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ABSTRACT: The breakdown of civil systems, e.g. bridge networks and water distribution networks, has 

a significant social and economic impact, highlighting the importance of optimal decision-making on 

such systems. Modeling and optimization of probabilistic decision-making problems for civil systems, 

can be facilitated by graphical methodologies such as influence diagram (ID). However, the converging 

structure in IDs representing civil systems, which relates the random variables standing for component 

events and that for system event, results in the exponential increase in the number of modeling parameters 

and variables to be optimized as that of component events increases. In order to address these challenges, 

in this paper, the recently proposed matrix-based Bayesian network (MBN) is employed to quantify the 

IDs. To facilitate the optimization process, a proxy objective function is also proposed. The proxy func-

tion not only significantly reduces the number of variables to be optimized, but also allows an efficient 

framework for multi-objective optimization in which the weighted sum of the objectives is optimized to 

obtain a set of non-dominated solutions. Three numerical examples demonstrate the performance of the 

proposed methodology. 

1. INTRODUCTION 

The breakdown of civil systems such as bridge 

networks and water distribution networks, has a 

significant social and economic impact. In order 

to minimize such risk, optimal decisions need to 

be made on the systems, generally in considera-

tion of multiple objectives, e.g. cost of retrofits, 

and system performance. Influence diagram (ID), 

an extension of Bayesian network (BN) for the 

purpose of decision-making, facilitates the proba-

bilistic modeling and inference of complex sys-

tems while discrete ID allows the development of 

general-purpose algorithms for inference. How-

ever, since real-world civil systems consist of a 

large number of components and the definition of 

system events is highly complex, the exact mod-

eling and optimization of the IDs remain elusive. 

In particular, the converging structure between the 

random variables (r.v.’s) standing for component 

events and that for system event, may result in an 

exponential increase in both the number of param-

eters that quantify given probability distributions 

and the variables to be optimized as that of com-

ponent events increases. 

In order to address this issue, multiple meth-

odologies have been developed, e.g. a method to 

exploit the regularity in the definition of system 

event (Poole 1996). Recently, as a generalization 

and expansion of such efforts, a matrix-based 

Bayesian network (MBN) has been developed 

(Byun et al. 2018) to provide an alternative data 

structure for the probability mass functions 

(PMFs) in BN. On the other hand, algorithms for 

optimization of discrete IDs have been continu-

ously studied to develop structured procedures of 

optimization (Olmsted 1984; Diehl and Haimes 

2004). However, these algorithms are limited to 

relatively small-size problems, and thus unable to 

handle large real-world civil systems. 
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In this paper, IDs are modeled by the MBN, 

and the use of a proxy objective function is pro-

posed to facilitate their optimization. The proxy 

function decomposes the optimization problem 

into smaller ones, so that the size of optimization 

problem linearly increases as the number of deci-

sion variables increases. Moreover, by using the 

proposed proxy function, an efficient scheme for 

multi-objective optimization is developed, in 

which the weighted sum of objective values is op-

timized. Optimization with these weights leads to 

a set of non-dominated solutions.  

In the formulations of this paper, upper and 

lower cases respectively denote a r.v. and the as-

signed value, e.g. 𝑋 and 𝑥, while bold letters are 

used to denote a set of r.v.’s. For simplicity, 𝑥𝑘 

indicates the assignment of value 𝑘 to r.v. 𝑋, i.e. 

𝑥 = 𝑘. The set of values that a r.v. 𝑋 can take is 

denoted as 𝑉𝑎𝑙(𝑋). 

2. BACKGROUND 

2.1. Influence diagram (ID) for civil systems 

BN is a graphical representation of a joint proba-

bility distribution based on conditional independ-

ence between r.v.’s (Koller and Friedman 2009). 

In BN, circular nodes and directed arrows respec-

tively represent the r.v.’s (𝑿) and their statistical 

dependence. ID is an extension of BN for the pur-

pose of decision-making in which variables of de-

cision (𝑫) and utility (𝑽) are additionally intro-

duced to describe the design alternatives, and util-

ity (or risk) quantified on the instances of interest. 

They are respectively visualized by rectangles and 

rhombuses in ID. In the followings, the terms 

node and r.v. are used synonymously. 

Utility variables 𝑉 ∈ 𝑽  are deterministic 

function of their parent nodes, and in the follow-

ing illustration, the symbol is also used when re-

ferring to the corresponding function, i.e.  

