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ABSTRACT: Reliability assessment of engineered systems such as telecommunication networks,
power grids, and railroads is an important step towars supporting resilient communities. However,
calculating the reliability of a network is computationally intensive. Thus, simulation methods are often
preferred over exact methods in practice. Unfortunately, highly reliable and large scale systems can
challenge common assumptions in simulation techniques, rendering reliability estimates—as well as
reported error and confidence—unreliable themselves. A new generation of techniques, termed probably
approximately correct (PAC) methods, delivers provable network reliability calculations with
user-specified error and confidence. In this paper we focus on RelNet, a model counting-based method
for network reliability estimation endowed with rigorous PAC guarantees. Despite previous success in
power transmission network applications, small edge failure probabilities and dependent failures can
challenge the current methodology. We put forward Weighted RelNet, a general importance
sampling-based extension that treats the system’s joint probability distribution as a black box. Empirical
evaluations suggest the new approach is competitive across challenging rare-event benchmarks.

1. INTRODUCTION

Critical infrastructures such as power grids, water
delivery, and gas supply systems provide goods an
services on which modern societies thrive. Given
their importance and vulnerability, the engineering
concern of how reliable lifeline systems are, arises
naturally in our pursuit of resilient communities.

A common surrogate model to study critical in-
frastructure consists of a stochastic graph consis-
tent with a given network topology and compo-

nent fragilities. In this paper, we consider the K-
terminal network reliability problem (Ball et al.,
1995), which takes as input a graph G(V,K,E) and
edge failure probabilities P = (pe)e∈E . Here V is
the set of vertices, K ⊆ V is the set of terminals,
E is the set of edges, and every edge e ∈ E fails
with arbitrary probability pe. We assume that ver-
tices are perfectly reliable without loss of general-
ity due to well known reductions (Ball et al., 1995,
Section 2.2). The K-terminal network reliability
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problem asks to compute rG(P), the probability that
vertices in K are connected. The problem belongs
to the #P–complete complexity class, thus largely
believed to be computationally intractable. As a
consequence, for general graphs, past and ongoing
efforts focus on approximations and Monte Carlo-
based approaches.

In the practical non-exact setting, we care about
quantifying unreliability uG(P) = 1− rG(P) with
acceptable relative error, denoted ε ,1 because in en-
gineering practice, systems are highly reliable by
design—i.e. uG(P)→ 0 and rG(P)→ 1. Despite
previous success for the case of K =V (see Karger
and Tai, 1997), to the best of our knowledge, there
is no efficient way to generally approximate uG(P)
with arbitrary precision ε in general graphs.

Let GP denote a random subgraph of G in which
every edge e ∈ E is removed at random with prob-
ability pe. Moreover, for an arbitrary graph G , let
φ(G ) be a binary function such that φ(G ) = 1 if the
terminal set K of G is disconnected, and φ(G ) = 0
otherwise. The simplest Monte Carlo estimator is
as follows:

ûG(P) =
1
N

N

∑
i=1

Yi, (1)

with Yi ∼ φ(GP). Despite being straight-
forward, using the well known Chebyshev
bound, one can prove that a sample size
N ∈ O(uG(P)

−1
ε−2 log1/δ ) is required to

guarantee that ûG(P) is in the range (1± ε)uG(P)
with at least confidence of 1− δ (Dagum et al.,
1995). This is problematic, as for highly reliable
systems uG(P)→ 0 and N→ ∞.

To overcome limitations of Eq. (1), researchers
have leveraged rare-event simulation techniques.
Among the most competitive approaches stand: the
Multilevel Splitting method by Botev et al. (2012)
and Zuev et al. (2015),2 the Importance Sampling
application of Cancela and El Khadiri (1995), the
Permutation Monte Carlo-based method by Gerts-
bakh and Shpungin (2010) and its Splitting Se-

1For true value of quantity a and approximate/inferred
value ā, the relative error is ε = |ā/a−1|.

