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ABSTRACT: The realistic modelling of structures is essential for their numerical simulations and is
mainly characterized by the mechanical model and the consideration of the available data at hand by
an adequate uncertainty model. The key idea in this contribution is the consideration of polymorphic
uncertainty at the numerical structural analysis and the mechanical modelling for reinforced concrete
structures, which are characterized by a combination of heterogeneous concrete and different types of
reinforcement (e.g. steel bars or carbon fibres mats). Typically, the reinforcement is denoted by another
length scale, compared to the overall structure size. The formulation and development of a computational
homogenization approach, considering the different homogeneous and heterogeneous characteristics of
a macroscopic structure, is essential for a precise numerical computation. In recent years, focal point of
research was on structural analysis considering uncertain material or geometry parameters. Probabilistic
approaches are dominating the uncertainty consideration currently, although they are connected with
certain disadvantages and limits. In this contribution, a generalized uncertainty model is utilized in order
to take variability, impression and incompleteness in to account. That allows a separated evaluation of
the influence for each uncertainty source on the results. Therefore, polymorphic uncertainty models are
applied and developed by combining and extending aleatoric and epistemic uncertainty, resulting e.g. in
the formulation of the uncertainty model “fuzzy p-box” or “fuzzy probability based randomness”. The
information of the different length scales is considered to be uncertain, e.g. the geometry or the material
properties of a representative volume element (RVE) at the mesoscale. Subsequently, the uncertainty
of the behaviour of a macro structure is derived from uncertain results on the meso structure. Since
the computational effort of such investigations is tremendous, highly developed meta-models (recurrent
neural networks) are applied in order to replace the uncertain RVE responses.

1. INTRODUCTION

In the numerical simulation of structures in general
and reinforced concrete structures in particular, the
consideration of uncertain material as well as geo-
metric parameters are crucial for a comprehensive
evaluation of the structural performance. In order to
distinguish different types of uncertainty, it is com-
mon to characterize between aleatoric and epistemic

uncertainty models. Both types cover different un-
certainties mostly defined by characteristic deficits
of data or data quality, consequently merged uncer-
tainty models are referred to as polymorphic uncer-
tainty. Aleatoric uncertainty originates in the natural
variablity of a certain quantity, and it is therefore
legitimate to assume probability theory as uncer-
tainty model. The possibilities to consider stochastic
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quantities in structural analysis engineering appli-
cations are versatile, as is shown in e.g. Götz et al.
(2015). The application of stochastic analysis is par-
tially common in research (see Jenkel et al. (2015)),
whereas epistemic and furthermore polymorphic un-
certainty models are not equally widespread yet. An
profound overview of applicable methods is pro-
vided by Möller and Beer (2004). Unlike the stochas-
tic approach, epistemic models describe uncertainty
due to e.g. lack of knowledge or incompleteness.
Fuzzy sets (see Viertl (1995)) or e.g. interval vari-
ables are suitable uncertainty models for epistemic
uncertainty, whereas fuzzy probability based ran-
dom variables or p-boxes are representative impre-
cise probability models.

In case of heterogeneous materials or compos-
ites in general, homogenization methods are applied
in continuum mechanics. This approach is moti-
vated by large length scale differences of compos-
ite structures between their meso (or micro) and
macro structure. Thus, the link is denoted between
structural investigations at a large length scale and
the material behaviour at a small length scale as
pointed out in Fleischhauer et al. (2016). Multiple
approaches such as e.g. FE2-method are described
e.g. in Hashin (1983); Smit et al. (1998); Miehe
et al. (1999); Moulinec and Suquet (1998); Feyel
and Chaboche (2000); Kouznetsova (2002). Depend-
ing of the considered size of the inclusions, e.g. ag-
gregates or reinforcement in concretes, the smaller
scale is named meso scale, whereas the larger length
scale is referred to as macro scale. The core idea
of the FE2-method is the assumption of an homoge-
neous material on the macro scale, whose behaviour
is identified from boundary value problems (BVPs)
on the meso scale. These mesoscopic BVPs are
performed on certain subsection of the material of
interest, which is assumed to contain all character-
istic features of the material’s meso structure. This
subsection is named representative volume element
(RVE), as introduced in e.g. Hill (1963). The de-
scribed FE2-approach is still computationally very
demanding, but it can also be used to perform vir-
tual numerical tests on materials (see Terada et al.
(2013)). For this purpose very simple macroscopic
problems are subjected, e.g. plain tension or shear

