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ABSTRACT: Information on the distribution of the basic random variable is essential for the accurate 

analysis of structural reliability. The usual method for determining the distributions is to fit a candidate 

distribution to the histogram of available statistical data of the variable. Generally, such candidate 

distribution would have parameters that may be evaluated from the statistical moments of the statistical 

data. Probability distributions are usually determined using one or two parameters evaluated from the 

mean and standard deviation of statistical data. However, these distributions are not flexible enough to 

represent the skewness and the kurtosis of statistical data. Normal transformation is often used in 

probabilistic analysis especially when multivariate non-normal random variables are involved. This study 

proposes a probability distribution based on polynomial normal transform, of which parameters are 

determined using the first four L-moments (L-mean, L-standard deviation, L-skewness and L-kurtosis) 

of the available data. The simplicity, generality, flexibility and advantages of this distribution in statistical 

data analysis are discussed. The results are found to better than two- and three-parameter distributions, 

and similar to cubic normal distribution based on central moments (C-moments). With the aiming at 

illustrate the stability of polynomial normal transform based on L-moments, several extreme values are 

added to data. The proposed distribution is demonstrated to provide significant stability and flexibility. 

Then this method is applied to reliability index calculation, and its significance in structural reliability 

evaluation is discussed. The calculation results are compared with Monte Carlo calculations. Several 

numerical examples are further presented to demonstrate the accuracy and efficacy of the distribution for 

conducting reliability analyses. 

 

 

1. INTRODUCTION 

The reliability analysis of uncertain structural 

systems subjected to random loads is of great 

engineering interest and poses a challenging 

computational problem. A large number of 

reliability analysis methods have been developed 

during the last four decades, such as Monte Carlo 

simulation (MCS) (Melchers 1990; Gongkang Fu 

1994), first-order reliability method (FORM) 

(Hasofer and Lind 1974; Rackwitz 1976), second-

order reliability method (SORM) (Der Kiureghian 

et al. 1987; Der Kiureghian and De Stefano 1991; 

Cai and Elishakoff 1994), the moment methods 

and simulation methods for estimating the failure 

probability (Grigoriu 1982; Zhao and Ono 2001). 

These methods assume that their basic random 

variables have known PDFs or cumulative 

distribution functions (CDFs). The normal 

transformation can be applied using the 

Rosenblatt (Hohenbichler and Rackwitz 1981) or 

Nataf transformation (Liu and Kiureghian 1986) 

http://xueshu.baidu.com/s?wd=author%3A%28Gongkang%20Fu%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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with known CDFs/PDFs. However, as we all 

known, the distributions of the random variables 

are often unknown in many practical engineering 

problems, so it is uneasy to realize the polynomial 

normal transformation by the conventional 

methods. To solve the problem, Fleishman 

suggested the third-order polynomial normal 

transformation, in which polynomial normal 

transformation can be realized by using the first 

four central moments (C-moments), which is 

generally formulated as follows 

               2 3

0 1 2 3ux S u a a u a u a u             (1) 

where x is the original non-normal random 

variable; u is the standard normal random variable; 

Su(u) is a third-order polynomial of u; and a0,a1, 

a2, a3 are the polynomial coefficients.  

The linear moment (L-moment) is an 

alternative moment system used to characterize 

the shape of a probability distribution. This 

concept was proposed by Hosking (Hosking 

1990), compared with C-moments, L-moments 

possess stronger robustness with respect to 

sample length and outliers as they are defined 

from expectations of linear combinations of order 

statistics (Pandey et al. 2001; MacKenzie and 

Winterstein 2011). Statistical uncertainties can be 

more efficiently eliminated by L-moments than 

by C-moments. 

The objective of this paper is to measure the 

performance of the polynomial normal transform 

based on L-moments, and the polynomial normal 

transform based on L-moments is compared with 

the polynomial normal transform based on C-

moments, then the polynomial normal transform 

based on L-moments is applied to structural 

reliability analysis. 

2. THE FIRST FOUR L-MOMENTS OF A 

RANDOM VARIABLE 

When the PDF/CDF of a random variable is 

known, the first four L-moments can be expressed 

as 
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in which F(·) is the cumulative distribution 

function (CDF) of a random variable. 

