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ABSTRACT: Response probability density function of a single-degree-of-freedom linear system sub-
jected to non-Gaussian random excitation is investigated. The excitation is assumed to be a zero-mean
stationary stochastic process prescribed by both the non-Gaussian probability density and the power
spectral density with bandwidth and dominant frequency parameters. In this study, bimodal and Laplace
distributions are used as the non-Gaussian distribution of the excitation. Monte Carlo simulations are per-
formed to obtain the stationary probability distributions of the displacement and velocity of the system.
Then, we calculate the maximum absolute value of the real part of cross-correlation function between the
excitation and the response, which is considered as an evaluation index of waveform similarity between
the excitation and the response. It is shown that the response probability distributions vary with the maxi-
mum value. With the aid of this maximum value, the shapes of the probability distributions of the system
response can be predicted roughly without Monte Carlo simulations.

The response of machines and structures subjected
to random excitation have been widely analyzed us-
ing probabilistic methods for many decades. In a
large number of studies so far, the random excita-
tion has been assumed to be a Gaussian process.
This assumption is due to the fact that many ran-
dom processes in engineering problems have the
probability density functions similar to the Gaus-
sian distribution. However, it is known that some
random excitations such as wind pressure (Ko et
al., 2005), shallow water waves (Ochi, 1986), un-
evenness on the road surface (Grigoriu, 1995) and
vertical acceleration of traveling automobile (Stein-
wolf, 2012) exhibit highly non-Gaussianity.
　 Most non-Gaussian random excitations have a
common feature that their probability densities has
wider tails than those of a Gaussian distribution.
This is a serious problem from the viewpoint of en-
gineering because the probability of occurrence of

excitation with large-amplitude is higher than that
of the Gaussian random excitation. When such a
non-Gaussian random excitation acts on machines,
structures or equipment inside them, the response
with large magnitude and/or unique characteristics
not found in the case of Gaussian excitation may
occur, which has a great influence on the system.
Therefore, in order to achieve a good understanding
of the behavior of such systems and enhancement
of safety, reliability and comfortability of mechani-
cal and structural systems, acquiring knowledge of
response characteristics of non-Gaussian randomly
excited systems is crucial.
　 The authors examined the response probability
density of single-degree-of-freedom linear and non-
linear systems subjected to non-Gaussian random
excitation by Monte Carlo simulation (Tsuchida
and Kimura, 2013). The simulation results showed
that when the bandwidth of the excitation power
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spectrum is narrow, the shape of the response distri-
bution is close to the shape of the excitation proba-
bility density, while in the case of wide-band excita-
tion the response distribution resembles that of the
system under Gaussian white noise. Subsequently,
the influence of the dominant frequency of non-
Gaussian excitation on response probability distri-
bution was investigated (Uehara et al., 2015). It was
revealed that the response distribution becomes a
shape close to the non-Gaussian distribution of the
excitation when the excitation dominant frequency
is low and becomes a shape close to a Gaussian dis-
tribution when the dominant frequency is high. Fur-
thermore, it was also observed that for some com-
binations of the bandwidth and dominant frequency
of the excitation, the response distribution exhibits
an intermediate shape between the excitation distri-
bution and a Gaussian distribution.
　 In this study, the change in shape of the response
probability distribution of a SDOF linear system
under non-Gaussian excitation is examined using
cross-correlation functions. First, Monte Carlo
simulations are carried out to obtain the probability
distributions of the stationary displacement and ve-
locity responses. Then, in order to study the prop-
erties of the response distribution from the view-
point of the waveform similarity between the ex-
citation and the response, the maximum absolute
value of the real part of the cross-correlation func-
tion is employed. The correspondence of this maxi-
mum value to the shape of the response distribution
is illustrated. The maximum value can be evaluated
easily and enables us to roughly estimate the shapes
of the probability distributions of the displacement
and velocity responses without Monte Carlo simu-
lation.

1. ANALYTICAL MODEL
1.1. Equation of motion
Consider a single-degree-of-freedom linear system
governed by

Ẍ +2ζ Ẋ +X =U(t) (1)

where ζ is the damping ratio, t is a non-dimensional
time parameter and U(t) is non-Gaussian random
excitation described in detail below.

1.2. Non-Gaussian random excitation
The non-Gaussian excitation U(t) is assumed to
be a zero-mean stationary stochastic process pre-
scribed by both the non-Gaussian probability den-
sity pU(u) and the power spectrum SU(ω).