2Subset simulation is an instance of the Markov Chain
Monte Carlo-based splitting technique (Glasserman and Hei-
delberger, 1999)

quential Monte Carlo extension (Vaisman et al.,
2016). However, a recurring limitation for these
techniques is that they appeal to the central limit
theorem and assume non-trivially justified error dis-
tributions to draw confidence intervals. These as-
sumptions do not hold in general, as some tech-
niques return biased estimates, rely on Markov
Chain Monte Carlo without specified mixing times,
disregard finite sample size effects, or even suffer
from numerical instability. Thus, upon their ap-
plication, the user can neither guarantee, nor reli-
ably quantify, the associated relative error and con-
fidence of their approximations.

The absence of principled approximations in
network reliability motivated the development of
RelNet (Duenas-Osorio et al., 2017; Paredes et al.,
2019)—a counting-based approach that is guaran-
teed to deliver estimates in the range (1± ε)uG(P)
with at least confidence 1− δ , where ε,δ ∈ (0,1)
are user specified parameters. Despite success in
power transmission network applications (Duenas-
Osorio et al., 2017), such a methodology still inde-
pendent edge failures. Also, empirical evaluations
showed that small edge failure probabilities can in-
crease runtime significantly.

Due to the current limitations, in this paper we
lift RelNet to the weighted setting using importance
sampling-based techniques. We show that the new
approach can handle small edge failure probabili-
ties while making no assumptions of independence.

The rest of the paper is as follows. Section 2
gives a refresher on RelNet (Paredes et al., 2019),
highlighting its limitations on handling small edge
failure probabilities as well as dependent edge
failures. Section 3 introduces our importance
sampling-based extensions to RelNet for support-
ing general weight functions. Section 4 presents
numerical experiments employing benchmarks bor-
rowed from the literature. We show that our devel-
opments render RelNet competitive in the rare event
setting. Finally, Section 5 gives a summary of our
findings and outlines future research directions.

2. COUNTING-BASED NETWORK RELIABILITY

In this section we summarize background concepts
in propositional logic. Then, we introduce the sat-
isfiability (SAT) encoding of the K-terminal net-
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work reliability problem. Later we discuss limita-
tions handling small edge failure probabilities and
dependent edge failures.

2.1. Background on Propositional Logic
A Boolean formula f over propositional variables
X = (x1, . . . ,xn), X ∈ {0,1}n, is said to be in con-
junctive normal form (CNF) when written as a con-
junction of clauses f = C1∧ ·· · ∧Cm, where every
clause Ci is a disjunction of literals,3 e.g. Ci =
x1 ∨¬x2 ∨ x3. The satisfiability problem, or SAT,
asks whether a CNF formula f is satisfiable or eval-
uate to true—exists X ∈ {0,1}n such that f (X) = 1.
We define the set of satisfying assignments of f as
R f = {X ∈ {0,1}n| f (X) = 1}. Moreover, the model
counting problem, or #SAT, asks to compute |R f |,
i.e. the number of satisfying assignments.

We are interested in Σ1
1 formulas, since they can

handle global constraints, as is the case of network
reliability. We say F is a Σ1

1 formula if it is written
in the form F = ∃S[ f (X ,S], where f is a CNF for-
mula over propositional variables S = (s1, . . . ,sn′),
S ∈ {0,1}n′ , and X ∈ {0,1}n as before. Similarly,
we define the set of satisfying assignments of F as:

RF = {X |∃S∈{0,1}n′ such that f (X ,S)= 1}. (2)

The projected model counting problem, or #∃SAT,
consists of computing |RF | given a Σ1

1 formula F .
Towards model counting-based reliability esti-

mation, we are interested in establishing a one-
to-one relationship between the failed (not failed)
states of a network and the truth (false) assignments
of a Boolean formula. Moreover, we can repre-
sent every subgraph G(X) of G via edge variables
X = (xe)e∈E , X ∈ {0,1}|E|, such that edge e ∈ E
is present in G(X) if and only if xe = 1. Our goal
will be to find a formula4 F over variables X and
S such that φ(G(X)) ⇐⇒ (∃S) f (X ,S), where φ

is a binary function that outputs 1 if and only if
the terminal set is disconnected. Then, for input
graph G(V,K,E) and edge failure probabilities P =
(1/2)e∈P, one can show that uG(P) = |RF |/2|E| (see
Paredes et al., 2019). The next subsections show

3A literal is a Boolean variable or its negation.
4In practice, we use a Σ1

1 formula F = (∃S) f (X ,S) due to
auxiliary variables S = (s1, . . . ,sn′).

how to construct such a formula F and handle edge
failure probabilities different than 1/2.

