiiiiic 70
Abstract (KOT€an).......ccueveiveiiiiiiieniiiee e 71
i :
E I N



Table 3.1

Table 3.2

Table 3.3

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

List of Tables

Smart City Development Enablers in Literature........... 19
Smart City Performance Objectives in Literature......... 21
Rules of Thumb for Choosing SEM Method................. 30
Results of CFA — Smart City Sub-Enablers .................. 32
Results of CFA — Smart City Sub-Objectives ............... 33
Details of Data Standardization .............cccoevvivenieninnnne 35
Results of Hypothesis Testing...........ccovverveiieerieeninnnne 41
Sub-Enablers Ranked by CFA Weights............c.cccouenee. 45

Direct, Indirect, and Total Effects of Enabler Clusters .48

iii



Figure 1.1
Figure 1.2
Figure 1.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

List of Figures

Growing Interest in Smart City.........ccovvvvvieniieeniinnns
Academic Attention Devoted to Smart Cities ............
Cities Included in the Research Scope...........cccccveennee.
Research OVErview .........cccoocveiieiieenic e
Hypothesized Structural Research Model...................
Simplistic SEM Process .........cccocverviiiieiiieiiiesieniens
PLS-SEM Algorithm.......ccccoeviiiiiiiiiiiiiiciicee,
CFA-Based Variable Selection Process...........ccc.cocue..
Results of the Best Fitting Developed SEM ...............
Integration of Direct and Indirect Effects ...................
Smart City Maturity Assessment: Case Studies..........
Smart City Development Conditions: Spider Maps....
Smart City Development Dynamics...........cccocvevirnnnne

Smart City Performance Dynamics............cccooverinnnnnne

v



Chapter 1. Introduction

1.1 Research Background

In recent years, smart city projects have received considerable attention
from urban leaders (Figure 1.1). Researchers have also paid high attention to
smart city developments (Figure 1.2). This is because, with mass urbanization
as the new normal, cities worldwide are under constant pressure to provide
better quality services, revitalize economic opportunities, address social and
environmental issues while reducing operational costs (Ahvenniemi et al., 2017;
Silva et al., 2018). Metropolitan infrastructures and utilities are implacably
being stretched to their breaking point (Maccani et al., 2013). As reported by
the United Nations (2016), 67% of the world’s population will be living in
urban areas by 2050, against 50% back in 2008. These projections are

increasingly urging urban authorities to engage in smart city projects.

"Smart City"" Interest over Time (Google Trends, 2018)
The number 100 represents the peak search volume
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Figure 1.1 Growing Interest in Smart City
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(Adapted from Li, Wang, Luo, & Li, 2018)

Even though the idea of smart cities was introduced in the early 1990s,
there is still no universal agreement concerning how to define them (Albino et
al., 2015; United Nations, 2016; Lin et al., 2019). From the beginning, urban
thinkers agreed to characterize them as innovative platforms that improve urban
performances, such as quality of life, the efficiency of urban functions, and
economic competitiveness (Caragliu et al., 2011; Silva et al., 2018).

However, despite numerous attempts, the definition has yet to be fully
accepted. Due to the lack of in-depth acknowledgment of fundamental enablers
and the unclarified influence of technology in smart cities (Chourabi et al., 2012;
Hollands, 2008; Nam & Pardo, 2011a), there are numerous interpretations of
smart cities and the debate remains particularly fragmented (Meijer & Bolivar,
2016). In 2014, the International Telecommunication Union reported that 116

definitions of smart cities were used in practice. For this reason, the difficulty



to implement and govern smart city programs has been generally acknowledged
in academia (Neirotti, De Marco, Cagliano, Mangano, & Scorrano, 2014a;
Ruhlandt, 2018). Thus, the leaders of smart cities encounter difficulties in
enhancing urban regeneration in developed countries and urban development

in developing countries (United Nations, 2016; Ruhlandt, 2018).



1.2 Problem Statement

To harness the full potential of smart city initiatives through the
development of coherent management strategies, it is essential to identify key
enablers comprehensively (e.g., urban digitization, economic dynamism,
human and social capital, and open governance) and quantify their dynamic
effects (i.e., direct and indirect effects) on the performances of smart cities
(United Nations, 2016; Maccani et al., 2013; Ruhlandt, 2018).

However, since smart cities originated from technological advancements
(e.g., smart grids and the Internet of Things can allow optimized energy use),
early studies overlooked the importance of non-technical enablers and focused
rather on the evaluation and planning of technology implementation (Aurigi,
2006; Batty, 1997; Kitchin, 2014). For this reason, according to Nam and Pardo
(2011), 85% of technology-driven public sector projects have not attained their
objectives in practice. This indicates that a given smart digital solution (e.g.,
intelligent surveillance with video analytics) cannot be transplanted simply
from one urban area to another without addressing the influences of local
factors, such as urban policies and the levels of empowerment of the citizens
(Nam & Pardo, 2011b; Neirotti et al., 2014; Stratigea et al., 2015).

Therefore, in order to avoid the failure of smart city initiatives that can be
caused by stakeholders’ resistance to change, many researchers have recently
considered the effects of non-technical enablers that collaborate with
technological drivers in their attempts to support the maturation of smart city

policy management (Angelidou, 2015; Bibri et al., 2017; Calzada et al., 2015).



For example, in 2014, the British Standards Institution acknowledged the
importance of integrating physical, digital, and human systems for successful
smart city development.

Despite the extensive efforts to understand the influences of various
enablers, the previous methods did not fully quantify the direct and indirect
effects of smart city enablers on urban performances. For example, the use of
technology in smart cities (e.g., Internet of Things) leads directly to a higher
quality of life (Braun et al., 2018; Jain et al., 2017), but it also can improve the
living environment indirectly by first enhancing government initiatives (e.g.,
data generation and management). However, those effects have not been
integrated for comprehensive quantification of enablers’ effects on smart city
performance objectives. Thus, it is still challenging to understand the
development dynamics of smart city projects.

Due to this lack of complete understanding, urban leaders face difficulties

in establishing proper strategies for the successful development of smart cities.



1.3 Research Objective

The primary objective of this paper is to quantify the dynamic effects (i.e.,
direct and indirect effects) of smart city enablers on urban performances by

applying Structural Equation Modeling (SEM) technique.

The specific objectives to achieve the primary objective are as follows:

1. Identify a range of technology, policy, and society-related enablers that
can control the key performances of smart cities.

2. Collect corresponding urban data to create a dataset for model
development.

3. Develop an SEM-based quantification model to assess the dynamic
effects of smart city enablers on urban performances.

4. Evaluate the model and discuss the results for applications in smart

city planning, design, and progress management.

The developed assessment model is expected to provide practical insights
(e.g., investment prioritization on smart city projects), which can help urban
strategists manage the smart city policy implications in order to enhance their
preparedness for the transitions to smart cities. This will allow smart cities to
reach their target performance objectives through appropriate development

strategies.



1.4 Research Scope

This study was conducted on a sample of 50 smart cities in 37 countries,
as depicted in the geographical distribution in Figure 1.3. Those aspiring next-
generation cities, which are among the smartest cities in the world (Easy Park,
2017), were selected for incorporating diverse demographic, geographic, and
economic characteristics. For instance, according to the International Monetary
Fund’s World Economic Outlook Database (October 2018), the scope
comprises 12 cities in developing countries (e.g., Medellin in Colombia, Kuala
Lumpur in Malaysia, and New Delhi in India) in which complete awareness of
the smart city concept has yet to be established. Also, of the 50 cities, 21 are in
Europe, 12 are in America, 9 are in Asia, 4 are in the Middle East, 3 are in

Oceania, and 1 is in Africa.
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1.5 Research Process

The rest of the paper is structured as follows. Chapter 2 explores and
reviews the existing studies that are relevant to both the identification of smart
city development enablers and the quantification of their effects on urban
performances. Next, the research framework that quantifies enablers’ effects on
smart city performances using Structural Equation Modeling (SEM) is
described in Chapter 3. Then, Chapter 4 analyzes and discusses the
experimental results of the SEM analysis, and model applications are presented
in Chapter 5. Finally, Chapter 6 concludes the paper with contributions and

future studies as well as the limitations of this study.



Chapter 2. Literature Review

2.1 Identification of Smart City Enablers

Smart city projects have unique characteristics with different development
conditions and performance objectives. For this reason, the comprehensive
identification and quantification of enablers’ effects on the performances of
smart cities are fundamentally important and essential for their coherent
planning and development. Thus, many researchers and practitioners have
attempted to identify the principal enablers of smart cities.

In the early stages, the corporate sphere (e.g., Cisco, IBM) only focused
on the significance and benefits of new disruptive Information and
Communication Technologies (ICTs) to modernize urban infrastructures, as
critiqued in Albino et al. (2015), Hollands (2008), and Simonofski et al. (2017).