But when the CDF is unknown, and only the 

data is known, Eqs.(2-5) cannot be used to 

calculate the first four L-moments. If X is a 

discrete random variable with an ordered set of 

data of size n, (x1:n x2:n… xn:n), its first four L-

moments, are 
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3. POLYNOMIAL NORMAL TRANSFORM 

BASED ON L-MOMENTS 

3.1 The u-x transformation based on L-moments 

For a random variable, if the first four L-moments 

(L-mean λ1, L-scale λ2, L-skewness λ3, L-kurtosis 

λ4) are known, an explicit and simple solution of 

the polynomial coefficients in Eq.(1) can be 

obtained by using the numerical values of Cm,n 

computed by Tung (1999)  

0 1 31.81379937a                      (10a) 

1 2 42.25518617 3.93740250a          (10b) 

2 31.81379937a                       (10c) 

 
3 2 40.19309293 1.574961a             (10d) 

3.2 The x-u transformation based on L-moments 

The key to find the x-u transformation is to find 

the root of Eq.(1), according to Cardano  formula, 

the most common root can be expressed as 
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4. THE POLYNOMIAL NORMAL 

DISTRIBUTION  

The distribution is defined on the base of the 

polynomial normal transformation, which is 

expressed as Eq.(1). 

The CDF and PDF of x can be expressed as Eqs. 

(12a) and (12b), respectively: 

     F x u                   (12a) 
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in which F(·) and f(·) are the CDF and PDF of x, 

respectively; (·) and (·) are the CDF and PDF 

of standard normal random variable u, 

respectively. 

5. INVESTIGATION AND APPLICATION  

5.1. Application to data fitting 

To illustrate the flexibility of the polynomial 

normal distribution based on L-moments in fitting 

statistical data, two sets of data are investigated in 

the first example. Set A is observed data of the 

daily average wind speeds in the Republic of 

Ireland at a special station named as RPT 

(http://lib.stat.cmu.edu/datasets), set B is 

experimental data on the wind pressure 

coefficient of a wall-mounted finite-length square 

cylinder (Wang et al. 2015). The corresponding 

histograms are presented in Figure 1, which 

depicts the PDFs of the 2P distributions, i.e., 

Normal, Lognormal, Weibull, Gumbel and 

inverse Gaussian distributions whose mean values 

and standard deviations are equal to those of the 

data; the PDFs of the 3P gamma distributions 

whose first three moments are equal to those of 

the data; and the PDF of the cubic normal 

distribution based on C-moments and L-moments 

whose first four moments are equal to those of the 

data. Figure 1 reveal that the polynomial normal 

distribution based on C-moments and L-moments 

fits the histogram much better than the 2P 

distributions and the 3P gamma distribution for all 

cases, and the results of the polynomial normal 

distribution based on C-moments and L-moments 

are in close agreement with the histograms of the 

statistical data.  

 

 
(a)Set A: Daily average wind speed 

 
(b) Set B: Experimental wind pressure coefficient 
Figure 1: Comparison between some 2P, 3P, the 

polynomial normal distribution based on C-moments 

and L-moments in fitting actual data. 

 

To verify the stability of L-moments when 
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and ten minimum value are added to set B 

respectively (a total of 19999). The corresponding 

results are presented in Figure 2, which reveals 

that the polynomial normal distribution based on 

L-moments can be almost approach the data, and 

thus can fit the histogram much better than the 

polynomial normal distribution based on C-

moments.  

From the examples above, one can clearly see 

that L-moments are stable than C-moments in face 

of the extreme value when used to the polynomial 

normal distribution. 

 
(a)Add maximum value 

 
(b) Add minimum value 

Figure 2: Comparison between the polynomial 
normal distribution based on L-moments and C-

moments in facing of extreme value. 

5.2 Application to first -order reliability analysis  
 

Based on the proposed method, FORM for 

reliability analysis for independent variables can 

be readily realized. The computation procedure 

for FORM based on the proposed method is 

described as follows: 

(1) Obtain the first four L-moments of each 

random variable for all variables and 

original correlation matrix for correlated 

variables by the probability information. 

(2) Assume an initial checking point x0 

(generally take the mean value). 

(3) Obtain the corresponding checking point in 

the independent standard normal space, u0. 

(4) Determine the initial reliability index 0 . 