1.2.1. Non-Gaussian probability density
Bimodal and Laplace distributions are used as the
non-Gaussian probability density pU(u) to clearly
observe the influence of the non-Gaussian nature of
U(t) on system response. These two distributions
are expressed as follows:

•Bimodal distribution

pU(u) =
1

24
√

πΩ

(
512
Ω3 u6 +

192
Ω2 u4 +

72
Ω

u2 +15
)

× exp
(
− 4

Ω
u2
)

(2)

•Laplace distribution

pU(u) =
β
2

exp(−β |u|) (3)

where Ω and β are the parameters which govern the
variance of these distributions. In this study, these
two parameters are given as Ω = 2 and β =

√
2 so

that both the probability distributions have the same
variance: σ2

U = 1. The bimodal and Laplace distri-
butions are shown in Figs. 1 and 2. They are quite
different from each other and a Gaussian distribu-
tion.

1.2.2. Power spectrum
The power spectral density SU(ω) of U(t) consid-
ered in this study is given by

SU(ω) =
E[U2]

π
α(α2 +ρ2 +ω2)

(α2 +ρ2 −ω2)2 +4α2ω2 (4)

where α and ρ are the bandwidth and dominant fre-
quency parameters, respectively. In Fig.3, SU(ω) is
shown. When α is small, U(t) is narrow-band, on
the other hand, U(t) is wide-band for large α . The
dominant frequency shifts with the value of ρ .
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Figure 1: Bimodal distribution (Ω = 2)
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Figure 2: Laplace distribution (β =
√
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Figure 3: Power spectrum of excitation (E[U2] = 1)

1.2.3. Generation method of excitation
In order to carry out Monte Carlo simulations, the
sample functions of U(t) with pU(u) given in sec-
tion 1.2.1 and SU(ω) given in section 1.2.2 are gen-
erated through the method presented by Tsuchida
and Kimura (2015). This method is summarized
briefly below.

A zero-mean stationary stochastic process U(t)
with the power spectrum in Eq.(4) can be expressed
by the following two-dimensional Itô stochastic dif-
ferential equation:

dU = (−αU +ρV )dt +D1(U,V )dB1(t)
dV = (−ρU −αV )dt +D2(U,V )dB2(t)

(5)

where α and ρ are the same as the bandwidth and
dominant frequency parameters of SU(ω). B1(t)
and B2(t) are mutually independent unit Wiener
processes. V (t) is a zero-mean stationary process
which is orthogonal to U(t) (i.e., E[U(t)V (t)] = 0).

D2
1(u,v) and D2

2(u,v) are the diffusion coeffi-
cients given by

D2
1(u,v) =− 2α

pUV (u,v)

∫ u

−∞
spUV (s,v)ds

D2
2(u,v) =− 2α

pUV (u,v)

∫ v

−∞
spUV (u,s)ds

(6)

where pUV (u,v) is the stationary joint probability
distribution of U(t) and V (t), which is given by

pUV (u,v) =
1

2π
pA(

√
u2 + v2)√

u2 + v2)
(7)

where pA(a) is the probability density of the enve-
lope of U(t). pA(a) can be derived from pU(u) as
follows: (Rytov et al., 1988)

pA(a)
a

=
∫ ∞

0
xJ0(xa)

∫ ∞

−∞
pU(u)eiuxdudx (8)

where J0(·) is the Bessel function of the first kind
of order 0.

By using Eqs. (5) - (8), the sample functions of
U(t) can be generated. The procedure is shown be-
low.

1. pU(u), α and ρ are given.
2. pA(a) is derived from pU(u) through Eq. (8).
3. Substituting pA(a) into Eq. (7), pUV (u,v) is

obtained.
4. Using α and pUV (u,v), D2

1(u,v) and D2
2(u,v)

are calculated from Eq. (6).
5. After substituting α , ρ , D1(u,v) and D2(u,v)

into Eq. (5), Eq. (5) is solved numerically
by the Euler-Maruyama scheme (Kloeden and
Platen, 1992) to generate the sample functions.

The diffusion coefficients D2
1(u,v) and D2

2(u,v)
for the bimodal distribution and the Laplace distri-
bution are given as follows:
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• Case of bimodal distribution

D2
1(u,v) = D2

2(u,v)

= α
{

Ω
4
+

3Ω2

16
1

u2 + v2 +
3Ω3

32
1

(u2 + v2)2

+
3Ω4

128
1

(u2 + v2)3

} (9)

• Case of Laplace distribution

D2
1(u,v) = D2

2(u,v) = αβ
√

u2 + v2 K1(β
√

u2 + v2)

K0(β
√

u2 + v2)
(10)

where K0(·) and K1(·) are the modified Bessel func-
tions of the second kind of order 0 and 1, respec-
tively.