However, although technology is recognized as a central enabler of smart
cities (Zygiaris, 2013), it should not be considered as exclusive (Nam & Pardo,
2011a). In previous studies (Chourabi et al., 2012; Odendaal, 2003), it was even
found that the impacts of ICTs on urban development and on the quality of the
citizens’ lives are unclear and questionable. It was also reported that, without
careful preparation of urban contexts (e.g., democratic and inclusive
governance), ICTs could increase information inequalities and amplify the
digital divide. In practice, corporate-designed smart cities, such as Songdo in
South Korea and Masdar City in the United Arab Emirates, have missed their

growth objectives despite undeniable technological advances (e.g., telematics,
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sensor networks, RFID systems, smart card applications and so on in Songdo)
because they failed to consider the wider effects of culture, governance, and
civic engagement (Albino et al., 2015; Calzada & Cobo, 2015).

Based on those findings, researchers collectively acknowledged the
importance of incorporating smart city enablers comprehensively including
technical and non-technical drivers when planning and developing strategies
for smart cities (Maccani et al., 2013; Nam & Pardo, 2011a; Simonofski et al.,
2017). The important roles of citizens as end-users (Braun et al., 2018; Oliveira
& Campolargo, 2015; Simonofski et al., 2017) and the influences of urban
management, policy, and innovation (Azevedo Guedes et al., 2018; Nam &

Pardo, 2011Db) especially were highlighted.
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2.2 Quantification of Enablers’ Direct Effects

Recent studies have also paid greater attention to extracting quantifiable
information from current trends in the development of smart cities. Researchers
have made special efforts to quantify enablers’ effects on the performances of
smart cities in order to support the maturation of policy management for such
cities.

Recent studies have independently quantified the direct effects of technical
and non-technical enablers on urban performances. For example, Tahir et al.
(2016) used the Analytical Hierarchy Process (AHP) to quantify the relative
importance of six dimensions that influences the performances of smart cities.
A hierarchy between smart environmental practices, mobility, living, people,
economy, and governance was found to incorporate the technologies that are
required for making a smart city a reality (Tahir & Abdul Malek, 2016). Another
approach, proposed by Caragliu et al. (2011), used statistical and graphical
analyses to understand the direct influences of numerous factors (e.g.,
demographic and social variables) on the economic performance of smart cities
in Europe. This study acknowledged the effects of non-technical enablers, such
as creativity and the levels of education of the citizens. Neirotti et al. (2014)
applied linear regression analysis to identify how contextual variables, such as
geographical, urban, demographical, social, environmental, and technology-
related proxies, directly affect the deployment of smart city solutions. The
results indicated that technology development alone is insufficient to build a

successful smart city.
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Recently, in line with the “100 Smart Cities Mission” launched by the
Indian government (Arora, 2018), Kumar et al. (2019) quantified the relative
importance of smart city development factors for use in planning an effective
smart city. They used Total Interpretative Structural Modeling (TISM) to
classify the selected factors (e.g., capital resources, socio-economic potential,
multimodal accessibility, and public participation) based on their hierarchical
interrelationships, and they used the findings for further analysis of smart city
eligibility. Yadav et al. (2019) used hybrid Best Worst Method (BWM) —
Interpretative Structural Modeling (ISM) to identify the intensity of influences
of smart city enablers and justify their interrelationships. The results revealed
that sustainable resources management, development of smart buildings,
advanced research, and intelligent transportation are the key enablers of the
developed framework. The successful execution of the developed framework
can assist smart city practitioners in developing countries (e.g., India and

China).
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2.3 Limitations of Quantification Strategies

The existing studies have shown promising results in the quantification of
the effects of smart city enablers for practical applications in policy
management. However, despite remarkable findings, significant research
questions must be addressed in order to comprehensively quantify the
development dynamics within smart cities.

One major issue is that researchers have mainly considered the effects of
the individual relationships (i.e., direct relationships) of development enablers
on the overall performance of smart cities without taking into account the
complex dependencies (i.e., indirect effects) that result from the internal
relations between the enabler clusters and between the performance objectives.
For instance, government initiatives are often implemented to improve the
living environment (i.e., direct effect). In smart cities, those initiatives can be
enhanced by ICT (e.g., social media communities can allow more participative
forms of governance and greater democracy) (Chourabi et al., 2012; Kitchin,
2014). Therefore, technology indirectly influences the quality of life of citizens
through open governance as the mediator (i.e., indirect effect). However, those
dynamic effects (i.e., direct and indirect effects) have not been integrated for
comprehensive quantification. This issue limits the practicality and
applicability of the previous findings to the actual smart city policy
management since the aforementioned indirect effects are vital for
understanding the dynamics of smart city growth.

Those limitations have led previous studies to make only partial

13



advancements in the formulation of a new policy agenda to better control the
design and planning of smart cities. To fill this knowledge gap, this paper
proposes an assessment model that incorporates the direct and indirect effects

of the enablers of the development of smart cities.
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Chapter 3. Quantification Model Development

3.1 Research Overview

Figure 3.1 shows the research framework that was built to mathematically
investigate how enablers, directly and indirectly, influence the performances of
smart cities. The framework comprises two main processes.

First, the research model was established; the authors conducted an
extensive literature review, specified the latent variables (LVs) of interest, and
then established possible causal paths among the variables. In this study, the
research team strategically distinguished two layers of LVs (i.e., (1) enabler
clusters and (2) performance objectives) to further discriminate internal
relationships (i.e., within a layer) and external relationships (i.e., between the
two layers).

Next, to test the hypothesized research model, the research team collected
and processed the actual data of 50 smart cities for use in performing SEM
analysis. After model estimation (e.g., estimation of path coefficients) was
completed, fit assessments were conducted to identify any potential data-model
inconsistencies among the LVs. The validation step, in which the model was
modified and updated, was repeated until the data-model fit was good enough
to represent the possible dynamics of smart city development (Aibinu & Al-

Lawati, 2010).
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3.2 Latent Variables Specification

In this section, the authors conducted a bibliographic analysis to identify
two layers of central LVs in smart city development, i.e., enabler clusters and
performance objectives. In SEM terminology, LVs are unobserved variables

that are inferred from observed variables through correlational models.

3.2.1 Smart City Enabler Clusters

To understand and identify practical enablers of the development of a
smart city, the research team conducted an extensive literature review. A
commonly applied search engine, Scopus, was used to retrieve 155 scholarly
peer-reviewed publications that provided relevant information. The search was
limited to subject areas that were highly related to this research, such as
engineering, project management, decision sciences, and social sciences. From
the exploratory screening of titles and abstracts, the authors retained for further
analysis 35 papers that discussed the desirable characteristics of smart cities.
To identify smart city enablers, these papers mostly proceeded to comparative
literature analysis and combined the findings of numerous prior studies (Gil-
Garcia, Pardo, & Nam, 2015). To detect redundancy of content (e.g., repetitive
enablers) and reach information saturation, a selective reading was performed
over the 35 papers (Azevedo Guedes et al., 2018). As a result, 21 articles that
were aligned with the purpose of this research were read thoroughly, and,

consequently, 17 potential smart city enablers were extracted. Since
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dimensionality reduction was required to establish the upcoming structural
modeling (Hair et al., 2017), the research team semantically linked 17 identified
enablers to four principal latent variables that were developed by previous
studies (Chourabi et al., 2012; Maccani et al., 2013; Silva et al., 2018). They
were Technological Infrastructure, Open Governance, Intelligent Community,
and Innovative Economy.

The four principal constructs could be explained with the identified
enablers, as summarized in Table 3.1. First, Technological Infrastructure was
decomposed into the following five technical enablers, i.e., ICT availability,
ICT performance, ICT affordability, ICT security, and ICT adoption. A United
Nations report (2016) also supported our findings by arguing that urban
digitization requires available, efficient, affordable, secure, and accessible
Technological Infrastructure. Second, Open Governance, which refers to a
governance model that actively engages citizens in government decision-
making (United Nations 2016), is built upon government transparency,
administration efficiency, and stakeholder participation, as well as contextual
strategies and perspectives (e.g., green and digital interests for smart city
transition) (Ruhlandt, 2018; Silva et al., 2018). Third, Intelligent Community
can be divided into five enablers, i.e., eco-consciousness, education, creativity,
digital proficiency (i.e., digital skills and awareness), and social cohesion of
citizens (Maccani et al., 2013). Fourth, Innovative Economy is characterized by
the urban innovation ecosystem (e.g., regulatory framework for innovation) and
the innovation changes brought in the industry by the fourth industrial

revolution (e.g., digitization and artificial intelligence). The term innovation
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refers to the capacity to exploit local creativity and social capital to enhance
urban vitality and growth; it is noteworthy that technology itself does not make

any contribution to innovation (Chourabi et al., 2012).