(5) Determine the Jacobian matrix 
X

J
U





 

evaluated at u0, where the Jacobian matrix 

is given by 
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(6) Determine the value of the gradient vector 

at u0 and the value of the function in normal space: 

0 0( ) ( )uG Gu x
                            (14) 

0 0( ) ( )TG G  u J x
                     (15) 

in which G(x0) can be computed directly by taking 

the derivative for explicit performance functions 

and can be computed by numerical differentiation 

such as central difference method for implicit 

functions. The central difference method is 

presented as follows: 

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
0.00

0.05

0.10

0.15

0.20

0.25

 

 

F
re

q
u

en
cy

Wind pressure coefficient

 Histogram

 L-moments

 C-moments

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
0.00

0.05

0.10

0.15

0.20

0.25

 

 

F
re

q
u
en

cy

Wind pressure coefficient

 Histogram

 L-moments

 C-moments



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 5 

01 02 0 01 02 0

1

01 0 0 01 0 0
0

01 02 0 01 02 0

( , ,..., ) ( , ,..., )

2

.

.

.

( ,..., ,..., ) ( ,..., ,..., )
( )

2

.

.

.

( , ,..., ) ( , ,..., )

2

n n

i n i n

i

n n

n

G x h x x G x h x x

h

G x x h x G x x h x
G x

h

G x x x h G x x x h

h

   
 
 
 
 
 
 
 

   
   

 
 
 
 
 
 

   
 
   

 (16) 

                                                                  

Calculate the new check point: 
( )

( 1) ( ) ( ) ( )

( ) ( )

( )
[ ( ) ( )]

( ) ( )

k
k T k k k

T k k

G
G G

G G

 
  
 

u
u u u u

u u

                       (17) 
( 1) ( ) ( 1) ( )( )k k k k   x x J u u                       (18) 

The corresponding reliability index can be 

calculated as
1/2

1 1( )T  u u . 

(7) Calculate the absolute difference between 

  and 0  until 0| |     , where   is the 

permissible error (generally -6=10 ). 

Otherwise, repeat the step 3 through step 8 

until convergence is achieved. 

The second example considers a simplified 

bridge model formed by two girders and two 

continuous spans as shown in Figure 3 (Ghosn  

and Frangopol 1999). Assuming plastic behavior, 

one collapse mechanism for this bridge is shown 

in Figure 4. The collapse mechanism can be 

represented by a limit state function (LSF), Z1, 

which can be written as: 

          1
1 1 1 2 22( ) ( )

2

P L
Z M D M D


                (19) 

where Mi is the moment capacity at section i, Di is 

the dead load moment at section i, P is the applied 

maximum lifetime truck load, and Lj is the length 

of span j. The concentrated load P is used to model 

the weight of an applied truck. Table 1 gives the 

properties of the random variables. The applied 

load is represented as a function of the HS-20 

AASHTO design truck. 
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P

 
Figure 3: Two-girder continuous bridge 

configuration. 
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P

 

Figure 4: Two span bridge collapse mechanism. 

Table 1: Random variables for Example 2. 

Section 
Variabl

e 

Distributio

n 
Mean 

Bias 

COV(%

) 

Section

1 

Momen

t 

capacity 

Lognormal 8190 1.12 10 

Dead 

load 
Normal 3640 1.05 9 

Live 

load 
Extreme I 

HS-

20 
2.07 19 

Section

2 

Momen

t 

capacity 

Lognormal 
2340

0 
1.12 10 

Dead 

load 
Normal 

1375

5 
1.05 9 

Live 

load 
Extreme I 

HS-

20 
2.07 19 

Note: COV denotes coefficient of variation 

 

Using the proposed method, the reliability 

index can be obtained as 3.56. Using the MCS 

with 4×10-6, the reliability index can be obtained 

as 3.51. Apparently, the results obtained by the 

proposed method agree well with the results 

obtained by MCS. 

6. CONCLUSION 

In this paper, the third-order polynomial normal 

transform based on L-moments is investigated, 

four-parameter distribution based on this 

proposed transformation is proposed, and a first-

order reliability analysis method based on the 

transformation is developed. Numerical examples 
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show that L-moments are more stable than C-

moments, and L-moments are convenient for 

structural reliability analysis, especially when the 

probability distribution is unknown. 

7. ACKNOWLEDGEMENTS 

The study is partially supported by the 

National Natural Science Foundation of China 

(Grant No.: 51820105014, 51738001). The 

support is gratefully acknowledged. 

8. REFERENCES 
Cai, G.Q. and Elishakoff, I. (1994). “Refined second-

order reliability analysis.” Structural Safety, 

14(4): 267–276. 

