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ABSTRACT: In this study, we carefully analyze the most recent advancements in Hamiltonian Monte 
Carlo methods combined with Subset Simulation (HMC-SS) in the context of structural reliability 
analysis. The HMC method employs Hamiltonian dynamic to sample from a target probability 
distribution. In contrast to the standard Markov-Chain Monte Carlo methods (e.g., Gibbs or Metropolis-
Hastings techniques), HMC alleviates the burn-in phase and the random walk behavior to achieve a more 
effective exploration of the target probability distribution. This turns out to be important in high-
dimensional spaces (e.g., when the number of random variables is high), where the bulk of probability 
content concentrates in the so-called typical sets. The structure of the paper is as follows. We first briefly 
review the Subset Simulation and the general concepts of HMC. Following, in both standard Gaussian 
and non-Gaussian probability spaces, we present a series of complex structural reliability problems to 
test in practice the validity of the method. Finally, we conclude with a series of future developments and 
directions. 

A powerful variance-reduction Monte Carlo 
method which has been widely used in reliability 
analysis is Subset Simulation (Au & Beck 2001). 
The method expresses the failure domain of 
interest as the intersection of a sequence of nested 
intermediate failure domains, and the failure 
probability of interest is expressed as a product of 
conditional probabilities associated with the 
intermediate failure domains. Since the 
conditional probabilities are significantly larger 
than the target failure probability the 
computational cost of Subset Simulation is 
significantly lower than the crude MCS method. 
The challenge of the scheme, which consists of 
evaluating the intermediate conditional 
probabilities, is overcome by using efficient 
Markov Chain Monte Carlo (MCMC) methods. 

A crucial step in Subset Simulation is to 
obtain random samples according to a sequence of 
probability distributions that are conditional on 

nested intermediate failure domains. The 
efficiency and accuracy of Subset Simulation is 
directly affected by those of the MCMC algorithm 
used to produce random samples representing the 
conditional distributions in the sequence. In the 
current practice of Subset Simulation, the 
commonly used MCMC methods are based on 
random walks, which suffer issues of inefficiency 
when performing high dimensional random 
sampling (particularly in non-Gaussian spaces).  
Most recently, a non-random-walk MCMC 
method, namely the Hamiltonian Monte Carlo 
(HMC) method (Duane et.al 1987; Neal 2011), is 
introduced to the framework of Subset Simulation 
for efficient reliability analysis in both Gaussian 
and non-Gaussian spaces (Broccardo et.al 2018; 
Wang et.al 2019). The HMC method employs a 
deterministic mechanism inspired by Hamiltonian 
dynamics to propose samples for a target 
probability distribution. The method alleviates the 
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random-walk behavior to achieve a more effective 
and consistent exploration of the probability space 
compared to standard Gibbs or Metropolis-
Hastings techniques. 

This paper provides a review of the HMC 
based-Subset Simulation (HMC-SS) method in 
the Gaussian and non-Gaussian spaces, and the 
recent development of HMC-SS in conjunction 
with Gaussian process metamodeling. The 
structure of this paper is as follows. Sections 1 
introduce essential elements of the original HMC-
SS; Section 2 shows HMC-SS equipped with 
Gaussian process metamodeling; Section 3 shows 
a series of numerical examples; Section 4 
concludes the study with a summary of the results. 

1.   HMC-SS 
In reliability analysis, the failure probability of a 
system with basic random variables 𝐱 ∈ ℝ$  can 
be expressed by an integral, 

𝑃& = 𝐼ℱ(𝐱)𝜋(𝐱)𝑑𝐱
ℝ.

 (1) 

where 𝐼ℱ(∙) is a binary indicator function which 
gives ‘1’ if point 𝐱 is within the failure domain, 
and ‘0’ otherwise, and 𝜋(𝐱)  is the joint 
probability density function (PDF) of 𝐱.  
 The Subset Simulation solution of Eq. (1) 
involves the construction of a sequence of nested 
intermediate failure domains, so that the failure 
domain of interest, ℱ, is expressed by 

ℱ = ℱ0

1

023

 (2) 

where ℱ3 ⊃ ℱ5 ⊃ ⋯ ⊃ ℱ1 , and ℱ = ℱ1 . The 
failure probability 𝑃& = Pr	  (𝐱 ∈ ℱ)  can be 
written as 

Pr 𝐱 ∈ ℱ = Pr	  (𝐱 ∈ ℱ0|𝐱 ∈ ℱ0;3	  )
1

023

 (3) 

where Pr 𝐱 ∈ ℱ< = 1 . Each Pr	  (𝐱 ∈ ℱ0|𝐱 ∈
ℱ0;3) in Eq. (3) can be computed using  

Pr	  (𝐱 ∈ ℱ0|𝐱 ∈ ℱ0;3)

= 𝐼ℱ>(𝐱)𝜋(𝐱|ℱ0;3)𝑑𝐮
ℝ.