Table 3.1 Smart City Development Enablers in Literature

g
Enabler o Smart City >
Cluster ' Enabler

Fistola
Zygiaris
Neirotti
Maccani

Albino

Gil-Garcia
Oliveira
Simonofski
Silva

2011 2013 2013 2014 2014 2015 2015 2015 2017 2018

1 ICT Availability . . . . . . . . . .
) 2 ICT Performance ° ° . . . .
Ecrggtor'ggt'ﬁ":'e 3 ICT Affordability o« o
4 ICT Security ° ° ° °
5 ICT Adoption ° ° ° ° ° ° ° ° ° °
6  Gov. Transparency e ° ° ° ° ° ° °
7  Admin. Efficiency e ° ° ° ° ° ° ° °
GO\Z?ﬁgnce 8 Env. Interest . . .
9 Public Participation e . . . . . . .
10 Digital Interest . . . . . . . . .
11 Eco Consciousness ° ° °
) 12 Education ° ° ° ° ° ° ° °
C!Q:ﬁ::gri?tty 13 Creativity . . . . . . . .
14 Digital Proficiency e . . . . . . .
15 Social Cohesion ° ° ° ° ° . ° ° °
Innovative 16 Innov. Ecosystem ° ° ° . .
Economy 17 4" Industrial Rev. o ° ° . . . . ° ° .
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3.2.2 Smart City Performance Objectives

According to the European Investment Bank (2008), urban analysts faced
difficulties in evaluating smart cities holistically because it is challenging to
convert the benefits of a smart city into direct revenue streams. To ease the
conceptualization and performance quantification, smart city performance can
be decomposed into more quantifiable performance objectives. For instance, as
remarked by Chourabi et al. (2012), it is intuitive to characterize a smart city as
an icon of sustainability and livability.

However, such reflection is not exhaustive. To identify the key
performance objectives of a smart city extensively, the research team conducted
a bibliometric analysis over 116 operational definitions of ‘smart city’ extracted
from academic and practical studies, consistent with the procedure above (i.e.,
using Scopus). Thereby, the authors were able to review and integrate the
various perspectives of different stakeholders.

As summarized in Table 3.2, it was observed that researchers mainly
emphasized the need for Environmental Sustainability, Economic
Competitiveness, Urban Livability, and Urban Efficiency in their
conceptualization of the performance of a smart city. First, Environmental
Sustainability is attained through wiser management of natural resources (e.g.,
low-carbon economy) (Antrobus, 2011). Second, Economic Competitiveness
designates the urban capacity to thrive (e.g., job creation, increased productivity,
and economic growth) (Lombardi, Giordano, Farouh, & Yousef, 2012). Third,

Urban Livability characterizes the quality of life (e.g., affordable education,
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healthcare, and housing) and the well-being of citizens in metropolitan areas
(Lin et al., 2019). Fourth, Urban Efficiency comprises the performance of
regular city operations (e.g., traffic flow and traffic safety) (Silva et al., 2018).

Through this analysis, the research team was able to identify the
performance objectives that primarily are targeted by urban leaders in smart

cities.

Table 3.2 Smart City Performance Objectives in Literature

Performance

No. Objective

Toppeta (2010)
Caragliu (2011)
Nam (2011a)
Chourabi (2012)
Zygiaris (2013)
Neirotti (2014)
Stratigea (2015)
Meijer (2016)
Jain et al. (2017)
Arora (2018)
Braun (2018)
Ruhlandt (2018)
Silva (2018)
Lin (2019)

Sustainability

Competitiveness

Livability

Alw ||k

Efficiency o o o ° ° o o
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3.3 Hypothetical Model Establishment

In order to integrate both the direct (i.e., unmediated) and indirect (i.e.,
mediated) effects of enabler clusters on performance objectives, it is essential
to identify the causal relationships between the eight aforementioned LVs (i.e.,
four enabler clusters and four performance objectives). Thus, in this study, 28
direct relationships labeled from H1 to H28, were hypothesized; the path
diagram in Figure 3.2 graphically displays such a priori influences with straight
arrows. Specifically, the research hypotheses include three types of
relationships as follows: (1) 16 external effects directed from enabler clusters
to smart city performance objectives, (2) 8 internal effects among smart city
enabler clusters, and (3) 8 internal influences among performance objectives.

By definition, it is believed that enablers have a positive influence on the
attainment of smart city performance objectives. Therefore, it was legitimate to
establish 16 external causal relationships (i.e., H1 to H16 in Figure 3.2) oriented
from the four enabler clusters towards the four performance objectives.

Then, a comprehensive literature review was conducted to capture the
directions of the six internal effects between enabler clusters (i.e., H17 to H22)
selectively. For instance, Paskaleva (2009) posited that the use of technology
(e.g., open data, e-governance) creates a progressive, transparent, and
participatory government-public partnership (H17). The use of technology
(e.g., e-learning) also empowers citizens by establishing an environment that
improves cognitive skills and abilities to learn (H18) and to innovate (H19)

(Komninos, 2006). Then, the policy context that is derived from open
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governance creates conditions that enable innovative urban development (H20)
(Ruhlandt, 2018). In addition, a smart city can be characterized as a platform in
which the creativity and intelligence of citizens can drive open governance
(H21) (Kitchin, 2014), and a city’s ability to raise innovation is based mainly
on knowledgeable and creative human capital (H22) (Zygiaris, 2013).

It is believed that the six remaining internal effects among smart city
performance objectives can be classified as common sense (i.e., H23 to H28).
For example, citizens normally expect to live better in a city with efficient
functions (e.g., transportation system) (H24), sustainable living environment
(H26), and dynamic economy (H28). Smart city programs can also
simultaneously pursue conflicting goals; cities around the world encounter
difficulties in reconciling the needs of immediate competitiveness with long-
term sustainable development (Monfaredzadeh & Berardi, 2015). In this regard,
a negative influence can be assumed (H27).

To represent the indirect effects, both internal and external effects must be
constructed and integrated into the model. The indirect effect of an enabler
cluster A to a performance objective B is equal to the sum of the effects of the
pathways that connect A to B by involving at least one mediator variable (i.e.,
the direct effect is excluded). The effect of each contributing pathway is
computed by multiplying the path coefficients along that pathway. For instance,
the indirect effect of Technological Infrastructure to Urban Efficiency is
calculated by summing effects of the following paths, i.e., H17 - H5, H17 - H20
- H13, H18 - H9, H18 - H22 - H13, H18 - H21 - H5, and H19 - H13 while, the

direct effect is simply represented by H1 (Figure 3.2).
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3.4 Structural Equation Modeling (SEM)

Since the eight LVs shown in Figure 3.2 are LVs rather than observed
variables, SEM was used in this study to test the proposed model. In this chapter,
the research team reviews the general approach to SEM and then describes the
specific SEM strategy implemented in this research, i.e., the Partial Least

Squares (PLS-SEM) iterative algorithm.

3.4.1 SEM Process

In recent years, SEM has become increasingly popular in project
management and engineering research (Aibinu & Al-Lawati, 2010) as a
statistical process used for quantifying relationships hypothesized between
various unobserved LVs that can be inferred from measurable variables.
Initially developed by sociologists and psychologists, SEM is a powerful
statistical method that has been acknowledged particularly for its ability to
quantify complex effects among multiple variables and to address measurement
errors effectively (Molwus et al., 2017; Qureshi et al., 2015).

By definition, the parameters in SEM are (1) factor weights to measure
unobserved variables (LVs) from measurement variables and (2) path
coefficients to indicate the direct effect of an LV assumed to be the cause of
another LV assumed to be an effect. Those parameters are computed using the
collected data through an alternative application of confirmatory factor analysis
(CFA) and path analysis respectively, on two sub-models (i.e., the measurement

model and the structural model, Figure 3.3), until convergence is achieved.
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Figure 3.3 Simplistic SEM Process

The measurement model (also referred to as the outer model) computes the
scores of LVs by linear combinations between computed weights, w, and
standardized data of reflective measurement variables. In this framework, the
scores of the eight LVs is iteratively estimated for each city. For example, the
score of Technological Infrastructure (TI) was initially estimated based on the
weights of 11 sub-enablers from TI1 to TI11 (Table 4.1). And, the structural (or
inner) model quantifies the strengths of relationships (i.e., path coefficients 3)
among the LV scores through path analysis.

It is noteworthy that SEM does not provide unquestionable proof of
influences among LVs; rather, it mathematically supports or disconfirms the
propensity of such influences. Hypothesized relationships can be rejected as
being good approximations of reality, but they cannot be confirmed as being
the exclusive representation of the actual underlying processes. One of the
strengths of SEM is its disconfirmatory power (Mueller, 1999; Qureshi et al.,

2015).
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3.4.2 SEM Strategy

In this paper, the SEM technique called Partial Least Squares (PLS-SEM)
was chosen for analyzing the hypothesized model using SmartPLS 3.2.8
application software. To be specific, PLS-SEM was selected because it has both
confirmatory and exploratory abilities; i.e., it can both confirm a theory-based
model and develop a new theory (Hair et al., 2017).

