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ABSTRACT: For accurate seismic risk assessment of transportation network under probabilistic 

seismic hazard, the uncertainty in the seismic hazard, the damage states of links/bridges in the network, 

and network performance need to be quantified. Stochastic simulation is well suited for this task. 

However, it typically requires large number of model evaluations, which entails significant 

computational effort, especially for large network. To address the above challenges, an efficient 

stochastic sampling-based approach is proposed. It relies on generating one set of samples for 

earthquake magnitude and carrying out analysis for the corresponding set of networks. This set of 

evaluations are used for seismic risk assessment under different risk measures, different probabilistic 

seismic hazards (e.g., with or without considering spatial correlation), and also for risk-based 

importance ranking of all bridges/links in the network for risk mitigation purpose. No additional 

evaluation of the network model is needed. The proposed approach is applied to seismic risk 

assessment and mitigation of the transportation network of Los Angeles and Orange countries. The 

impact of spatial correlation in seismic hazard on the seismic risk assessment and mitigation is 

investigated. 
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1. INTRODUCTION 

Transportation network plays an important role 

in various social and economic activities. 

Disruption of transportation networks due to 

seismic events could cause significant economic 

losses. The evaluation of probabilistic 

performance (e.g., seismic risk) of transportation 

networks is critical for pre-event mitigation and 

post-event emergency responses and recovery 

activities (Kurtz et al. 2016). However, this 

evaluation requires quantification and 

propagation of high-dimensional uncertainties 

including uncertainties in intensity measures at 

each bridge site and uncertainties in the damage 

states of each bridge. Generally, stochastic 

simulation techniques, e.g., Monte Carlo 

simulation (MCS), need to be used for this 

evaluation (Taflanidis and Jia 2011). However, 

direct adoption of MCS would require large 

number of evaluations of the network model and 

entail significant computational challenges, 

which is further intensified considering the need 

to evaluate seismic risk of the network under 

different performance measures, hazard 

scenarios, and mitigation strategies.  

This paper proposes an efficient sampling-

based approach for seismic risk assessment of 

large-scale transportation network. This 

approach relies on only one set of simulations of 

the network model. Specially, it first generates 

one set of uniform samples for the earthquake 
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moment magnitude, and then generates one set of 

corresponding samples for intensity measures at 

each bridge site and the damage states of each 

bridge (e.g., based on the fragility). Then 

network analysis is carried out for this set of 

samples. In the end, the information from this 

single set of analysis is used for seismic risk 

assessment under different risk performance 

measures, hazard characteristics, and mitigation 

strategies where the proposed approach only 

requires updating the corresponding risk 

measures or probability densities describing the 

hazard characteristics and/or mitigation strategies 

without the need to re-run any network analysis. 

This paper is organized as follows. Section 

2 introduces the seismic risk of transportation 

networks and challenges in evaluation of seismic 

risk. Section 3 presents the proposed sampling-

based approach for efficient evaluation of 

seismic risk and risk mitigation of transportation 

networks. In Section 4, the proposed approach is 

applied to efficiently evaluate the seismic risk 

and different risk mitigation strategies for the 

transportation network of Los Angeles and 

Orange countries. The impact of spatial 

correlation in seismic hazard on seismic risk 

assessment and mitigation is investigated. The 

last section summarizes the research findings. 

2. SEISMIC RISK ASSESSMENT OF 

TRANSPORTATION NETWORKS 

UNDER SPATIALLY CORRELATED 

SEISMIC INTENSITIES 

2.1. Spatial correlation of seismic intensities 

For a transportation network, typically bridges 

are the vulnerable links. The seismic 

performance of bridges will directly impact the 

overall network performance. Consider a 

network with a total of n  bridges. A seismic 

event EQ can be defined by parameters such as 

magnitude M , the location EQx  (or equivalently, 

vector of epicentral distances with respect to all 

bridge sites, i.e., 1[ , , , ]i nR R RR ), depth etc. 

Let 1[ , , , ] i nIM IM IMIM  represent the 

vector of intensity measures at all bridge sites 

with iIM  the intensity measure at the thi  bridge. 

Let ( | , )EQp MIM x  represent the joint PDF for 

IM  under given earthquake event defined by 

( , )EQM x . For spatially distributed lifeline 

infrastructure systems such as transportation 

networks, researches have shown that neglecting 

the uncertainties in ground motion intensities and 

the spatial correlations between multiple sites 

would result in significant errors in the seismic 

risk assessment of infrastructure systems 

(Jayaram and Baker 2010). The adoption of 

different correlation models will essentially 

impact ( | , )EQp MIM x . When intensity measures 

at different sites are assumed independent, 

1
( | , ) ( | , )

n

EQ i EQi
p M p IM M


IM x x . 