𝑉(𝑃𝑎𝑉), where 𝑃𝑎𝑉 denotes the parent nodes of 

𝑉. For decision variables, only deterministic deci-

sion rules are considered in this paper, i.e. the 

probability distribution 𝑃(𝐷𝑛|𝑃𝑎𝐷𝑛
)  for 𝐷𝑛 ∈

𝑫 = {𝐷1, ⋯ , 𝐷𝑁} assigns nonzero probability to 

exactly one value of 𝐷𝑛.  

For instance, consider the system in Figure 

1(a), which consists of three components 𝑋1, 𝑋2, 

and 𝑋3 that can fail due to earthquake hazard. The 

system event is defined as the connectivity be-

tween the two nodes s and t. Decision on retrofit 

of each component (𝑑𝑛
1  for retrofitting; 𝑑𝑛

0 for not) 

is considered, which may lower the system failure 

probability (𝑉𝑆) at the expense of the related cost 

(𝑉𝑛) as illustrated in the ID of Figure 1(b). In the 

figure, the r.v.’s 𝐻, 𝑋𝑛, and 𝑆 respectively stand 

for the intensity of hazard (ℎ0 for insignificant; ℎ1 

for significant), the state of n-th component, and 

that of system (𝑥𝑛
0  and 𝑠0  for failure; 𝑥𝑛

1  and 𝑠1 

for survival.) 

 
Figure 1. (a) Configuration and (b) ID of example 

system 

 

The optimization of ID aims to obtain the op-

timal decision rule 𝒅∗, i.e. an assignment over 𝑫, 

that minimizes or maximizes the sum of expecta-

tions of utilities, i.e. 

min
𝒅∈𝑉𝑎𝑙(𝑫)

(max) ∑ 𝐸[𝑉|𝒅]

𝑉∈𝑽

 (1) 

Regarding 𝑉𝑆  in the example ID, the con-

verging structure from 𝑿 = {𝑋1,⋯ , 𝑋𝑁} to 𝑋𝑁+1 

makes the decision variables 𝑫  dependent on 

each other in evaluating the expectation 𝐸[𝑉𝑆|𝒅]. 
In other words, the decision variables cannot be 

optimized separately, requiring the optimization 

to consider their combinatorial states whose num-

ber exponentially increases as 𝑁 increases. How-

ever, such structure inevitably takes place when 

modeling a system as it stands for the intrinsic 

characteristic of systems whose states are deter-

mined by the combinatorial states of their compo-

nents. On the other hand, 𝑉𝑛, 𝑛 = 1,⋯ ,𝑁, do not 

make the decision variables dependent to each 

other, implying that the optimization can be per-

formed for each decision variable separately.  
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2.2. Extension of matrix-based BN (MBN) to ID 

The converging structure increases not only the 

computational cost, but also the memory to store 

the parameters for quantifying the PMF 𝑃(𝑆|𝑿) 

as |𝑉𝑎𝑙(𝑿)| exponentially increases to |𝑿|. In or-

der to address this issue, MBN has been recently 

proposed as an alternative data structure for con-

ditional PMFs in discrete BN (Byun et al. 2018). 

In the MBN, the PMFs are quantified by con-

ditional probability matrices (CPMs) ℳ = 〈𝐂; 𝐩〉 
that consist of two matrices, namely, event matrix 

𝐂 and probability vector 𝐩. A CPM can be re-

garded as a set of rules 𝜇 = 〈𝒄; 𝑝〉 each of which 

corresponds to an instance of interest with assign-

ment 𝒄 and probability 𝑝. 𝐂 and 𝐩 are also equiv-

alent to a set of assignments and probabilities, re-

spectively, while their data structure is matrix 

with each row corresponding to each instance. For 

example, the PMFs 𝑃(𝐻)  and 𝑃(𝑋𝑛|𝐷𝑛, 𝐻)  can 

be quantified by CPM ℳ𝐻 = 〈𝐂𝐻; 𝐩𝐻〉  and 

ℳ𝑋𝑛
= 〈𝐂𝑋𝑛

; 𝐩𝑋𝑛
〉 as 

𝐂𝐻 = [
0
1
], 𝐩𝐻 = [

0.8
0.2

], 

𝐂𝑋𝑛
=

[
 
 
 
 
 
 
 