2. MONTE CARLO SIMULATION
Monte Carlo simulations are performed to obtain
the probability distributions of the stationary dis-
placement and velocity of the system described
in section 1. First, the sample functions of the
non-Gaussian excitation are generated by using the
method in section 1.2.3. Then, the response sample
functions are calculated from Eq. (1) using the 4th-
order Runge-Kutta method. Finally, the response
probability distributions are obtained from the re-
sponse sample functions. The computational con-
ditions are as follows: Number of sample functions
: 200, Number of sample points per 1 sample func-
tion : 217, Time step size : 0.002

Hereafter, let us introduce new parameters A and
B associated with the parameters of the excitation
power spectrum SU(ω).

A =
α
ζ
, B =

ρ√
1−ζ 2

(11)

A represents the bandwidth ratio of the excitation
power spectrum to the frequency response function
of the linear system. When A > 1 (or A < 1), the
excitation bandwidth is broader (or narrower) than
that of the frequency response function. B repre-
sents the ratio of the dominant frequency of the
excitation to the damped natural frequency of the
system. When B = 1, the resonance occurs. In
this study, the response distributions are examined
while fixing the damping ratio ζ to 0.05 and chang-
ing A and B in the following wide range:

• 0.1 ≤ A ≤ 20,

∆A = 0.1 for 0.1 ≤ A ≤ 2,
∆A = 1 for 2 < A ≤ 4,
∆A = 2 for 4 < A ≤ 20

• 0 ≤ B ≤ 2, ∆B = 0.1

3. RESULTS
3.1. Relationship between response distribution

and waveform similarity
Figure 4 shows the sample functions of the excita-
tion u(t) and the stationary displacement response
x(t) and the displacement probability density pX(x)
for the bandwidth ratio parameter A = 0.1 and the
dominant frequency ratio parameter B = 1.3. The
results for A = 10, B = 0.2 are also shown in Fig-
ure 5. In these figures, the black-solid line indicates
the sample function (upper figure) or probability
distribution (lower figure) of the response, and the
red-dashed line indicates those of the excitation. In
addition, the response variance is normalized so as
to be equal to the excitation variance to facilitate
the comparison between the shapes of the response
waveform and distribution and those of the excita-
tion.

Fig. 4 indicates that when the response proba-
bility distribution is similar to the excitation prob-
ability distribution, both the waveforms of the ex-
citation and the response fluctuate sinusoidally and
resemble each other, although there is a phase dif-
ference. On the other hand, from Fig.5, when the
response distribution has a shape close to a Gaus-
sian distribution, the response fluctuates almost pe-
riodically while the excitation fluctuates like noise,
and the waveforms of the response and the excita-
tion are greatly different. These observations on the
shape of the response distribution and the similar-
ity of the waveform also apply to the case of the
velocity response (not shown in the figures).

From the above results, it is inferred that the
waveform similarity between the excitation and the
response and the shape of the response distribution
are strongly related. Therefore, in the next section,
an evaluation index of the waveform similarity will
be introduced in order to discuss the shape of the re-
sponse distribution from the viewpoint of the simi-
larity of the waveform.
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(a) Bimodal-distributed excitation
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(b) Laplace-distributed excitation

Figure 4: Upper : Sample functions of stationary dis-
placement (black solid line) and excitation (red dashed
line). Lower : Probability densities of stationary dis-
placement (black solid line) and excitation (red dashed
line) for A = 0.1 and B = 1.3
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(b) Laplace-distributed excitation

Figure 5: Upper : Sample functions of stationary dis-
placement (black solid line) and excitation (red dashed
line). Lower : Probability densities of stationary dis-
placement (black solid line) and excitation (red dashed
line) for A = 10 and B = 0.2

3.2. Evaluation index of the waveform similarity
using cross-correlation function

Normalized cross-correlation function ρUX(τ) be-
tween the excitation and the stationary displace-
ment and normalized cross-correlation function
ρUẊ(τ) between the excitation and the stationary
velocity are expressed by

ρUX (τ) =
RUX (τ)√

E[U2]E[X2]
, ρUẊ (τ) =

RUẊ (τ)√
E[U2]E[Ẋ2]

(12)

where RUX(τ) and RUẊ(τ) are the corresponding
non-normalized cross-correlation functions, which
can be written in terms of the cross-power spectral
densities SUX(ω) and SUẊ(ω) as follows:

RUX(τ) =
∫ ∞

−∞
SUX(ω)eiωτdω (13)