In PLS-SEM (Figure 3.4), the idea is to first construct each LV based on
its measurement variables using initialized weights. Then, using the structural
model, each LV is reconstructed by means of its predicting LVs. Next, in the
measurement model, the best linear combination to express these LV scores
through their measurements variables (MVs) is calculated; the coefficients are
referred to as outer weights. Finally, each LV is constructed as such weighted
sum of its MVs. The loop is repeated until the relative change of all weights
from one iteration to the next become smaller than a predefined tolerance
(Equation (1)). Then the algorithm stops and the last estimation of LV scores
computed is taken to be definitive (Monecke & Leisch, 2012).
i+l

i
Wig — Wk
g 9| < tolerance (D)

Wiy
where W} g 18 the weight of the k™ measurement variable of the g LV at
the i iteration.
Otherwise, it is required to go back to the inner calculation (i.e. structural

model). In the experiments, the tolerance was set to 10”7 and the maximum

number of iterations to 300.
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Moreover, PLS-SEM allows the user to apply three structural model
weighting schemes: (1) centroid, (2) factor, and (3) path weighting schemes.
While the results differ little for the alternative weighting schemes, path
weighting was applied in this study. Indeed, this weighting scheme provides the

highest R? value for endogenous variables.

Initialization of Calculation of Parameters for PLS-SEM
Start - &0 it r .
. Coefficients Wy, Initial LV Scores

1) Tolerance: 107

Pg
98 = Z WY, X Xy 2) Maximun iterations: 300
£=1 3) Weighting Scheme: Path

At the i iteration:

ﬁi;(g the weight of the k' MV of the g LV
B;g the path coefficient between the j LV and the g L.V
ig the score of the g T.V
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Figure 3.4 PLS-SEM Algorithm

Also, the authors preferred PLS-SEM over covariance-based SEM

algorithms due to its high statistical power with relatively small sample sizes
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(i.e., 100 or fewer observations as reported in Table 3.3) (Hair et al., 2017;
Raymond & Bergeron, 2008). Despite its having this ability, the research team
conducted oversampling using a bootstrapping technique to ensure the stability
of results (Aibinu & Al-Lawati, 2010). Bootstrapping is a statistical method of
inference about a population using sample data. This method relies on random
sampling with replacement from sample data.

Given the limited number of observations (i.e., 50 cities) considering the
large number of variables, 1,000 bias-corrected and accelerated (BCa) bootstrap
subsamples were generated to validate the estimated model and to determine

the confidence interval of the model’s parameters.
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Table 3.3 Rules of Thumb for Choosing SEM Method

(J. Hair et al., 2017)

No. Criteria PLS-SEM CB-SEM
1 Philosophy Exploratory/Confirmatory Confirmatory
2 Objective Prediction Oriented Parameter Oriented
3 Methodology Variance-based Covariance-based
4 Sample Size Small (30-100 Cases) High (100-800 Cases)
Model Complex Models Simple Models
5 C Ol e (Many LVs=6+ and many (5 or fewer LVs and 50 of
omplexity Indicators=50+) fewer indicators)
6 LVs . Reflective or Formative Reflective
Construction
7 . D_ata . Non-Parametric Normal Distribution
Distribution
8 Preferred Measurement Model Structural Model
Sub-model
9 Validati R?; Significance, value, and GFI', AGFI2, RMSEA3,
ahdation sign of path coefficients NNFI4, NFI°, CFI°
Available SmartPLS, PLS-Graph,
10 Software XLSTAT LISREL, AMOS, SAS, EQS
N.B. 'GFIL:

Goodness-of-Fit Index. 2AGFI: Adjusted Goodness-of-Fit Index. RMSEA: Root Mean

Square Error of Approximation. “NNFI: Non-Normed Fit Index. NFI: Normed-Fit Index. °CFI:
Comparative Fit Index.
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Chapter 4. Model Testing and Results

4.1 Data Collection and Preparation

4.1.1 Data Collection

The data collection for the 50 smart cities identified in Figure 1.3 was
methodically organized through open-data portals (Tenenhaus et al., 2009). The
interested reader is directed to Appendix A and Appendix B for a detailed
description of data sources.

First, the 17 smart city enablers extracted in Table 3.1 were measured by
subdividing them into several accurate measurement variables, which were
referred to as sub-enablers, as detailed in Table 4.1. For example, the
performance of public technological infrastructure was assessed through two
sub-enablers, i.e., broadband latency (in milliseconds) (TI4) and network
bandwidth (in megabits per second) (TI5).

Similar work was conducted to quantify the performances of smart cities.
Each performance objective was assessed based on the measurement variables,
which are referred to as sub-objectives in this paper, as shown in Table 4.2. For
instance, Economic Competitiveness was measured through manifest
performance sub-objectives, such as urban wealth (i.e., GDP per capita) (C2)
and average salary (C6) (Lombardi et al., 2012).

The four principal enabler clusters were assessed through 40 sub-enablers

and the four performance objectives were evaluated through 20 sub-objectives.
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Table 4.1 Results of CFA - Smart City Sub-Enablers

Enabler Cluster Measurement Loading VIF* Cronbach’so, CR® AVE®
No.  Enabler  _°% Sub-Enabler Fig. 41 (<5)  (07)  (>0.7) (>0.5)
Technological Infrastructure (TI) 0.890 0.916 0.650
ICT TI1 Publif: Wi-Fi Coverage  -0-180
Availability T2 Fiber Coverage 0185
*TI3 ICT Sophistication 0919 4.565
ICT *TI4 Broadband Latency 0.841  3.049
Performance  *TI5 Network Bandwidth 0.752  2.057
3 ICT TI6 Local Call Tariff -0:397
Affordability  TI7 Internet Tariff -0:376
. *TI8 Internet Securit; 0.684 1.531
4 ICT Security TI9 Cyber Security Efi:ort 0534
. *TI10 Internet Usage 0.872  3.584
3 ICT Adoption *TI11  Smartphone Penegtration 0.742 1.804
Open Governance (OG) 0.885 0.917 0.692
Government  OGl Government Honesty 0972 20935
Transparency *OG2  Government Stability 0.832 2511
Admin 0G3 Bureaucratic .Q}lality 0.964 15.669
7 Efﬁcien(;y *0G4 Urban Policies 0.837 2.756
0G5 E-Governance 0:630
Environment OG6  Pollution Control Policy -0-H7
Interests *0G7 Green Policies 0.764  2.026
Public 0OG8 . Civic Act'iv'ism' 0348
Participation 0G9 Citizen P.ar.tlmpatlon 0365
*0G10 E-Participation 0.813  2.899
10 Digital 0Gl1 Data Privacy Policy 0:684
Interests  *OG12 ICT Regulations 0911 3.638
Intelligent Community (IC) 0.908 0.930 0.690
Eco IC1 Water per capita -0
11 Conscious. 1C2 Electricity Per Capita -0:683
*1C3 Energy Savings 0.755 2212
12 Education *IC4 Affinity for Studies 0.855  3.129
1C5 Students' Abilities 0677
13 Creativity *IC6 ACre.ative Idegs. 0.837 2.551
*1C7 Scientific Creativity 0.887  3.703
14 Digital *IC8 Digital Skills 0.837 2.470
Proficiency ~ *IC9 Cyber-Vigilance 0.799  2.299
Social IC10 Soci‘al E.quali.ty 0.618
15 Cohesion IC11 Ethnic Diversity 45
1C12 Elderly People -0-692
Innovative Economy (IE) 0.849 0.900 0.698
Innovation *[E1  Public R&D Imfestment 0.799  2.293
16 Ecosystem *[E2 Regulatory Environment  0.756  1.851
*IE3 Start-Up Ecosystem 0.822  2.105
17 4" Industrial ~ *IE4 Smart Factories 0.949  4.900
Revolution  IE5 Business Intelligence 0935 &730

@ VIF: Variance Inflation Factor. ® CR: Composite Reliability. ° AVE: Average Variance Extracted
* These sub-enablers were retained selectively [i.e., Loading satisfies the selection criteria (Figure 4.1) and

VIF<5].
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Table 4.2 Results of CFA — Smart City Sub-Objectives

Weight Cronbach’s

Performance Objective Load VIF (%) a CR AVE
Code Sub-Objective Fig. 4.1 (<5) - (>0.7) >0.7) (>0.5)
Urban Efficiency (E) 0.774 0.865 0.691
*E1l Smart Parking 0911 2.293 0.379
*E2 Car Sharing Services 0.682 1.435 0.208
E3 Public Transport Reliability 0609
E4 Public Transport Use 0429
E5 Traffic Flow 0487
*E6 Traffic Safety 0.888 1910 0414
Environmental Sustainability (S) 0.802 0.884 0.720
S1 Renewable Energy 0136
*S2 Energy-Efficiency 0.864 3.071 0.307
*S3 Waste Recycling 0.897 3.339 0.319
*S4 Clean Air 0.789 1342 0.374
Urban Livability (L) 0.865 0.918 0.791
*L1 Quality of Social Services  0.919 2979 0.350
*L2 Happiness 0.857 1.848 0.343
*L3 Feeling of Security 0.888 2.658 0.307
L4 Public Safety 0.907 5093
Economic Competitiveness (C) 0.899 0.937 0.833
*Cl Business Competition 0.941 3945 0.337
*C2 Urban Wealth 0.873 2293 0.303
C3 Employment 0585
C4 Attractiveness 9574
C5 Diplomatic Power 0133
*C6 Average Salary 0.924 3299 0.359

N.B. *These sub-enablers were retained selectively [i.e., Loading satisfies the selection criteria
(Figure 4.1) and VIF<5].
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4.1.2 Data Preparation

General data processing was performed to prepare the raw data for SEM
analysis; i.e., missing values were handled and standardization was conducted.