2.2. SAT-Encoding
Our formulation takes the form of a Σ1

1 formula
over propositional variables X and S, where vari-
ables in X are associated to the “real problem” and
S contains auxiliary variables. In particular, for in-
put graph G(V,K,E), we introduce propositional
variables xe ∈ X for every unreliable edge e ∈ E,
and propositional variables sv ∈ S for every vertex
v ∈ V . Then, the following Σ1

1 formula is equisat-
isfiable with respect to the system failure indicator
function φ :

FK(X) = ∃S[ f (X ,S)] = ∃S
[
CK ∧C¬K ∧CE

]
. (3)

CK =
∨

v∈K

sv, (4) C¬K =
∨

v∈K

¬sv, (5)

CE =
∧

(a,b)=e∈E

(sa∧ xe) =⇒ sb, (6)

An effective way to interpret f (X ,S) is to consider
the subgraph G(X) ⊆ G and picture every vertex
v ∈ V as “marked” if sv = 1, and unmarked oth-
erwise. Then, the clauses of Eq. (6) are satisfied
whenever variable assignments of S are set so that
neighbors of marked vertices are marked as well.
Moreover, Eq. (4) [resp. Eq. (5)] admits variable
assignments of S such that at least one terminal
vertex is marked (resp. unmarked). Intuitively, if
G(X) is a subgraph of G such that φ(G(X)) = 0,5

then f (X ,S) is unsatisfiable. In other words, for
all X ∈ {0,1}|E| such that φ(G(X)) = 0, we cannot
satisfy all clauses of f simultaneously. For exam-
ple, CK requires us to mark at least one vertex in
K, yet, regardless of what subset of K we choose to
“mark”, CE then forces us to “propagate” this mark-
ing across every vertex in K because the terminal
set in G(X) is connected—making it impossible to
satisfy C¬K .

For edge failure probabilities of 1/2, it was
shown that uG(P) = RFK/2|E| (Paredes et al., 2019).
Thus, upon construction of FK , we approximate

5By definition, the terminal set of G(X) is connected when
φ(G(X)) = 0.
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uG(P) with PAC guarantees leveraging state-of-
the-art model counters—typically used in software
and hardware verification, as well as automation
and data driven applications in robotics, air traffic,
Bayesian models, etc. (Soos and Meel, 2019). The
next subsection gives a refresher on how to han-
dle arbitrary edge failure probabilities and practical
challenges.

2.3. The Weighted-to-Unweighted Reduction
An important assumption in the current RelNet
framework is that edges fail independently with
probability 1/2. Next, we show how arbitrary fail-
ure probabilities can be reduced to such case. The
key observation is that every edge e = (a,b) in E,
with failure probability pe 6= 1/2, can be replaced
with a reliability preserving series-parallel graph
Ge(Ve,Ke = {a,b},Ee) in which edges fail with
probability 1/2. Here, reliability preserving means
that pe = uGe(Pe). The construction of Ve and Ee is
described elsewhere (Paredes et al., 2019). It was
shown that the size of Ge scales linearly in the size
of the binary representation of the edge reliability
1− pe. For example, the binary representation of
edge reliability 0.9375 is 0.1111, and Ge takes the
form of a parallel graph with 2 vertices and 4 edges
that fail with probability 1/2.

Small probabilities and dependent edge failures
can render RelNet impractical. These limitations
inspire us to lift RelNet to support general weight
functions. The next section introduces weighted
model counting as well as RelNet developments to
handle this extended formalism.

