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ABSTRACT: There exist a number of high dimensional problems in which the dimensions cannot be
effectively reduced, since all of them are more or less equally important. On top of that, when the
computational models are expensive, it is not practical to perform more than a small number of model
evaluations. In situations like this, a good space filling design is needed that provides maximum
coverage over the input domain. In surrogate modeling methods, like kriging interpolation or radial
basis function interpolation, a good sampling design can help improve the condition number of the
kernel matrix by placing samples as far apart from each other as possible. In this study, the performance
of three hierarchical space filled designs, namely Refined Latinized Stratified Sampling (RLSS),
Hierarchical Latin Hypercube Sampling (HLHS) and Sobol quasi-random sequence, are compared using
the Rosenbrock function in different dimensions. Ordinary kriging interpolation is chosen as the
surrogate modeling method with different choices of correlation functions. The AIC criterion is used for
model selection and the accuracy of selection is cross-verified using the root mean squared (RMS) error
values.

Expensive computational models are often used
to replicate many complex physical systems exist-
ing in nature. The models are more often than not
associated with a number of parameters, ranging
from as few as 2 or 3 to as high as few thousands.
The input parameters can be random in nature and
can follow a distribution structure. It might be of
interest to account for the variations in the quantity
of interest with respect to the input parameters, each
of which varies over a certain range. It can become
cumbersome to achieve the above goals when deal-
ing with computationally expensive models. An ef-
ficient approach is to perform non-intrusive surro-

gate modeling. A non-intrusive surrogate model-
ing approach deals with establishing a cheap math-
ematical input/output relationship using a limited
number of the expensive model evaluations. There
are surrogate models which use structured sam-
pling designs [Babuška et al. (2007); Agarwal and
Aluru (2009); Bhaduri and Graham-Brady (2018);
Bhaduri et al. (2018)], while others use unstruc-
tured designs [Santner et al. (2013); Zhang et al.
(2013); Shields (2018)]. Choice of sampling points
is an important step of any surrogate modeling pro-
cedure. When the broad choice is that of an un-
structured sample design, a favourable design is
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one with good non-collapsive space filling prop-
erties. Popular designs include Sobol quasi ran-
dom sequences [Soboĺ (1976)], Halton quasi ran-
dom sequences [Halton (1960)], and Latin Hyper-
cube Sampling (LHS) [McKay et al. (1979); Helton
and Davis (2003)], among others.
In this work, two hierarchical non-collapsive space
filling designs, hierarchical latin hypercube sam-
pling (HLHS) [Sallaberry et al. (2008); Voře-
chovskỳ (2015)] and refined latinized stratified
sampling (RLSS) [Shields (2016)] are considered
along with the popular quasi-random Sobol se-
quence, and their performance is assessed when
used as input designs for surrogate modeling. In
this study, the surrogate modeling method consid-
ered is kriging. The paper is divided into the fol-
lowing sections. The HLHS and RLSS designs are
described in brief in section 1. Section 2 talks about
the kriging interpolation method in brief. In section
3, we demonstrate the performance of the RLSS,
HLHS and Sobol designs in kriging metamodeling
of the Rosenbrock function of different dimensions.
Section 4 concludes the paper with discussions.

1. HLHS AND RLSS DESIGNS

LHS design [McKay et al. (1979)] has good projec-
tive properties but does not guarantee good space
filling properties. Stratified sampling (SS) [McKay
et al. (1979)] design, on the other hand, has good
space filling properties but poor projective prop-
erties. Refined stratified sampling (RSS) design
[Shields et al. (2015)] is the sequential version of
the SS design where new strata are formed one
at a time and a new sample is added by ran-
domly sampling from each newly formed stra-
tum. HLHS designs [Sallaberry et al. (2008);
Vořechovskỳ (2015)] help in sequential addition
of LHS design samples by gradual refinements of
the dimension-wise stratifications. The minimum
refinement that can be performed is to subdivide
each dimension-wise stratum into two sub-strata.
Thus, HLHS is not a purely sequential design and at
least doubles the current sample size at each exten-
sion. Latinized stratified sampling (LSS) [Shields
and Zhang (2016)] design attempts to achieve good
non-collapsive and space filling properties by com-
bining the advantages of the LHS and SS designs.

In LSS, there is dimension-wise stratifications (as
in LHS design) as well as full-dimensional strat-
ifications (as in SS design) and sampling is per-
formed taking both stratifications into account si-
multaneously. The sample size extension version
of LSS design is referred to as Hierarchical La-
tinized Stratified Sampling (HLSS) design [Shields
(2016)]. HLSS design involves the LHS-type re-
finements and subdivision of the SS-type strata in
an exisiting LSS design and then sampling in the
permissible regions. Finally, RLSS is essentially a
sequential version of HLSS where one stratum is
chosen from the strata subdivision and a sample is
added there.