 
(4) 

where 𝜋(𝐱|ℱ0;3)  is the conditional/truncated 
multivariate PDF. Using an MCMC technique to 
generate samples of 𝜋(𝐱|ℱ0;3) , Eq. (4) can be 
evaluated MCS, i.e. 

Pr	  (𝐱 ∈ ℱ0|𝐱 ∈ ℱ0;3) ≅
1
𝑁 𝐼ℱ>(𝐱B)

C

B23

 (5) 

in which 𝐱B  are samples generated from 
conditional PDF 𝜋(𝐱|ℱ0;3). In implementations 
of Subset Simulation, the nested failure domains 
are chosen adaptively such that Pr	  (𝐱 ∈ ℱ0|𝐱 ∈
ℱ0;3), 𝑗 = 1,2, . . , 𝑀 − 1, approximately equals to 
a specified percentile 𝑝<.  

The HMC method provides an efficient way 
to drawn random samples from the conditional 
distribution 𝜋(𝐱|ℱ0) , so that Eq. (5) can be 
estimated effectively. In HMC method the 
trajectories of a Hamiltonian system are used as 
the proposal samples of the target distribution. 
Specifically, in HMC the following Hamilton’s 
equations need to be solved.  

𝑑𝒒
𝑑𝑡 =

𝜕𝐻
𝜕𝒑

𝑑𝒑
𝑑𝑡 = −

𝜕𝐻
𝜕𝒒

 
(6) 

in which the Hamiltonian 𝐻 = 𝐻(𝒒, 𝒑)  is a 
constant corresponds to the total energy of the 
system, and thus 𝐻  is independent of time 
evolutions of 𝒒, 𝒑 . The Hamiltonian 𝐻(𝒒, 𝒑) 
can be expressed by 

𝐻 𝒒, 𝒑 = 𝑉 𝒒 + 𝐾 𝒑  (7) 

where 𝑉 𝒒  is the potential energy, which is a 
function of the position vector 𝒒 alone, and 𝐾 𝒑  
is the kinetic energy, which is a function of the 
momentum vector 𝒑  alone. Given initial values 
for the position and momentum, Eq.(7) 
completely defines the energy level for the 
system. Then, the solution of the Hamilton’s 
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equations, Eq. (6), describes an equi-Hamiltonian 
trajectory of the system in the phase space.  

To establish a connection between the 
probability space of interest, and a mathematically 
equivalent Hamiltonian system described by Eq. 
(6), first the outcome 𝐱 is viewed as the position 
𝒒 of a Hamiltonian system (i.e. 𝒒 ≡ 𝒙). Next, a 
set of auxiliary random momentum variables, 𝒑, 
which has the same dimension as 𝒒,  are 
introduced to expand the original position space, 
so that now one has the position-momentum phase 
space of a Hamiltonian system. Finally, to 
incorporate the probabilistic structure of 𝜋(𝒒) 
into the Hamiltonian system, the potential energy 
𝑉 𝒒  is defined in terms of the target PDF 𝜋(𝒒) 
as 

𝑉 𝒒 ≡ − log 𝜋 𝒒  (8) 

The form for kinetic energy 𝐾 𝒑  could vary 
with implementation, but it is typically defined as  

𝐾 𝒑 ≡
𝒑ℳ;3𝒑

2  (9) 

where ℳ  is a positive-definite and symmetric 
‘mass’ matrix. Typically, ℳ is chosen as a scalar 
multiple of the identity matrix. The joint PDF of 
𝒒, 𝒑  is defined as 

𝜋 𝒒, 𝒑 ≡
1
𝑍 𝑒

;[ 𝒒,𝒑 =
1
𝑍 𝑒

;\ 𝒒 𝑒;] 𝒑  (10) 

where 𝑍  is a normalizing constant. Substituting 
Eq. (8) and Eq. (9) into Eq. (10), one obtains 

𝜋 𝒒, 𝒑 =
1
𝑍 𝜋(𝒒)𝑒

;𝒑ℳ
^_𝒑
5  (11) 