Statistical analysts are repeatedly confronted with dealing with missing
data, e.g., the absence or unavailability of one or more variables for one or more
cities. To address this issue, the process of replacing missing data with
substituted values was considered by applying two types of imputations, i.e.,
hot-deck imputation and regression imputation (Ericsson, 2014). If the data
were not available at the city level (e.g., government transparency), the data
were collected from a larger region that includes the city, such as a region or
country (i.e., hot-deck imputation). Also, when the variables showed
correlation with other variables, this relationship was used to obtain an estimate
of the missing value (i.e., regression imputation). For instance, since the affinity
for studies in smart cities (IC4 in Table 4.1), calculated using the city population
mean years of schooling, is correlated strongly with urban wealth (C2 in Table
4.2) (Caragliu et al., 2011), linear regression was used when inputting the
missing data.

Next, the research team standardized the data (Table 4.3) using the Z-
scoring technique as follows. For measurement variables that are correlated
positively to the latent variable, Equation (2) was used to standardize the data
to represent better outcomes with higher scores (e.g., digital skills, 1C8).
However, some variables have an undesirable effect on the related latent

variable; for example, the lower the latency of ICT broadband network (T14),
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the more performant the Technology Infrastructure. In that case, Equation (3)
was used.
Depending on the raw data x, the standard score z was calculated by

using the appropriate equation:

2

P 3)

where z isthe standardized score, x is the original raw data, and ¢ and
o are the mean and standard deviation of the sample, respectively. The

standardized data were used to perform the SEM analysis.

Table 4.3 Details of Data Standardization

Raw Data Standardized Data
Code Sub-Enabler (Unit)

Mean StDev Mean StDev  Min Max

T4 Broadband Latency (ms) 67.59 18.90 0.00 1.00 -268 141
TI5 Network Bandwidth (Mbps) 22.87  9.42 0.00 1.00 -1.80 2.75
TI10 Internet Users (%) 80.09 1425 0.00 1.00 -3.55 1.22

TI11  Smartphone Penetration (%) 64.30 24.70  0.00 100 -195 145
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4.2 SEM Analysis

4.2.1 Measurement Model

To ensure that the LVs are within an acceptable level of error, it is
imperative to evaluate and validate the reflective measurement model. First, the
authors performed reliability analyses for all individual measurement variables
(i.e., unidimensionality and collinearity tests). Such analyses can detect the
propensity for multiple items to reflect the exact score of LVs. Internal
consistency tests of the LVs were then conducted, including construct reliability,
convergent validity, and discriminant validity (Gotz et al., 2010).

The standardized loadings and the variance inflation factors of the sub-
enablers and sub-objectives were calculated, and they are reported in Table 4.1
and Table 4.2, respectively. Data unidimensionality is usually satisfied by
retaining items that have factor loadings greater than 0.7 (Fornell et al., 1981),
but the selection process can be extended, as shown in Figure 4.1. The loadings
computed from CFA indicated the level of variance that was shared with their
related LV. The variance inflation factor (VIF) was also computed to quantify

the severity of multicollinearity. Given a set of predictors, for the k™ predictor:

VIF, = —— 4
kK T1-R? “)

where R% is the R? value obtained by regressing the k™ predictor on the
remaining predictors (Hair et al., 2017). Gtz et al. (2010) suggested that if an
item’s VIF is below 5.0, the absence of redundant information could be

assumed in the set of predictors.
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Since the SEM results were initially not satisfactory in terms of internal
consistency, the authors modified and adjusted the research model by
eliminating offending variables until the aforementioned conditions were met.
First, 13 of the 60 measurement variables with loadings less than 0.50 were
eliminated. For instance, TI2 (fiber coverage) was removed because of its
loading value of 0.185. Next, 12 out of the 47 selected measurement variables
had loadings between 0.50 and 0.70, but only two of them (i.e., TI8 and E2 with
loadings of 0.684 and 0.682) were retained based on the decision-making
process described in Figure 4.1. At this stage, 37 sub-enablers were selected.
The authors then eliminated four out of the 37 remaining items whose VIFs
exceeded 5.0; OG1, OG3, IES, and L4 did not meet such standards because

their VIF values, calculated using Equation (4), were 20.9, 15.7, 8.7, and 5.1.
Confirmatory Factor
( Analysis )

Factor loading is:
>0.50 but < 0.70

Factor loading is:
<0.50

Delete the reflective
indicator

Factor loading is:
>0.70

Retain the reflective
indicator

Analyze the impact of
indicator deletion on internal
consistency (IC) reliability

I

Deletion does not
increase IC measure(s)
threshold above threshold

Delete the reflective Retain the reflective
indicator indicator

Figure 4.1 CFA-Based Variable Selection Process

Deletion increases IC
measure(s) above

(Adapted from Hair et al., 2016)
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After the reliability of 33 out of 60 initial measurement variables has been
guaranteed, it is necessary to evaluate the internal reliability, convergent
validity, and discriminant validity of the LVs to ensure that there are no
additional consistency issues. Those tests were implemented by using IBM
SPSS Statistics 23.0 and SmartPLS 3.2.8 application software.

The Cronbach alpha test was conducted for each LV to confirm the internal
reliability of the extracted variables. Similarly, composite reliability (CR) was
also used to check the reliability of the LVs. Cronbach’s alpha and CR values
should be greater than 0.7 (Nunnally et al., 1967). In this study, the minimum
Cronbach’s alpha was 0.774, and the CR systematically exceeded 0.865. In
addition, the results provided evidence of the convergence validity of the LVs,
since their average variance extracted (AVE) ranged from 0.650 to 0.833. The
cutoff point for AVE must be greater than 0.5 (Bagozzi et al., 1988; Fornell et
al., 1981). Last, the discriminant validity of LVs was established because the
Heterotrait-Monotrait Ratio of Correlations (HTMT) between LVs was
systematically less than 0.9 (Hair et al., 2017). Equations (5) and (6) were used

to compute the LVs’ CR and AVE values, respectively.

ey
=i rra-m ©)

1
- 2 6
AVE—nE(/lf) (6)

where n is the number of indicators used to measure the LV, and A; is

the factor loading of the i measurement variable (Raymond & Bergeron, 2008).
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4.2.2 Structural Model

After confirming the robustness of the measurement model, the reliability
of the structural model was evaluated. The structural model includes 28 causal
relationships between the eight aforementioned LVs. However, contrary to
covariance-based SEM, consensual goodness-of-fit metrics are still missing
when the PLS-SEM method is used (Aibinu & Al-Lawati, 2010; Raymond &
Bergeron, 2008).

Therefore, PLS-SEM practitioners prefer to test the research hypotheses
by analyzing the reliability of the measurement model (c.f. section 4.2.1) and
the squared multiple correlations (R?) of endogenous constructs (Breiman &
Friedman, 1985; Raymond & Bergeron, 2008). As reported by Hair et al. (2016),
PLS-SEM aims at maximizing the R? values of the endogenous LVs; while the
correct interpretation of the R* values depends on the particularities of the
model and the research discipline, the R? values of 0.75, 0.50, and 0.25
generally explain substantial, moderate, and weak constructions, respectively.
Also, it is essential to consider the statistical significance (i.e., p-value), value,
and signs of the paths coefficients when analyzing the structural model
(Raymond & Bergeron, 2008).

In this paper, the high percentage of variance explained for each
endogenous LV (R?), which varied from 70.6% for Environmental
Sustainability to 91.2% for Economic Competitiveness, was indicative of a
good fit by the model. Moreover, the hypothesized relationships were

considered supported based on the significance level of 0.10 that is generally
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recommended for exploratory research (Garson, 2016).