tests. In these cases, only one quadrature point is
necessary and a single stress-strain curve of the het-
erogeneous material is obtained. This information
may be used to deduct homogenized properties of
the material, which can be used in a more sophisti-
cated material law on the macro scale.

The contribution is structured as follows. Uncer-
tainty concepts such as interval, fuzzy and fuzzy
probability based random variables are introduced.
A simplified concept of homogenization, consider-
ing small strains is presented and utilized in one ex-
ample structured. Therefore, the mesoscopic model
of concrete is described and further investigated with
respect to the evaluation of the uncertain stiffness
tensor, which is latter considered in an uncertain
macroscopic structural example. The resulting un-
certain stresses are exemplarily evaluated.

2. UNCERTAINTY
It is common to distinguish between two general
concepts of uncertainty, namely aleatoric and epis-
temic uncertainties. Where aleatoric uncertainty
models, such as randomness, incorporates the vari-
ability of data or measurements, epistemic uncer-
tainty considers e.g. incompleteness due to lack of
knowledge or a small amount of available data. In
the following section general uncertainty models are
presented.

2.1. Uncertainty Models
Interval variables can be utilized in cases of e.g. few
to none data samples or if no realistic assessment
of certain data points is possible or reasonable. In
contrast to deterministic values, the characteristic
function of an interval variable (see Viertl (1995);
Götz et al. (2015); Götz (2017)) is defined as

χI : R 7→ {0,1},x 7→

{
1, x ∈ I
0, x /∈ I

. (1)

(2)

Subsequently an interval variable can be defined by
its boundaries

I = [xl,xr] = xI, xl,xr ∈ R ∧ xl < xr . (3)

If it seems suitable to asses weightings (e.g. due to
expert knowledge) to certain parameter ranges, an
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interval variable can be extended to a fuzzy-variable,
where the corresponding membership function (char-
acteristic function) according to Götz (2017); Möller
and Beer (2004) is stated as

µ : R 7→ [0,1] (4)

holding the property

∃ x | µ(x) = 1 . (5)

A resulting fuzzy set (or fuzzy variable, introduced
by Zadeh (1965)) can be represented by discrete
α-levels

Af
α = {x ∈ R | µAf ≥ α} with α ∈ ]0,1] , (6)

whereas, in case of an one-dimensional fuzzy vari-
able, each α-level shall be expressed as an interval
variable (see Eq. (3))

Af
α ⊆ R, Af

α = [xl,xr]α = (AI)α . (7)

A convex fuzzy variable is therefore composed by
multiple discretized α-levels

Af =
(

Af
α

)
α∈]0,1]

. (8)

If one adheres to the idea of interval-based repre-
sentation of α-levels, it becomes obvious that an in-
terval analysis as uncertainty quantification method
could be extend to a fuzzy analysis, simply by repet-
itive utilization and previous possibility assessment.
A combination with probabilistic approaches to-
wards polymorphic uncertainty methods is exten-
sively discussed in e.g. Möller and Beer (2004);
Pannier et al. (2013); Götz et al. (2015).

