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Abstract

Background: How can we obtain fast and high-quality clusters in genome scale bio-networks? Graph clustering is a
powerful tool applied on bio-networks to solve various biological problems such as protein complexes detection,
disease module detection, and gene function prediction. Especially, MCL (Markov Clustering) has been spotlighted
due to its superior performance on bio-networks. MCL, however, is skewed towards finding a large number of very
small clusters (size 1-3) and fails to detect many larger clusters (size 10+). To resolve this fragmentation problem,
MLR-MCL (Multi-level Regularized MCL) has been developed. MLR-MCL still suffers from the fragmentation and, in
cases, unrealistically large clusters are generated.

Results: In this paper, we propose PS-MCL (Parallel Shotgun Coarsened MCL), a parallel graph clustering method
outperforming MLR-MCL in terms of running time and cluster quality. PS-MCL adopts an efficient coarsening scheme,
called SC (Shotgun Coarsening), to improve graph coarsening in MLR-MCL. SC allows merging multiple nodes at a
time, which leads to improvement in quality, time and space usage. Also, PS-MCL parallelizes main operations used in
MLR-MCL which includes matrix multiplication.

Conclusions: Experiments show that PS-MCL dramatically alleviates the fragmentation problem, and outperforms
MLR-MCL in quality and running time. We also show that the running time of PS-MCL is effectively reduced with
parallelization.

Keywords: Graph clustering, Markov clustering, Parallel clustering, Coarsening, Non-overlapping clusters; Protein
complex finding

Background
Graph clustering is one of the most fundamental prob-
lems in graph mining and arises in various fields including
bio-network analysis [1, 2]. Graph clustering is exten-
sively studied and applied in protein complex finding,
[3–5], disease module finding [6], and gene function
prediction [7].

In general, the main task of the graph clustering prob-
lem is to divide the graph into cohesive clusters that
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have low interdependency: i.e., few inter-cluster edges
and many intra-cluster edges. Additional domain-specific
constraints can be added to the graph clustering to
improve the clustering quality, however, we only focus on
improving topology-based clustering as con-straints can
be added easily afterward.

Among a number of clustering algorithms, MCL
(Markov Clustering) [8] has received greatest attention in
the bio-network analysis. Various studies have shown its
superiority to other methods [3, 9–11]. However, MCL
tends to result in too small clusters, which is called
the fragmentation problem. Considering that many bio-
network analysis related problems require cluster sizes
in the range of 5–20 [12–14], fragmentation needs to
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be avoided. To solve the problem in MCL, R-MCL
(Regularized-MCL) has been developed [15], but it often
generates clusters that are too large, e.g., one cluster con-
taining most of the nodes. Satuluri et al. [9] generalizes
R-MCL to obtain clusters whose sizes are similar to the
ones observed in real bio-networks by introducing a bal-
ancing factor. In the work, a large number of nodes belong
to clusters of size 10–20 with an appropriate balanc-
ing factor; however, tiny clusters of size 1–3 also greatly
increase compared with the original R-MCL. To improve
the scalability of R-MCL, MLR-MCL (Multi-level R-MCL)
has been developed [15]. MLR-MCL first coarsens a graph
and then runs R-MCL with refinement. But, its coarsening
scheme HEM (Heavy Edge Matching) is known to be inef-
ficient for real world graphs, such as protein interaction
networks, which have a heavy-tailed degree distribution
[16–18].

In this paper, we propose PS-MCL (Parallel Shotgun
Coarsened MCL), a parallel graph clustering method for
bio-networks with an efficient graph coarsening scheme
and parallelization. First, we propose SC (Shotgun Coars-
ening) scheme for MLR-MCL; SC allows grouping mul-
tiple nodes at a time [19]. Compared with HEM used in
MLR-MCL, which is similar to a greedy algorithm for
the traditional matching problem, SC coarsens a graph
to have more cohesive super nodes. Moreover, the coars-
ened graph with a manageable size is obtained more
quickly by SC than by HEM. Second, we carefully paral-
lelize main operations in R-MCL which is a subroutine of
MLR-MCL: i.e. Regularize, Inflate and Prune operations
are parallelized. The latter two are column-wise opera-
tions by definition, and we parallelize them by assigning
each column to a core. The former, Regularize, is a matrix
multiplication. We divide matrix-matrix multiplication
into a number of matrix-vector multiplications and paral-
lelize them by distributing the vectors to multi-cores and
sharing the matrix. Through experiments, we show that
PS-MCL not only resolves the fragmentation problem but
also outperforms MLR-MCL in quality and running time.
Moreover, we show that PS-MCL gets effectively faster as
more processing cores are used. PS-MCL produces clus-
tering with the best quality, and its speed is comparable to
MCL, which is a baseline method, and much faster than
MLR-MCL, which is our main competitor (Table 1).