2. KRIGING INTERPOLATION
Kriging [Krige (1951); Matheron (1963)], also
known as Gaussian process modelling, is an inter-
polation algorithm which tries to build a metamodel
ŷ(x) corresponding to an unknown true function
y(x) by assuming it to be a realization of a Gaus-
sian process Y (x). Y (x) is given by:

Y (x) = βββ
T fff (x)+σ

2Z(x,ω) (1)

where term βββ
T f(x) represents the mean value of

the Gaussian process and βββ is the regression vec-
tor and f(x) is the basis function vector. The term
σ2Z(x,ω) represent the local variations of the func-
tion about the mean βββ

T f(x) where σ2 is the process
variance and Z(x,ω) is a stationary Gaussian pro-
cess with zero mean [E(Z(x)) = 0] and a correlation
function given by:

Cov[Z(x),Z(x′)] = K(xxx,xxx′;θθθ) (2)

where K = K(xxx,xxx′;θθθ) is a measure of the similarity
between two samples of the input space, e.g. x and
x′ and depends on the hyperparameters θθθ . We con-
sider ordinary kriging in our study where fff (((xxx))) = 1
and βββ

T fff (((xxx))) = β0. Then the expression of the mean
estimate of the kriging predictor is given by:

µŶ (x) = β̂0 + r(x)T R−1(yyy−111β̂0) (3)

and the prediction variance estimate is given by:

s2
Ŷ (x) = σ̂

2(1− rT (x)R−1r(x)) (4)
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where,
β̂0 = (111T R−1111)−1111T R−1y

σ̂
2 =

1
n
(y−111β̂ )T R−1(y−111β̂ ) (5)

In kriging prediction, the choice of covariance
function K is important. In this study, four families
of ellipsoidal type covariance functions are used:
Gaussian, Exponential, Matérn 3/2 and Matérn 5/2,
whose expressions are given in Table 1. The Krig-
ing module in UQlab [Marelli and Sudret (2014);
Lataniotis et al. (2015)] was used to perform Krig-
ing surrogate modeling.

Table 1: Stationary covariance functions

Covariance Expression
functions

Gaussian exp
(
−

d
∑

i=1
θi p2

i
)

Exponential exp
(
−

d
∑

i=1
θi pi

)
Matern 3/2 (1+

√
3

d
∑

i=1
θi pi)exp

(
−

d
∑

i=1
θi pi

)
Matern 5/2 (1+

√
5

d
∑

i=1
θi pi + ...

5
3

d
∑

i=1
θ 2

i p2
i )exp

(
−

d
∑

i=1
θi pi

)
Note: pi = |xi− x

′
i|; for isotropic case, θi = θ

3. NUMERICAL RESULTS

In this section, a commonly used benchmark func-
tion for high-dimensional applications, the Rosen-
brock function, is used as an example problem
given by:

f (x) =
d−1

∑
i=1

100(x2
i − xi+1)

2 +(xi−1)2 (6)

where x is a d-dimensional vector. 4 Rosenbrock
functions of dimensions 2, 5, 10 and 20 are con-
sidered. Sample points are generated according to
three designs: Sobol, HLHS and RLSS. For a given
dimension case and a given design, the function
was evaluated at the generated sample points and
kriging was applied to the data set to predict the

function values at 106 Monte Carlo (MC) test sam-
ples in the problem domain. The performance of
each case was measured using Root Mean Squared
Error (RMSE) given by:

RMSE =

√√√√ 1
Nt

Nt

∑
i=1

(
y(i)true− y(i)predicted

)2
(7)

where Nt is the total number of test samples, ytrue
is the vector of true values of the function at the
Nt points and ypredicted is the vector of kriging-
predicted values at the same Nt points. Here, Nt =
106. The results from the different designs are
combined together to compare their performance
with different choice of kriging covariance func-
tions. The covariance functions are considered to
be isotropic. Maximum Likelihood (ML) was cho-
sen as the estimation method [Santner et al. (2013)]
and an interior point gradient-based optimization
method with L-BFGS Hessian approximation [No-
cedal (1980); Byrd et al. (1999)] was used to ob-
tain the optimized parameter θ̂ . The Akaike infor-
mation criterion (AIC) [Akaike (1974); Burnham
and Anderson (2003)] was used for model selec-
tion from candidate covariance functions and the
best models from each design were compared with
each other. AIC for small datasets [Cavanaugh et al.
(1997)] is given by:

AICc =−2log(L(θ̂ |D,M))+2n+
2n(n+1)
N−n−1

(8)

where L is the likelihood function, θ̂ is the max-
imum likelihood estimate, D is the data, M is the
model, n denotes the number of model parameters
and N denotes the sample size. The model selection
probability is then given by:

pi = p(Mi|D) =
exp(−4

(i)
A

2 )

∑
K
i=1 exp(−4

(i)
A

2 )

(9)

where,4(i)
A = AIC(i)

c −AIC min
c . In this study, n = 1

since isotropic covariance functions are considered
as candidate models, and the model performance is
compared at a fixed N. Thus, essentially, from the
AIC criterion, the most suitable model is the one
with the highest maximum likehood function value.
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(c) Error convergence plot with
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Figure 1: 2-dimensional Rosenbrock function
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Figure 2: 2-dimensional Rosenbrock function

For HLHS and RLSS designs, 30 independent set
of samples are generated. For each set, the meta-
modeling procedure is conducted and the RMSE
value is calculated. From these values, an error-
bar plot is generated using the minimum, maxi-
mum and median RMSE values. On the other hand,
Sobol sequence is deterministic and generation of

only a single set of samples is sufficient for perfor-
mance comparisons.