The definition of fuzzy probability based random
variables (fp-r) is founded on the assumption that
the probability distribution of a random variable X
cannot be described exactly due to a lack of infor-
mation, see e.g. Götz et al. (2015); Pannier et al.
(2013). Thus, a fuzzy probability distribution and a
fuzzy probability space (Ω,Σ, P̂) can be introduced.
The fuzzy probability P̂ is represented as family of
α-cuts

P̂ = (Pα)α∈(0;1] . (9)

Each event A ∈ Σ is related by Pα to an interval
[Pα,l(A);Pα,r(A)] for all α ∈ (0,1] such that the fol-
lowing condition is fulfilled

0≤ Pα,l(A)≤ Pα,r(A)≤ 1 . (10)

A fuzzy probability based random variable X is de-
fined by the mapping of the fuzzy probability space
onto the observation space X : Ω→ R. The fuzzy
probability distribution P̂X is formulated as family
of mappings P̂X = ((PX)α)α∈(0;1], with

(PX)α
: B(R)→{[l,r] | 0≤ l ≤ r ≤ 1} :

I 7→ Pα(X−1(I))

= [Pα,l(X−1(I)),Pα,r(X−1(I))] . (11)

The fuzzy probability distribution might be repre-
sented by a fuzzy cumulative distribution function
F̂X , which is again defined as family of α-cuts

F̂X = ((FX)α
)

α∈(0,1] (12)

with an arbitrary cumulative distribution function
F(x). The applied cumulative distribution function
is usually defined by distribution parameters θ in
terms of F(x,θ). Then, the fuzzy cumulative dis-
tribution function F̂X can be described with fuzzy
distribution parameters θ̃i = (θi,α)α∈(0,1]. For ex-
ample, a two parametric distribution function with
parameters θ1 and θ2 yields

F̂X =({Fθ1×θ2 | θ1 ∈ θ̃1,α ,θ2 ∈ θ̃2,α})α∈(0,1] . (13)

This formulation is referred to as bunch parame-
ter representation, since the fuzzy cumulative dis-
tribution and the fuzzy probability density function
can be considered as assessed bunches of functions
which are described by bunch parameters θ̃i.

2.2. Uncertainty Analysis
3. HOMOGENIZATION SCHEME

Assuming that concrete (without any reinforcement
elements) could be considered as an isotropic ma-
terial or particulate composite, where particles of
phase are randomly distributed in a second matrix
phase, a comparably simple homogenization scheme
is used to represent the uncertainty propagation over
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the different length scales. For reasons of com-
putability Hooks law is assumed as constitutive law
on both length scales.

The effective properties at macro-scale are deter-
mined by the volume average of the corresponding
quantity at meso-scale. Which yields to

σ̄i j =
1
V

∫
V

σi jdV and ε̄kl =
1
V

∫
V

εkldV .

(14)

Further details are presented e.g. by Hashin (1983).
The effective stiffness is determined analogously,
such that

∂ σ̄i j

∂ ε̄kl
= C̄i jkl =

1
V

∫
V

∂σi j

∂εmn
:

∂εmn

∂ ε̄kl
dV (15)

C̄i jkl =
1
V

∫
V
Ci jmn : ImnkldV (16)

C̄i jkl =
1
V

∫
V
Ci jkldV . (17)

Alternatively a numerical material test (see Ostoja-
Starzewski (2006)) is utilisable in order to determine
the coefficients of the effective stiffness tensor. By
introducing the Hill-Mandel condition Hill (1963)
(in case of small strains)

σσσ : εεε =σσσ : εεε , (18)

boundary conditions, such as e.g. linear displace-
ment boundary conditions could be derived

uuu(xxx) = ε0xxx ∀xxx ∈ ∂B . (19)

Uniform traction boundary conditions as well as pe-
riodic boundary conditions are applicable as well,
whereas it is notable that the interchanging of bound-
ary conditions yields a change in effective stiffness
values.

Under the previous constitutive assumptions on
the meso-scale, the uncertainty of an interval (or
fuzzy) valued effective stiffness influences macro-
scopic stresses as follows

σ̄
I = C̄I : ε (20)

=

(
C̄m±

C̄∆

2

)
: ε = σ̄m±

σ̄∆

2
(21)

C̄I = [C̄l, C̄r] = C̄m±
C̄∆

2
, C̄∆ = C̄r− C̄l .

