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ABSTRACT:

As infrastructure systems are highly interdependent, one needs to analyze their disaster resilience and
develop restoration plans with the consideration of infrastructure interdependencies. This study presents
two probabilistic models for infrastructure decision-makers to simulate the recovery of interdependent
systems in a post-disaster scenario. The models consider interdependencies related to damage, function-
ality, and restoration. To incorporate uncertainty in restoration, this study assumes that the actual duration
of each restoration activity follows a random distribution. To simulate the decision-making process in
the recovery, this study uses the PRAISys platform to implement two schemes with different restoration
criteria. The first scheme uses the priority ranking of the damaged structure (based on its importance,
criticality, etc.) as the criterion and the platform simulates the restoration plan under resource and depen-
dency constraints. In contrast, the second uses the criterion of minimizing the restoration completion time
by framing all restoration activities within a constrained optimization formulation, and the platform im-
plements the optimal schedule as the restoration plan. To exemplify the applicability of the two schemes,
this study simulates the recovery of interdependent systems after a hypothetical earthquake in the Lehigh
Valley, a multi-county community in eastern Pennsylvania, USA.

1. INTRODUCTION

Critical infrastructures serve as the backbone of the
economy, security, and welfare of a nation. There
are complex interdependencies among critical in-
frastructures, and the clear trend is that these in-
terdependencies are growing (Sun et al., 2018b).
Historical disasters, such as the 2011 Great To-
huku Earthquake-Tsunami and Hurricane Irma in
2017, have demonstrated the catastrophic cascad-
ing failures and escalating impacts due to interde-

pendencies (Koshimura et al., 2014; Cross, 2017).
In this respect, the following questions arise from
decision-makers of local governments and utility
companies. If a severe event like Tohuku Earth-
quake happens in our administrative region, how
should we develop efficient strategies to protect our
community and rapidly restore infrastructure func-
tionality in future hazards?

To answer this question, computational frame-
works and simulation tools have been developed
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worldwide to assess the disaster resilience of in-
terdependent infrastructures. In Europe, SysRes
(Lundberg and Woltjer, 2015) and GRRASP (Gal-
busera and Giannopoulos, 2016) are under devel-
opment to assess the risk and resilience of criti-
cal infrastructures. In the United States, MCEER
(Multidisciplinary Center for Earthquake Engineer-
ing Research) has developed the PEOPLES re-
silience framework (Renschler et al., 2010; Cimel-
laro, 2016). Miles and Chang (2011) developed Re-
silUS to assess the community resilience, with spa-
tial and temporal predictions of infrastructure ser-
vice losses and recoveries in a probabilistic man-
ner. The Center for Risk-Based Community Re-
silience Planning is developing IN-CORE to evalu-
ate the community resilience under different types
of hazards (Ellingwood et al., 2016). As part of
an NSF project, the PRAISys (Probabilistic Re-
silience Assessment of Interdependent Systems)
platform is being developed to assess the commu-
nity resilience by simulating stochastic infrastruc-
ture interdependencies under a deterministic sce-
nario (The PRAISys Team, 2018).

A critical component of all these frameworks
should be a model to capture the decision-making
process. This study compares two potential mod-
els: one very simple and strictly following a pre-
defined priority ranking list, and one much more
sophisticated, based on the formulation and solu-
tion of a constrained optimization problem. The
PRAISys platform is adopted to assess the disas-
ter resilience of two infrastructure systems after a
hypothetical earthquake scenario in a testbed, us-
ing both decision models. Simulation results from
different schemes are compared, to discuss the fea-
tures of the two models. This comparison is use-
ful for modelers, who can see the implications of
different modeling assumptions, and for decision
makers, who can see how different criteria can lead
to variations in practical outcomes.

2. THE PRAISYS PLATFORM
2.1. Description of the PRAISys platform
The PRAISys platform is a comprehensive regional
disaster simulator for modeling critical infrastruc-
tures and their stochastic interdependencies. Given
a hazard scenario, the PRAISys platform can pre-

dict possible consequences and recovery for infras-
tructure systems, considering resource and depen-
dency constraints. PRAISys focuses especially on
two features. On the one hand, it considers un-
certainties in damage assessment, restorations, and
functionality dependencies. On the other hand, it
rigorously classifies nine types of interdependen-
cies related with hazard, damage, restoration, and
functionality, and provides proper interfaces for the
implementation. The following content describes
the ten types of interdependencies.

A first type of interdependency can be considered
as the spatial correlation of the intensity in a hazard
scenario. This is addressed system-wide through
correlated hazard maps, which give the event inten-
sities over the entire region. The platform could
also handle multiple correlated intensity measures,
such as a hurricane that brings both high winds and
heavy rainfalls, or snow storms.

Three additional types of interdependencies are
damage-related. The second type corresponds to
correlated sub-component damages. For example,
damaged columns are often associated with dam-
aged bridge decks in an earthquake. This type of
interdependency can be addressed by a co-variance
matrix for interdependent sub-components, which
has not yet been implemented in the current ver-
sion of PRAISys. The third type represents me-
chanical cascading failures, representing the fact
that a falling transmission tower breaks down ad-
jacent power lines, which is modeled through the
failure library. The fourth type indicates cascading
failures due to flow redistribution, which is com-
mon in the power sector and can be captured with
power flow analysis, but they are not included in the
current version of PRAISys.

