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ABSTRACT: This paper presents probability-space surrogate modeling approaches for global
sensitivity analysis (GSA) and optimization under uncertainty. A probability model is learned first based
on the available data to capture the nonlinear probabilistic relationships between the quantity of interest
and input variables as well as among different input variables. Based on the learned probability model,

approaches are then developed for design optimization under uncertainty and fast computation of the
first order and total-effect sensitivity indices. This framework is applicable to not only GSA with
correlated random variables and for sets of input variables, but also coupled multidisciplinary systems
design under uncertainty with multiple objectives. The implementation of the proposed framework is
investigated through two probability models, namely Gaussian copula model and Gaussian mixture
model. One numerical example and one aircraft wing design problem demonstrate the effectiveness of
the proposed method for GSA and multidisciplinary design under uncertainty.

1. INTRODUCTION

Problems in uncertainty quantification and decision-
making often involve a large number of evaluations
of the system model. When the system model is
computationally expensive to evaluate, it is replaced
with inexpensive surrogate models. The common
practice is to build the surrogate model in the space
of the input and output variables. This paper ex-
plores building the surrogate model in the space of
probability distribution of the variables. Two types
of analysis are explored with this approach, namely,
multidisciplinary optimization and global sensitivity
analysis.

Multidisciplinary optimization (MDO) under
uncertainty aims at developing optimization ap-

proaches for systems modeled through computer
simulations in individual disciplines that interact
with each other. The fixed point iteration (FPI) ap-
proach developed by Kroo et al. (1994) is the com-
monly used for solving multidisciplinary problems
where repeated runs of individual disciplines are
carried out until convergence. The computational
effort further increases with the consideration of
uncertainty, which requires multiple evaluations of
multidisciplinary analysis within each optimization
iteration. Several approaches have been developed
to reduce the large computational effort in MDO,
such as an efficient decoupling approach proposed
in Du and Chen (2005), and the likelihood-based ap-
proach proposed in Sankararaman and Mahadevan
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(2012). However, these methods can become expen-
sive and unaffordable in high-dimensional problems
when physics-based computer simulation models
(such as finite element analysis) are directly used.
MDO under uncertainty results in a nested three-
loop analysis, and is computationally very expen-
sive.

Another important topic in uncertainty quantifica-
tion is global sensitivity analysis (GSA), which quan-
tifies the contributions of input random variables
to the variability of an output quantity of interest
(Qol) (Saltelli and Bolado (1998); Hu and Mahade-
van (2018)). This analysis has been widely studied
to rank the importance of input random variables and
used in dimension reduction, uncertainty reduction,
and resource allocation. Various approaches have
been developed to perform GSA, such as the Fourier
amplitude sensitivity test (FAST) methods proposed
by McRae et al. (1982), methods based on correla-
tion ratio developed by Xu and Gertner (2007), and
Kullback-Leibler divergence based approaches pre-
sented in Da Veiga (2015). Among these GSA meth-
ods, variance decomposition-based Sobol indices
are widely used. Two types of Sobol indices are
usually computed, namely first-order Sobol indices
and total-effect Sobol indices. A straightforward
way of computing Sobol indices is to implement a
double-loop Monte Carlo simulation (MCS). This
double-loop procedure, however, requires a large
number of evaluations of the prediction model and
is unaffordable if the prediction model is expensive.

To overcome the computational effort challenge
in MDO under uncertainty and GSA, various ap-
proaches have been proposed in recent years. In
practical engineering applications, it is quite often
that we may only have a group of numerical samples
of input-output pairs, nothing more. The distribu-
tions, correlations, and interactions between differ-
ent variables need to be learned purely based on the
available numerical data. In that situation, current
MDO under uncertainty and GSA methods cannot
be adopted to perform MDO under uncertainty or
rank the importance of variables for a given Qol due
to the fact that the prediction model is not available.
As a data-driven approach, surrogate model-based
MDO or GSA is still applicable. However, this is
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not always the case. In some situations, it is ob-
served that the surrogate model-based MDO or GSA
approaches may become inapplicable as well due to
the reasons discussed in Li and Mahadevan (2016).