(22)

4. MESOSCOPIC MODEL OF CONCRETE
One approach in multi scale analysis of concrete
structures is the separation into two length scales
(macro and meso), whereas the macro scale defines
the overall homogeneous macroscopic structure and
the meso scale the heterogeneity by means of an
representative volume element (RVE) containing ag-
gregates, pores, cement phase and optionally differ-
ent types of reinforcements. Despite the reinforce-
ment, the accurate modelling of aggregates seems
crucial in order to determine the representative ma-
terial parameters of the composite structure. In civil
engineering the grading curve defines the distribu-
tion of different size aggregates within one concrete
mixture.

Based on Unger (2009), the aggregates are sim-
plified by three dimensional ellispoids where the
principle radii are determined with respect to the
medium radius r2

r1 =

(
1+u1

m−1
m+1

)
r2 (23)

r3 =

(
1−u3

m−1
m+1

)
r2 with r1 ≥ r2 ≥ r3 , (24)

and two realisations u1,u3 of uniformly distributed
random variables. The flatness of the ellipsoids is de-
fined by the parameter m. Conclusively the volume
of one aggregate is denoted as

V =
4
3

π
3r3

2

[
1−
(

m−1
2(m+1)

)2
]
. (25)

The grading curve contains the volume-percentage
of aggregates passing through a sieve of a predefined
size. Due to the sequential decrease of the sieve
diameters the grading curve represents the mass or
volume percentage of a certain mineral size classes
k (defined by minimal dmin,k and maximal diameter
dmax,k) in the entire aggregate volume. On basis of
logarithmic size distribution, the principle diameter
d2,k for each mineral size classes is defined as

d2,k =
dmax,k dmin,k√

u2d3
min,k +(1−u2)+d3

max,k

. (26)

A sampling scheme is carried out for each min-
eral size class in a decreasing order, where each
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aggregate is evaluated in order to avoid intersections
with existing aggregates, pores or reinforcement el-
ements. In Fig. 1 a resulting numerical model is
depicted, which is utilized for the computation of
the effective stiffness.

4.1. Uncertain quantities
In the following example, the impact of mesoscopic
uncertain material parameters as well as geometric
properties are investigated. All uncertain quantities
are assumed as interval variables. The bounds of
the Young’s moduli for mortar Ec and aggregates Ea
are determined by a tolerance of ±10% related to a
mean value, resulting in

EI
c = [27000,33000] MPa (27)

EI
a = [47148,57625] MPa . (28)

Additionally the volume fraction of the cement
phase to aggregates is bounded by vI

f = [0.3,0.4].
It is obvious that it is hardly possible to maintain a
deterministic grading curve in production process.
Therefore an upper and lower boundary for the grad-
ing curve is assumed as depicted in Fig. 2. The
corresponding intervals for the volume percentage
passing the different sieve sizes are listed in Tab. 1 re-
garding the second principle diameter for the largest
three mineral size classes.

An interval analysis yields the extremal bound-
aries of the single coefficient of the effective (see.

Figure 1: Mesoscopic structural model of concrete
(RVE)
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Figure 2: Interval valued grading curve of aggregates

d2 in mm Vol-%

2 [36,57]
4 [61,74]
8 [100,100]

Table 1: Interval valued volume of passing aggregates
for each principle diameter d2

Eq. (17)) stiffness values [C̄l, C̄r]i jkl . The represen-
tation in Voigt-notation and by its mean values (·)m
and element wise deviation (·)∆ yields to

C̄m =

66961.9 16740.4 16740.4 0.0 0.0 0.0
16740.4 66961.9 16740.4 0.0 0.0 0.0
16740.4 16740.4 66961.9 0.0 0.0 0.0

0.0 0.0 0.0 25110.7 0.0 0.0
0.0 0.0 0.0 0.0 25110.7 0.0
0.0 0.0 0.0 0.0 0.0 25110.7

V

,

(29)

C̄∆ =

20140.9 5035.2 5035.2 0.0 0.0 0.0
5035.2 20140.9 5035.2 0.0 0.0 0.0
5035.2 5035.2 20140.9 0.0 0.0 0.0

0.0 0.0 0.0 7552.8 0.0 0.0
0.0 0.0 0.0 0.0 7552.8 0.0
0.0 0.0 0.0 0.0 0.0 7552.8

V

.