Figure 4.2 shows the results, and they are justified mathematically in Table
4.4; 15 of the 28 hypothesized paths were confirmed statistically. For instance,
according to the mathematical model (Figure 4.2), the Economic
Competitiveness in smart cities is significantly enhanced by Open Governance
(Bus = +0.318), Intelligent Community (Buiz = +0.513), and Innovative
Economy (Buis = +0.447); it is noteworthy that the higher the path coefficient
(indexed as B in this paper) becomes, the stronger the direct effect becomes on
the endogenous construct. Notably, the structural model emphasizes the large
internal effects of Technological Infrastructure on Intelligent Community (Bris
= +0.896) and of Intelligent Community on Innovative Economy (Bm: =
+0.836). As emphasized by Zygiaris (2013), a city’s innovation power depends
significantly on the creativity and intelligence of the citizens.

All significant paths are positive except the one that connects Innovative
Economy to Urban Livability (Buis = -0.588); this negative influence is due to
the drawbacks and threats of the fourth industrial revolution. The quantified

effects derived from the 28 relations are discussed in the next section.
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Table 4.4 Results of Hypothesis Testing

. Path Critical
I;if;ggflsslﬁ:d Coefficient Stgl:f::d Ratio v;:le Interpretation
P ®) 1.6)
External Effects Enabler Cluster — Performance Objective
Hl: TI—E +0.192 0.238 0.809 0.419 Not Supported
H2: TI—S +0.219 0.224 0.837 0.403 Not Supported
H3: TI-L +0.280 0.175 1.600 0.091 Supported
H4: TI—-C -0.204 0.155 1.314 0.189 Not Supported
H5: OG—E -0.175 0.211 0.832 0.406 Not Supported
H6: OG—S +0.277 0.217 1.277 0.202 Not Supported
H7: OG—L +0.307 0.152 2.023 0.043 Supported
H8: OG—-C +0.318 0.141 2.257 0.024 Supported
H9: IC—E +0.397 0.292 1.359 0.174 Not Supported
H10: IC—S -0.000 0.248 0.001 0.999 Not Supported
H11: IC—>L +0.495 0.272 1.824 0.005 Supported
H12: IC—>C +0.513 0.198 2.588 0.010 Supported
H13: IE—E +0.449 0.189 2.372 0.018 Supported
H14: IE—S +0.151 0.179 0.842 0.400 Not Supported
H15: IE—L -0.588 0.211 2.786 0.005 Supported
H16: IE—C +0.447 0.137 3.273 0.001 Supported
Internal Effects Enabler Cluster — Enabler Cluster
H17: TI— OG +0.556 0.118 4.728 il Supported
H18: TI—IC +0.896 0.020 44.162 Fkk Supported
H19: TI—>IE -0.047 0.224 0.210 0.834 Not Supported
H20: OG—IE +0.107 0.156 0.689 0.491 Not Supported
H21: IC—OG +0.376 0.124 3.019 0.003 Supported
H22: IC—IE +0.836 0.168 4.979 falaiel Supported
Internal Effects Performance Objective — Performance Objective
H23: E—S +0.248 0.153 1.628 0.098 Supported
H24: E—L +0.240 0.146 1.645 0.100 Supported
H25: E—C -0.191 0.121 1.581 0.114 Not Supported
H26: S—L +0.294 0.112 2.624 0.009 Supported
H27: S—C +0.079 0.081 0.974 0.330 Not Supported
H28: C—>L -0.096 0.160 0.599 0.549 Not Supported
N.B. *** p-value < 0.001
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4.3 Results and Discussions

The proposed model was validated with acceptable performance criteria
(c.f. R% in Figure 4.2) to quantify how enabler clusters (i.e., Technological
Infrastructure (T1), Open Governance (OG), Intelligent Community (IC), and
Innovative Economy (IE)) structurally influence the four performance
objectives of smart cities, i.e., Urban Efficiency (E), Environmental

Sustainability (S), Urban Livability (L), and Economic Competitiveness (C).

4.3.1 Findings from the Measurement Model

The results derived from the measurement model indicated that the
developed framework was capable of extracting the priority of smart city sub-
enablers for practical applications (i.e., strategic smart city planning and
development).

More specifically, the measurement model can explain how the potential
of enabler clusters can be improved strategically. To this end, Table 4.5
summarizes the CFA standardized weights, labeled as w, of selected sub-
enablers. The distributed weights show the relative importance of sub-enablers
for each enabler cluster. In detail, all measurement variables within an enabler
cluster must be considered, but special attention should be paid to the critical
ones (i.e., above average) that are marked with an asterisk in Table 4.5. For
example, the impact of TI in smart cities is influenced mostly by technology

sophistication (e.g., Internet of Things, cloud computing, and ubiquitous sensor
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network) (wmiz = 0.207) and followed by ICT adoption (om0 = 0.186). As
mentioned by Braun et al. (2018), if citizens are reluctant to use the
technological infrastructure, the smart city becomes obsolete. Therefore, to
make investments in technology smart and sustainable, it is important to build
socio-technical complementarities using the following results. An appropriate
OG in smart cities is developed primarily by promoting the transformational
impacts of ICT integration (woc12 = 0.220) to deliver better service to citizens.
It can be achieved through the enactment of a legal framework that facilitates
ICT pervasiveness. In contrast, poorly designed ICT related-regulations can
create inequalities and widen the digital divide. The transparency (woc2 =
0.209) (e.g., through open data) and efficiency (woca = 0.205) of government
activities also influence the potential of OG. Next, IC is established mainly via
the development of digital competences (wics= 0.188), creative abilities (mice =
0.172 and wic7 = 0.180), and lifelong learning skills (wica=0.170) of the
population. Last, the integration of the latest computing innovations in the
industry (miea = 0.297) controlled with proper regulations (mie2 = 0.253) is very
important to foster innovation capacities and lay the groundwork for an IE.

As a result, based on those findings, urban strategists can formulate a new
policy agenda to prioritize their investments and enhance preparedness for

smart city transition.
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Table 4.5 Sub-Enablers Ranked by CFA Weights

Technological Infrastructure (TI)

Intelligent Community (I1C)

Code Sub-Enabler Weight (%) Code Sub-Enabler Weight (%)

TI3* ICT Sophistication 20.7 1C8* Digital Skills 18.8
TI10* Internet Usage 18.6 IC7*  Scientific Creativity 18.0

TI8 Internet Security 15.9 1C6* Creative Ideas 17.2
TI4 Broadband Latency 15.8 IC4*  Affinity for Studies 17.0
TI11  Smartphone Penetration 15.4 IC9 Cyber Vigilance 14.9
TI5 Broadband Speed 13.7 IC3 Energy Savings 14.2
Open Governance (OG) Innovative Economy (IE)

Code Sub-Enabler Weight (%) Code Sub-Enabler Weight (%)
0oG12* ICT Regulations 220 IE4* Smart Factories 29.7
OG2*  Government Stability 20.9 IE2* Regulatory Environment. 25.3
OG4* Urban Policies 20.5 IE1  Public R&D Investment 22.9
0G10 E-Participation 19.0 IE3 Start-up Ecosystem 22.1

oG7 Green Policies 175 N.B. * Critical Smart City Sub-Enablers
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4.3.2 Findings from the Structural Model

The structural model identified the direct and indirect effects of enabler
clusters on performances objectives. Then, the integration of these paths (i.e.,
total effects) was used to provide public decision-makers with practical
indications, including counterintuitive findings to reach each performance
objective individually.

The results demonstrated the statistical significance and decisive
contributions of both direct and indirect effects. Figure 4.2 shows the
significant direct effects of the enabler clusters on urban performances (e.qg.,
H3, H7, and H8), and it also enables the visualization of complex indirect paths
(e.g., H17 - H7). Quantitatively, it was confirmed that the use of technology
(e.g., Internet of Things) directly improves citizens’ quality of life (e.g., public
safety, health) (Bus = +0.280) in line with the findings of previous studies
(Braun et al., 2018; Jain et al., 2017). Next, in a strong OG-oriented city, the
voice of citizens is listened to attentively by policy-makers in a non-
confrontational manner. Therefore, OG directly influences the attainment of
three performance objectives (i.e., S, L, and C) since citizens generally expect
to live in sustainable, livable, and competitive environments. Furthermore, I1C
(through H11 and H12) and IE (through H13, H15, and H16) also contribute
directly to the performances of smart city programs. A city with highly
educated, intelligent, and aware citizens (i.e., IC) and strong IE is more likely

to satisfy its performance objectives.
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In addition to the direct effects, it was also possible to highlight the
important participation of enabler clusters’ indirect effects on smart city
performances. The internal effects among enabler clusters, including, but not
limited to, H17, H18, H21, and H22, are the starting points for those indirect
effects. For instance, as stated by Chourabi et al. (2012), Tl can be characterized
as a meta-enabler since it also directly influences other enabler clusters (i.e.,
internal effects) like OG (Br17 = +0.556) and IC (Br1s = +0.896). As a result,
through sequential paths involving mediator variables, such as OG (Bri—oc—L
= +0.171) and IC (Bri—ic—L = +0.443), Tl indirectly influences L. In the
scenario TI—L, the indirect effects supported by Kitchin (2014) explain 67.3%
of total influence. Table 4.6 shows that the results demonstrated the substantial
impacts of indirect effects, especially for Tl and IC, in the attainment of smart
city performances. The decompositions of direct, indirect, and total effects are
shown in Table 4.6. The main contribution of this study is the integration of
direct and indirect effects, which provides opportunities to gain a

comprehensive understanding of the development dynamics of a smart city.
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Table 4.6 Direct, Indirect, and Total Effects of Enabler Clusters