Also, note that when surrogate modeling is ap-
plied to MDO or GSA, especially for problems with
correlated input variables, an algebraic model is built
first. The probability distributions of the input vari-
ables are then learned from the data. Based on prop-
agating the learned probability distributions through
the constructed algebraic surrogate model, the Sobol
indices and optimal design for MDO are computed.
This introduces an extra step in MDO and GSA.
Motivated by answering the question of how to ef-
fectively perform MDO and GSA purely based on
a group of available data, several approaches have
been proposed recently. For example, Liang and Ma-
hadevan (2016) have used a Bayesian network surro-
gate with Gaussian copula for a single objective mul-
tidisciplinary optimization under uncertainty; Li and
Mahadevan (2016) presented a modularized method
to estimate the first-order Sobol indices based on
stratification of available samples; Sparkman et al.
(2016); DeCarlo et al. (2018) proposed an impor-
tance sampling approach to compute Sobol indices
from available data by introducing weights to differ-
ent data points.

The above reviewed data-driven MDO and GSA
approaches, are all limited to low dimensional prob-
lems, and have difficulty in dealing with high-
dimensional MDO problems. This paper aims to
overcome these drawbacks of current data-driven
MDO and GSA methods by developing a general-
ized probability-space surrogate modeling frame-
work, which is able to perform MDO and GSA com-
putations purely based on data. In the proposed
framework, a probability model is built first based
on the available data to capture the joint probability
distribution of the system inputs and outputs. Based
on the learned probability model, approaches are
developed to effectively perform MDO and compute
different types of Sobol indices. Two approaches,
namely Gaussian copula model and Gaussian mix-
ture model, are explored in this paper to build the
probability model for use in MDO under uncertainty
and GSA.



13th International Conference on Applications of Statistics and Probability in Civil Engineering, I[CASP13

The remainder of this paper is organized as fol-
lows. Section 2 reviews background concepts of
probability-space surrogate modeling. Section 3 dis-
cusses how to perform GSA based on the probability-
space surrogate model. Section 4 presents MDO
based on probability-space surrogates. Section 5
uses two numerical examples to illustrate the pro-
posed methods, and Section 6 provides the conclud-
ing remarks.

2. PROBABILITY-SPACE
MODELING

We briefly introduce the probability-space surrogate

modeling approaches. Two approaches, namely a

Gaussian copula and a Gaussian mixture model, are

employed to build probability-space models.

SURROGATE

2.1.  Gaussian copula model

A copula function describes the dependence between
random variables by connecting the marginal cumu-
lative distribution functions to the joint cumulative
distribution function (Hu and Mahadevan (2017)).
For a vector of random input variables X, and a out-
put variable, Y, the joint CDF F (f( ,Y) is connected
to the marginal CDFs through the copula function C
as follows

F(X,Y) =C(F(X.),Fr(Y))|6, (1)
where F(X) = [Fx,(X1),- - -Fx,(X,)] is a vector of

margmal CDF functlons n is the number of vari-
ables in X, and 6 is a vector of parameters of the
copula function.

The copula functions are usually defined for bi-
variate problems. Only a few copula functions, such
as Gaussian copula and student’s ¢t copula, are well-
studied for the multi-variate high-dimensional case.
Here, the Gaussian copula is used as an example to
illustrate the application of a copula function to data-
driven GSA. For Gaussian copula, we have 6= ﬁ,
where R is the correlation matrix between variables
and the PDF for the Gaussian copula case is given
by Xue-Kun Song (2000)

. 0 1(F(X))
FEY)=FX)fr(Y) 7
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in which ®~!(-) is the inverse CDF function of a
standard normal variable.

The above equation indicates that R is the most
important part for the modeling of a Gaussian copula.
This correlation matrix can be solved using either
optimization using the maximum likelihood estimate
or empirical estimation from data.

2.2.  Gaussian mixture model
The GMM represents an arbitrary probability dis-
tribution using mixtures of Gaussian components.
For a random variable X;, its PDF fx,(x;) is approxi-
mated using a Q component Gaussian distribution
as follows (Rasmussen (2000))

3)

e

in(x) = )Liq)(xnuivoi)’

1

where Q is the number of Gaussian components,
Ai, Ui, and o; are the weight, mean, and standard
deviation of the i-th Gaussian component.