Figure 1(a) shows the RMS error convergence
plot comparison between different types of covari-
ance function models with Sobol design points for
2-dimensional Rosenbrock function, and the surro-
gate model with the Gaussian covariance function is
found to be most accurate for all the sample cases.
Figure 1(d) shows the probabilities of model selec-
tion with Sobol design. Except the 20-sample case,
the AIC criterion chooses the Gaussian model as
the most appropriate model which matches with the
true RMSE error estimates in Figure 1(a). For the
20-sample case, the Matern-5/2 model is the most
probable model but it has a higher RMS error than
the Gaussian model, although the Gaussian model
also has a finite probabiity of being selected. Fig-
ures 1(b) and 1(c) show the RMS error convergence
plot comparisons between different types of covari-
ance function models with HLHS design points and
RLSS design points, respectively, where the Gaus-
sian model again has the minimum error. As shown
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(a) Error convergence plot with
Sobol design
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(c) Error convergence plot with
RLSS design
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(f) Model selection probability
plot with RLSS design

Figure 3: 5-dimensional Rosenbrock function
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Figure 4: 5-dimensional Rosenbrock function

in figures 1(e) and 1(f), the AIC criterion selects the
Gaussian model as the most suitable model which is
in agreement with the RMS error values. Figure 2
shows the RMS error values of the most probable
models selected from the AIC criterion using each
of the 3 different designs for 2-dimensional Rosen-
brock function.

Figures 3(a), 3(b) and 3(c) shows the RMS er-
ror convergence plot comparison between different
types of covariance function models with Sobol,
HLHS and RLSS design points respectively for 5-
dimensional Rosenbrock function. The correspond-
ing model selection probability plots in figures 3(d),
3(e) and 3(f) behave similarly in the sense that
the selected (most probable) models are the ones
with the minimum RMS error among the candi-
dates. The only exception is the 200-sample case
where the Matern-5/2 model is the selected model
for all the 3 designs even though the RMS error
is lowest for the Gaussian model for each design
case. Figure 4 shows the RMS error convergence
plot comparison between the best models from the
AIC criterion using the 3 different designs for 5-
dimensional Rosenbrock function.

Figures 5(a), 5(b) and 5(c) shows the RMS er-
ror convergence plot comparison between different
types of covariance function models with the 3 de-
signs for 10-dimensional Rosenbrock function. In
figures 5(d), 5(e) and 5(f), it is seen that there is
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(c) Error convergence plot with
RLSS design
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Figure 5: 10-dimensional Rosenbrock function
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Figure 6: 10-dimensional Rosenbrock function

some discrepancy in the model selection and the
corresponding RMS error for 100 and 300 sam-
ple cases, but the difference in error between the
selected model and the most accurate (minimum
RMS error) model is very small. However, there is
good agreement between the maximum likelihood
function value and the RMS error for the higher

sample cases. Figure 6 shows the RMS error con-
vergence plot comparison between the best models
from the AIC criterion using the 3 different designs
for 10-dimensional Rosenbrock function.

Figure 7 shows the RMS error convergence plot
comparison between different types of covariance
function models with the 3 designs and the cor-
responding model selection probabilities for 20-
dimensional Rosenbrock function. Apart from the
100-sample case with the Sobol design, there is
a general agreement between the maximum likeli-
hood function value and the RMS error and in cases
of disagreement, the difference in the RMS error is
fairly small. Figure 8 shows the RMS error con-
vergence plot comparison between the best models
from the AIC criterion using the 3 different designs
for 20-dimensional Rosenbrock function.

4. CONCLUSIONS
From the results, we can conclude that the perfor-
mance of all three designs in most of the cases are
very close to each other and none of them have a
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(b) Error convergence plot with
HLHS design
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(c) Error convergence plot with
RLSS design
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Figure 7: 20-dimensional Rosenbrock function
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Figure 8: 20-dimensional Rosenbrock function

distinct advantage over the other. The only notable
difference in performance is in the small sample
20-dimensional case where the selected model for
the Sobol design has a significantly higher RMS er-
ror than the selected models with the other two de-
signs. In general, for the 2 and 5-dimensional case,
the Gaussian models seems to perform the best but

its performance degrades with increase in dimen-
sions while Matern-5/2 and Matern-3/2 models
shows better performance in higher dimensions. It
is to be noted that these observations correspond to
the Rosenbrock function and might change for any
other arbitrary function.
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