0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1]

 
 
 
 
 
 
 

, 𝐩𝑋𝑛
=

[
 
 
 
 
 
 
 
0.2
0.8
0.1
0.9
0.4
0.6
0.3
0.7]

 
 
 
 
 
 
 

 

(2) 

where 𝑛 = 1,2,3. The subscript of a CPM denotes 

the r.v. whose conditional PMF on its parent 

nodes, is quantified by the CPM. The columns in 

𝐂𝑋𝑛
 represent the assignments over 𝑋𝑛, 𝐷𝑛, and 𝐻 

in sequence. For instance, the first rows of 𝐂𝑋𝑛
 

and 𝐩𝑋𝑛
 together indicate that 𝑃(𝑥𝑛

0|𝑑𝑛
0 , ℎ0) =

0.2. 

One of the distinct features of the MBN is the 

use of “−1” state. The state accounts for the rela-

tionship of context-specific independence, i.e. de-

pendent r.v.’s become statistically independent 

when a specific assignment is imposed on a subset 

of r.v.’s (Koller and Friedman 2009). Using the 

“−1” state, PMF 𝑃(𝑆|𝑿) of the example system is 

efficiently represented by CPM ℳS = 〈𝐂𝑆; 𝐩𝑆〉 
with 

𝐂𝑆 = [

1 1 −1 −1
0 0 0 −1
0 0 1 0
1 0 1 1

], 𝐩𝑆 = [

1
1
1
1

] (3) 

where the columns of 𝐂𝑆  respectively stand for 

the assignments over 𝑆 and 𝑋𝑛 , 𝑛 = 1,2,3 in se-

quence. Specifically, the first rows of 𝐂𝑆 and 𝐩𝑆 

indicate that  

𝑃(𝑠1|𝑥1
1, 𝑥2

𝑖 , 𝑥3
𝑗
) = 1, ∀𝑖, 𝑗 ∈ {0,1} (4) 

based on the fact that the nodes s and t are con-

nected when 𝑋1 survives, regardless of the states 

of 𝑋2 and 𝑋3. As noted in Eq. (3), the use of “−1” 

state allows an efficient description of the given 

PMF whereby 4 assignments are sufficient to de-

fine the event space that originally includes 
|𝑉𝑎𝑙(𝑿)| = 8 instances. 

Another distinctive feature of the MBN is 

that the CPMs do not need to include all exiting 

instances in an event space. Such condition is of-

ten required when quantifying probabilistic distri-

butions, i.e. each possible assignment should be 

specified with a certain probability. In contrast, in 

the MBN, only the instances of interest are quan-

tified while the unspecified instances are consid-

ered to have zero probability during the inference. 

For instance, in Eq. (3), as a counterpart to the first 

row, there is an instance  

𝑃(𝑠0|𝑥1
1, 𝑥2

𝑖 , 𝑥3
𝑗
) = 0, ∀𝑖, 𝑗 ∈ {0,1} (5) 

but they are not included in ℳ𝑆 as they have no 

effect on inference results because of their zero 

probability. This feature is advantageous espe-

cially for quantification of deterministic functions 

and approximate inference. 

As the MBN can efficiently describe deter-

ministic functions, its extension to ID is straight-

forward for utility variables are deterministic 

functions of their parent nodes. For instance, the 

utility variable 𝑉𝑆 that quantifies the system fail-

ure probability can be defined as a deterministic 

function of the value of 𝑆, i.e. 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 

Seoul, South Korea, May 26-30, 2019 

 4 

𝑉𝑠 = {
1, 𝑆 = 0
0, otherwise

 (6) 

This leads to the CPM ℳ𝑉𝑆
= 〈𝐂𝑉𝑆

; 𝐩𝑉𝑆
〉 as 

𝐂𝑉𝑆
= [1 0] and 𝐩𝑉𝑆

= [1] (7) 

where the columns of 𝐂𝑉𝑆
 sequentially represent 

the assignments over 𝑉𝑆 and 𝑆. It is noted that the 

instance associated with 𝑠1  is not included in 

ℳ𝑉𝑆
 as the associated utility value is zero, and the 

instance is not used during the inference. On the 

other hand, CPMs for decision variables do not 

need to be quantified in advance as they are the 

design variables determined by optimization. 