Our contributions are summarized as follows.

• Coarsening: We propose the Shotgun Coarsening
(SC) scheme for MLR-MCL. SC allows merging
multiple nodes to a super node at a time. Compared
with the existing Heavy Edge Matching (HEM)
coarsening method, SC improves both the quality
and efficiency of coarsening.

• Parallelization: We carefully parallelize proposed
algorithm using multiple cores by rearranging the

Table 1 Comparison of our proposed PS-MCL to MLR-MCL and
MCL in clustering quality and speed

(Proposed)

PS-MCL MLR-MCL [15] MCL [8]

Fragmentation Least Less Most

Ncut Small Moderate Large

Speed Fast Slow Fastest

Note that PS-MCL produces clustering with the best quality, and its speed is
comparable to MCL, which is a baseline method, and much faster than MLR-MCL,
which is our main competitor

operations to be calculable in a column-wise manner
and assigning each column-wise computation to one
core.

• Performance: Through experiments, we show that
PS-MCL prefers clusters of sizes in the range of 10 to
20 and results in less fragmentation compared to
MLR-MCL. We also show that PS-MCL is effectively
parallelizable. As a consequence, PS-MCL
outperforms MLR-MCL in both quality and speed
(Table 1).

In the rest of the paper, we explain preliminaries
including MCL based algorithms, describe our proposed
method PS-MCL in detail, show experimental results on
various protein interaction networks, and make a conclu-
sion.

Preliminaries
In this section, we explain existing MCL based algorithms:
the original MCL, R-MCL, and MLR-MCL. Table 2 lists
the symbols used in this paper.

Table 2 Table of symbols

Symbol Description

G = (V , E) Graph

G′ = (V ′ , E′) Coarsened graph

n Number of nodes

m Number of edges

u, v, x, y Node

S Super Node

N (N′) Set of neighbors in G (G′)
W (W ′) Edge weight map in G (G′)
A Adjacency matrix

M, Mi , MG Flow matrix

MG Initial flow matrix

r Regularization factor

b Balancing factor

C Clustering
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Markov clustering (MCL)
MCL is a flow-based graph clustering algorithm. Let G =
(V , E) be a graph with n = |V | and m = |E|, and A be the
adjacency matrix of G where self-loops for all nodes are
added. The (i, j)th element Mij of the initial flow matrix M
is defined as follows:

Mij = Aij
∑n

k=1 Akj
.

Intuitively, Mij can be understood as the transition prob-
ability or the amount of flow from j to i. MCL iteratively
updates M until convergence, and each iteration consists
of the following three steps.

• Expand: M ← M × M.
• Inflate: Mij ← (

Mij
)r

/
∑n

k=1
(
Mkj

)r where r > 1.
• Prune: elements whose values are below a certain

threshold are set to 0; every column is normalized to
sum to 1.

When MCL converges, each column of M has at least
one nonzero element. All nodes whose corresponding
columns have a nonzero element in the same row are
assigned to the same cluster. If a node has multiple
nonzero elements in its column, a row is arbitrarily cho-
sen. Although MCL is simple and intuitive, it lacks scal-
ability due to the matrix multiplication in the expanding
step, and outputs a large number of too small clusters, e.g.,
outputs 1416 clusters from a network with 4741 nodes
(fragmentation problem) [15].

Regularized-MCL (R-MCL)
One reason of the fragmentation of clusters in MCL is that
the adjacency structure of a given graph is used only at the
beginning, which leads to diverging columns for neigh-
boring node pairs. To resolve this fragmentation problem,
R-MCL [15] regularizes a flow matrix instead of expand-
ing it. The flow of a node is updated by minimizing the
weighted sum of KL divergences between the target node
and its neighbors. This minimization problem has a closed
form solution, and consequently, the regularizing step of
R-MCL is derived as follows.

• Regularize M = M × MG, where MG is an initial flow
matrix defined as MG = AD−1, and A is the
adjacency matrix of G with the added self-loops and
the weight transformation [15], and D is the diagonal
matrix from A (i.e., Dii = ∑n

k=1 Aik).

R-MCL finds a smaller number of clusters than MCL does.
A problem of R-MCL is that it finds clusters whose

sizes are spread over a wide range, while clusters in bio-
networks usually are in the size range of 5–20 [12, 13]. To
resolve the problem, [9] generalizes the regularization step
as follows:

• mass(i) = ∑n
j=1 Mij.

• MR =column_normal
(
diag(M� × mass)−b × MG

)
,

where b is a balancing parameter.
• Regularized by M = M × MR.

The balancing parameter b controls the degree of bal-
ances in the cluster sizes; higher b encourages more bal-
anced clustering. The intuition of this generalization is to
penalize flows to a node currently having a large number
of incoming flows. Note that b = 0 is equal to the original
R-MCL.