3. WEIGHTED RELNET
For a CNF formula f over variables X = {0,1}n and
set of satisfying assignments RF , a generalization
of counting is that of considering a weight function
W : {0,1}n→R. Then, the goal in weighted model
counting is to compute:

W (R f ) = ∑
X∈{0,1}n

W (X) · f (X) = ∑
X∈R f

W (X), (7)

where R f is the set of satisfying assignments as de-
fined earlier. In the specific case of the K-terminal
network reliability problem, the weight function be-
comes the joint probability density function (PDF)

of X ∈ {0,1}|E|, i.e.:

W (X) = Pr(X) = ∏
e∈E

(1− pe)
xe · pxe

e . (8)

However, throughout this paper we assume that
W (X) is black box, admitting joint PDFs with gen-
eral correlation structure. In addition to weighted
model counting, we are interested in the case of
projected model counting for handling formulas
such as RelNet’s encoding of Eq. (3). The gener-
alization can be integrated into Eq. (7) by substi-
tuting R f for RF as defined in Section 2.1. Despite
weighted and projected model counting being each
active areas of research, there is a limited number
of tools that can handle both tasks simultaneously
in practice. In particular, a general hashing-based
framework called ApproxMC can be readily used
in this complex setting. The next subsections in-
troduce the ApproxMC framework and importance
sampling strategies used in weighted RelNet.

3.1. Hashing Framework for Sampling
Significant advances in modern SAT solvers have
enabled their use as oracles in model counting algo-
rithms. In fact, for formulas with thousands of vari-
ables, a solver6 can aid enumerating all members of
R f (or RF ). Nevertheless, when R f is of exponen-
tial size, the naive approach is intractable. Previous
theoretical work hypothesized the use of hash func-
tions as an efficient way to approximate counting
problems. Thus, building upon previous work and
leveraging modern SAT solvers, ApproxMC was in-
troduced as a general hashing-based approximation
framework. Next we discuss some of the core ideas
of this method.

For variables X = (x1, . . . ,xn), let us introduce
the next family of functions:

H =
{
(X ·b)%2

∣∣b ∈ {0,1}n} (9)

where “·” denotes the dot product and “%2” the
modulo 2 operation. For h ∈ H and y ∈ {0,1},
the expression h(X) = y is typically referred to as
an XOR constraint. The key insight is that choos-
ing h(X) = y at random and considering F ′(X) =
F(X)∧

(
h(X) = y

)
has the effect of roughly halving

6For example: CryptoMiniSAT.
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the number of satisfying assignments, i.e |RF ′ | ≈
1
2 |RF |. Next we expand this idea further. Let us
define the next family of hash functions:

Hm = {H = (h1, . . . ,hm)|hi ∈H }. (10)

Note that for Hm ∈ Hm, Hm(X) outputs an m-bit
vector, effectively partitioning the domain into 2m

cells, i.e. Hm : X ∈ {0,1}n → y ∈ {0,1}m. More-
over, by choosing y ∈ {0,1}m at random, we can
randomly select a cell via the set of XOR con-
straints Hm(X) = y. In addition, for F ′ = F ∧(
Hm(X) = y

)
, Meel (2017) showed with probabilis-

tic guarantees that |RF | ≈ |RF ′|×2m. Thus, in prac-
tice, one can choose m ∈ {0, . . . ,n} large enough
such that |RF ′| is small—and hence the number
of solver calls—but not too small to avoid large
deviations from |RF | when |RF ′| is scaled by 2m.
ApproxMC is an state-of-the-art algorithm that for-
malizes these ideas and can handle formulas with
several thousands of variables (Meel, 2017).

In Section 4, we show empirically that
ApproxMC can handle challenging instances
of the K-terminal network reliability problem after
encoding them into Σ1

1 formulas using RelNet.
However, general correlation structures are not
supported and, when edge failure probabilities
are very small, the performance of ApproxMC
deteriorates. The next subsection introduces our
suggested strategies to overcome these issues.