RUẊ(τ) =
∫ ∞

−∞
SUẊ(ω)eiωτdω (14)

SUX(ω) = H(ω)SU(ω)

SUẊ(ω) = iωH(ω)SU(ω)

H(ω) =
1−ω2 −2iζω

(1−ω2)2 +4ζ 2ω2

where H(ω) and iωH(ω) are the frequency re-
sponse functions of displacement and velocity, re-
spectively. E[X2] and E[Ẋ2] in Eq. (12) are the
mean square values of the stationary displacement
and velocity, respectively given by

E[X2] =
∫ ∞

−∞
|H(ω)|2SU(ω)dω

E[Ẋ2] =
∫ ∞

−∞
|iωH(ω)|2SU(ω)dω

When Re[ρUX(τ)] (or Re[ρUẊ(τ)]) is close to 1 or
−1, there is a strong positive or negative correlation
between the two waveforms of the excitation and
the displacement (or the velocity), respectively. On
the other hand, when Re[ρUX(τ)] (or Re[ρUẊ(τ)])
is close to 0, these waveforms are uncorrelated.

From the results in section 3.1, it is presumed
that as long as the excitation waveform and the re-
sponse waveform resemble each other, even if there
is a phase difference between them, the response
probability distribution has a shape similar to the
excitation probability distribution. Therefore, in
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this study, in order to evaluate the similarity de-
gree of the waveforms between the excitation and
the response quantitatively, the maximum absolute
values of the real parts of the normalized cross-
correlation functions, i.e., max(|Re[ρUX(τ)]|) and
max(|Re[ρUẊ(τ)]|), are employed. Taking the ab-
solute value corresponds to ignoring the phase dif-
ference between the excitation and the response.
Since it is difficult to obtain max(|Re[ρUX(τ)]|) and
max(|Re[ρUẊ(τ)]|) analytically, they are calculated
numerically using Eqs. (12)-(14).

3.3. Relationship between response distribution
and maximum absolute value of real part of
cross-correlation function

The evaluation indexes of the waveform similar-
ity max(|Re[ρUX(τ)]|) and max(|Re[ρUẊ(τ)]|) are
used to examine the change in shape of the response
probability distributions. The displacement prob-
ability densities pX(x) and the velocity probabil-
ity densities pẊ(ẋ) for the bimidal-distributed ex-
citation obtained by the Monte Carlo simulations
are shown in Figs. 6, 8, and 10. The response
probability distributions for the Laplace-distributed
excitation are also shown in Figs. 7, 9 and 11.
In these figures, the black-solid line and the red-
dashed line indicate the response distribution and
the excitation distribution, respectively, and in or-
der to facilitate the comparison of the shapes of
the distributions, the response variance is normal-
ized so as to be equal to the excitation variance. In
the figure caption, the value of max(|Re[ρUX(τ)]|)
is written in the figures of pX(x), and the value
of max(|Re[ρUẊ(τ)]|) is written in the figures of
pẊ(ẋ), respectively.

It can be found from Fig. 6 that when the
values of max(|Re[ρUX(τ)]|) are about the same,
the displacement response distributions pX(x) be-
come similar shapes, regardless of the values of
the bandwidth ratio parameter A and the domi-
nant frequency ratio parameter B. This can also be
found from Fig. 7. Similarly, the velocity response
distributions pẊ(ẋ) with almost the same values
of max(|Re[ρUẊ(τ)]|) are close to each other, as
shown in Figs. 8 and 9. Furthermore, Figs. 10
and 11 are the figures comparing pX(x) and pẊ(ẋ),
and these figures indicate that provided that the val-

ues of max(|Re[ρUX(τ)]|) and max(|Re[ρUẊ(τ)]|)
are about the same, pX(x) and pẊ(ẋ) also have al-
most the same shapes as each other.
　Figs. 6 and 7 show that when max(|Re[ρUX(τ)]|)
and max(|Re[ρUẊ(τ)]|) are close to 1, the shapes
of pX(x) and pẊ(ẋ) look like that of the excitation
probability distribution pU(u). From Figs. 8 and 9,
when max(|Re[ρUX(τ)]|) and max(|Re[ρUẊ(τ)]|)
decrease to about 0.85, the response distribution be-
comes an intermediate shape between pU(u) and
a Gaussian distribution. Then, when these maxi-
mum values further decrease and reach a value of
about 0.6 or less, as shown in Figs. 10 and 11,
the response distribution becomes almost Gaussian
regardless of the difference in non-Gaussianity of
the excitation. These facts hold true for both the
displacement response and the velocity response
with combinations (A, B) of a wide range of the
bandwidth ratio A and the dominant frequency ra-
tio B shown in Section 2. max(|Re[ρUX(τ)]|)
and max(|Re[ρUẊ(τ)]|) can be evaluated from the
frequency response function of the system and
the excitation power spectral density in a simple
manner, as described in section 3.2. In Fig.12,
max(|Re[ρUX(τ)]|) and max(|Re[ρUẊ(τ)]|) for a
wide range of the parameters A and B are shown.
By using this figure, it is possible to readily es-
timate the rough shapes of the probability distri-
butions of the displacement and velocity responses
for given A and B without performing Monte Carlo
simulations.