For Z = [X,Y], the joint PDF f(&,y) is approxi-
mated using a multi-variate GMM as
Q o 2
f(Z) - Z)‘i¢(z7:ulvzl)7 “4)
i=1
where Z = [¥,)]", i = [t z, [liy] ", and
N 2i XX 2l Xy
o (5)

The expectation maximization (EM) method as
discussed in Moon (1996) is commonly used to es-
timate the parameters of the GMM model. Next,
we discuss how to perform GSA and MDO using
probability-space surrogate models.

3. GSA USING A PROBABILITY-SPACE
SURROGATE MODEL

3.1. Global sensitivity analysis

Defining Y as a Qol and its prediction model given

by Y = g(X), where X = [X1,X2,- -+, Xy| is a vector

of random input variables, the variance Var(Y) of Y

can be decomposed as follows:

Z Vi+

=1

Var(Y Z Vii+-+Via. n,

1<i<j

(6)
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where V; = Vary, (E)?N,
caused by X; without considering its interactions
with other input variables (i.e. )?Ni) and Vo, Vk =
3,---,n represents the proportion of Var(Y) caused
by variables [X1, X5, - -, Xi].

Based on the above variance decomposition, the
commonly used first-order and total effect Sobol’

indices are defined as (Sudret (2008))

_ Varxl. (EX'M_(Y‘X,'))

‘ Var(Y) ’ )
Variwi (EXi(Yl)?wi))
S =1~ Var(Y) ’ ®)

where §; and S7; are the first-order and total-effect
Sobol” indices of X;, respectively.

3.2.  GSA with probability surrogate models

Next, we discuss how to compute Sobol indices
using probability surrogate models.

3.2.1.  GSA with Gaussian copula model

Define the input variables of interest in GSA as X,
and the remaining input random variables as X,, we
have

Eg (YI5e) = —— = [ By (ur)elGicsuy) [Reuy.
c(te)|Ree /0 o)

For the purpose of generalization, here, an MCS-
based method is adopted to estimate Eq. (9) as
below

By (V%o =) ~ ——
" ‘ ‘ NMCSC(ﬁc)|§cc
Nucs
Z F, uc,uy )]R (10)
where u;k) is the k-th sample of Uy and Nycs is the

number of MCS samples used for integration.

(Y]X;)) is the variance of Y estimate Varg (Eg (Y|
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Once we are able to compute Varg (Eg (Y|Xc)),
various Sobol’ indices can be computed using Egs.
(7) and (8).

3.2.2.  GSA with Gaussian mixture model

After f(X.,y) is approximated using GMM, for
given X, = X, the conditional PDF f(y|X;) is given
by

FOI%) =ill (v Hiylr, 07ye)s (12)
=
where
ﬁi,y\xc=ui,y+ii,yci,~‘ wEe—liz),  (13)
2 =05 —Eiy L BT (14)
and
MalEe) = 29 (%, iz, Liz,) (15)

ZkQ: 1 Ak¢) ()_C’w ﬁk,}?c ’ Zk,ﬁ?c )

Based on Eq. (12), E)?r(Y|)?C = X.) can be com-
puted as

(Y|X = fc) = (16)

Ey,

e
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With the available data, we have

(Y|X, = %))
Y
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With Eq. (17) and Eqgs. (7) and (8), the first-order

Using Eq. (10) and the available data, we then and total-effect Sobol’ indices can be computed.

4
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Figure 1: A conceptual two-way multi-physics system

4. MULTIDISCIPLINARY DESIGN OPTI-
MIZATION USING A PROBABILITY-
SPACE SURROGATE MODEL
Multidisciplinary optimization under uncer-
tainty (MDOUU)
Consider a conceptual two-way coupled multi-
physics system, as shown in Figure 1. Let Xp, Xy
and Xp y represent the set of deterministic design
variables, uncertain but non-design variables, and
design variables associated with uncertainty respec-
tively. Let g; and g, represent the outputs of the in-
dividual disciplinary systems, which are propagated
through a third discipline A3 to obtain the objective
functions f and constraint functions c. The coupling
variables between the coupled disciplines, i.e., A;
and A,, are represented as u12 and uy| respectively.
Due to the presence of uncertainty, the objective and
constraint functions are stochastic for a given real-
ization of the design variables. For illustration, an
reliability-based design optimization formulation (a
form of MDOUU), where the mean of the objective
functions are optimized can be written as

4.1.