The above definition of the joint PDF 
𝜋 𝒒, 𝒑  implies: a) the position and the 
momentum variables are statistically 
independent; and b) the position is distributed 
following the original target distribution 𝜋(𝒒) , 
and the momentum is distributed as a multivariate 
Gaussian distribution. The aforementioned two 
properties of 𝜋 𝒒, 𝒑  implies that once it is 
possible sample from 𝜋 𝒒, 𝒑 ,  samples 
distributed as 𝜋(𝒒)  are obtained by simply 
projecting out the momentum component of 
𝜋 𝒒, 𝒑  samples. sample from 𝜋 𝒒, 𝒑 . In 

particular, HMC sampling can be divided into two 
main steps. In the first step, the momentum is 
sampled from the canonical distribution; this 
together with the current position completely 
defines an equi-Hamiltonian surface. In the 
second step, both position and momentum 
variables change within the equi-Hamiltonian 
surface by integrating Eq. (6) for a given time 𝑡&. 
The conceptual procedure of HMC is described as 
follows. 

 
Algorithm 1. Conceptual procedure of 
Hamiltonian Monte Carlo method 
Step 1. Generate a random momentum 𝒑 
according to PDF 𝑒;] 𝒑 /𝑍. 
Step 2. Use the momentum 𝒑 and the position 
𝒒 of a seed sample as initial conditions, 
propose a new state 𝒒∗, 𝒑∗  via solutions of 
the Hamilton’s equations at a time point 𝑡&. 
Step 3. Negate the proposed momentum, i.e., 
𝒑∗ ← −𝒑∗ 

In standard Gaussian space, the Hamiltonian 
𝐻(𝐮, 𝒑)  (𝐮  denotes standard Gaussian random 
variables) can be written as 
𝐻 𝐮, 𝒑 = 𝑉 𝐮 + 𝐾 𝒑

= − log 𝜑 𝐮 ℱ0 +
𝒑d𝒑
2
	  

=
𝐮d𝐮
2

+
𝒑d𝒑
2

− log 𝐼ℱ> 𝐮 + const 

(12) 

The constant term in Eq. (12) can be dropped 
since it leaves Hamilton’s equations intact. The 
term − log 𝐼ℱ> 𝐮  introduces a potential barrier 
to the system, so that proposals outside the failure 
domain ℱ0  have infinite potential energy, i.e., 
areas outside ℱ0  cannot be reached by the 
Hamiltonian system. 

As long as the trajectories of the Hamiltonian 
system lie in the failure domain ℱ0 , the term 
− log 𝐼ℱ> 𝐮  in Eq. (12) is zero, and the 
Hamiltonian system has an analytical solution 
expressed by 

𝐮 𝑡 = 𝒑B$Bi sin 𝑡 + 𝐮B$Bi cos 𝑡
𝒑 𝑡 = 𝒑B$Bi cos 𝑡 − 𝐮B$Bi sin 𝑡

 (13) 
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where 𝒑B$Bi  and 𝐮B$Bi  denote initial momentum 
and initial position, respectively. Using the 
analytical solution Eq. (13), efficient algorithms 
of HMC-SS for Gaussian space can be developed, 
implementations details of the algorithms can be 
seen in Wang et.al 2019.  
 For non-Gaussian space simulations, the 
Hamiltonian is written as 

𝐻 𝒒, 𝒑 = 𝑉 𝒒 + 𝐾 𝒑
= − log 𝜋(𝒒|ℱ0)

+
𝒑kℳ;3𝒑

2 	  

= − log 𝜋(𝒒) +
𝒑kℳ;3𝒑

2
− log 𝐼ℱ> 𝒒 + const 

(14) 

It is seen that Eq. (14) has the same form as 
Eq. (12), thus similar algorithms can be used to 
sample from 𝜋(𝒒|ℱ0). The only difference is that 
instead of analytical solutions, one may need a 
numerical integration technique to solve the 
Hamilton’s equations. One could use well-known 
methods (e.g. leapfrog method) to numerically 
solve Hamilton’s equations. Due to the numerical 
errors introduced by numerical methods, a 
Metropolis accept-reject rule needs to be applied 
after the proposal:   

min 1, exp −𝐻 𝒒∗, 𝒑∗ + 𝐻 𝒒, 𝒑 = 

min 1, exp −𝑉 𝒒∗, 𝒑∗ + 𝑉 𝒒, 𝒑
− 𝐾 𝒒∗, 𝒑∗ + 𝐾 𝒒, 𝒑 . 

(15) 

 Note that if the Hamilton’s equations can be 
solved analytically (e.g. Eq. (13) for Gaussian 
space simulation), Eq. (15) is not needed.  