2.2. Seismic risk of transportation networks 

For a network with a total of n  bridges, and 

suppose all bridges are in service before a 

seismic event occurs; under a seismic event, each 

bridge has an associated probability of being in a 

certain damage state. The uncertainty in the 

damage states for all the bridges can be 

characterized by the vector of random variables 

1[ , , , , ]   i nθ  where i  represents the 

damage state for the thi
 
bridge. For given damage 

state, the capacity of the bridge will change 

accordingly. For a given realization of the 

damage states θ , the corresponding network 

response (e.g., total travel time, independent 

pathway) can be written as ( )y θ . For large-scale 

network, typically each evaluation of ( )y θ  

requires significant computational effort (also 

depending on the adopted network model and 

performance measures). The performance of the 

network can be characterized through a 

performance function ( )h θ  (also called risk 

measure) related to the response ( )y θ , i.e., 

( ) ( ( )) ( ) h y h y hθ θ . If this performance 

function defines failure, then ( )h θ  is simply the 

indicator function, i.e., ( ) ( )Fh Iθ θ . If the failure 

of the network is defined as ( ) thresy yθ  where 
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thresy  is some response threshold, then ( )FI θ =1 if 

( ) thresy yθ  and 0 otherwise. 

Within the context of the above 

descriptions, propagating the uncertainties in the 

intensity measures, damage states and the 

seismic events, the seismic risk of a 

transportation network can be written as  

       | | , ,EQ EQ

EQ

H h p p M p M

d d dMd

  θ θ IM IM x x

θ IM x
 (1) 

where ( | )p θ IM  denotes the PDF for θ  

conditional on given vector of intensity 

measures. For the thi  bridge we have ( | )i ip IM  

for i  under given intensity measure iIM , and 

when considering Dn  possible damage states, we 

have ( | ) ( | )  i i i j ip IM P DS IM  where 

 i jDS  for any 1,  2,  ,    Dj n . In this case, 

( | )i ip IM  can be established from the fragility 

curves for the thi bridge.  

2.3. Computational challenges in evaluation of 

seismic risk 

To evaluate how spatial correlation in seismic 

intensities impact the seismic risk, we need to 

evaluate the seismic risk under many different 

combinations of (1) risk measure (e.g., different 

definition of risks), (2) spatial correlation 

models, i.e., different ( | , )EQp MIM x , (3) 

probabilistic hazard scenarios, i.e., different 

( , )EQp M x , and (4) mitigation strategies, i.e., 

different ( | )sp θ IM  (where ( | )sp θ IM  denotes the 

updated PDF for θ  resulting from retrofitting 

some of the bridges in the network). To evaluate 

risks under different combinations, direct use of 

MCS (e.g., repeating MCS for each combination) 

would create huge computational challenges, 

especially for large-scale network where each 

evaluation of network response requires huge 

computational effort and for rare events.  

3. EVALUATION OF SEISMIC RISK BY 

EFFICIENT SIMULATION 

To address the computational challenges in the 

evaluation of seismic risk, this paper proposes an 

efficient sampling-based approach to assess the 

seismic risk of the transportation networks and 

investigate how the spatial correlation in seismic 

intensities would impact the risk assessment 

under any of different combinations mentioned 

in Section 2.3. It relies only on one set of 

simulations of the network model and has 

significant efficiency improvement compared to 

using direct MCS. 

3.1. Evaluation of seismic risk integrals 

The risk integrals in Eq. (1) correspond to high-

dimensional integrals, especially for large-scale 

networks. Stochastic Simulation (e.g., MCS) is 

the general approach to estimate such integrals. 

