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ABSTRACT: The scale of fluctuation (SOF) of a spatially variable soil property has been known to be 

the most important parameter that characterizes the effect of spatial averaging, and the type of the auto-

correlation model is thought to be of limited impact. This paper shows that this statement (SOF is the 

most important parameter) is true if the limit state function is completely governed by spatial averaging. 

However, this paper also shows that the sample path smoothness can have signifcant impact if the limit 

state function is not completely governed by spatial averaging. Three practical examples are presented 

to illustrate the effect of sample path smoothness. 

 

In geotechnical engineering, the depth-dependent 

spatially variability (z) is typically modeled as a 

zero-mean stationary random field with an auto-

correlation function (ACF) (z) (Vanmarcke 

1977, 1983) that defines the spatial correlation 

between two depths with z apart. The scale of 

fluctuation (SOF), denoted by , is defined to be 

the area under (z). Vanmarcke (1977) stated 

that the probability distribution of “point” soil 

properties may be less important, whereas the 

probability distribution of the “spatial averaged” 

soil properties is more relevant. The mean values 

for the point and spatially averaged properties are 

the same. The main difference between point and 

spatial average is that the latter has a smaller 

variance. The ratio between the spatial average 

variance and point variance is called the variance 

reduction factor. The effect of spatial averaging 

can be quantified by this variance reduction factor, 

because the mean value does not change. One 

important observation made by Vanmarcke (1977) 

is that the variance reduction factors for various 

ACF models (e.g., single exponential model 

(SExp), square exponential model (QExp), second 

order Markov model (SMK), etc.) do not differ 

significantly. If the limit state of a geotechnical 

problem is completely governed by spatial 

averaging, e.g., a friction pile under axial 

compression, Varmarcke’s result suggests that 

design engineers should focus on the estimation 

of  rather than the selection of the ACF model. 

In other words, it is expected that the failure 

probability of the friction pile does not 

significantly change if a different ACF model is 

adopted as long as  remains constant. 

It is less emphasized in the geotechnical 

literature that the random field sample paths 

obtained from different ACF models may have 

very different sample path appearances. Figure 1 

shows two sample paths of a zero-mean random 

field with ACF models. All random fields have a 

unit SOF, i.e.,  = 1. It is clear that for SExp, the 

sample paths are not smooth with significant local 

jitters, whereas the sample paths for QExp and 

SMK are smoother. The smoothness of random 

field sample paths is not an important factor if the 

only mechanism at play is spatial averaging. 

However, not many realistic problems have limit 

state functions completely governed by spatial 

averaging. The friction pile under axial 

compression is one well-known example that is 

completely governed by spatial averaging. In 

general, the limit state of a geotechnical structure 

can be governed by factors other than spatial 

averaging. For a limit state that is not completely 

governed by spatial averaging, it is of interest to 
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know whether SOF is still the only governing 

parameter. Three numerical examples will be 

adopted to address the research question. The first 

example is a friction pile under axial compression. 

The second example is an infinites slope with 

strength following a random field that varies in 

depth. The third example is a differential 

settlement problem.  

1. WHITTLE-MATÉRN MODEL 

The key issue is whether the sample path 

smoothness will affect reliability. The Whittle-

Matérn (W-M) auto-correlation model (Stein 

1999; Guttorp and Gneiting 2006; Liu et al. 2017; 

Ching et al. 2017a, 2017b) is a suitable ACF 

model that can produce random field sample paths 

with various degrees of smoothness in a 

controlled way. Its ACF model has the following 

format: 

 

 

 

 

 

 

 

ρ z

0 .5 z 2 0 .5 z2
K





 

                
    
            
   

(1)  

where  is the smoothness parameter: sample 

paths of (z) are -1 times differentiable with 

probability 1;  is the Gamma function 

(Abramowitz and Stegun 1970); Kv is the 

modified Bessel function of the second kind with 

order  (Abramowitz and Stegun 1970). Equation 

(1) is a two-parameter ACF. In contrast, the 

traditional ACF models such as SExp, QExp, and 

SMK are one-parameter models. The two 

parameters,  and , can be independently 

selected to achieve a desired smoothness and scale 

of fluctuation. For  = 0.5 and , the W-M auto-

correlation model reduces to the SExp model and 

the QExp model, respectively (Rasmussen and 

Williams 2006). For  = 1.5, the W-M auto-

correlation model reduces to the SMK model. The 

Fourier series method (FSM) (Jha and Ching 2012; 

Ching and Sung 2016) is adopted to simulate 

sample paths of (z) based on the W-M model. 

Figure 1 shows some sample paths of (z). The 

sample paths produced by the W-M model with  

< 1 are not differentiable, e.g., when  = 0.5, there 

are significant local jitters. 

 

 
Figure 1 Some sample paths of (z) produced by the 

W-M auto-correlation models with  = 1. 