Multi-level R-MCL (MLR-MCL)
MLR-MCL uses graph coarsening to further improve the
quality and the running time of R-MCL [15]. Graph coars-
ening means to merge related nodes to a super node.
MLR-MCL first generates a sequence of coarsened graphs:
(G0, G1, . . . , G�) where G0 is the original graph and G� is
the most coarsened (smallest) graph. For i = � down to 1,
R-MCL is run on Gi only for a few iterations, and the com-
puted flows on Gi are projected to Gi−1. After reaching
the original graph G0, R-MCL is run until convergence.
Algorithm 1 shows the overall procedure of MLR-MCL.
Although the description is for b = 0, b > 0 can be also
used by changing MG to MR as defined in the previous
section.

The original R-MCL and MLR-MCL use HEM (Heavy
Edge Matching), which picks an unmatched neighbor con-
nected to the heaviest edge for a given node, to coarse
the graph [15]. In HEM, the node v to which a node u is
merged is determined as follows:

v = arg max
v′∈Nunmatched(u)

W
(
u, v′) ,

where Nunmatched(u) is the set of unmatched neighbors of
u, and W (u, v′) is the weight between u and v′. Note that
HEM allows a node to be matched with at most one other
node. MLR-MCL assigns all flows of a super node to one
of its children for the flow projection. It is shown that a
clustering result is invariant on the choice of the child to
which all flows are assigned. For more details, refer to [15].
Note that MLR-MCL greatly reduces the overall compu-
tation of R-MCL since the flow update is done for the
coarsened graph which is smaller than the original graph.

Limitation of HEM. HEM of MLR-MCL has two main
limitations. First, the strategy of HEM that merges at
most two single nodes can lead to undesirable coars-
ening where super nodes are not cohesive enough (see
“Cohesive super node” section for details). Second, HEM
is known to be unsuitable for real-world graphs [19] due
to skewed degree distribution of the graphs which pre-
vents the graph size from being effectively reduced (see
“Quickly reduced graph” section for details). These short-
ages of HEM make MLR-MCL inefficient for real-world
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graphs. To overcome this, in the next section we propose
PS-MCL that allows multiple nodes to be merged at a
time.

Algorithm 1: MLR-MCL
Input: Graph G, coarsening depth �, and

regularization factor r
Output: Clustering C

1 G0 = G.
2 Obtain G0, · · · , G�, a sequence of coarsened graphs.
3 Let M� = MG be the initial flow matrix of G�.
4 foreach i = � down to 1 do
5 foreach j = 1 to 4 (or 5) do
6 Mi = Mi × MG. // Regularize
7 Mi = Inflate(Mi, r).
8 Mi = Prune(Mi).
9 end

10 Mi−1 = FlowProjection(Mi).
11 Let MG be the initial flow matrix of Gi−1.
12 end
13 Update M0 by applying lines 5–9, but until

convergence not for a few iterations.
14 Determine clustering C from M0.

Implementation
In this section, we describe our proposed method PS-
MCL (Parallel Shotgun Coarsened MCL) which improves
MLR-MCL in two perspectives: 1. increasing efficiency of
the graph coarsening and 2. parallelizing the operations of
R-MCL.

Shotgun coarsening (SC)
As described previously, HEM is ineffective on real world
graphs. To overcome the limitation of HEM, we propose
to use a graph coarsening which allows merging multiple
nodes at a time. We call this scheme Shotgun Coarsen-
ing (SC) because it aggregates satellite nodes to the center
one. Algorithm 2 describes the proposed SC coarsening
method where N(u) denotes a set of neighbors of u in
G = (V , E), and connected_ components(V , F) outputs a
set of connected components, each of which is a set of
nodes, of the graph (V , F).

Our SC algorithm consists of three steps: 1) identify a
set F of edges whose end nodes will be merged (lines 1–
6), 2) determine a set V ′ of super nodes of a coarsened
graph and associated weights to them (lines 7–12), and 3)
determine a set E′ of edges between super nodes and their
weights (lines 13–20). Let G = (V , E) be an input graph to
be coarsened, Z : V → N be a node weight map for G, and
W : E → N be an edge weight map for G. In the first step,
we visit every node of G in an arbitrary order (line 2), and

Algorithm 2: Shotgun Coarsening
Input: Graph G = (V , E),

a node weight map Z : V → N for G,
an edge weight map W : E → N for G.

Output: Coarsend Graph G′ = (V ′, E′),
a node weight map Z′ : V → N for G′,
an edge weight map W ′ : E′ → N for for G′.