However, each estimation typically requires a 

large number of model evaluations. Using N  

samples { , , , }, 1, ,k k k k

EQM k Nθ IM x  from some 

proposal density ( , , , )EQq Mθ IM x  for the 

uncertain parameters [ , , , ]EQMθ IM x , the risk 

integral in Eq. (1) can be estimated through 

       
 1

ˆ

| | , ,1

, , ,

k k k k k k k k
N

EQ EQ

k k k k
k EQ

H

h p p M p M

N q M




θ θ IM IM x x

θ IM x

 (2) 

The accuracy of the estimate in Eq. (2) can 

be quantified by the c.o.v (coefficient of 

variation) of the estimate,  

 
2

1

2

1

1
1

ˆ

N
k k

IS

k

h r
N

HN
 

 
 

 
 θ

 (3) 

where  

     
 

| | , ,

, , ,

k k k k k k k

EQ EQk

IS k k k k

EQ

p p M p M
r

q M


θ IM IM x x

θ IM x
 (4) 
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3.2. Steps of the proposed efficient simulation 

The proposed approach starts by generating a set 

of N  samples from a selected proposal density 

( , , , )EQq Mθ IM x  and evaluate the corresponding 

network responses ( )y θ . This evaluation is the 

most computationally demanding task in 

estimation of seismic risks. This is especially 

true when each run of the network model (e.g., 

for large-scale network) takes a lot of time. Then, 

instead of re-running MCS for risk assessment 

under all different combinations mentioned 

earlier, the proposed approach uses the same set 

of samples and for different combinations only 

updates the k

ISr  defined in Eq. (4). More 

specifically,  

1) For different risk measures, we only need 

to update the ( )kh θ  value (i.e., based on value of 

( )ky θ ); 

2) For different spatial correlation models 

(e.g., the level of correlation), we only need to 

update the values ( | , )k k

EQp MIM x ; 

3) For different definitions of probabilistic 

seismic hazard, e.g., different selection of 

( , )EQp M x , we only need to update PDF values 

for ( , )k k

EQp M x ; 

4) For different mitigation strategies, we 

only need to update the PDF values ( | )k kp θ IM  

to ( | )k k

sp θ IM  for the corresponding mitigation 

strategy. Take retrofitting the thi  bridge for 

example (with the updated PDF denoted as 

, ( | )s ip θ IM ), the updated seismic risk of the 

network can be estimated as 

  ,

1

1ˆ ( )
N

k k

s IS i

k

H i h r
N 

  θ  with 

     
 

,

,

| | , ,

, , ,

k k k k k k k

s i EQ EQk

IS i k k k k

EQ

p p M p M
r

q M


θ IM IM x x

θ IM x

 (5) 

Therefore, the proposed approach facilitates 

efficient evaluation of seismic risk and risk 

mitigation relying only on one set of simulations 

of the network model, which leads to significant 

efficiency improvement compared to using direct 

MCS for each different definition of risk 

integrals. This approach is applicable to cases 

when the seismic risk needs to be evaluated for 

many different risk measures, different hazard 

models, different fragility models (e.g., 

mitigation) or combinations of them, and the 

system (e.g., large-scale network) model is 

computationally expensive to run. 

3.3. Selection of proposal density 

As one key element, the selection of proposal 

density will impact the risk estimation accuracies 

and the applicability of the proposal approach. 

Several considerations are taken into account in 

this selection. First, the support domain of ( )q M  

needs to be larger than the support domain ( )p M  

so that the density ratio ( ) / ( )p M q M  is well-

defined. Also, the proposal density needs to be 

applicable for a wide range of different 

combinations (as discussed earlier) including 

rare events. It is typically not efficient to 

establish proposal density for all the uncertain 

parameters [ , , , ]EQMθ IM x  due to the well-known 

intrinsic challenges in Importance Sampling for 

high-dimensional problems. Therefore, we focus 

on the more important parameters, and 

considering the importance of earthquake 

moment magnitude, we select a proposal density 

( )q M  for M while using prior distribution for the 

rest of the parameters. As for ( )q M , the uniform 

distribution is a good candidate since it could 

generate samples for M  that covers the entire 

range specified and also provide samples with 

large M  (which helps with the simulation of rare 

events). Other selection of proposal densities 

(e.g., incorporate optimization) will be 

considered in future research.  

4. ILLUSTRATIVE EXAMPLE 

The proposed approach is used to evaluate the 

seismic risk and different risk mitigation 

strategies for the transportation network of Los 

Angeles and Orange countries (see Figure 1). 

The impact of spatial correlation in seismic 

hazard is also investigated. 
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4.1. Transportation network 

The network data for Los Angeles and Orange 

are obtained from Southern California 

Association of Governments (SCAG 2012) 

(Southern California Association of 

Governments (SCAG) 2012). The database with 

bridge locations and physical characteristics of 

bridges is obtained from Caltrans Structure 

Maintenance and Investigations (SMI 2015) 

Database. The daily origin-destination (OD) data 

are based on the Southern California origin-

destination survey of 2,950 traffic analysis zones 

(TAZ) in Los Angeles and Orange counties. 

