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ABSTRACT: Equivalent linearization method is the main approach for nonlinear structural system 
random response analysis. But it will generate big error that using the random response results of 
equivalent linearization method to analyze the structural dynamic reliability. In order to improve the 
analysis precision of dynamic reliability of nonlinear system, an equivalent nonlinear system method is 
presented in this paper. In this method general nonlinear systems are converted to equivalent Duffing 
nonlinear system according to minimum mean square error principle, whose exact analytic solution of 
steady state of random responses can be worked out by Fokker Planck Kolmogorov equation (FPK 
equation). Then the exact results of stochastic response processes are used for the analysis of structural 
dynamic reliability. So it is not only convenient for calculation but also with high degree of accuracy 
for the results that using the equivalent nonlinear system method to analyze structural dynamic 
reliability. In addition, the equivalent nonlinear system adopted in this work has a parameterεwhich 
controls the degree of nonlinear. Thus we can obtain conveniently the analysis results of converting the 
original system to equivalent nonlinear systems with different degree of nonlinear by changing the 
value of the parameterε. In particular, when the parameter ε is equal to zero we can obtain the analysis 
results of equivalent linearization method. It is shown from the example analysis that the analysis 
results of equivalent nonlinear system method presented in this paper is reliable and the calculation 
accuracy is higher than equivalent linear system method apparently. 

KEYWORDS: nonlinear system, dynamic reliability, equivalent nonlinear system, random response, 
first excursion mechanism 
 

1. INTRODUCTION 
The research of dynamic reliability of nonlinear 
systems has important theoretical and practical 
significance. Considering nonlinear factors of 
structures, the random reaction of structural 
system under random excitation becomes very 
complicated, and its dynamic reliability becomes 
more difficult to be analyzed as well (Yang and 
Zhang, 2011). In the random vibration theory for 

nonlinear system, equivalent linear system 
method is applied most widely to solve the 
random reaction of nonlinear systems and this 
method is still developing with time (Su Liang 
and Wang Yi 2011; Guyader and Iwan 2008; Lin 
and Miranda 2008; Chen and Liu 2008; Wang, 
Liu and Zhou 2010).Compared with the exact 
solution or the numerical simulation result, the 
accuracy of second moment given by the 
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equivalent linear system method is usually 
adequate, but other statistics given by this 
method, such as related functions, extremum, 
may be unreliable. Therefore, by the equivalent 
linear system method the statistical result of the 
times of the values exceeding safety boundary 
may be seriously wrong; and for nonlinear 
damping systems, there can be several orders of 
magnitude between the calculated value and the 
actual value for the probability of the first 
exceeding (Zhu, Huang and Suzuki 2001).  

For these reasons, scholars have been trying 
to find better approximation methods, in which 
the equivalent nonlinear system method had been 
used essentially. The idea of equivalent nonlinear 
system method was first proposed by Caughey 
(1984), but his method is only applied to the case 
where the original system is quasi-linear. Zhu 
(1989, 2003) established an equivalent nonlinear 
system method suitable for solving random 
reactions of quasi-Lyapunov systems. The "best" 
equivalence principle adopted in this method is 
to make the equivalent system have the same law 
of average energy variation with the original 
system (the same drift and diffusion coefficient). 
The equivalent nonlinear system method adopted 
in this paper preserves the nonlinear 
characteristics of stiffness as the original system, 
and the nonlinear damping is linearized 
equivalently, so that the original nonlinear 
system will be equivalent to a nonlinear 
structural system with linear damping and 
nonlinear stiffness, of which the exact 
probability distribution of its steady-state 
reaction process can be obtained by FPK 
equation method.  

2. EQUIVALENT NONLINEAR ANALYSIS 
OF QUASI-DUFFING SYSTEM 

2.1. Equivalent analysis between two nonlinear 
systems under stationary excitation 

The oscillatory differential equation for a 
nonlinear system with single-degree-of-freedom 
usually can be expressed as 

  (1) 
( ) ( , ) ( )

(0) (0) 0

m X t g X X F t

X X

 



  

  

where  represents a nonlinear function ( , )g X X


related to  and  in general situation; and the X X


random excitation  is set to a normal white ( )F t
noise with the average of 0 and the spectral 
density of . 0S

Another nonlinear system equivalent to Eq. 
 (1) is set as the following Duffing 
system, 

  (2) 
( ) [ ( )] ( )

(0) (0) 0

e em X t c X k X X F t

X X


 