3. PROXY OBJECTIVE FUNCTION FOR 

DEPEDNENT DECISION VARIABLES 

In this section, a proxy objective function is pro-

posed to alleviate the drastic increase in the com-

plexity of optimization problem due to the pres-

ence of multiple dependent decision variables. 

Note that, regarding the set of assignments, 𝐂𝑿 

over the r.v.’s 𝑿 , the expectation 𝐸[𝑉|𝒅]  for a 

given rule 𝒅 and basis rule �̅�, is evaluated as 

𝐸[𝑉|𝒅; �̅�]

= ∑ {𝑉(𝒄)𝑃ℳ𝑫−(𝒄)∏𝑃ℳ
𝑫𝑛

+[𝑑𝑛](𝒄)

𝑁

𝑛=1

}

𝒄∈𝐂𝑿

 

= ∑ {(𝑉(𝒄)𝑃ℳ𝑫−(𝒄)∏𝑃ℳ
𝑫𝑛

+[�̅�𝑛](𝒄)

𝑁

𝑛=1

)

𝒄∈𝐂𝑿

∙ ∏
𝑃ℳ

𝑫𝑛
+[𝑑𝑛](𝒄)

𝑃ℳ
𝑫𝑛

+[�̅�𝑛](𝒄)

𝑁

𝑛=1

} 

= ∑ {𝑉(𝒄)𝑃(𝒄|�̅�) ∙ ∏(1 + ∆𝑃𝑛)

𝑁

𝑛=1

}

𝒄∈𝐂𝑿

 

= ∑ {𝑉(𝒄)𝑃(𝒄|�̅�)

𝒄∈𝐂𝑿

∙ (1 + ∑ ∆𝑃𝑛

𝑁

𝑛=1

+ 𝑂(∆𝑃𝑛
2))} 

(8) 

where 𝑫− denotes the set of r.v.’s that do not have 

decision variables as their parent nodes, that is, 

𝑫− = {𝑋 ∈ 𝑿|𝑆𝑐𝑜𝑝𝑒[ℳ𝑋] ∩ 𝑫 ≠ ∅}  in which 

𝑆𝑐𝑜𝑝𝑒[ℳ] denotes the set of r.v.’s over which the 

CPM ℳ  is defined; 𝑫𝑛
+  is the set of r.v.’s that 

have 𝐷𝑛  as their parent nodes, i.e. 𝑫𝑛
+ = {𝑋 ∈

𝑿|𝐷𝑛 ∈ 𝑆𝑐𝑜𝑝𝑒[ℳ𝑋]} ; and ℳ𝑋[𝑥]  denotes the 

CPM ℳ𝑋  conditioned on assignment 𝑥 , i.e. the 

probabilities of instances that are not compatible 

with 𝑥 are set as zero. For simplicity, some addi-

tional notations are introduced in Eq. (8) as 

𝑃ℳ𝑋
(𝒄) = ∑ 𝑝′

〈𝒄′;𝑝′〉∈ℳ𝑋[𝒄]

 (9) 

and 

∆𝑃𝑛(𝒄|𝑑𝑛; �̅�𝑛)

=
𝑃ℳ

𝑫𝑛
+[𝑑𝑛](𝒄) − 𝑃ℳ

𝑫𝑛
+[�̅�𝑛](𝒄)

𝑃ℳ
𝑫𝑛

+[�̅�𝑛](𝒄)
 

(10) 

The term 𝑂(∆𝑃𝑛
2)  summarizes the products in-

volving more than one ∆𝑃𝑛 term, i.e. 

𝑂(∆𝑃𝑛
2) = ∑ ∆𝑃𝑚∆𝑃𝑛

𝑚,𝑛∈{1,⋯,𝑁}
𝑚<𝑛

+ ⋯

+ ∏∆𝑃𝑛

𝑁

𝑛=1

 

(11) 

∆𝑃𝑛(𝒄|𝑑𝑛; �̅�𝑛) in Eq. (10) is represented by ∆𝑃𝑛 

in Eqs. (8) and (11) for concise representation. 