 

 
(a) 

 
(b) 

Figure 1: (a) The transportation network of Los 

Angeles and Orange countries ;(b) the corresponding 

aggregated network. 

 

The transportation network data are 

aggregated through construction of Thiessen 

polygons for reducing the computational efforts. 

Only the freeway and state highway are 

considered in the aggregated network, which 

includes 155 nodes and 242 links. A node is 

defined by the location where two or more 

freeways/highways intersect, or the location 

where a freeway/highway passes through the 

boundary of the study area. A link is represented 

by a road segment between two adjacent nodes. 

The free flow speeds for the freeway and 

highway links are assumed to be 65 and 35 miles 

per hour, respectively. The practical capacity for 

a link on the freeway and highway is considered 

to be 2,500 and 1,000 passenger car units per 

hour, respectively. 2,600 bridges lie on the links 

of the aggregated network. The damage states of 

bridges due to specific intensity measures are 

estimated using the modified fragility curves 

based on the fragility function for each type of 

standard bridge in accordance with the HAZUS 

manual (DHS 2009). The bridge with the lowest 

mean capacity on one link is selected to represent 

all the bridges on the link for reducing the 

complexity of network analysis. And 217 bridges 

are selected as representatives of all bridges on 

the aggregated network. The daily OD data of 

2,950 TAZs are aggregated to obtain the 

condensed daily OD data of 155 new TAZs.  

4.1.1. Hazard model including spatial 

correlation of intensity measures 

The seismicity information of Los Angeles and 

Orange counties is obtained from USGS and the 

Southern San Andreas Fault in the study region 

is considered (USGS 2015). ( )p M  is selected as 

truncated exponential distribution in [5.5, 8.0] 

with regional seismicity factors 0.9log (10)e  . 

The ground-motion model in Boore et al. (2013) 

is used to obtain the probabilistic distribution of 

intensity measure for each representative bridge 

in the network. And ( 1.0sec)aS T  , which would 

be used in the fragility functions for bridges, is 

selected as the intensity measure. The 

probabilistic event location EQx is assumed to 

occur uniformly on the fault. To take into 

account the correlation between the ground-

motion intensities at different sites, the spatial 

correlation models in Loth and Baker (2013) is 

used. 
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4.1.2. Network model 

Based on bridge information from the National 

Bridge Inventory (NBI), fragility curves are 

established for all bridges using the HAZUS 

definition of fragility and damage states. Under 

given origin-destination (OD) matrix and given 

realization of damage states of all bridges, the 

network performance ( )y θ  (e.g., total travel time 

or TTT) can be evaluated through transportation 

network models. Here we use the combined 

distribution and assignment model in Bocchini 

and Frangopol (2011) to calculate TTT. For 

given realization of damage states for each 

bridge, the corresponding network characteristics 

such as capacity, trip production and attraction 

need to be updated. We assume the reduced 

capacities corresponding to the five different 

HAZUS damage states are 100% (none/slight), 

75% (moderate), 50% (extensive), and 25% 

(complete). The non-zero capacity for the 

complete damage state is used considering the 

widely-used redundancies in transportation 

networks. The change in travel demands due to 

earthquake is not considered in this study, 

however this change can be easily incorporated 

when information on the OD patterns is 

available. 

4.1.3. Risk measures 

For seismic risk, here we consider the failure 

probability (or reliability) of the network) where 

failure is defined as TTT exceeding a certain 

threshold denoted thresy . Other definitions of risk 

measures can be used as well depending on the 

interested network performance. Note that the 

proposed approach can easily incorporate 

different risk measures. 

4.2. Implementation details 

For the set of simulations, we use the uniform 

proposal density ( )q M  to generate 100,000N  

samples for M; then the prior distributions for 

intensity measures and damage states are used to 

generate realizations of damages states for each 

bridge. Then the network performance are 

evaluated for these samples. Based on this set of 

evaluations, we use the proposed approach to 

estimate the seismic risk of the transportation 

network under the different combinations 

mentioned in Section 2.3. For illustration, we 

will evaluate the TTT exceedance rate against 

thresy  (i.e., different risk measures), and estimate 

the failure probability of the network after 

retrofitting each bridge to establish risk-based 

rankings for evaluating the different risk 

mitigation strategies. For the seismic risk 

mitigation, we consider a definition of network 

failure with 05thresy y  where 0y  is the TTT when 

all of the  bridges are in service. The updated 

, ( | )s ip θ IM  is established by updating the 

fragility curve of retrofitted bridge through 

increasing the median value of the distribution of 

the fragility curves. In all these cases, intensity 

measures with and without spatial correlations 

are considered to explore the impact of 

correlation on seismic risk assessment and risk 

mitigation. 