    

  

where  is the equivalent damping coefficient, ec
 is the equivalent stiffness coefficient, and  ek 

is a constant and the structure will degenerate 
into a linear system when  is 0;  is an  ( )X

odd function, and there is . 
0

lim ( )
x

x
s ds


 

The error between the two systems can be 
expressed by the difference between Eq.  (1) 
and Eq. (2), and its expression can be presented 
with  as follows, ( )e t

  (3) ( ) ( , ) [ ( )]e ee t g X X c X k X X
 

   

where the error item  also follows random ( )e t
process. In order to optimize the equivalent 
system to approximate the original system, the 
equivalent criterion determining the equivalent 
parameters  and  requires the absolute ec ek
deviation between the equivalent system and the 
original system is minimum, and for random 
process, it requires the mean value of the square 
of  (the mean square value of ) is ( )e t ( )e t
minimum. 

Thus, from Eq. (3), there is 

 2 2[ ( )] { ( , ) [ ( )]}e eE e t E g X X c X k X X
 

   
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(4) 

where  can be considered as a two-2[ ( )]E e t
variate function of the equivalent paraments  ec
and . According to the method of finding ek
extremum of multivariate functions, the 
minimum of  will occur when 2[ ( )]E e t

  (5) 

2

2

[ ( )] 0

[ ( )] 0

e

e

E e t
c

E e t
k


 


  

By the above equation, and using the 
exchangeability between the mathematical 
expectation and the derivation operations in 
calculation process, we can finally obtain Eq. (6). 
And then convert the two equations in Eq. (6) to 
simultaneous equations of  and  as Eq. (7). ec ek
 

  (6) 
2

2

[ ( , )] ( ) { ( ) [ ( )]} 0

[ ( , )] [ ( ) ( , )] { ( ) [ ( )]} {[ ( )] } 0

e e

e e

E X g X X c E X k E X X E X X

E Xg X X E X g X X c E X X E X X k E X X

 

    

   

   


   


      

 (7) 
2

2 2 2

2

[ ( , )] {[ ( )] } [ ( , )]{ ( ) [ ( )]} [ ( ) ( , )]{ ( ) [ ( )]}

( ) {[ ( )] } { ( ) [ ( )]}

[ ( , )]{ ( ) [ ( )]} [ ( , )] ( ) [ ( ) ( ,

e

e

E X g X X E X X E Xg X X E X X E X X E X g X X E X X E X Xc
E X E X X E X X E X X

E X g X X E X X E X X E Xg X X E X E X g X Xk

      

  

   

       

  

     

    


  

  


2

2 2 2

)] ( )

{ ( ) [ ( )]} ( ) {[ ( )] }

E X

E X X E X X E X E X X  



 








   

 
From Eq. (7), we find that the mathematical 
expectations at the right end should be known 
before solving the equivalent parameters  and ec

. These expectations are quite difficult to ek
obtain without making any assumptions, because 
the calculation requires the joint probability 

distributions of  and  which are ( )X t ( )X t


unknown. 
Because the excitation  is a stationary ( )F t

process, and if we ignore the transition stage of 
reaction process and only consider steady state 

reaction, according to the conclusion that a 
stationary process is always unrelated to its mean 
square derivative at the same time point, we can 
find that stationary displacement reaction  ( )X t

and velocity reaction  are not related, so ( )X t


there is . As a result, Eq. (7) can [ ( ) ( )] 0E X t X t



be simplified as Eq. (8). 

Further, the higher order items of  can be 
omitted approximately if the parameter , 1 
then  and .can continue to be simplified into ec ek
Eq. (9). 

    (8) 

2 2

2 2 2 2

2 2

2 2 2

[ ( , )] {[ ( )] } [ ( , )] [ ( )] [ ( ) ( , )] [ ( )]

( ) {[ ( )] } [ ( )]

[ ( , )] [ ( )] [ ( , )] ( ) [ ( ) ( , )] ( )

[ ( )] ( ) {[

e

e

E X g X X E X X E Xg X X E X X E X g X X E X Xc
E X E X X E X X

E X g X X E X X E Xg X X E X E X g X X E Xk
E X X E X E X

      

  

   

 

     

 

     



    


 

  


 2( )] }X








 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019

4 

      (9) 

2

2 2 2

2 2

2 2 2

[ ( , )] ( ) 2 [ ( , )] [ ( )] [ ( , )] [ ( )]