Technological Open Governance Intelligent Innovative Economy
Infrastructure (TI) (0G) Community (IC) (IE)
Dir. Ind. Tot. : Dir. Ind. Tot. | Dir. Ind. Tot. | Dir. Ind. Tot.
+0.19  +0.56* +0.75%* -0.18 +0.05 -0.13 @ +0.40 +0.33* +0,73** +0.45* - +0.45*
. 25.6% 74.4% 78.5% 21.5% 54.8% 45.2% 100.0% 0.0%
+0.22 +0.55*% 4+0.77%* +0.28 -0.02 +0.26 : -0.00 +0.42** +0.42%: +0.15 +0.11 +0.26*
i 28.4% 71.6% 94.9% 5.1% 0.0% 100% 57.6% 42.4%
+0.28* +0.58** +0.86**+0.31* -0.06 +0.25 +0.50* -0.192 +0.30* -0.59** +0.15 -0.44*
t 32.7% 67.3% 84.6% 15.4% 72.1% 27.9% 79.9% 20.1%
-0.20 +1.02%* +0.81%%+0.32* +0.09 +0.41%*+0.51**+0.41**+0,92*%*+0.45** -0.07 +0.38**
¢ 16.7% 83.3% 77.4% 22.6% 55.9% 44.1% 87.3% 12.7%

N.B. The percentages indicate the proportion of a total given effect explained by direct and
indirect effects respectively.
* p-value < 0.1 ; ** p-value < 0.01

Based on the integration of direct and indirect effects (i.e., total effects), it
was also possible to extract appropriate synergies to improve urban
performances individually. For example, Table 4.6 and Figure 4.3 indicate that
TI1 exhibits the strongest total effects for each performance objective except for
C, where IC slightly predominates over T1.

However, even though TI is obviously fundamental in smart city
development, the results confirmed the insufficient necessity of technological
development for the future success of smart city initiatives (Aina, 2017; Nam
& Pardo, 2011b). The authors believe that synergetic dynamics involving OG,
IC, and IE collectively, can best exploit the potential of TI in order to enhance

the attainment of smart city performance objectives. Such quantitative results
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and analyses can help urban leaders make project-control decisions such as

consistent policy management to enhance smart city performances.

SEM-Based Smart City Development Dynamics
Distribution of Total Effects

Enabler Clusters: . Technology Infrastructure (T1) . Open Governance (0G) D Intelligent Community (IC) D Innovative Economy (IE)
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Figure 4.3 Integration of Direct and Indirect Effects

However, several challenges remain to be addressed to appropriately
manage the development of smart cities (Figure 4.3).

First, the research team observed that the total effect of OG on E is
negative (Brota: ok = -0.127). The efforts of central and local governments to
invigorate public participation (OG) can have undesirable effects. Through the

consideration of citizens’ demands and related possible conflicting interests,
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urban leaders encounter difficulties (e.g., socio-spatial inclusion) in managing
and planning efficiently urban operations (e.g., public transportation) (E). Also,
unplanned mass urbanization can deteriorate the efficiency of urban structures.
Today, 55% of the world’s population lives in metropolitan areas, and, by 2050,
68% of the global population is projected to be urban; the urbanization pace is
expected to intensify especially in developing countries (United Nations, 2016).
Therefore future research in urban sciences should investigate how smart city
planning can deal with the resulting effects of rapid urbanization (Zeng et al.,
2018)

In addition, the negative influence of IE on L (Brota: e = -0.440) is
inconsistent with common sense that the fourth industrial revolution (i.e.,
industry 4.0) and related technological innovation (e.g., cognitive computing)
could foster positive changes in society. For example, the introduction of
artificial intelligence (e.g., robotics) in industries can enhance working
conditions. However, the sudden introduction of pervasive computing in the
economy, in addition to drastically redesigning every aspect of urban life, is
threatening the workers’ quality of life. With computer vision techniques for
instance, video surveillance intrusively can track and monitor workers.
Additional research opportunities include the security and privacy challenges
in smart cities to increase the quality of life in a secure manner (Braun et al.,
2018). Also, common labors in smart cities are being replaced progressively by
computers, especially in smart factories, which are very important for IE (g4
= 0.297). Even though they are designed to improve productivity, those

innovative solutions can deteriorate the well-being of citizens (w12 = 0.343) by
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disrupting jobs, skills, and privacy. There is growing concern that this reliance
on cutting-edge technology could create a smart dystopia. Therefore, urban
strategists should keep in mind that just focusing on innovation when
developing smart city projects can have a negative impact on citizens in the
long term.

Future research should investigate how smart cities can control the pace of

innovation to restore a human-centric perspective.
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Chapter 5. Model Applications

5.1 Smart City Maturity Assessment

The SEM developed in this research shows how the performances of smart
cities are affected by various enablers and sub-enablers. Specifically, the model
can be utilized to systematically assess the maturity of smart city development
enablers. With all weights derived for each detailed sub-enabler, the results of
this research can be analyzed in depth to formulate strategic recommendations
and practical guidelines. Furthermore, the SEM model can be used to estimate
and compare the impact of alternative strategies on the attainment of
performance objectives.

To show potential use cases, three case studies (i.e., Boston, Helsinki, and
Seoul) were examined and analyzed through the lens of the SEM model. In
practice, Boston has been acknowledged as an international center for higher
education, Helsinki as a model in terms of citizen empowerment (Mora, Deakin,
& Reid, 2019), and Seoul as a global ICT leader (PwC, 2016). The SEM-based
results reported in Figure 5.1 tend to confirm these facts. The model can be
further utilized to identify the strengths and weaknesses in smart city

development.
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SEM-Based Maturity of Enabler Clusters : Case Studies
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Smart City Development Enablers

O Boston O Helsinki = Seoul

Figure 5.1 Smart City Maturity Assessment: Case Studies

For example, when evaluating the maturity of Technological Infrastructure
in Figure 5.1, Boston appears to be relatively lagging compared to Helsinki and
Seoul. A detailed investigation can be conducted to identify the causes of this
gap. Through the spider map of Technological Infrastructure in Figure 5.2,
urban leaders can inspect the conditions of critical technological sub-enablers
(i.e., TI3 and TI10). While the score of TI3 (/CT sophistication) in Boston is
comparable with advanced cities, TI10 (/CT usage) is neatly lagging. Therefore,
the digital divide in Boston needs to be better filled to enhance the potential of
Technological Infrastructure for successful smart city development. The
developed model can aid policy-makers in designing coherent metropolitan
policies.

Consequently, urban leaders are able to evaluate and operate management

strategies to significantly enhance the dynamics of smart city growth.
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5.2 Smart City Macro Trends Analysis

The developed assessment model can also be applied to extract the macro
trends of smart city development, especially considering the influence of
contextual factors. It is important to start understanding how contextual factors
such as economic, geographic, and demographic factors can affect the
maturation of smart city developments.

Based on the SEM model, the maturity of development enablers and the
attainment of performance objectives in 50 smart cities have been contextually
analyzed in Figure 5.3 and Figure 5.4 respectively. Specifically, the boxplot
method was used to graphically display the respective influence of four context
factors (i.e., economic development, geography, density, and size). Such efforts
have been undertaken in order to extract general smart city development trends.

For instance, in Figure 5.3, it can be observed that smart city development
scenarios are extremely different between developed and developing nations.
Since developing nations have their financial commitments already aligned to
achieve the basic entities (e.g., potable water supply, sanitation services), their
smart city development perspectives are narrowed (Yadav et al., 2019). Also,
denser cities tend to have more difficulties in developing performant
technological infrastructure and achieving participatory governance structures.

Furthermore, regarding the attainment of performance objectives in smart
cities (Figure 5.4), the efficiency of urban operations tend to be deteriorated in
larger urban areas. However, larger cities also tend to have more economic

power, since such cities can potentially contain a greater number of economic
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agents. The findings can be further developed for use when conducting smart

city eligibility analysis.
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Chapter 6. Conclusion

6.1 Summary and Contributions

Smart city practitioners often encounter difficulties in formulating proper
policies for successful planning and development due to the lack of
comprehensive quantification of enablers’ effects.

To address such challenges, this paper proposed an assessment model of
enablers’ direct and indirect effects on smart city performance objectives. To
achieve this, the authors first classified 17 smart city enablers into four enabler
clusters and extracted four decisive performance objectives through extensive
literature review. Next, the structural research model was developed by
identifying the meaningful relationships between the eight aforementioned LVs.
Then, the SEM analysis was conducted using the bootstrapped data of 50 smart
cities worldwide.