1 F ← ∅.
2 foreach u ∈ V do
3 N1(u) ← {v ∈ N(u) : W (u, v) =

maxx∈N(u) W (u, x)}.
4 N2(u) ← {v ∈ N1(u) : Z(v) = minx∈N1(u) Z(x)}.
5 F ← F ∪ {(u, v)} for arbitrary picked v ∈ N2(u).
6 end
7 V ′ ← connected_components(V , F).
8 foreach S ∈ V ′ do
9 Z′(S) ← ∑

u∈S Z(u).
10 E ← E ∪ {(S, S)}.
11 W ′(S, S) ← ∑

e∈E∩(S×S) W (e).
12 end
13 E′ ← ∅.
14 foreach (S, T) ∈ V ′ × V ′ such that S 
= T do
15 H = {e ∈ E : e ∈ S × V ore ∈ T × S}.
16 if |H| > 0 then
17 E′ ← E′ ∪ {(S, T)}.
18 W ′(S, T) ← ∑

e∈H W (e).
19 end
20 end

for each node u ∈ V visited, we find the best match node
v. Precisely, the algorithm finds the neighboring node of u
with the highest edge weight to u (line 3), i.e.,

v = arg max
x∈N(u)

W (u, x).

There may be multiple neighbors with the same highest
weight. Let N1(u) be the set of those neighbors; then, in
this case, the one with the smallest node weight is chosen
among them (line 4), i.e.

v = arg min
x∈N1(u)

Z(x).

This strategy of preferring a smaller node weight at the
same edge weight prevents the emergence of an over-
coarsened graph containing an excessively massive super
node. Note that if every node in an initial graph has weight
1, the weight of a super node in a coarsened graph is
equal to the number of nodes merged to create that super
node. If there are multiple neighbors with the same high-
est edge weight and the smallest node weight, any v is
arbitrarily chosen among the ties. Edge (u, v) is added to
F (line 5).
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The second step determines super nodes and associ-
ated weights to them. Note that for (u, v) ∈ F , u and v
should belong to the same super node by definition. By
mathematical induction, two nodes belong to the same
super node if and only if they are reachable along edges
in F. As a result, we can identify a set V ′ of super nodes
by computing connected components of the graph (V , F)

(line 7).
After finding V ′, we determine weights of super nodes

in V ′ and their self-loops as follows. For each super
node S ∈ V ′, its node weight Z′(S) is defined by
the sum of weights of nodes in V that belong to
S (line 9). The self-edge (S, S) is added to E′ (line
10) and its weight W ′(S, S) is defined by the sum of
weights of edges in E whose end nodes belong to S
(line 11).

The last step determines non-self edges between nodes
in V ′ and their edge weights as follows. For each
unordered pair (S, T) ∈ V ′ × V ′, find a set H of edges
in E that one end node is in S and the other is in T
(line 15). If H 
= ∅ (line 16), (S, T) is added to E′ (line
17), and W ′(S, T) is defined by the sum of weights of
edges in H (line 18). Otherwise, there is no edge between
S and T.

Skip Rate In practice, a graph can be reduced too quickly
by SC if it has super-hub nodes. To coarsen the graph to
a reasonable size, we propose to randomly skip merging
while iterating nodes in SC, i.e. with probability 0 ≤ p < 1,
lines 3–5 are not executed. We call p a skip rate, and use
p = 0.5 in this paper.

Cohesive super node
The goal of coarsening is to merge tightly connected
nodes to one super node. In this aspect, HEM may pre-
vent a super node from being cohesive. Figure 1a shows
the ideal coarsening for a given graph. Let us assume that
for the first merging, the leftmost two nodes are merged
as shown in Fig. 1b, and the next node to be merged is u.
If we use HEM, v is chosen since it is the only candidate,
leading to Fig. 1c. Note that although u has more edges to
the green super node than to v, it should be merged with v.
Obviously, the result is undesired for good coarsening. In
contrast, SC (Fig. 1d) chooses the green super node for u
since the weight to the green node is larger than that to v.
As a result, SC generates more cohesive super nodes than
those by HEM, leading to a high quality coarsened graph.

Quickly reduced graph
Ideally, at each step of the coarsening, the number of
nodes should halve; but that does not happen for real
world graphs due to their highly skewed degree distribu-
tion [19]. In other words, a large number of coarsening
steps are needed to obtain a coarsened graph of a man-
ageable size, leading to large memory spaces for storing

ba

c d

Fig. 1 Effectiveness of our proposed SC method compared with HEM.
a Ideal coarsening for the graph. b Coarsening in progress. For the first
merging, the leftmost two nodes are chosen. c For the second node
to be merged, u is chosen. Since v is the only candidate for merging
in HEM, u and v are merged to a super node. d In SC, the green super
node is also a candidate for u. Since the weight of u to the green
node is larger than that to v, u is merged to the green super node

graphs themselves and node merging information. This
problem arises mainly due to star-like structures, which
is depicted in Fig. 2a. The red and yellow nodes are
eventually merged with the blue and the green groups,
respectively, but it needs 5 more coarsening steps because
only two nodes can be merged. Note that for an addi-
tional coarsening step, we need spaces to store one graph
and mapping from a node to a super node; if the graph
size is not effectively reduced, the amount of the required
spaces greatly increases with the coarsening depth. This
inefficiency can be resolved by SC as shown in Fig. 2b. In
contrast that 5 more coarsening steps are required with
HEM, only one step is enough in SC.