( ) ( ) 2 ( ) [ ( )]

[ ( , )] ( ) [ ( , )] [ ( )] [ ( ) ( , )] ( )

( ) ( ) 2 ( ) [ ( )]

e

e

E X g X X E X E X g X X E X X E Xg X X E X Xc
E X E X E X E X X

E Xg X X E X E X g X X E X X E X g X X E Xk
E X E X E X E X X

   

 

   

 

     

 

     

 

   
 

  


 

 In random equivalent analysis, the joint 
probability density of the equivalent system 
reaction is usually used for substituting the joint 
probability density of the original system 
reaction to determine the mathematical 
expectations in Eq. (7), Eq. (8) and Eq. (9) 
derived from the equivalent nonlinear (2) which 
makes these expressions always contain  andec

. Similar to equivalent linear method, in ek
equivalent nonlinear method, iterative method is 
a general method to solve the specific values of 

 and , as shown below. ec ek
Firstly, set the initial values of  and ; ec ek

then take these values into the equivalent 
equation (2), and use FPK equation method to 
solve the first moment, two moment and two 

order joint moment of  and ; next use ( )X t ( )X t


any one of the Eq. (7), the Eq. (8) or the Eq. (9) 
to solve the first iteration values of  and ; 1ec 1ek
repeat the above steps until the values of  and ec

 have satisfied the convergence criteria; ek
finally, take the final values of  and  into the ec ek
equivalent equation (2) to obtain the final result 
as the approximate solution of the original 
nonlinear system. 

2.2. Discussion on the situation under non-
stationary excitation 

From Eq. (7), Eq. (8) and Eq. (9), we can find 
that, under non-stationary random excitation, 
because  and  directly relate to the statistical ec ek
moment participating the reaction and the 
statistical moment of non-stationary reaction is a 
function of t (Yang, Zhang and Lin 2010), the 
equivalent parameters must vary with time, and 
there is  

 ,   (10) ( )e ec c t ( )e ek k t

Now, the equivalent damping and the equivalent 
stiffness, as well as the reaction statistical 
moment, need to be calculated iteratively from 
the time of  until the desired moment of 1t t 

 as the above steps. kt k t 

3. STRUCTURAL DYNAMIC RELIABILITY 
After transforming the original nonlinear system 
to the Duffing system by equivalent nonlinear 
analysis, the joint probability density of the 
system can be obtained by FPK equation, and the 
dynamic reliability of system can be obtained 
conveniently by the classical Poisson process 
method. 

The basic equation of dynamic reliability 
obtained by the Poisson process method based on 
the mechanism of first transcendence failure can 
be expressed as follows (ANG and TANG. 
2007), 

  (11) 1 2 1 20
( , ) exp{ [ ( ) ( )] }

T

s b bP b b v t v t dt    
where  and  are the safety limits on either 1b 2b

end; and T is the time duration;  and 1( )bv 

 are the intersection rate between the 2 ( )bv 

reaction process and the safety boundary which 
can be calculated by Rice formula (ANG and 
TANG 2007), 

  (12) ( ) ( , , )b
X X

v t x f b x t d x

  


 

where  is the joint probability density ( , , )
X X

f x x t


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function of the reaction process  and its ( )X t

derivative process . ( )X t


4. EXAMPLE 
Considering Van der Pol oscillator stimulated by 
Gaussian white noise, 

  (13) 2( 1 ) ( )X X X X W t 
 

     

where  is the Gaussian white noise with ( )W t
spectral density of ; is a constant parameter, 0S  
and based on the mechanism of first 
transcendence failure, we will try to analyze the 
dynamic reliability of the nonlinear system. 

The nonlinear system equivalent to Eq. (13) 
is constructed as, 

  (14) 3( ) ( ) ( )e eX t c X k X X W t 
 

   

where  and  are the equivalent parameters ec ek
which are determined based on the criterion of 
minimum error between the two systems, and 
they have definite physical significances in Eq. 
(14), namely,  and  are respectively the ec ek
damping coefficient and the stiffness coefficient 
at the time of  and at that time the Duffing 0 
system degenerates into a linear system. 