4. CONCLUSIONS
The response probability distributions of a SDOF
linear system subjected to non-Gaussian random
excitation have been investigated. The excitation
is a zero-mean stationary stochastic process pre-
scribed by both the non-Gaussian probability den-
sity and the power spectrum with bandwidth and
dominant frequency parameters.

First, Monte Carlo simulations have been carried
out to obtain the stationary probability distributions
of the displacement and velocity of the system. The
simulation results have revealed that the shape of
the response distribution is relevant to the wave-
form similarity of the excitation and the response.
Then, we have calculated the maximum absolute
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Figure 6: Probability density of stationary dis-
placement response (black solid line) and bimodal
distribution of excitation (red dashed line). Left :
(A, B, max(|Re[ρUX(τ)]|) = (0.1, 0.5, 0.971), Right
: (A, B, max(|Re[ρUX(τ)]|)) = (0.2, 0.3, 0.951)

Figure 7: Probability density of stationary dis-
placement response (black solid line) and Laplace
distribution of excitation (red dashed line). Left :
(A, B, max(|Re[ρUX(τ)]|) = (0.1, 0.5, 0.971), Right
: (A, B, max(|Re[ρUX(τ)]|)) = (0.2, 0.3, 0.951)

Figure 8: Probability density of stationary veloc-
ity response (black solid line) and bimodal dis-
tribution of excitation (red dashed line). Left :
(A, B, max(|Re[ρUẊ(τ)]|)) = (0.6, 1.3, 0.856), Right :
(A, B, max(|Re[ρUẊ(τ)]|)) = (0.2, 0.5, 0.84)

Figure 9: Probability density of stationary veloc-
ity response (black solid line) and Laplace dis-
tribution of excitation (red dashed line). Left :
(A, B, max(|Re[ρUẊ(τ)]|)) = (0.6, 1.3, 0.856), Right :
(A, B, max(|Re[ρUẊ(τ)]|)) = (0.2, 0.5, 0.84)

Figure 10: Probability density of stationary response
(black solid line) and bimodal distribution of excita-
tion (red dashed line). Left : displacement response
(A, B, max(|Re[ρUX(τ)]|)) = (4.5, 0.4, 0.597), Right
: velocity response (A, B, max(|Re[ρUẊ(τ)]|)) =
(5, 0.6, 0.511)

Figure 11: Probability density of stationary response
(black solid line) and Laplace distribution of excita-
tion (red dashed line). Left : displacement response
(A, B, max(|Re[ρUX(τ)]|)) = (4.5, 0.4, 0.597), Right
: velocity response (A, B, max(|Re[ρUẊ(τ)]|)) =
(5, 0.6, 0.511)
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Ẋ
(τ

)]
|)

0.1

Figure 12: max(|Re[ρUX(τ)]|) ( Upper ) and
max(|Re[ρUẊ(τ)]|) ( Lower )
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value of the real part of the cross-correlation func-
tion between the excitation and the response, which
has been considered as an evaluation index of sim-
ilarity of the waveforms between them. It has been
shown that the stationary response distributions be-
come similar to each other when the maximum val-
ues are nearly equal to each other. When the max-
imum value is close to 1, the shape of the proba-
bility distribution of the system response looks like
the shape of the distribution of the non-Gaussian
excitation. For the maximum value around 0.85,
the response distribution becomes the middle shape
between the excitation probability density and a
Gaussian distribution. In the case of the maximum
value less than 0.6, the response distribution is al-
most Gaussian, irrespective the excitation probabil-
ity density.

The maximum absolute value of the real part of
the cross-correlation function between the excita-
tion and the response can be calculated readily us-
ing the frequency response function of a linear sys-
tem and the excitation power spectrum, regardless
of the excitation probability distribution. With the
aid of this maximum value, the shapes of the prob-
ability distributions of the displacement and veloc-
ity of the system can be predicted roughly without
Monte Carlo simulation, which generally requires
excessive computational resources and effort.
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