The probability 𝑃(𝒄|�̅�) is evaluated as 

𝑃(𝒄|�̅�) = 𝑃ℳ𝑫−(𝒄) ∏ 𝑃ℳ
𝑫𝑛

+[�̅�𝑛](𝒄)

𝑛∈𝒩

 (12) 

In this study, the use of the following proxy 

measure �̃�[𝑉|𝒅; �̅�]  is proposed instead of 

𝐸[𝑉|𝒅; �̅�] by ignoring 𝑂(∆𝑃𝑛
2) in Eq. (8): 

�̃�[𝑉|𝒅; �̅�] = ∑ {𝑉(𝒄)𝑃(𝒄|�̅�)

𝒄∈𝐂𝑿

∙ (1 + ∑ ∆𝑃𝑛(𝒄|𝑑𝑛; �̅�𝑛)

𝑁

𝑛=1

)} 

(13) 
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The optimization of 𝐸[𝑉|𝐝] is equivalent to opti-

mizing 𝐸[𝑉|𝐝] − 𝐸[𝑉|𝐝]̅ as 𝐸[𝑉|𝐝]̅ is a constant, 

and if 𝐸[𝑉|𝐝] is replaced by �̃�[𝑉|𝐝], the optimi-

zation problem (for minimization) becomes 

min
𝒅

∆�̃�[𝑉|𝒅; �̅�] = ∑ (min
𝑑𝑛

∆�̃�[𝑉𝑆|𝑑𝑛; �̅�])

𝑁

𝑛=1

 (14) 

where ∆�̃�[𝑉|𝒅; �̅�] = �̃�[𝑉|𝒅; �̅�] − 𝐸[𝑉|𝐝]̅ and 

∆�̃�[𝑉𝑆|𝑑𝑛; �̅�]

= ∑ 𝑉(𝒄)𝑃(𝒄|�̅�)∆𝑃𝑛

𝒄∈𝐂𝑿

(𝒄|𝑑𝑛; �̅�𝑛) (15) 

The subtraction of 𝐸[𝑉|�̅�] eliminates the constant 

1 in Eq. (13). The same procedure can be applied 

to maximization problems as well. It is noted that 

since summations are exchangeable, the optimiza-

tion problem can be decomposed into each deci-

sion variable 𝐷𝑛 whereby the number of variables 

to be optimized increases linearly in regards to 𝑁 

and |𝑉𝑎𝑙(𝐷𝑛)|. 

4. MULTI-OBJECTIVE DECISION-MAKING 

FOR CIVIL SYSTEMS 

Decision-making processes for civil systems often 

consider more than one objective, e.g. cost (∑ 𝑉𝑛𝑛 ) 

and system performance (𝑉𝑆), as illustrated in Fig-

ure 1(b). In such multi-objective optimization, a 

set of non-dominated solutions are usually of in-

terest rather than a single solution since the opti-

mal solutions can be changed depending on the 

relative importance of each objective which is of-

ten ambiguous. 

One way to handle multiple objectives, is op-

timizing their weighted sum. For the example ID 

in Figure 1(b), the objective function of Eq. (1) 

can be alternatively formulated as 

∑𝐸[𝑉𝑛|𝑑𝑛]

𝑛

+ 𝜆𝐸[𝑉𝑆|𝒅; �̅�], 𝜆 > 0 (16) 

Since 𝐷𝑛 do not become dependent through 𝑉𝑛 as 

implied in Eq. (16), the proxy measure proposed 

in Section 3, is introduced only for 𝐸[𝑉𝑆|𝒅] . 

Thereby, the multi-objective minimization prob-

lem of cost and system failure probability can be 

approximated as 

∑ {min
𝑑𝑛

(∆𝐸[𝑉𝑛|𝑑𝑛; �̅�𝑛]

𝑁

𝑛=1

+ 𝜆∆�̃�[𝑉𝑆|𝑑𝑛; �̅�])} 

(17) 

where ∆𝐸[𝑉𝑛|𝑑𝑛; �̅�𝑛] = 𝐸[𝑉𝑛|𝑑𝑛] − 𝐸[𝑉𝑛|�̅�𝑛]. 
A set of multiple optimal decision rules with 

different 𝜆  values, can be analytically obtained 

from Eq. (17). Specifically, consider the example 

in Figure 2 in which 𝑉𝑎𝑙(𝐷𝑛) = {𝑑𝑛
1 , ⋯ , 𝑑𝑛

6} and 

�̅�𝑛 = 𝑑𝑛
3 (gray square). The blue squares and or-

ange triangles denote respectively the optimal and 

non-optimal solutions in terms of the weighted 

sum formulation. The slopes of the lines connect-

ing the blue squares correspond to the 𝜆 values, 

which change the optimal rule. Therefore, by col-

lecting these values for each 𝐷𝑛  and identifying 

the corresponding optimal decision rules, all opti-

mal solutions in regards to Eq. (17) can be identi-

fied.  