2. NUMERICAL EXAMPLES 

Three examples are considered: (a) a friction pile 

under axial compression; (b) an infinite slope; and 

(c) differential settlement between two footings. 

The limit state for the first example is completely 

governed by spatial averaging. The limit state for 

the second example is not entirely governed by 

spatial averaging and is affected by the weakest-
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path seeking mechanism. The limit state for the 

third example is not governed by spatial averaging 

as well. 

2.1. Friction pile under axial compression 

Consider a friction pile embedded in clay with a 

total length L = 10 m, subjected to an axial 

compression dead load DL = 1400 kN. The pile 

has a diameter B = 1 m. The spatially variable 

undrained shear strength (su) of the clay is 

modeled as a stationary normal random with mean 

 = 100 kN/m2 and coefficient of variation (COV 

= standard deviation/mean) = 30%: 

 

   u
s z z       (2)  

where  = 30 kN/m2 is the standard deviation of 

su(z); (z) is the zero-mean spatial variability with 

standard deviation = 1. Suppose that the 

horizontal SOF is significantly larger than the 

diameter B, so that horizontal spatial variability 

can be ignored. The unit side resistance fs(z) is 

expressed as 

 

   s u
f z s z    (3)  

where  = 0.5 is adopted for illustration. For a 

friction pile, the end bearing is negligible, so the 

total resistance Qu is equal to the total shaft 

resistance:  

 

   

L

u s L

0

Q B f z d z B L           (4)  

where 
L
  is the spatial averaged (z) over the 

depth range L. The limit state function G can be 

defined as 

 

 u L
G Q D L B L D L            (5)  

The pile fails if G < 0.  

The W-M model with vertical SOF =  and 

smoothness parameter =  is adopted as the ACF 

model for (z). The spatial average 
L
  over the 

depth between 0 m and 10 m can be computed as 

the arithmetic average of the (z) values simulated 

over the dense grid points (z1, z2, …, zn). Each 

sample path of (z) produces a realization of 
L
 , 

hence a realization of G. Ten thousands (N = 

10,000) realizations of G are simulated, and the 

failure probability pf = P(G < 0) can be estimated:  

 

N

i

f

i 1

1
p I G 0

N 

  
   (6)  

where I[.] is the indicator function; Gi is the i-th 

realization of G. For cases with small pf, N 

increases to 100,000. Figure 2 shows how pf 

changes with  for several chosen /L values. It is 

clear that  does not significantly affect pf, but /L 

does. This is because the limit state for the friction 

pile example is completely governed by spatial 

averaging, and the effect of spatial averaging can 

be summarized by the variance reduction. 

Therefore,  does not significantly affect pf. 

 

 
Figure 2 Variation of pf with respect to  for several 

chosen /L values (friction pile).  

2.2. Infinite slope 

Let us consider an infinite slope with an 

inclination angle  = 22o and depth to bedrock = 

D. The direction parallel to the slope is denoted by 

x and that perpendicular to the slope by z. Suppose 

the friction angle  of the cohensionless soil is 

spatially variable only in the z direction and is 

homogeneous in the x direction. The ground water 

is assumed to be deep, so it has no effect on the 

slope stability. The spatially variable tan[(z)] is 
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modeled as a stationary normal random field with 

mean  = tan(30o) and COV = 10%: 

    ta n z z          (7)  

where tan[(z)] denotes the tangent of the friction 

angle at depth z;  = tan(30o)  10% is the 

standard deviation of tan[(z)]; (z) is modeled as 

a zero-mean stationary normal random field with 

standard deviation = 1.  

For the infinite slope, a potential slip plane 

with depth z fails if tan[(z)] < tan(), and the 

slope fails if any potential slip plane fails. 

Therefore, the limit state function G for the 

infinite slope can be written as 

 

 
   

 

z 0 ,1 0

m in

G m in ta n z ta n

ta n



     

       
 (8)  

where min denotes the minimum value of the (z) 

sample path. The infinite slope fails if G < 0. Here, 

the weakest-path seeking mechanism governs the 

failure of an infinite slope, and it manifests as the 

minimization of tan[(z)] in Eq. (8). There is no 

spatial averaging in Eq. (8). The W-M model with 

SOF =  and smoothness parameter =  is adopted 

as the ACF model for (z). Sample paths of (z) 

are simulated using FSM. Each sample path of (z) 

produces a realization of min, hence a realization 

of G. Ten thousands (N = 10,000) realizations of 

G are simulated, and the failure probability pf can 

be estimated using Eq. (6). For cases with small 

pf, N increases to 100,000. Figure 3 shows how pf 

changes with  for several chosen /D values. It is 

clear that  now has a significant effect on pf. In 

particular, pf produced by SExp ( = 0.5) is 

significantly larger than those produced by SMK 

( = 1.5) and QExp ( = ) even if they share the 

same /D. This observation stands in strong 

contrast to that obtained in the friction pile 

example. For the friction pile example, spatial 

averaging completely governs, hence  is the only 

parameter that matters. The parameter  does not 

have much effect on pf because  does not have 

much effect on the variance reduction. On the 

contrary, for the infinite slope example, there is no 

spatial averaging, and weakest-path seeking 

mechanism completely governs. The local jitters 

produced by a small  lead to lots of apparent 

weak layers that affect the stability of the infinite 

slope. As a result,  has a significant effect on pf 

for the infinite slope problem. The “smoothness” 

of the spatial variability was not well addressed in 

the geotechnical literature, and the “correlation 

length” has been the only focus. An extra 

parameter such as the parameter  in the W-M 

model is needed to capture the “smoothness” of 

the spatial variability based on site investigation 

data. 