3.2. Hashing-based Importance Sampling
In general, let the domain Ω = {0,1}n be
partitioned into disjoint subsets, or cells,
Ω0, . . . ,Ω2m−1 ⊆ Ω, with 0 ≤ m ≤ n. Letting
1Ω(X) denote the indicator function of set mem-
bership, i.e. 1Ω(X) outputs 1 if X ∈ Ω and 0
otherwise, we can write W (RF) of Eq. (7) in the
alternate form:

W (RF) =
2m−1

∑
c=0

(
∑

X∈RF

W (X) ·1Ωc(X)

)
. (11)

We can construct an estimator of W (RF) choos-
ing subset Ωc with probability µc and computing:

Ŵ (RF) =
1
µc
× ∑

X∈RF

W (X) ·1Ωc(X). (12)

It is easy to show that Eq. (12) unbiased, i.e.
E[Ŵ (RF)] = W (RF). Also, for yc the m-bit en-
coding of integer c, with 0 ≤ c ≤ 2m− 1, note that
every Hm ∈Hm partitions Ω into 2m subsets. For-
mally, Hm : X ∈ {0,1}m → yc ∈ {0,1}m. Thus,
1Ωc(X) = 1

(
Hm(X) = yc

)
. Next, we show two

straightforward applications of the hashing frame-
work for approximating W (RF).

3.2.1. Uniform cell sampling
Sampling an m-bit vector, in which "0-1" bits have
equal chance, will choose a cell yc ∈ {0,1}m uni-
formly and at random with probability µc = 1/2m.
Setting Fc = F ∧

(
Hm(X) = yc

)
, the estimator of

Eq. (12) becomes:

Ŵ (RF) = 2m× ∑
X∈RFc

W (X). (13)

We term this estimator UXOR. A similar ver-
sion of this estimator has been used in the
past (Chakraborty et al., 2014). However, for
wmin = min

X∈RF
W (X) and wmax = max

X∈RFW (X), the
number of SAT solver invocations is bounded by
ρ = wmax/wmin. This is problematic in network re-
liability, as for nC denoting the size of the minimum
K-cut, and assuming that all edges fail with proba-
bility p < 0.5, we have that ρ = [(1− p)/p]|E|−nC ,
i.e. ρ → ∞ as p→ 0. This motivated us to sample
cells non-uniformly.

3.2.2. Biased cell sampling
Assume that we are able to sample yc ∈ {0,1}m, or
its associated subset Ωc, with probability Pr(X ∈
Ωc). Then, our estimator becomes:

Ŵ (RF) =
1

Pr(X ∈Ωc)
× ∑

X∈RFc

W (X), (14)

with Fc = F ∧
(
Hm(X) = yc

)
. We term the es-

timator BXOR. To use Eq. (14) we need to ad-
dress: (i) sampling of yc, and (ii) computing Pr(X ∈
Ωc). For the purpose of (i) and (ii) we assume
Pr(X) has the form of Eq. (8), but W (X) can
be of general form. For (i) we sample X ′ with
Pr(X ′) as in the crude Monte Carlo approach, then
we select cell yc = Hn(X ′), since X ′ ∈ Ωc with
Pr(X ′ ∈ Ωc). For (ii) we need to do more work.
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First, let Hm(X |x1, . . . ,xm′), 0 ≤ m′ ≤ n, denote Hm
when each variable x1, . . . ,xm′ has been replaced
with a value in {0,1}. We compute Pr(X ∈ Ωc)
by branching on variables x1, . . . ,xn one at a time
and keeping track of the systems of XOR con-
straints. Moreover, let us write the system of equa-
tions Hm(X |x1, . . . ,xm′) = yc more conveniently by
working all constant terms towards the right hand
side. For example, (1 + 0 + x4 + x8)%2 = 1 be-
comes (x4 + x8)%2 = 0. We shall denote this form
H ′m(X |x1, . . . ,xm′) = y′c. Note that, regardless of
the assignment of variables x1, . . . ,xm′ , the term
H ′m(X |x1, . . . ,xm′) is fixed, while the right hand side
term is y′c ∈ {0,1}m. Thus, at any moment, we
need to keep track of at most 2m terms. We use a
data structure p′ : {0,1}m → [0,1] to collect their
associated probabilities. Clearly, after we have
branched over all variables, the left hand side is
H ′m(X |x1, . . . ,xn′) = {0}m. Thus, we return Pr(X ∈
Ωc) = p′({0}m) and plug it into Eq. (14).