4.1. Solutions of equivalent parameters 
According to the expressions of  and  ec ek
derived from Eq. (9), and through comparison of 
the two expressions, we can easily know that, 

 ,  
2( , ) ( 1 )g X X X X X

 
    3( )X X 

According to the computational properties of 
mathematical expectations, the expectations in 
Eq. (9) can be obtained as, 

 )()()],([ 222


 XXEXEXXgXE 

 
4[ ( )] ( )E X X E X 

 )()()],([ 23 XEXXEXXXgE 




 
3[ ( )] ( )E X X E X X

 



)()()()],()([ 453 XEXXEXXEXXgXE 



where the various order moments that need to be 

solved are , , , , 2( )E X 2( )E X


4( )E X 2 2( )E X X


 and . For a high order 3( )E X X


5( )E X X


moment, the first second-order moment of  or X

 and its can be expressed by normal X X


reduced order method (Li and Chen 2009) 
224 )]([3)( XEXE 

 2 2 2 2( ) ( ) ( )E X X E X E X
 



 3 2( ) 3 ( ) ( ) 0E X X E X X E X
 

 

(for stationary reaction, ) ( ) 0E X X




 5 4( ) 5 ( ) ( ) 0E X X E X X E X
 

 

(for stationary reaction, ) ( ) 0E X X



After simplification, the equivalent 

parameters  and  can finally be expressed as ec ek
two functions by the mean square value of 
reaction , 2( )E X

 (15) 

2 2 2 2 2 2 2 2 2

2 2 2 2 2

2

[ ( ) ( ) ( )] ( ) 2 [ ( ) ( ) ( )] 3 ( )

( ) ( ) 2 ( ) 3 ( )
[ 1 ( )]

e
E X E X E X E X E X E X E X E Xc

E X E X E X E X
E X

    




   

 

        


 

  

   (16) 
2 2 2 2 2 2

2
2 2 2 2 2

( ) ( ) 3 ( ) ( ) 1 3 ( )
1 6 ( )( ) ( ) 2 ( ) 3 ( )

e
E X E X E X E X E Xk

E XE X E X E X E X

 


 

 

   
 

 
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4.2. Random reaction solution of equivalent 
system 

The solutions of the equivalent nonlinear system 
(14) are shown in Table 1 according to FPK 
equation method.  

Table 1: Analytic solution of equivalent system (14). 
Joint probability density of 

displacement reaction and velocity 
reaction  

2 2 4

0

1 1( , ) exp[ ( )]
2 2 4

e
e e

X X

cp x x C x k x k x
S






   


Edge distribution density of 
displacement reaction process  ( )X t

 
0

0

2 4
2

1 1( ) 2 exp[ ( )]
2 4X e X

X

p x C k x x 


  

Edge distribution density of velocity 

reaction process  ( )X t


 00

2

2

1( ) exp( )
22X

XX

xp x









 

Expectation  
，  [ ( )] 0E X t  [ ( )] 0E X t





Variance 
，  0 0

2 2 43X X X   
2 0

X e

S
c

 




Mean square value of displacement 
reaction  

2 2 2
2 0 0

2 2( ) 3
e e e e

S SE X
c k c k

  
 

 

In Table 1 C is a constant determined by 
normalization conditions, that is 

00

2 4 1
2

1 1 1{ exp[ ( )] }
2 42 Xe X

C x x dx
k


 

 


  

;  and  are respectively the stationary 
0

2
X

0

2

X
 

variance of the displacement reaction  and 0 ( )X t

velocity reaction , which can be obtained 0 ( )X t


by linear random vibration analysis theory as 
follows, 

 ,  (17) 
0

2 0
X

e e

S
c k





0

2 0

X e

S
c

 




According to the results in the above table, we 
can obtain that, 

  (18) 

2 2 3 2
0 0

2 2

2 2 2
20 0

2 2

2 2 2
20 0

2 2

3

1 3 9

1 6 18

e
e e e e

e e e e
e

e e e e

S Sc
c k c k

S S
c k c kk

S S
c k c k

   

   

   

 
   


  

 
   

 


a two-element equation set of  and  can be ec ek
obtained by the simultaneous of the upper 
equations, but it is difficult to solve, and its 
numerical solution can only be obtained by 
numerical method. After the determination of  ec
and , all the random reaction results can be ek
obtained by taking  and  into equations in ec ek
Table Error! Reference source not found.. 