Min u[fi(Xp,Xv,Xpu)]
Pr(cj(XD,XU,XD7U,ulz,u21) < 0) >
Ibg < Xp <uby

Pr(Xpu > lbxy,,) > pu

Pr(Xpu <ubxy,) > pub

(18)

In the above formulation, f;(i = 1,2...k) and
cj(j = 1,2,..m) represent the objective and con-
straint functions respectively. ¢; < 0 represents the
safe region and ; represents the reliability threshold
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Figure 2: One-pass analysis approach in a two-way
coupled multi-physics system

for the jth constraint. p;, and p,,, represent the prob-
ability thresholds for Xp  that they are in between
their lower and upper bounds (lbyx),, and ubx,, ).
Similar formulation is available in Zaman and Ma-
hadevan (2013).

4.2.  MDOUU using a probability-space surrogate
model

The first step in constructing a surrogate is the gen-
eration of training points. In multidisciplinary prob-
lems, the training points are generated through one
pass analysis. To reach compatibility among indi-
vidual disciplines, the one-pass analysis need to be
carried out multiple times with the outputs of previ-
ous one-pass analysis as the inputs for the following
one-pass analysis. A possible path for a one-pass
analysis is shown in Figure 2.

In Figure 2, usy ;, and usy , are the same set
of coupling variables but before and after carrying
out a one-pass analysis through the disciplines A
and A,. Compatibility is assumed to be achieved
when uz1 ;= u21 0. To achieve compatibility, mul-
tiple iterations of the coupled analysis are necessary.
However, instead of multiple iterations to conver-
gence, we build a probability-space surrogate using
one-pass analysis data, and then impose the mul-
tidisciplinary compatibility condition. This saves
tremendous computational expense, and the three-
loop nested analysis can be transformed into a dou-
ble loop analysis.
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5. NUMERICAL EXAMPLES

In this section, two numerical examples with one
featuring GSA and one featuring MDO are used
to demonstrate the effectiveness of the proposed
methods.

5.1. A mathematical example

A nonlinear model with nonlinear dependence given
in Ref. Mara et al. (2015) is employed as our first
example to illustrate the effectiveness of the pro-
posed methods in peforming GSA using probability
models. The nonlinear function is given by

Y =f(X)

where (X1,X,) € [0,1]* is uniformly distributed
within the triangle X; +X> < 1, (X3,X4) € [0,1)% is
uniformly distributed within the triangle X3+ X4 > 1,
X1 and X, are dependent due to the shared hidden
variable L, and X3 and X4 are dependent due to the
shared hidden variable L3. More details about this
example is available in Ref. Mara et al. (2015).

We assume that the nonlinear function and the
nonlinear dependence are unknown, and perform
GSA purely based on given samples. We generate
1024 MCS samples of X;,i = 1,2,3,4 and Y. Us-
ing the generated MCS samples, we then compute
various Sobol’ indices.

We first compute the first-order and total-effect
Sobol’ indices of individual dependent random vari-
ables. Fig. 3 gives the first-order indices ob-
tained from different methods. The Gaussian copula-
based GSA methods cannot accurately estimate the
first-order Sobol’ indices whereas the GMM-based
method can accurately estimate the first-order Sobol’
indices for dependent variables.

Fig. 4 gives the results comparison of the total-
effect Sobol’ indices obtained from different meth-
ods. The results show that GMM-based method can
effectively estimate the total-effect Sobol’ indices.