Since the computation of Pr(X ∈ Ωc) scales as
2m, it can become a bottleneck for problems requir-
ing a large number of XOR constraints m. Next we
show an additional form of importance sampling
that can alleviate this issue.

3.3. Distributional Importance Sampling
A standing issue in the two precedent approaches is
that the amount of cells yc ∈ {0,1}m is exponential
in the number of XOR constrains m ∈ {0, . . . ,n}.
Despite the number of satisfying assignments be-
ing nearly uniform across cells, the weighted count
is highly variable. This is a challenge in practice, as
sample sizes need to be intractably large. Thus, to
constraint m, we use a sampling approach that re-
duces the number of variables of the problem. Dis-
tributional importance sampling (Davies and Bac-
chus, 2008), partitions variables X = (x1, . . . ,xn)
into Xp = (x1, . . . ,xp) and Xp̄ = (xp+1, . . . ,xn), then
it samples variables Xp using a proposal distribution
and lets the other variables unassigned. The result-
ing formula is feed to a weighted model counter,
and the resulting output is properly weighted by an
importance sampling factor. We rewrite Eq. (7) as
follows:

W (RF) = ∑
Xp∈{0,1}p

∑
Xp̄∈{0,1}(n−p)

W (X) ·F(X). (15)

Table 1: RelNet results for the dodecahedron topology
with homogeneous edge failure probabilities setting
(ε,δ ) = (0.8,0.2).

q ûG(P) εo Time (s)

10−1 2.502×10−03 0.003 426
10−2 2.056×10−06 0.008 791
10−3 2.095×10−09 0.046 1438
10−4 2.018×10−12 0.009 2673
10−5 2.109×10−15 0.055 2903

Then, the distributional importance sampling (DIS)
estimator consists of sampling Xp with probability
µ(Xp) and computing:

Ŵ (RF) =
1

µ(Xp)
∑

Xp̄∈{0,1}(n−p)

W (X) ·F(X). (16)

This approach has been used for weighted model
counting, but leveraging the ApproxMC framework
we apply it in the most general case of interest, that
of weighted and projected model counting. Also,
we can compound unbiased estimators, e.g. UXOR
or BXOR, with DIS at the price of increasing the
variance (Karger, 2017, Lemma II.3). Next, we test
these importance sampling strategies using popular
benchmarks in network reliability.

4. COMPUTATIONAL EXPERIMENTS

In our experiments we use ApproxMC (Soos and
Meel, 2019), a flexible tool that can integrate ideas
of Section 3 to return weighted and projected model
count approximations. An important parameter
regarding the speed and accuracy of ApproxMC
is the threshold—the number of solutions consid-
ered in the final approximation. Typically, the
threshold value depends on the user specified er-
ror guarantees ε,δ ∈ (0,1), as in the case of un-
weighted RelNet. However, for Weighted-RelNet
via importance sampling estimators UXOR+DIS
and BXOR+DIS, we set the threshold high enough
so that we obtain a small coefficient of variation
(CoV), defined as σ̄/µ̄ , with µ̄ the sample mean
and σ̄ the sample standard deviation. Next we de-
scribe specific settings, benchmarks, and results us-
ing RelNet and Weighted-RelNet.
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Table 2: Weighted-RelNet setting threshold to 4096 and
repetitions to 10,000.

q ûG(P) εo CoV Time (s)

UXOR+DIS

10−1 2.272×10−03 0.089 0.065 1322
10−2 3.474×10−06 0.702 0.370 1326
10−3 2.731×10−09 0.363 0.569 1349
10−4 3.409×10−12 0.704 0.471 1416
10−5 1.428×10−15 0.286 0.217 1401