Fu, G. (1994). “Variance reduction by truncated 
multimodal importance sampling.” Structural 

Safety, 13(4): 267–283. 

Ghosn, M. and Frangopol, D.M. (1999). “Bridge 

safety and reliability.” ASCE: 83–112. 
Grigoriu, M. (1982). “Approximate analysis of 

complex reliability problems.” Structural Safety, 

1(4): 277–288. 
Hasofer, A.M. and Lind, N.C. (1974). “Exact and 

invariant second moment code format.” Journal 

of the Engineering Mechanics Division, 100(1): 

111–121. 
Hohenbichler, M. and Rackwitz, R. (1981). “Non-

normal dependent vectors in structural safety.” 

Journal of the Engineering Mechanics Division, 
107(6): 1227–1238. 

Hosking, J.R.M. (1990). “L-moments: analysis and 

estimation of distributions using linear 
combinations of order statistics.” Journal of the 

Royal Statistical Society, 52(1): 105–124. 

Kiureghian, A.D. (1988). “Efficient algorithm for 

second-order reliability analysis.” Journal of 
Engineering Mechanics, 117(12): 2904–2923. 

Li, G. and Zhang, K.(2011). “A combined reliability 

analysis approach with dimension reduction 
method and maximum entropy method.” 

Structural and Multidisciplinary Optimization, 

11(43): 121-134. 
Liu, P.L. and Kiureghian, D.A. (1986). “Multiva-riate 

distribution models with prescribed marginals 

and covariances.” Probailistic 

Engineering Mechanics, 1(2): 105–112. 
MacKenzie, C.A. and Winterstein, S.R. (2011). 

“Comparing L-moments and conventional 

moments to model current speeds in the North 

Sea.” In: Doolen T and Van Aken E eds 
Proceedings of the 2011 Industrial Engineering 

Research Conference, IERC 2011 Reno. 

Melchers, R.E. (1990). “Radial importance sampling 

for structural reliability.” Journal of 
Engineering Mechanics, 116(1): 189–203. 

Mendall, M., Stuart, A. and  Ord, J.K. (1987). 

“Kendall’s advanced theory of statistics.” 
Clarendon Press Oxford University Press New 

York, London, Vol. 1: 210–275. 

Pandey, M.D., VanGelder, P.H.A.J.M., Vrijling, J.K. 
(2001). “The estimation of extreme quantiles of 

wind velocity using L-moments in the peaks-

over-threshold approach.” Structural Safety, 

23(2): 179–192. 
Rackwitz, R. (1976). “Practical probabilistic approach 

to design–first order reliability concepts for 

design codes.” Bull. d’Information, No.112, 
Comite European du Beton, Munich, Germany.  

Tung, Y.K. (1999). “Polynomial normal transfor- 

mation in uncertainty analysis.” In: Melcher RE, 
Stewart ME, editors. ICASP 8, Application of 

probability and statistics. Netherlands: A.A. 

Balkema Publishers, p.167–74. 

Wang, H.F., Zhao, D.W. and Zou, C. (2015). 
“Aerodynamic forces of a cantilevered square 

prism with aspect ratio of 5.” Journal of 

Experiments in Fluid Mechanics, 29(6): 8–15. 
(in Chinese) 

Zhao, Y.G. and Lu, Z.H. (2008). “Cubic normal 

distribution and its significance in structural 

reliability.” Structural Engineering and 
Mechanics, 28(3): 263–280. 

Zhao, Y.G. and Ono, T. (2001). “Moment methods for 

structural reliability.” Structural Safety, 23(1): 
47–75. 

 

http://xueshu.baidu.com/s?wd=author%3A%28Der%20Kiureghian%2CA%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://link.springer.com/journal/158
http://xueshu.baidu.com/s?wd=author%3A%28Kendall%2C%20Maurice%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Ord%2C%20J.%20Keith%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%28d7d783aba4f9217cf5c1f5eaf2d9ae66%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0167473001000121&ie=utf-8&sc_us=1085556569861624528
http://xueshu.baidu.com/s?wd=paperuri%3A%28d7d783aba4f9217cf5c1f5eaf2d9ae66%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0167473001000121&ie=utf-8&sc_us=1085556569861624528
http://xueshu.baidu.com/s?wd=paperuri%3A%28d7d783aba4f9217cf5c1f5eaf2d9ae66%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0167473001000121&ie=utf-8&sc_us=1085556569861624528