 
Figure 2. Example space of proxy objective function 

 

To identify such 𝜆 values, one can start from 

the solution with the smallest ∆𝐸[𝑉𝑛|𝑑𝑛; �̅�𝑛], i.e. 

𝑑𝑛
1  in Figure 2, for it is always one of the non-

dominated solutions. Then, from the current 𝑑𝑛
𝑘1, 

the solution with the most negative slope with re-

spect to 𝑑𝑛
𝑘1 is selected among the solutions with 

greater ∆𝐸[𝑉𝑛|𝑑𝑛; �̅�𝑛], as the next solution 𝑑𝑛
𝑘2 . 

The absolute values of the slopes connecting those 
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solutions are the 𝜆 values that change the prefer-

ence between the optimal solutions. This identifi-

cation process is terminated either when there is 

no more solutions with greater ∆𝐸[𝑉𝑛|𝑑𝑛; �̅�𝑛] 
than the current one, or when there are no solu-

tions with negative slopes. 

Due to the errors by the approximation of 

𝐸[𝑉𝑆|𝒅], some of the obtained solutions may not 

be optimal. One can sort out such solutions after-

wards through the comparison between the ob-

tained solutions. In addition, multiple basis deci-

sion rules �̅� can be utilized to obtain a sufficient 

number of non-dominated solutions as a single 

evaluation is unlikely to identify all of them due 

to the approximation errors. 

5. NUMERICAL EXAMPLES  

5.1. Illustrative example: a system with three 

components 

Consider the example system and its ID in Figure 

1. In the following analysis, CPM ℳS is reduced 

to 

𝐂𝑆 = [
0 0 0 −1
0 0 1 0

], 𝐩𝑆 = [
1
1
] (18) 

as  𝑉𝑆 = 0 for the first and last rows in Eq. (3). 

Then, the set of all assignments of interest is 

𝐂𝑿 = [

0 0 0 −1 0
0 0 0 −1 1
0 0 1 0 0
0 0 1 0 1

] (19) 

where the columns of 𝐂𝑿 sequentially denote the 

assignments over 𝑆, 𝑋1, 𝑋2, 𝑋3, and 𝐻. The costs 

𝑉𝑛 for retrofitting 𝑋𝑛 are set as 100, 60, and 50 for 

𝑛 = 1,2,3, respectively, leading to the CPMs ℳ𝑉𝑛
 

with 

𝐂𝑉1
= [

0 0
100 1

],  𝐩𝑉1
= [

1
1
], 

𝐂𝑉2
= [

0 0
60 1

],    𝐩𝑉2
= [

1
1
], and 

𝐂𝑉3
= [

0 0
50 1

],    𝐩𝑉3
= [

1
1
] 

(20) 

where the first and second columns of 𝐂𝑉𝑛
 respec-

tively stand for the assignments over 𝑉𝑛 and 𝐷𝑛. 

Regarding the assignments 𝒄1 = (0,0,0, −1,0) in 

the first row of  𝐂𝑿, the probability 𝑃(𝒄1|�̅�) in Eq. 

(12) for the basis decision rule �̅� = (0,0,0)  is 

evaluated as 

𝑃ℐ(𝒄1|�̅�) = (0.8 ∙ 1) ∙ (0.2 ∙ 0.2) = 0.032 (21) 

where the first parenthesis corresponds to 

𝑃ℳ𝐻
(𝒄1) ∙ 𝑃ℳ𝑆

(𝒄1); and the terms in the second 

are 𝑃ℳ𝑋1
(𝒄1)  and 𝑃ℳ𝑋2

(𝒄1) . It is noted that 

𝑃ℳ𝑋3
(𝒄1) is not considered as 𝑋3  has the “−1” 

state in 𝒄1 . The probabilities for other assign-

ments 𝒄𝑘, 𝑘 = 2,3,4 can be evaluated by the same 

procedure and the result is summarized in Table 1. 

It is noted that 𝑉𝑆(𝒄𝑘) = 1 for all 𝑘.  

 

Table 1: 𝑉𝑆(𝒄𝑘)𝑃ℐ(𝒄𝑘|�̅�), 𝑘 = 1,⋯ ,4. 