a b

Fig. 2 Efficiency of our proposed coarsening method SC compared
with HEM. a Result of one coarsening step by HEM. The red and
yellow nodes are eventually merged to the blue and green nodes,
respectively, but it takes 5 more coarsening steps. b Result of one
coarsening step by SC. The result is the same as (a) after 5 more
coarsening
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Parallelization
We also improve MLR-MCL via multi-core paralle-
lization for its three main operations: Regularize, Inflate,
and Prune. For Regularize, we parallelize the computa-
tion by assigning columns of the resulting matrix into
cores. In other words, for M3 = M1 × M2, we divide the
computation as follows.

M3(, i) = M1 × M2(, i),

where Mk(, i) denotes the i-th column of Mk . Com-puting
ith column of M3 is independent of computing other
columns j 
= i of M3, and thus we distribute the columns
of M2 to multiple cores while keeping M1 in a shared
memory. Inflate and Prune themselves are columnwise
operations. Thus, the computation on each column is
assigned to a core.

For efficiency in memory usage, we use the CSC (Com-
pressed Sparse Column) format [20] to represent a matrix,
which requires much less memory when storing a sparse
matrix compared to a two-dimensional array format. In
essence, the CSC format only stores nonzero values of
a matrix. Note that this strategy is efficient especially
for real world graphs which are very sparse in general,
e.g. |E| = O(|V |). Figure 3 shows the CSC format for an
example matrix. To access the nonzero elements from the
jth column (1-base indexing), we 1) obtain a = colPtr[ j]
and b = colPtr[ j + 1] −1 and 2) for a ≤ i ≤ b, get
val[ i] = A(rowInd[ i] , j). For example, to access the first
column, we first obtain a = 1 and b = 2. By checking
val[ i] and rowInd[ i] for 1 ≤ i ≤ 2, we identify the two
nonzero values 10 and 9 at the first and the fourth rows,
respectively, in the first column: i.e., A(1, 1) = 10 and
A(4, 1) = 9 since val[ 1] = 10 with rowInd[ 1] = 1 and
val[ 2] = 9 with rowInd[ 2] = 4.

Algorithm 3 shows our implementation for one itera-
tion of parallelized R-MCL with the CSC format. In the
algorithm, nonzeros(M, j) is a set of pairs (i, x) indicating

Fig. 3 CSC format for sparse matrix representation. The top figure is a
given matrix A, and the bottom one is the corresponding CSC
representation of A. As the size of matrix gets larger and the matrix
gets sparser, CSC gets much efficient since the space complexity of
CSC is proportional to the number of nonzero elements, not to the
matrix size

Algorithm 3: One Iteration of Parallelized R-MCL
Input: Current flow matrix M, initial flow matrix

MG, and the number T of threads.
Output: Next flow matrix N.

1 � ← ∅.
2 Parallel: for j ← 1 to n,

each of which is assigned to the (j mod T)-th thread,
do

3 c = ∅.
4 foreach (i, x) ∈ nonzeros(MG, j) do
5 foreach (k, y) ∈ nonzeros(M, i) do
6 if (k, z) ∈ c then

c ← c ∪ {(k, z + xy)} \ {(k, z)}.
7 else c ← c ∪ {(k, xy)}.
8 end
9 end

10 c ← Prune(Inflate(c)).
11 � ← � ∪ {(j, c)}.
12 end
13 colPtr ← 1n+1.
14 foreach (j, c) ∈ � do colPtr(j + 1) ← |c|.
15 foreach i ← 2 to n + 1 do

colPtr(i) ← colPtr(i) + colPtr(i − 1).
16 val ← rowInd ← 0colPtr(n+1)−1.
17 Parallel: for (j, c) ∈ �,

each of which is assigned to the (j mod T)-th thread,
do

18 � = colPtr(j).
19 foreach (k, z) ∈ c in increasing order of k do
20 val(�) ← z.
21 rowInd(�) ← k.
22 � ← � + 1.
23 end
24 end
25 N ← CSC(val,rowInd,colPtr).

nonzeros in the j-th column of the matrix M, i.e., M(i, j) =
x; 0n and 1n denote n dimensional vectors all of whose ele-
ments are 0 and 1, respectively. Lines 4 to 9 correspond to
Regularize. Each thread running in a dedicated core per-
forms c = M×MG(, j) for each column j assigned to it, and
as a result, (j, c) is added to � after applying Inflate and
Prune to c. Note that although we do not describe Inflate
and Prune in Line 10, its implementation is trivial for each
column c.