= X1 X2 + X3Xy, (19)

5.2.  Aircraft wing example

The design of a cantilever wing with a NACA 0012
airfoil is considered. We consider two competing
objective functions to perform Reliability-based Ro-
bust Design Optimization: (1) Maximize the ex-
pected value of Lift, and (2) Minmize the standard
deviation of Lift. The design is performed under the
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Figure 3: First-order Sobol’ indices of dependent vari-
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Figure 4: Total-effect indices of dependent variables

stress constraint with backsweep angle as the design
variable, which is assumed to be associated with
aleatory uncertainty represented through a Gaus-
sian distribution with parameters 0 and 0.04 respec-
tively. Since, the variability in the backsweep angle
is known, we consider the mean of the backsweep
angle as the design variable. Overall, the mathemat-
ical formulation of the design can be written as

Max E[L(Upy)] and Min Std[L(tp,,)]

Pr(s >3x10°) <0.001
0 < tpw <0.5

(20)

In Equation (20), E|.] and Std].] represent the
expectation and standard deviation operators respec-
tively. L, U, and s represent the lift, mean of back-
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Figure 5: Coupling in aircraft wing analysis

sweep angle and maximum stress respectively. The
individual disciplines along with the coupling vari-
ables is illustrated in Figure 5.

The multi-objective optimization is converted to
a set of single-objective optimizations using the
weighted-sum approach as

Std[L] (1—B) x E[L]

Min f x —
bl Ep

1)

In Equation (21), B represents the weight factor
for combining the two objective functions. Ej; and
Sy represent the normalization factors (1666.7 and
113) since the two objectives are in different order of
magnitude. 200 training points are obtained through
ANSYS fluid-structure interaction simulations for
probability surrogate construction. he coupling be-
tween CFD and FEA is decoupled through severing
the arrow from CFD to FEA. In this analysis, we
have 258 coupling variables. Due to the large num-
ber of coupling variables, the Principal Component
Analysis (PCA) is performed to reduce the number
of coupling variables from 258 to 6. The first 6 PCs
are chosen as they explain 95% variance in the data.
Please refer to Liang and Mahadevan (2016) regard-
ing the use of PCA for reducing model complexity in
multidisciplinary analysis. We have 16 variables in
the probability-space surrogate: mean of backsweep
angle, backsweep angle (after considering aleatory
uncertainty), 6 ‘in’ nodal pressures, 6 difference
values of nodal pressures, 1 maximum stress and 1
lift variable. Both Gaussian Copula and Gaussian
Mixture Model are fit on these 16 variables using
200 training points. In the case of a GMM, a two-
component model is used as it has the lowest BIC
score. Using the surrogates, the multidisciplinary
optimization is performed by conditionalising the 6
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Figure 6: Comparison of Pareto Surfaces obtained
using Gaussian Copula and a Gaussian Mixture Model

‘difference’ variables at zero and the design variable
at a different value in each iteration of the optimiza-
tion analysis. DIRECT global optimizer (Finkel et al.
(2005)) is used to carry out each single objective op-
timization. For comparison of Pareto surfaces, the
optimum design points obtained from optimization
analysis using the two surrogates are evaluated using
the GMM and plotted against each other in Figure
6.

In Figure 6, the points in upper right corner corre-
spond to B = 0 (maximization of the expected value
of lift) and correspondingly, the lower left corner
correspond to 8 = 1, i.e., minimization of the stan-
dard deviation of lift. It can be seen that both the
surrogates obtain the similar solution for optimiza-
tion of expected value of lift, whereas the GMM is
able to capture well the standard deviation of lift
compared to the other two surrogates.

6. CONCLUSION

This paper presents methods for computing various
Sobol’ indices and performing multidisciplinary op-
timization under uncertainty, purely based on avail-
able input-output data. The data may be available
from computational simulations, physical experi-
ments, field observations, etc. In the proposed meth-
ods, probability-space surrogate models are built to
approximate the joint PDF of the variables of in-
terest. With the probability models learned from
the data, various types of Sobol’ indices are com-
puted and multidisciplinary optimization under un-
certainty is performed. The proposed framework is
investigated using the Gaussian copula and Gaus-
sian mixture models. The results of two numerical
examples show that the Gaussian mixture models-
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based GSA and MDO methods are able to accurately
compute Sobol’ indices and perform MDO based on
an available data. This allows us to perform GSA
and MDO for problems, where we can only collect
a limited number of data points due to constraints of
either computational or experimental resources.
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