(30)
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It shall be mentioned, that the overall stiffness
is overestimated due to the edge size of the RVE
(40mm). However, a size study of the RVE revealed
convergence to a more realistic level with increas-
ing RVE edge size. Since a RVE of greater volume
comes with more aggregates, the mesh could con-
tain more then 106 nodes, which leads, even with
utilization of parallel computing within the inter-
val analysis, to a unserviceable computation time.
Therefore the presented values should be interpreted
as an exemplary proof of concept for the compu-
tational algorithm in order to consider uncertainty
within the numerical simulation.

5. MACRO SCALE EXAMPLE

The influence of a uncertain stiffness matrix is
demonstrated at a macro structure. For reasons
of simplification a Hookean-material is assumed,
where the values of the elasticity tensor are taken
from the RVE (see Eqs. (29),(30)).

The exemplary macro structure is a beam, where
both ends are restrained (see. Fig 3). As depicted,
a horizontal as well as vertical load F = 4kN is ap-
plied in the middle cross section. The numerical

[        ]

Figure 3: Macroscopic structure example

simulation of the stress mean values and the devia-
tion is performed according to Eq. (20). Stress σ22
is depicted in Fig. 4a and related deviations σ∆,22 in
Fig. 4b. The dashed red line is indicating the edge
where the uncertain stresses are evaluated. As it
can be seen, the uncertainty is proportional to the
stress value itself, which indeed is plausible due to

(a) Stress σ22 at macroscopic structure

(b) Stress deviation σ∆,22 at macroscopic structure

Figure 4: Stress distribution due to uncertain structural
analysis

linear elasticity. The resulting uncertainty can be
interpreted as inherent material property deviations,
since the actual numerical analysis is a purely de-
terministic computation. If one would additionally
assume e.g. uncertain loading conditions the stress
deviation would turn out to be greater, at least in
case of the Hookean material.

With respect to the outlook of a non-linear ma-
terial model the prediction of the uncertain results
is not as obvious as in the presented case, due to
e.g. local damage occurrence. Nevertheless, the
proposed process from meso-scale uncertainty to un-
certain macroscopic mechanical properties remains
equal and can be adopted to more advanced material
models on RVE-level.

6. SUMMARY & OUTLOOK
In this contribution, a procedure for structural anal-
ysis incorporating polymorphic uncertain material
parameters on different length scales is presented.
Namely interval, fuzzy and fuzzy probability based
random variables are introduced, and proposed as
suitable uncertainty models for material properties
due to consideration of e.g. variability, imprecision,
lack of knowledge or incompleteness. In order to
embed the uncertain analysis into a multi scale struc-
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Figure 5: Ucnertainty in macroscopic stress σ22 due to
uncertainty on meso-scale

tural analysis, separate uncertainty analyses for each
length scale are proposed, which concludes in an
overall staggered computational procedure. This
concepts implies the transition of uncertainty by its
representation with representative and uncertainty
quantifying measures enabling an deterministic de-
scription of the uncertain quantities. Separating the
individual uncertainty analysis comprises the possi-
bility to investigate the influence of input uncertainty
to effective properties on the particular length scale.

An representative volume element for concrete is
presented in this contribution utilized in a numerical
structural analysis. The numerical modelling as well
as sampling scheme for the individual components
of concrete are point out. Subsequently a exemplary
evaluation of the uncertain effective stiffness based
on micro scale interval uncertainty for concrete is
evaluated and utilized in a structural analysis on
macro scale. It is shown that evaluated stress de-
viation does origin in the quantified uncertainty on
meso scale. Hence, no further uncertainty analysis
is necessary, if this specific concrete is demanded in
an structural analysis. Nevertheless, computational
multi scale analyses are computational expensive
regardless the consideration of uncertainty, which
is additionally increasing the computational costs.
Therefore surrogate models are under investigation
as surrogate model for the constitutive law. The
current focal point is on the utilization of recurrent

neural networks as substitution for the representa-
tive effective measures as well as the uncertainty
quantifying measures.
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