4.3. Analysis results and discussion 
The approximate joint probability density 
function of van der Pol oscillator is given in the 
literature (Wang, Liu and Zhou 2010) as follows, 

1 2 2 2
0

0 0

2 1( , ) [ 2 ( )] exp[ ( 4) ]
8X X

f x x S erfc x x
S S

 


    

                                                                                
(19) 
where  is the residual error function and ( )erfc 

. After 22( ) 1 ( ) exp( )
x

erfc x erf x m dm



   

the comparison of the numerical results, the 
result shows that  obtained by Eq.                                                                                  
(19) is rather accurate when the parameters are 
small. 
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The results in this example are compared 
with the results of Eq.                                                                                 
(19) and the results of equivalent linear analysis, 
then we find if the parameters ,the 0 
equivalent nonlinear system will degrade into a 
linear system and the results of equivalent linear 
analysis which has be transformed from the 
original nonlinear systems can be obtained. 

From the comparison of the calculation 
results in Table 2, we can see that the calculation 
results given by the equivalent nonlinear method 
in this paper are quite close to the results in the 
literature (Wang, Liu and Zhou, 2010) and the 
results are reliable. In addition, the comparison 
with the results of equivalent linear analysis 
shows that the accuracy of the results given by 

the equivalent nonlinear analysis has some 
improvement than ever, and with the increase of 
the nonlinear parameter  of the equivalent 
system, the accuracy of the calculation results is 
also improved. Therefore, the equivalent 
nonlinear analysis method in this paper is 
feasible. From the calculation results of Table 3, 
it can be seen that if the original nonlinear 
system is equivalent to a linear system to analyze 
its dynamic reliability, the error is indeed 
relatively large; the results in this paper shows 
great agreement with and the results in Monte-
carlo numerical simulation (Liu and Yao, 2009), 
and the accuracy of the calculation results of the 
equivalent nonlinear method is obviously 
improved. 

 
Table 2: Comparison of analysis results of random response. 

   0.05 0.2 

  0 0.2 0.5 0 0.2 0.5 

Method Equivalent 
linearization 

In 
literature 

(Wang 
2010) 

In this 
paper 

In 
literature 

(Chen 
2008) 

In this 
paper 

Equivalent 
linearization 

In 
literature 

(Wang 
2010) 

In this 
paper 

In 
literature 

(Chen 
2008) 

In this 
paper 

 ( )E X 0 0 0 0 0 0 0 0 0 0 

 
2
X 0.2763 0.3496 0.3053 0.3496 0.3157 0.5645 0.6712 0.6143 0.6712 0.6547 

 ( )E X


0 0 0 0 0 0 0 0 0 0 

 
2

X
  0.3516 0.6985 0.5684 0.6985 0.6047 0.6952 0.7265 0.7029 0.7265 0.7436 

 
Table 3: Comparison of dynamic reliability calculation results 

   0.05 0.2 

  0 0.2 0.5 0 0.2 0.5 

Method Equivalent 
linearization 

In this 
paper 

In this 
paper 

Monte-
Carlo 

simulation 
Equivalent 

linearization 
In this 
paper 

In this 
paper 

Monte-Carlo 
simulation  

Structural 
dynamic 

reliability 
0.8954 0.9398 0.9454 0.9715 0.8545 0.9465 0.9573 0.9788 

 

5. CONCLUSION 
For a nonlinear system, its accuracy of random 
reaction analysis determines the accuracy of 

dynamic reliability analysis. In this paper an 
equivalent nonlinear method based on equivalent 
Duffing system is proposed which transforms a 
general nonlinear system into a nonlinear 
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Duffing system which has linear damping and 
nonlinear stiffness, and for this kind of nonlinear 
systems, their accurate steady-state joint 
probability density function can be obtained by 
FPK equation. The example has demonstrated 
that, the method proposed in this paper has 
higher accuracy than the equivalent linear 
method in the results, and the former improves 
the accuracy of the dynamic reliability of 
nonlinear systems. In addition, because the 
equivalent nonlinear system adopted has the 
parameter  controlling the intension of 
nonlinearization, it is easy to obtain the analysis 
results when the original nonlinear system is 
equivalent to different nonlinear systems with 
strong or weak linearization , by changing the 
value of ; and in particular, when  is zero, the  
analysis results of equivalent linearization can be 
obtained, which is quite useful to research the 
issue. The question of the optimal value of , 
when  can get the most accurate calculation 
results of nonlinear system reliability, still 
requires further research work. 

Finally, it should be pointed out that in order 
to simplify the calculation in the analysis 
process, the high order terms of small parameters 
are omitted, and some approximate hypotheses 
are used in the normal reduced order method 
used to deal with the high order reaction 
moment, which has a certain influence on the 
accuracy of the calculation results. 
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