4.3. Results and discussions 

 

Figure 2 (a) shows the TTT exceedance rate 

curve with and without considering spatial 

correlation in intensity measures. Figure 2 (b) 

shows the corresponding coefficient of variation 

(showing good accuracy over the different 

thresholds). All the information in Figure 2 is 

established using the same set of evaluations 

without additional evaluatiions of the network 

model. As seen from the figure, for a larger TTT 

threshold value, the exceedance rate obtained 

using the spatial correlation model is larger than 

that without spatial correlation considered. This 

shows the seismic risk assessment using 

correlation model would be more conservative 

compared to that when no correlation in intensity 

measures is considered. The results demonstrate 

the importance of taking into account the spatial 

correlation of ground-motion intensities at 

multiple sites when estimating seismic risk for 

spatially distributed network. 
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(a) 

 
(b) 

Figure 2: (a) Daily exceedance rate vs TTT;(b) 

coefficient of variation of the estimate for daily 

exceedance rate. 

 

Figure 3 (a) shows the failure probability of 

the transportation network after retrofitting each 

bridge individually where x-axis corresponds to 

the bridge index from 1 to 217. Again, all 

information in Figure 3 are established using the 

same set of evaluations. Based on the amount of 

reduction in failure probability, we can rank the 

bridges in terms of their importance in seismic 

risk mitigation. The results are shown in Figure 3 

(b) where the x-axis corresponds to the ranked 

bridge index. Note that here we evaluated the 

updated failure when only one bridge is 

retrofitted, the proposed approach can be easily 

extended to considering combination of several 

bridges to identify the optimal retrofit strategy 

(Wang and Jia 2018). 

The impact of spatial correlation in intensity 

measures on the ranking of bridges can be seen 

in Table 1 below, where the top 10 ranked 

bridges are listed and ˆ
FsP  represents the failure 

probability of the network. 

 

 
(a) 

 
(b) 

Figure 3: (a) Failure probability of the network after 

retrofitting each bridge individually; (b) Ranked 

failure probability of the network after retrofitting 

each corresponding bridge. 

 
Table 1: Results of seismic risk mitigation for the 

transportation network.  

No correlation in IM Correlation in IM 

ˆ
FsP  (%) 

Bridge 

index 
ˆ
FsP  (%) 

Bridge 

index 

4.75 2 4.66 2 

5.14 3 4.98 3 

5.61 8 5.34 8 

5.87 73 5.68 4 

5.91 110 5.74 73 

5.98 65 5.79 110 

5.98 4 5.84 114 

5.98 22 5.86 22 

6.01 114 5.86 6 

6.03 70 5.87 67 
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As can be seen, the spatial correlation in 

intensity measures impacts the ranking of the 

bridges, e.g., only the top three bridges in the 

ranking are the same whether considering the 

correlation or not while the rest of the top 10 

ranked bridges are different for the case of 

considering correlation or not. The results in 

Figure 3 and Table 1 demonstrate the importance 

of considering spatial correlation in intensity 

measures when evaluating different seismic risk 

mitigation strategies. 

5. CONCLUSIONS 

This paper proposed an efficient sampling-based 

approach for seismic risk assessment and risk 

mitigation of transportation networks. The 

proposed approach requires only one set of 

simulations of the network model, which can be 

used to efficiently evaluate the seismic risk and 

risk mitigation for any combinations of risk 

measures, hazard models (e.g., with or without 

correlation in intensity measures), and mitigation 

strategies (e.g., change fragility models for 

bridges). The evaluation only requires updating 

the corresponding quantities in the sample-based 

estimation of seismic risk and no additional 

simulations of the network model are required. 

The proposed approach has great computational 

efficiency and is especially useful for seismic 

risk assessment and mitigation of large-scale 

transportation networks. The illustrative example 

for the transportation network of Los Angeles 

and Orange countries demonstrated the high 

efficiency of the proposed approach, and the 

results showed the importance of incorporating 

the spatial correlations in seismic hazard in 

seismic risk assessment and mitigation. Future 

work will investigate the application of the 

proposed approach for optimization of seismic 

mitigation strategies where groups of bridges 

need to be retrofitted (corresponding to 

challenging combinatorial optimization where 

large number of mitigation strategies need to be 

evaluated). 
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