Lines 13 to 16 correspond to constructing colPtr,
and allocating spaces for val and rowInd for the result-
ing matrix N, which is done sequentially. After-wards,
Lines 17 to 24 correspond to filling val and rowInd
using � and colPtr in parallel on the columns. Note that
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the positions of val and rowInd to be updated for each
column are specified in colPtr, and they do not overlap.

Results
We present experimental results to answer the following
questions.

Q1 How does PS-MCL improve the distribution of
cluster sizes compared with MLR-MCL?

Q2 What is the performance of PS-MCL compared with
MLR-MCL in quality and running time?

Q3 How much speedup do we obtain by parallelizing
PS-MCL?

Q4 How accurate are clusters found by PS-MCL
compared to the ground-truth?

Table 3 lists the used datasets in our experiments. We
use various bio-networks for evaluating the clustering
quality and the running time; the largest dataset DBLP is
used for scalability experiments.

Experimental settings
Machine. All experiments are conducted on a work-
station with double CPU Intel(R) Xeon(R) CPU E5-2630
v4 @ 2.20GHz and 250GB memory.

Evaluation criteria. To evaluate the quality of cluster-
ing C for Q1 and Q2, we use the average NCut [15] defined
as follows.

AverageNCut(C) = 1
|C|

∑

c∈C
NCut(c),

where

NCut(c) =
∑

u∈c,v/∈c A(u, v)
∑

u∈c degree(u)
.

For answering Q4, we focus on protein complex finding
problem and use the accuracy measure defined by Her-
nandez et al. [4] as follows. Let G be the set of ground truth

clusters (protein complexes); then the degree of overlap
Tgc for every g ∈ G and c ∈ C is defined as:

Tgc = |g ∩ c|.
The accuracy ACC is the geometric mean of Sensitivity
SST and Positive Predictive Value PPV :

SST =
∑

g∈G maxc∈CTgc
∑

g∈|G| |g|

PPV =
∑

c∈C maxg∈GTgc
∑

c∈C |c|
ACC =(SST × PPV )

1
2

Parameter. We use the coarsening depth of 3 for PS-
MCL and MLR-MCL with which the improvement in
quality and speed is large while the number of resulting
clusters remains reasonable.

Performance of SC
In this section, we answer Q1 and Q2. Figure 4 shows
comparison of PS-MCL with MLR-MCL and MCL. The
horizontal axis denotes the cluster size, and the vertical
axis denotes the number of nodes belonging to a specific
cluster size.

Before going into details, we briefly summarize the
results of MCL which are invariant within each column
of Fig. 4 because of the lack of the balancing concept
in MCL. As discussed in [15], for all cases, MCL suffers
from the fragmentation problem that a large portion of
nodes belongs to very tiny clusters of size 1–3. We pro-
vide results of MCL as a baseline in the figure, and the
following analysis focuses on comparing the MLR-MCL
and PS-MCL.

For all of our datasets, we observe the same patterns
described in the following Observations 1–3, though we
present the four representative results in the Fig. 4.

Table 3 Dataset description used in our experiments

Name Nodes Edges Density (10−4) Description

BioPlex [23] 10,961 56,553 9.42 PPI networks of Homo sapiens in the BioPlex 2.0 Network

DIP-droso [21] 22,595 69,148 2.71 PPI network of Drosophila melanogaster

Drosophila [24] 6600 19,820 9.1 PPI network of Drosophila melanogaster

MINT [25] 3872 56,937 75.97 combined PPI network of 325 different organisms

Yeast-1 [26] 2353 36,790 132.95 Genome-scale epistasis map of Schizosaccharomyces pombe

Yeast-2 [27] 2428 4606 15.63 PPI network of Saccharomyces cerevisiae

Yeast-3 [28] 3886 57,782 76.55 PPI network of Saccharomyces cerevisiae

Yeast-4 [29] 2223 7049 28.54 PPI network of Saccharomyces cerevisiae

DIP-yeast [21] 4929 17,786 14.64 PPI network of Saccharomyces cerevisiae

BioGRID-homo [22] 20,837 288,224 13.28 PPI network of Homo sapiens

DBLP 317,080 1049,866 0.21 Coauthorship network
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Fig. 4 The number of nodes belonging to clusters of specific sizes. With balancing factor b = 0, i.e. without considering balance, PS-MCL and
MLR-MCL do not find clusters properly. In general, they output too large clusters and even group all the nodes into one cluster for MINT. Using
balancing factor b > 0, both result in clusters whose sizes are concentrated around a small value. That value is larger in PS-MCL than in MLR-MCL.
Observe that MLR-MCL makes a significantly large number of tiny clusters including singletons which are meaningless in clustering. In contrast, our
proposed PS-MCL greatly reduces that number: less than 5% compared with the number by MLR-MCL. For all cases, MCL suffers from the cluster
fragmentation problem. For the other datasets in 3, we observe the same patterns described here

Observation 1 (Too massive cluster without balancing)
Without balancing, i.e. b = 0, a large number of nodes are
assigned to one cluster. Often, the entire graph becomes one
cluster. Balancing factor of 1.0 to 1.5 resulted in reasonable
cluster size distribution for most of the networks.