The findings validated the crucial contributions of indirect effects and also
confirmed the importance of a synergistic approach, involving collectively
Technological Infrastructure, Open Governance, Intelligent Communities, and
Innovative Economies to build successful smart cities. Based on the
quantitative results, it was inferred statistically that, for successful smart city
development, it is important to build socio-technical complementarities upon
(1) efficient and transparent city administration that promotes the digital
transformation of public spaces, (2) educated, creative, and digitally-proficient

population, and (3) properly-regulated, digital transformation of the economy.
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In conclusion, the developed assessment model has the potential to provide
useful guidelines to policymakers and metropolitan leaders for enhancing the
growth of smart cities. Urban strategists can capitalize on the integration of
quantified effects to build socio-technical complementarities in order to attain

optimum urban performances.
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6.2 Limitations and Future Study

This research starts bridging some theoretical and practical gaps for a
holistic research approach to smart cities, especially in quantifying and
understanding the development dynamics.

However, limitations can primarily arise from the insufficiency of
observed data; this research analyzed the actual data of 50 pioneering smart city
projects. The findings are highly influenced by the specificities of these cases.
For model performance improvements, further achievements are expected to
benefit from the maturation and expansion of the smart city phenomenon. The
number of smart cities worldwide will continue to increase at a fast pace: for
example, the Korean government announced in 2015 that 21 smart city
initiatives were partially completed, 12 under construction, and 31 at the design
stage (Yigitcanlar, 2015). More case studies would reinforce our understanding
of smart city development dynamics and help researchers to share best practices
on how to develop an effective smart city.

Secondly, this research identified the enablers of smart city development
and quantified their effects on urban performances. The recognized sub-
enablers might need to be evaluated further to know their causal interrelations
and implications in smart city initiatives; alternative techniques such as
Decision-Making Trial and Evaluation Laboratory (DEMATEL) might be
applied.

Thirdly, further empirical and statistical analyses could be conducted to

quantify the influence of contextual factors in smart city development.
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Specifically, works mentioned in chapter 5.2 could be further developed to
understand how contextual factors such as economic, geographic, and
demographic factors can quantitatively affect the maturation of smart city
development.

Lastly, this study positively explores why the smart city concept holds so
much promise for cities worldwide. However, less is said in this paper about
the negative aspects of smart cities that can be technical, social, and ethical. For
instance, the potential for social polarization, the vulnerability to cyber-attacks,
the educational and financial demands made on citizens in order to participate
in urban life, technocratic and autocratic governance, and excessive
surveillance in smart cities have not really been addressed in this paper

(Soderstrom, Paasche, & Klauser, 2014).
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Appendix A

Appendix A Data Collection — Open Data Portal (Enablers)

No. Enabler

Code

Sub-Enabler Description

Open Data Source

Technological Infrastructure (TI)

T Number of Wi-Fi Hotspots Adjusted to the City Area Easy Park'
1 ICT Availability TI2 Fiber-Optic Route Density (km/km?) ITU?
TI3 ICT Infrastructure Level of Development WEF?
5 ICT T4 Average Broadband Latency from Urban Networks (ms) OpenSignal
Performance TIS Average Bandwidth from Operators Networks (Mbps) OpenSignal
3 ICT TI6 Cost of 1 min of Prepaid Mobile Card (US $) Numbeo
Affordability TI7 Monthly Cost of the Internet (US $) Numbeo
. TI8 Secure Internet Servers (Per 1 Million People World Bank
4 ICT Security TI9 Dedicated Cyber(security Teams P EIU*
. TIO0 Percentage of Individuals Using the Internet (%) ITU?
3 ICT Adoption TI11 Smartphone Penetration in Society Easy Park'
Open Governance (OG)
Government 0OG1 Corruption Perception Index (Scale [0:100)) TP
Transparency 0G2 Likelihood of Political Instability (Scale [-2.5: 2.5]) WGI®
Admin. 0G3 Perceptions of the Quality of Civil Services WGI®
7 Efficiency 0G4  Regulatory Environment for Operating a Local Company World Bank
0G5 Number of Government Services Provided Online WEF?
] Environment 0G6 PM10 Concentration Reduction 2008-2013 (ug/m?) WHO’
Interests 0G7 Green Area (% of public green area, parks, and garden) Easy Park'
Participatory OGS Number of Petitio'ns (Per 1.09 090 inhabitants) Change.org
9 Governance 0G9 Local Elections Participation Rate IDEA?
0G10 Measures the Level of E-Participation of Citizens WEF?
. 0Gl1 Data Protection Policy (Scale [0:100 EIU*
10 Digital Interests 0Gl12 Promotion of lC]zlpfenetrat[ion ) WEF?
Intelligent Community (IC)
IC1 Water Withdrawn per Capita (m3/inhabitant/year) FAO’
11 Eco Conscious. IC2 Electricity Consumption per Capita (MWh/Capita) IEA™
1C3 Penetration of Energy Management Systems in 2018 Statista
12 Education 1C4 'Mean Years‘of Schogling A UN
IC5 PISA Score in Mathematics, Reading, and Sciences Teleport
.. 1C6 Number of Start-ups Adjusted to Population Angel.co
13 Creativity 1C7 Scientific Journal Articles (Per 100 000 inhabitants) World Bank
14 Digital 1C8 Ability of a Society to Make an Effective Use of ICT WEF?
Proficiency 1C9 Citizens Awareness of Digital Threats (Scale [0:100]) EIU*
IC10 GINI Coefficient (Scale [0:100]) CIA
15 Social Cohesion ICI1 Foreign-Born Population (% of Population) wcc!
IC12 Part of Population Aged 65 And Over (%) Teleport
Innovative Economy (IE)
Innovation 1IE1 Gross Domestic Expenditure on R&D (As Part of GDP) UNESCO
16 Ecosystem 1E2 Existing Conditions for Innovation to Flourish WEF
1E3 Attractiveness of Environment for Start-ups Nestpick
17 4™ Industrial 1E4 Innovation and Sophistication Factors WEF?
Revolution 1IES Integration of ICT to Generate Competitiveness Gains WEF

N.B. 'Easy Park Smart City Index 2017. 2ITU: International Telecommunication Union. *WEF: World
Economic Forum. “EIU: The Economist Intelligence Unit (The Global Livability Index 2018). °TL
Transparency International. *WGI: Worldwide Governance Indicators. "WHO: World Health Organization.
SIDEA: Institute for Democracy and Electoral Assistance. °FAO: Food and Agriculture Organization. ’IEA:
International Energy Agency. "WCC: World Cities Culture.
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Appendix B

Appendix B Data Collection — Open Data Portal (Performance Objectives)

Code Sub-Objective Sub-Objective Description ng:l:z:ta
Urban Efficiency (E)
El Smart Parking Number of Parking Spaces in City Centre per km? Easy Park!
E2 Car Sharing Services Car Sharing Industry Fleet in the City Easy Park'
E3  Public Transport Reliability Public Transport Satisfaction Percentage Easy Park!
E4 Public Transport Use Average Public Transport Journeys per Capita Arcadis?
ES Traffic Flow Congestion Problems (Scale [0:100]) Easy Park'
E6 Traffic Safety Road Traffic Fatalities (Per 100 000 people) Arcadis®
Environmental Sustainability (S)
S1 Renewable Energy Percentage of Electricity From Renewable Sources Easy Park'
S2 Energy-Efficiency Efficiency of Buildings (GDP per Unit of Energy Use) Easy Park!
S3 Waste Recycling Percentage of Waste that is Recycled Easy Park!
S4 Clean Air Pollution Index Rate 2018 Numbeo
Urban Livability (L)
L1 Social Services Dvpt of Social Infrastructure (e.g., Healthcare) EIU?
L2 Happiness Quality of Life Index Numbeo
L3 Feeling of Security Perceived Criminality in Society VoH*
14 Public Safety Global Peace Index (Scale [1:5]) VoH*
Economic Competitiveness (C)
Cl Business Competition Global Competitiveness Index WEF®
C2 Urban Wealth GDP Per Capita (US $) Brookings
C3 Employment Employment as the Share of the Labour Force (%) OECD
C4 Attractiveness Price to Buy Apartment in City Centre (US $ per m?) Numbeo
(Y Diplomatic Power Number of Foreign Representations (e.g., Embassies) ~ EmbassyPages
Cé6 Average Salary Average Net Salary Adjusted to the GDP per Capita Easy Park'

N.B. 'Easy Park Smart City Index 2017. *Arcadis Sustainable Cities Mobility Index 2017. *EIU: The
Economist Intelligence Unit (The Global Livability Index 2018). *“VoH: Vision of Humanity. "WEF: World
Economic Forum.
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