 

 
Figure 3 Variation of pf with respect to  for several 

chosen /D values (infinite slope).  

2.3. Differential settlement between two footings 

Let us consider two square rigid footings on 

undrained clay, with width B = 1 m and separation 

distance = L = 5 m. The depth of a hard stratum is 

assumed to be very deep. Each footing is 

subjected to a vertical load of Q = 200 kN, 

producing a bearing pressure of q = Q/B2 = 200 

kN/m2. The horizontal direction is denoted by x. 

The Young’s modulus E for the undrained clay 

underlying the footing is denoted by E(x). It is 

assumed that E(x) has taken into account the 

(weighted) average of E over 4B to 5B beneath the 

footing. The spatially variable E(x) is modeled as 
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a stationary lognormal random field with mean  

= 20 MN/m2 and COV = 50%. This suggests that 

ln[E(x)] is a stationary normal random field with 

variance 2 = ln(1+COV2) mean  = ln() – 

0.52:  

 

   ln E x x         (9)  

where (x) is the zero-mean spatial variability 

with standard deviation = 1. The W-M model with 

SOF =  and smoothness parameter =  is adopted 

as the ACF model for (x). The settlement Se at 

the center of each rigid footing can be estimated 

as (Janbu et al. 1956; Christian and Carrier 1978)  

 

 
 

e 1 2

q B
S x 0 .9 3 A A

E x


    (10)  

where A1 is a factor for the depth of hard stratum; 

A2 is a factor for the embedment depth; 0.93 is the 

correction factor for a rigid footing (Timoshenko 

and Goodier 1970). For the current case, the hard 

stratum is deep so that A1  0.7 (Christian and 

Carrier 1978), and there is no embedment depth 

so that A2 = 1. The angular distortion between the 

two footings is denoted by : 

 

   e 1 e 2
S x S x

L


   (11)  

where (x1, x2) are the x coordinates for the two 

footings. The limit state function G can be written 

as 

 

1
G

5 0 0
    (12)  

where 1/500 is the maximum acceptable angular 

distortion (European Committee for 

Standardization 1994).  

Each sample path of (x) produces a 

realization of E(x). Se(x1) and Se(x2) can be 

computed from E(x1) and E(x2), and a realization 

of angular distortion  as well as a realization of 

G can be computed. A hundred thousand (N = 

100,000) realizations of G are simulated, and the 

failure probability pf can be estimated using Eq. 

(6). Figure 4 shows how pf changes with  for 

several chosen /L values. It is clear that  has a 

significant effect on pf when /L is relatively large. 

When /L is large, the separation distance 

between the footings is only a fraction of . In this 

case, the differential settlement between the two 

footings is governed by the short range auto-

correlation, and the short range auto-correlation 

behaviors for ACF models with different  are 

fairly different. This explains why  has a 

significant effect on pf when /L is relatively large. 

It is noteworthy that there is no weakest-path 

seeking for the differential settlement problem, 

yet  still has a significant effect on pf. As a result, 

the significant effect of  is not limited to cases 

with weakest-path seeking.  

 

 
Figure 4 Variation of pf with respect to  for several 

chosen /L values (differential settlement).  

3. CONCLUSIONS 

In the geotechnical literature, the scale of 

fluctuation () has been treated as the main (and 

probably the only) parameter that characterizes 

the auto-correlation of a spatially variable soil 

property. The current paper shows that  has an 

insignificant effect and that  alone is important if 

the limit state is completely governed by spatial 

averaging, such as the friction pile under axial 

compression. However, not all limit states are 

completely governed by spatial averaging. The 
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current paper shows that  has a significant effect 

when the weakest-path seeking mechanism is 

important (e.g., infinite slope). For serviceability 

limit state problems with spatially variable 

modulus, the angular distortion between footings 

is considered in the current paper, and it involves 

taking the spatial difference, which is not the same 

as spatial averaging. The current paper shows that 

 has a significant effect on pf as well. The 

practical conclusion of this paper is that 

characterizing and modeling the scale of 

fluctuation alone may be insufficient for the 

purpose of reliability analysis. Besides 

characterizing and modeling the scale of 

fluctuation, it is more prudent to also characterize 

and model the smoothness of the spatial 

variability. 
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