The first row of Fig. 4 corresponds to the result with-
out balancing, i.e. b = 0. In this case, both PS-MCL and
MLR-MCL group too many nodes into one cluster. Espe-
cially, on MINT, both output only one cluster containing
all nodes in the graph. Figure 5 shows the ratio of the

largest cluster size over the number of nodes for the bio-
networks listed in 3. Note that the largest cluster sizes for
BioPlex, Drosophila, MINT, Yeast-1, Yeast-2, and Yeast-3
are nearly the same as the total number of nodes; those
for DIP-droso and Yeast-4 are relatively smaller, but still,
occupy a large proportion in the entire size.

Observation 2 (PS-MCL preferring larger clusters than
MLR-MCL) With b > 0, the cluster size with the maxi-
mum number of total nodes in PS-MCL is larger than that
in MLR-MCL.
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Fig. 5 Ratio of the largest cluster size over the number of nodes.
Without balancing, i.e. b = 0, PS-MCL and MLR-MCL group too many
nodes to one cluster

The second, third and fourth rows of Fig. 4 show the
results of varying the balancing factor b ∈ {1, 1.5, 2},
respectively. In contrast to the case of b = 0, the cluster
sizes of PS-MCL and MLR-MCL are concentrated on cer-
tain sizes. The mode of cluster size in PS-MCL is larger
than that in MLR-MCL. The modes in PS-MCL are 10–
20 for DIP-droso, BioPlex and Drosophila, and 20–50 for
MINT; those in MLR-MCL are 5–10 for all. This obser-
vation is useful in practice when we want to cluster at a
certain scale.

Observation 3 (PS-MCL with less fragmentation than
MLR-MCL) With b > 0, PS-MCL results in a significantly
smaller number of fragmented clusters whose sizes are 1–3
compared with MLR-MCL.

PS-MCL achieves concentrated cluster sizes as well
as avoids the fragmented clusters; MLR-MCL and MCL
still suffer from the fragmentation. The number of nodes
belonging to very small clusters in PS-MCL is much
smaller than that in MLR-MCL. For instance, the number
of nodes belonging to clusters of size 1–3 in PS-MCL is
less than 5% of that in MLR-MCL for the DIP with b = 1.5.

Observation 4 (PS-MCL better than MLR-MCL in time
and NCut) PS-MCL results in a faster running time with a
smaller NCut than MLR-MCL does.

Figure 6 shows the plot of running time versus the aver-
age NCut. PS-MCL runs faster, down to 21%, and outputs
clustering with a smaller average NCut, down to 87%, than
MLR-MCL does on average. For some cases, MCL is faster
than PS-MCL, but for all cases, its average NCut is worse
than that by PS-MCL.

Performance of parallelization
In this section, we answer Q3. We use b = 1.5 for PS-MCL
and MLR-MCL. Figure 7 shows the performance evalu-
ation results for PS-MCL on the bio-networks in 3 with

Fig. 6 Time vs. average NCut for all datasets with b = 1.5 for PS-MCL,
MLR-MCL and MCL. We use 4 cores for PS-MCL. PS-MCL was 21%
faster in running time and had 87% better NCut on average over all
datasets compared with MLR-MCL. Although MCL is faster than
PS-MCL for some networks, its average NCut is higher than that by
PS-MCL for all networks

increasing cores. For all cases, PS-MCL gets faster as the
number of cores increases.

To test the scalability more effectively, we use DBLP,
the largest in our datasets though it is not a bio-network.
Figure 8a shows the speed up of PS-MCL while increas-
ing the number of cores, compared with MLR-MCL
and MCL. We use points, not lines, for MLR-MCL and
MCL since they are single-core algorithms. PS-MCL out-
performs MLR-MCL regardless of the number of cores
and becomes faster effectively as the number of cores
increases. Precisely, the running time of PS-MCL is
improved down to 81% and 55% with 2 and 4 cores,
respectively, compared that with a single core.