BXOR+DIS

10−1 2.234×10−03 0.104 0.091 1290
10−2 1.968×10−06 0.035 0.153 1318
10−3 3.422×10−09 0.708 0.461 1328
10−4 1.608×10−12 0.196 0.195 1386
10−5 1.450×10−15 0.275 0.206 1337

4.1. Dodecahedron topology
The dodecahedron graph shown in Figure 1 has
been widely used among stochastic simulation re-
searchers (e.g. Cancela and El Khadiri, 1995; Botev
et al., 2012; Vaisman et al., 2016). We consider
homogeneous edge failure probabilities q, and let
q = 10−1, . . . ,10−5. The configuration of RelNet is
as follows. For the unweighted case we set (ε,δ ) =
(0.8,0.2). For the weighted case, we use p = 16 in
DIS,7 fixed threshold = 4096 and found relatively
good values of CoV with N = 10,000 samples.

As evidenced in Table 1, unweighted RelNet de-
livers approximations that meet the specified in-
put guarantees. In fact, the observed relative er-
ror, denoted εo, far outperforms the input ε =
0.8. However, as edge failure probabilities become
smaller, the runtime significantly increases due to
the weighted-to-unweighted reduction.

Table 2 summarizes results for weighted RelNet.
The runtime does not increases significantly be-
cause the counting routines do not depend on the
edge failure probabilities. Also, we have fixed the
number of samples. While our empirical results fa-
vor BXOR over UXOR, overall results are similar.
Both verify εo values smaller than 0.8, but the CoV
is still relatively large when compared to those typ-
ically sought in practice—less than 0.05.

7In our experiments, p < |E|−14 renders the computation
of Pr(X ∈Ωc) in BXOR too expensive.
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10 510 410 310 210 1

q

0

250

500

750

1000

1250

Ti
m

e 
(s

)

RelNet
n

2 3 4

10 510 410 310 210 1

q

0.4

0.2

0.0

0.2

0.4

o

RelNet
n

2 3 4

Figure 2: RelNet results in the grid topology. Left:
runtime in seconds. Right: signed relative error.

4.2. Grid Networks
We also consider the n× n square grid and let the
terminal set contain two vertices at opposing cor-
ners. This topology can be grown arbitrarily large
via n. Similarly, we let all edges fail with small
probabilities of q = 10−1, . . . ,10−5, and consider
values of n = 2,3,4. The configuration of the
RelNet variants is as before, except for p in DIS,
which is set to p = max(0, |E|−14).

Figure 2 shows results for RelNet. In particu-
lar, small edge failure probabilities have a signif-
icant impact in runtime due to the weighted-to-
unweighted reduction. Also, RelNet far exceeded
the expectations in terms of the observed signed rel-
ative error, defined as ū/u−1.
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Figure 3: BXOR+DIS results in the grid topology. Left:
runtime in seconds. Right: signed relative error.
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Figure 3 shows only results for BXOR+DIS, but
we obtained similar results for UXOR+DIS with
slightly worse results in terms of the observed rela-
tive error. As expected, small edge failure probabil-
ities did not impact runtime. Also, while somewhat
larger than RelNet, the observed signed relative er-
ror values remained far below 0.8.

5. CONCLUSIONS

This paper introduced Weighted-RelNet, a
counting-based approach to evaluate critical infras-
tructure reliability. We showed empirically that our
framework, which rests upon importance sampling
principles, can handle small failure probabilities.
Its black box formulation of the weight function
makes it unique for handling systems with general
correlation structure. A rigorous theoretical anal-
ysis of the current techniques should be pursued
for endowing Weighted-RelNet with provable
guarantees of approximation—currently available
in the unweighted approach.

Future work can focus on developing a hashing-
based importance sampling approach that choses
cells with probability proportional to cells’ satis-
fying assignment weights, instead of cells’ assign-
ment likelihood. This would result in a significant
reduction of variance. Moreover, computational ex-
plorations using dependent failures should be car-
ried out to evaluate the competitiveness of weighted
RelNet in this setting, which is known to challenge
efficient recursive techniques.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge the sup-
port by the U.S. Department of Defense (Grant
W911NF-13-1-0340) and the U.S. National Sci-
ence Foundation (Grants CMMI-1436845 and
CMMI-1541033).