2.   HMC-SS EQUIPPED WITH GAUSSIAN 
PROCESS METAMODELING 

Although HMC-SS has high efficiency in 
performing rare event simulations compared with 
the crude MCS approach, for problems with 
complex model functions, the evaluation of 
thousand times (which is typical in HMC-SS) of 
model functions can be impractical. To further 
enhance the efficiency of HMC-SS for problems 
with complex model functions, a HMC-SS 

combined with active learning based Gaussian 
process metamodeling is developed in Broccardo 
et.al 2018. The main algorithm of the approach is 
summarized as follows.   
Algorithm 2. Active learning HMC-SS 
Step 1. A test set 𝑆	   = 	   [𝒙3, … , 𝒙s] is generated by a 
variation of the HMC-SS method (iso-HMC-SS), 
which provides an iso-density sampling scheme. 
From 𝑆, an initial experimental design, 𝒳	   =
	  [𝒙3, … , 𝒙v] with 𝑑 ≪ 𝑠 is subsampled. Exact 
outcomes of the computational model are 
computed for each sample of the experimental 
design, i.e. 𝒴	   = 	   [𝓜 𝒙3 , … ,𝓜 𝒙𝒅 ] 
Step 2. The Gaussian process metamodel is 
defined based on the input output pairs 𝒳~𝒴.  
Step 3. A three-fold estimate of the probability of 
failure, 𝑃&

}, 𝑃&
<, 𝑃&

;
is computed via HMC-SS 

based on the metamodel. 
Step 4. The sample 𝒙∗ ∈ 𝑆 which maximize a 
given learning criterion is added to the 
experimental design, i.e. 𝒳 ← 𝒳; 𝒙∗ ; and the 
corresponding exact solution 𝓜 𝒙∗  is added to 𝒴 
such that 𝒴 ← 𝒴;𝓜 𝒙∗ . Next a new test set, 𝑆, 
is generated via iso-HMC-SS. Finally, the 
algorithm returns to Step 2 for an update of the 
metamodel.  
Step 5. The iterations are terminated when a 
stopping criterion is met.  

3.   NUMERICAL EXAMPLES 

3.1.  Banana distribution sampling 
Consider a “banana-shaped’’ PDF given as 

follows.  

𝑓�� 𝑥, 𝑦 =
1
𝑍 exp −

1
2 1 − 𝜌5

𝑥5

𝑎5

+ 𝑎5 𝑦 − 𝑏
𝑥5

𝑎5 − 𝑏𝑎
5

5

− 2𝜌𝑥 𝑦 − 𝑏
𝑥5

𝑎5

− 𝑏𝑎5 	    

(16) 

where 𝑍  is a normalizing constant. In this 
example, we set 𝑎 = 1.15 , 𝑏 = 	  0.5 , 𝜌 = 0.9 , 
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Figure 1 a) shows the contour plot of the “banana-
shaped” distribution.  

We use leapfrog based HMC to sample from 
the banana-shaped distribution, starting with a 
seed 𝒒< = (4,5)  at the far tail region of the 
distribution. The trajectory of 100 HMC iterations 
are shown in the left plot of Figure 1 b). For 
comparison, the trajectory of 100 iterations of the 
Metropolis Hastings algorithm using a uniform 
transition distribution within a square of width 1 
are shown in the right plot of Figure 1 c). One can 
observe the efficiency of HMC in reaching the 
bulk of the probability density in only one 
iteration. This example shows that HMC is 
particularly suitable for probability densities that 
are “narrow” and confined in specific region of 
the space. This is the typical case of high 
dimensional spaces, where the bulk of probability 
lies in specific confined regions named typical set.  

 
Figure 1. Trajectories obtained from HMC and MH 

algorithms 

3.2.  First-passage probability estimation 
Consider a single degree of freedom (SDOF) 
linear oscillator under seismic loading defined by 
the differential equation 
𝑚𝑋 𝑡 + 𝑐𝑋 𝑡 + 𝑘𝑋 𝑡 = −𝑚𝑈�(𝑡) (17) 

where 𝑋 𝑡 , 𝑋 𝑡  and 𝑋 𝑡  denote the 
displacement, velocity and acceleration of the 
oscillator, respectively. We set the mass 𝑚 =
6×10�kg, stiffness 𝑘 = 2.0×10�N/m, damping 
𝑐 = 2𝑚𝜁 𝑘/𝑚  with the viscous damping ratio 
𝜁 = 10%. The initial natural period of this SDOF 
oscillator is 𝑇 = 0.34𝑠. The ground acceleration 
𝑈�(𝑡) is modeled by white noise process.  