Figure 8b shows the running time of PS-MCL while
increasing data sizes, compared with MLR-MCL and
MCL. Here, we use 4 cores for PS-MCL. To obtain var-
ious sizes of graphs, we first take principal submatrices

Fig. 7 Running time of PS-MCL for bio-networks in 3 while increasing
the number of cores. Note that the running time is effectively
reduced as the number of cores increases
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a b

Fig. 8 Running time of PS-MCL, MLR-MCL, and MCL. a Running time
on DBLP while varying the number of cores. Running time of PS-MCL
is improved down to 81% and 55% with 2 and 4 cores, respectively,
compared that with a single core. Furthermore, the single core
performance of PS-MCL outperforms MLR-MCL. b Running time on
DBLP while varying data sizes. Running times of all methods are linear
on the number of edges in the graphs, and PS-MCL outperforms
MLR-MCL for all cases

from the adjacency matrix of DBLP with sizes
{20%, 40%, 60%, 80%, 100%} of the total, and use the giant
connected components of them. As shown in the figure,
the running times of all the methods are linear on the
graph sizes, and PS-MCL outperforms MLR-MCL for
all scales. Note that although MCL is slightly faster than
PS-MCL, MCL has fragmentation problem and worse
NCut while PS-MCL has no fragmentation problem and
better NCut, as shown in Figs. 4 and 6.

Protein complex identification
In this section, we use the two bio-networks, i.e., DIP-
yeast [21] and BioGRID-homo [22] described in 3,
to answer Q4 on protein complex finding problem.
The ground-truth protein complexes information are
extracted from CYC2008 2.0 [13] for DIP-yeast and
CORUM [14] for BioGRID-homo. The complexes are
used as reference clusters for measuring the accuracy.

Figure 9 shows the performance of PS-MCL while vary-
ing skip rates, in comparison with MLR-MCL and MCL
(Note: The skip rate is not applicable to MLR-MCL
and MCL, leading to one accuracy value. For clear
performance comparison, we represent that value by the
horizontal dash line along the x-axis.). Remind that the
skip rate p determines the chance that each node is
skipped and thus not merged with others. Namely, the
smaller p, the more aggressive coarsening. In the figure,
PS-MCL performs the best with moderate values of p—0.6
and 0.7 for DIP-yeast and BioGRID-homo, respectively.
For both networks, PS-MCL consistently outperforms
MLR-MCL with 0.5 ≤ p ≤ 0.7: the accuracy of PS-MCL is
higher than that of MLR-MCL up to 3.66% for DIP-yeast
and 8.24% for BioGRID-homo. This result makes sense
because SC with too large p hardly reduces a graph in

a b

c

Fig. 9 Accuracy of PS-MCL with varying skip rates, MLR-MCL, and MCL.
The performance of PS-MCL varies depending on p, but is better than
that of MLR-MCL in the range of 0.5 ≤ p ≤ 0.7. Comparing to MCL,
PS-MCL is slightly less accurate. But, we observe that it is due to many
dimer structures, and excluding dimers, PS-MCL greatly outperforms
MCL (c). a DIP-yeast b Biogrid-homo c Biogrid-homo-dimers

size, while too small p leads to too large clusters due to
aggressive coarsening.

PS-MCL achieves up to 33.2% higher accuracy than
MCL for DIP-yeast, and 98.7% of the MCL accuracy for
BioGRID-homo. This is due to many dimer structures
present in the CORUM database. Exclusion of dimers
in the database, PS-MCL greatly outperforms MCL as
shown in Fig. 9c. Although PS-MCL is not effective in
finding dimers, note that MCL suffers from the frag-
mentation problem (Fig. 4) and performs poorly in inter-
nal evaluation by Average NCut (Fig. 6) which assesses
the potentials of finding well-formed but undiscovered
clusters.

Conclusion
In this paper, we propose PS-MCL, a parallel graph
clustering method which gives superior performance
in bio-networks. PS-MCL includes two enhancements
compared to previous methods. First, PS-MCL incor-
porates a newly proposed coarsening scheme we call SC
to resolve the inefficiency of MLR-MCL in real-world
networks. SC allows merging multiple nodes at a time,
leading to reducing the graph size more quickly and
making super nodes much cohesive than HEM used in
MLR-MCL. Second, PS-MCL gives a multi-core parallel
algorithm for clustering to increase scalability. Extensive
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experiments show that PS-MCL results in clusters that
generally have larger sizes than those by MLR-MCL, and
also greatly alleviate the fragmentation problem. More-
over, PS-MCL finds clusters whose quality is better than
those by MLR-MCL in both internal (average NCut) and
external (reference clusters) criteria. Also, as more cores
are used, PS-MCL gets faster and outperforms MLR-MCL
in speed even with a single core.

The PS-MCL‘s capability to quickly find mid-size clus-
ters in large scale bio-networks has wide range of appli-
cability on systems biology. Although we have only shown
that PS-MCL effectively find mid-size protein complexes
on two protein-protein interaction network compared to
existing topology-based clustering algorithms, we believe
that it can be effectively applied on function prediction,
disease modules detection, and other systems biology
analysis.

Availability and requirements
Project name: PS-MCL;
Project home page: https://github.com/leesael/PS-MCL;
Operating system(s): Platform independent (tested on
Ubuntu);
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License: BSD Any restrictions to use by non-academics:
licence needed.
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