𝒄1 𝒄2 𝒄3 𝒄4 

0.032 0.032 0.0256 0.0192 

 

Table 2: Values of ∆�̃�[𝑉𝑠|𝑑𝑛
1], ∆𝐸[𝑉𝑛|𝑑𝑛

1], and 𝜆, 𝑛 =
1,2,3 for basis decision rule �̅� = (0,0,0). 

n 1 2 3 

∆�̃�[𝑉𝑠|𝑑𝑛
1 ; �̅�] -0.0416 -0.0176 -0.0176 

∆𝐸[𝑉𝑛|𝑑𝑛
1 ; �̅�𝑛] 100 60 50 

𝜆 240 3,410 2,840 

 

Regarding the given basis rule, the remaining 

alternative for 𝐷1  is 𝑑1
1 . Following Eq. (10), 

∆𝑃1(𝒄𝑘|𝑑1
1; �̅�1), 𝑘 = 1,⋯ ,4 are evaluated as 

∆𝑃1(𝒄𝑘|𝑑1
1; �̅�1) = (0.1 − 0.2)/0.2 =

−0.5, for 𝑘 = 1,3; and 

∆𝑃1(𝒄𝑘|𝑑1
1; �̅�1) = (0.3 − 0.4)/0.4 =

−0.25, otherwise 

(22) 

∆�̃�[𝑉𝑆|𝑑1
1; �̅�] is then evaluated from the quantities 

in Table 1 and Eq. (22) as  

∆�̃�[𝑉𝑆|𝑑1
1] = (0.032 + 0.0256) ∙ (−0.5)

+ (0.032 + 0.0192) ∙ (−0.25) = −0.0416 
(23) 

Also, ∆𝐸[𝑉1|𝑑1
1; �̅�1] is calculated as 

∆𝐸[𝑉1|𝑑1
1; �̅�1] = 𝑉1(𝑑1

1) − 𝑉1(𝑑1
0) = 100 (24) 

Since there are only two rules for each 𝐷𝑛, the 𝜆 

values that change the optimality, are evaluated 

from the slopes connecting them, i.e. for 𝐷1, 
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𝜆 = |(100 − 0)/(−0.0416 − 0)| = 240 (25) 

The same procedure applies to the other decision 

variables, and Table 2 summarizes the quantities.  

The obtained 𝜆 values lead to the optimal de-

cision rules 𝒅∗ as: 

𝒅∗ = (0,0,0)  

𝒅∗ = (1,0,0) 

𝒅∗ = (1,0,1) 

𝒅∗ = (1,1,1) 

for 0 < 𝜆 < 240; 

for 240 < 𝜆 < 2,840; 

for 2,840 < 𝜆 < 3,410; and 

for λ > 3,410 

(26) 

For each decision rule 𝒅  among the total of 
|𝑉𝑎𝑙(𝑫)| = 8, Figure 3 summarizes the total cost 

∑ 𝐸[𝑉𝑛|𝑑𝑛]𝑛  and the system failure probability 

𝐸[𝑉𝑆|𝒅] (blue squares.) There are five non-domi-

nated solutions (red asterisks), and four solutions 

can be identified as optimal using the weighted 

sum in Eq. (16) (dotted yellow line). The weighted 

sum of objective values cannot identify the non-

dominated solutions that show a concave shape 

with their adjacent solutions. It is noted that the 

four decision rules identified in Eq. (26) corre-

spond to the solutions that can be identified by the 

exact formulation in Eq. (16).  

 
Figure 3: All and the optimal decision rules for ex-

ample system. 

5.2. Example reliability block diagram (RBD) 

The proposed methodology is applied to an exam-

ple reliability block diagram (RBD) consisting of 

8 components in Figure 4(a). In the corresponding 

ID of Figure 4(b), the state of system event (𝑆) is 

defined as the connectivity between the nodes 𝑠 

and 𝑡, which is determined by the states of com-

ponents (𝑋𝑛, 𝑛 = 1,⋯ ,8).  Decision variables 𝐷𝑛 

are associated with r.v.’s 𝑋𝑛, and have 3 decision 

alternatives that determine the reliability of n-th 

component. The cost 𝑉𝑛  of decision rule on 𝐷𝑛 , 

and the utility of system performance, 𝑉𝑆  are 

modeled in the same way with Section 5.1. 