7. REFERENCES
Ball, M. O., Colbourn, C. J., and Provan, J. S. (1995).

“Chapter 11 Network reliability.” Handbooks in Op-
erations Research and Management Science, Vol. 7,
673–762.

Botev, Z. I., L’Ecuyer, P., Rubino, G., Simard, R., and
Tuffin, B. (2012). “Static Network Reliability Esti-
mation via Generalized Splitting.” INFORMS Journal
on Computing, 25(1), 56–71.

Cancela, H. and El Khadiri, M. (1995). “A re-
cursive variance-reduction algorithm for estimating
communication-network reliability.” IEEE Transac-
tions on Reliability, 44(4), 595–602.

Chakraborty, S., Fremont, D. J., Meel, K. S., Seshia,
S. A., and Vardi, M. Y. (2014). “Distribution-Aware
Sampling and Weighted Model Counting for SAT.”
AAAI, 1722–1730 (apr).

Dagum, P., Karp, R., Luby, M., and Ross, S. (1995). “An
optimal algorithm for Monte Carlo estimation.” Pro-
ceedings of IEEE 36th Annual Foundations of Com-
puter Science, Vol. 29, IEEE Comput. Soc. Press,
142–149 (jan).

Davies, J. and Bacchus, F. (2008). “Distributional im-
portance sampling for approximate weighted model
counting.” Workshop on Counting Problems in CSP
and SAT, and other neighbouring problems.

Duenas-Osorio, L., Meel, K., Paredes, R., and Vardi,
M. (2017). “Counting-based reliability estimation
for power-transmission grids.” Aaai, San Francisco,
4488–4494.

Gertsbakh, I. B. and Shpungin, Y. (2010). Models of
Network Reliability: Analysis, Combinatorics, and
Monte Carlo. CRC Press.

Glasserman, P. and Heidelberger, P. (1999). “Multi-
level Splitting for Estimating Rare Event Probabili-
ties.” Operations Research, 47(4), 585–600.

Karger, D. and Tai, R. (1997). “Implementing a fully
polynomial time approximation scheme for all termi-
nal network reliability.” Proceedings of the eighth an-
nual ACM-SIAM symposium on Discrete algorithms,
334–343.

Karger, D. R. (2017). “Faster (and Still Pretty Simple)
Unbiased Estimators for Network (Un)reliability.”
2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 755–766 (oct).

Meel, K. S. (2017). “Constrained Counting and Sam-
pling: Bridging the Gap Between Theory and Prac-
tice.” Ph.D. thesis, Rice University, Rice University.

Paredes, R., Duenas-Osorio, L., Meel, K. S., and Vardi,
M. Y. (2019). “Principled Network Reliability Ap-
proximation: A Counting-Based Approach.” Reliabil-
ity Engineering & System Safety (submitted).

Soos, M. and Meel, K. S. (2019). “Bird: Engineering
an efficient cnf-xor sat solver and its applications to
approximate model counting.” Proceedings of AAAI
Conference on Artificial Intelligence (AAAI).

Vaisman, R., Kroese, D. P., and Gertsbakh, I. B. (2016).
“Splitting sequential Monte Carlo for efficient unreli-
ability estimation of highly reliable networks.” Struc-
tural Safety, 63, 1–10.

Zuev, K. M., Wu, S., and Beck, J. L. (2015). “Gen-
eral network reliability problem and its efficient solu-
tion by Subset Simulation.” Probabilistic Engineering
Mechanics, 40, 25–35.

8


	Introduction
	Counting-Based Network Reliability
	Background on Propositional Logic
	SAT-Encoding
	The Weighted-to-Unweighted Reduction

	Weighted RelNet
	Hashing Framework for Sampling
	Hashing-based Importance Sampling
	Uniform cell sampling
	Biased cell sampling

	Distributional Importance Sampling

	Computational Experiments
	Dodecahedron topology
	Grid Networks

	Conclusions
	Acknowledgments
	REFERENCES