Now we consider the first-passage 
probability Pr max

i∈ <,3<
𝑋 𝐮, 𝑡 > 𝑥 . The first 

passage probabilities for threshold 𝑥 = 0.020	  m, 
𝑥 = 0.025	  m  and 𝑥 = 0.030	  m  are computed 
using SS, and the results are compared with the 
solution obtained from crude MCS with 1.0×10� 
runs. Table 1 illustrates the results.  

 
Table 1. Performance of HMC-SS for first-passage 

problem 

Threshold 
HMC CWMH MCS 

𝑃&  c.o.v NG 𝑃&  c.o.v NG 𝑃&  

0.020 6.73×10-3 0.21 2773 6.67×10-

3 0.21 2782 6.80×10-

3 

0.025 7.65×10-5 0.32 4492 7.55×10-

5 0.35 4483 8.20×10-

5 

0.030 2.90×10-7 0.42 6400 3.14×10-

7 0.58 6400 - 

3.3.  Active learning HMC-SS example 
In this study, a variation of the four-branch 
benchmark function (Schobi 2016) is presented in 
details. The four-branch function is often used in 
structural reliability analysis to describe a series 
system with four distinct limit state surfaces, and 
it can be expressed as follows. 

𝓜 𝒙

= 𝑚𝑖𝑛
𝑐1 + 𝜅 𝑥1 − 𝑥2 2 ±

𝑥1 + 𝑥2
2

𝑐3
2
± 𝑐2𝑥1 − 𝑥2

 
(18) 

where 𝑐3 = 6.5 , 𝑐5 = 1.5 , 𝑐¢ = 8.5 , and 𝜅 =
0.06 . Moreover, it is assumed 𝐺(𝑥) 	  = 𝓜(𝑥) . 
The joint PDF is based on a mixture of two banana 
shaped distributions (Eq. (16)) with equal weight, 
i.e.  

𝑓�� 𝑥, 𝑦

=
1
𝑍 𝑒𝑥𝑝 −

1
2 1 − 𝜌5

𝑥5

𝑎5

5

B23

+ 𝑎5 𝑦 − 𝑏B
𝑥5

𝑎5 − 𝑏B𝑎
5

5

− 2𝜌𝑥 𝑦 − 𝑏B
𝑥5

𝑎5 − 𝑏B𝑎
5 	    

(19) 

where 𝑎 = 0.9, 𝑏3 = 	  0.4, 𝑏5 = −0.4, 𝜌 = 0.95, 
Figure 2 b) shows the contour plot of the 
distribution. 
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Figure 2: a) The four-branch limit state function. Red 
safe domain, blue failure domain. b) The mixture 

of “banana-shaped” distribution, with HMC 
samples. c) The structural reliability problem. 

Table 2 reports the results of a single run of the 
adaptive algorithm versus the results of a classical 
MCS with 10� samples. Only 30 evaluations (16 
of the initial experimental design + 14 iterations) 
of the original model function are necessary to 
evaluate the reliability of the system. The c.o.v. of 
the HMC-SS estimated is computed with 50 
repeated runs, after the stopping criterion is met. 
Therefore, only metamodel evaluations are used 
and not new evaluation of the model function.  

To test the robustness of the metamodel 
convergence, the full analysis is replicated for 50 
times with different initial experimental designs. 
The results of the analysis are reported in Table 3, 
compared with the same MCS simulation of Table 
2. Despite the results depends on 50 different 
metamodels, the c.o.v. of the probabilities is 
comparable to the one of Table 2. This suggests 
that most of the variability on the estimate is due 
to the HMC-SS statistical errors.  

 
Table 2: Four branch problem: Estimate of 𝑃& based 

on a single run of the adaptive design algorithm 
Method 𝑃& c.o.v. 

MCS 5.86×10-4 0.013 
AL-HMC-SS 5.87×10-4 0.248 

 
Table 3: Four branch problem: Estimate of 	  

𝑃& based on 50 runs of the adaptive design algorithm 

Method 𝑃& c.o.v. Model 
Evaluations 

MCS 5.86×10-4 - 107 
AL-HMC-

SS 5.87×10-4 0.281 16+22.08 

4.   CONCLUSIONS 
In this paper, the HMC-SS method for reliability 
analysis is reviewed. The HMC-SS method aims 
to solve reliability problems with complex, high 
dimensional PDF, complex model (limit-state) 
function, and low failure probability.  The current 
limitation of the method lies in the sequential 
nature of the HMC based scheme, which 
constitutes a drawback for parallel computing. 
Moreover, only first-order differentiable PDFs are 
allowed to perform HMC. Futures studies will 
focus on computational efficiency and 
parallelization of the proposed scheme.  
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