There are a total of 38 decision rules as de-

scribed in Figure 5 (blue dots), and all of the 27 

non-dominated solutions (red squares) can be 

identified by the proposed method (yellow aster-

isks) by using 10 basis decision rules. It is noted 

that the proposed methodology can even identify 

the solutions that show concave shape with their 

adjacent solutions due to the errors caused by the 

approximation while the exact formulation cannot 

identify them. 

 
Figure 4: (a) Example RBD and (b) its ID. 

 

 
Figure 5: All and the optimal decision rules for ex-

ample RBD. 

5.3. Sioux Falls benchmark network 

Consider the Sioux Falls benchmark network un-

der a hypothetical earthquake hazard in Figure 6(a) 

consisting of 76 reinforced concrete (RC) bridges 

whose failure events are defined as in terms of RC 

columns. In the corresponding ID in Figure 6(b), 

the r.v.’s 𝑀 and 𝐿 respectively stand for the mag-

nitude and location of earthquakes. The decision 

variable 𝐷𝑛, 𝑛 = 1,⋯ ,76, has the 4 decision al-

ternatives of the cross sectional area of  n-th 
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bridge’s RC column whose state is represented by 

𝑋𝑛. The utility variables 𝑉𝑛, 𝑛 = 1,⋯ , 𝑁, and 𝑈𝑆 

respectively quantify the cost of 𝐷𝑛  and system 

failure probability. 

Figure 7 compares the results obtained by the 

proposed method with 50 basis decision rules and 

genetic algorithm (GA) after 10,000 generations, 

each with 50 populations. It is noted that the pro-

posed methodology is able to obtain superior so-

lutions while requiring the computational cost 

equivalent to evaluating one generation in GA. 

 
Figure 6: (a) Sioux Falls benchmark network and (b) 

its ID. 

 

 
Figure 7. Optimal decision rules identified by pro-

posed methodology and GA. 

6. CONCLUSIONS 

Influence diagram (ID) facilitates the operation of 

modeling and decision-making for civil systems. 

However, the large size and complex definition of 

system events of real-world civil systems, make 

such operation challenging. In particular, the con-

verging structure between the random variables 

quantifying component events and that for system 

event, requires an exponentially increasing num-

ber of parameters, which leads to the exponen-

tially increasing number of variables to be opti-

mized as well. The application of matrix-based 

Bayesian network (MBN) allows the modeling of 

ID for large and complex civil systems. In order 

to optimize the IDs by MBN, a proxy objective 

function is proposed so that the computational 

complexity can be reduced from exponential or-

der to polynomial. The errors caused by the ap-

proximation can be compensated by iterating the 

proposed scheme. 

Another issue in decision-making for civil 

systems is the presence of multiple conflicting ob-

jectives. For such multi-objective optimization, 

the objective function is set as their weighted sum. 

The proposed proxy measure provides an efficient 

way for evaluating the weights that control the op-

timal decision rule. Three numerical examples 

successfully demonstrate the accuracy and effi-

ciency of the proposed methodology. 

7. ACKNOWLEDGEMENT 

This research was supported by a grant (18SCIP-

B146946-01) from Smart Civil Infrastructure Re-

search Program funded by Ministry of Land, In-

frastructure, and Transport of Korean government. 

8. REFERENCES 
Byun, J.-E. Zwirglmaier, K., Song, J., Straub, D. (2018) 

"Development of Matrix-based Bayesian Net-

work." Proc., Engineering Mechanics Institute 

conference (EMI 2018). May 29 – June 1, Cam-

bridge, USA. 

Diehl, M., and Haimes, Y. Y. (2004). "Influence dia-

grams with multiple objectives and tradeoff 

analysis." IEEE Transactions on Systems, Man, 

and Cybernetics - Part A: Systems and Humans, 

34(3), 293-304. 

Koller, D., and Friedman, N. (2009). Probabilistic 

Graphical Models: Principles and Techniques - 

Adaptive Computation and Machine Learning, 

Cambridge: The MIT Press. 

Olmsted, S. M. (1984). "On representing and solving 

decision problems." Ph.D. thesis, Stanford Uni-

versity. 

Poole, D. (1996). "Probabilistic conflicts in a search 

algorithm for estimating posterior probabilities 

in Bayesian networks." Artificial Intelligence, 

88(1-2), 69-100. 

 