Restoration-related interdependencies fall into
four additional types. The fifth type represents the
delaying effect due to escalating failures, such as
a severely damaged transportation system delay-
ing the transportation of repair crews and equip-
ment. This type of interdependency is modeled
by a delaying factor when the system functionality
loss reaches a threshold level. The sixth type rep-
resents functionality requirements while conduct-
ing restoration tasks, such as repair of a supporting
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bridge before installing utility lines. This type of in-
terdependency is modeled by functionality require-
ments in the restoration task library. The seventh
type represents resource-sharing interdependencies,
which is represented by resource constraints in the
simulations. The eighth type refers to the sequence
among different restoration activities, which is rep-
resented by precedence constraints of restoration
tasks.

Finally, there are the functionality-related inter-
dependencies. The ninth type corresponds to func-
tionality dependencies across or within systems,
which are modeled by mechanistic functionality
assessment for every component and every sys-
tem over time. The tenth type, called “composi-
tional functionality dependencies”, represents the
fact that a system’s functionality depends on the
functionality its components and is assessed with
system-level analyses or system functionality func-
tion (e.g., traffic flow analysis, power flow analysis,
connectivity analysis).

2.2. Five analysis steps
As shown in Figure 1, the PRAISys platform con-
sists of five analysis steps. The first step reads all
input describing the hazard scenario and infrastruc-
ture systems, as well as the analyst’s simulation
choices. In the input, PRAISys allows the analyst
to set up different levels of interdependencies. For
instance, there are two levels of resource-sharing
interdependencies (the seventh type) in PRAISys:
high – across systems, or low – only within an in-
dividual system. Currently, local governments and
utility companies usually do not share resources
across systems even though they might coordinate
restorations of different systems. Therefore, this
study chooses resource-sharing within every indi-
vidual system and keeps all other types of interde-
pendencies at high levels.

The second step conducts a fragility analysis for
every structural component and samples the dam-
age state, followed by the assessment of cascad-
ing failures. The fragility library stores fragility
models of all types of components, including elec-
tric substation (Zareei et al., 2017; FEMA, 2017),
transmission tower (Xie et al., 2012), central office
(FEMA, 2017), and communication tower (Giov-

1. Input hazard map 
and Infrastructure 

data

2. Assess damage and 
determine restoration 

tasks

3. Simulate restoration planning of decision-makers

4. Predict  
functionality recovery 

in multiple samples

5. Assess disaster 
resilience in a 

probabilistic manner

(Analyst’s Choice from input)

Scheme 3B
• Optimization formulation 3B-1
• Optimization formulation 3B-2
• etc. 

Scheme 3A
• Policy 3A-1 
• Policy 3A-2
• etc. 

Figure 1: The PRAISys computational procedure.

inazzi et al., 2017). After that, PRAISys deter-
mines the required restoration tasks associated with
the damage state for every structural component,
according to the restoration task library, which is
compiled on the basis of reports and papers, such
as Cagnan (2005), and consulting with professional
engineers and construction managers.

In the third step, the selected decision model
simulates the human planning of restoration activi-
ties. There are two categories of simulation models
in PRAISys to determine the restoration sequence:
policy-based (3A) and optimization-based (3B), de-
scribed in detail in Section 3. This study compares
simulation results from the two restoration schemes
to assess how different decision modes impact func-
tionality recovery and system resilience.

According to the restoration sequence, the fourth
step predicts possible functionality recovery for ev-
ery system under resource and dependency con-
straints. Uncertainties in restoration are captured by
sampling task durations from appropriate probabil-
ity distributions. The entire procedure is repeated
for various samples of damage, restoration dura-
tions, random dependencies, etc., in a Monte Carlo
approach. Finally, PRAISys computes statistics of
system resilience and other metrics in the fifth step.

2.3. Functionality and resilience metrics
PRAISys provides multiple functionality and re-
silience metrics for various components, systems,
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and systems-of-systems, from which the analyst
can choose. This study chooses the following func-
tionality metric for both systems:

Q(t) =
∑

N
k=1 wk ·qk(t)

∑
N
l=1 wk

(1)

where Q(t) is the functionality at time t for a sys-
tem consisting of N components; wk is the weight
of component k; qk(t) is the functionality of com-
ponent k at time t. This study considers only func-
tional substation components contributing to the
system functionality for the power system, using
the substation voltage as the weight. It considers
functional components of both central offices and
communication towers contributing to the function-
ality for the communication system, with each com-
ponent having the weight of 1.

For every functionality recovery sample Qi(t),
system resilience is measured by the resilience in-
dex (Reed et al., 2009; Bocchini et al., 2014), fol-
lowing Equation 2 and also presented in Figure 2:

RIi =

∫ th
t0 Qi(t)dt

th− t0
(i = 1, ...,S) (2)

where RIi is the resilience index of the functionality
recovery sample Qi(t); t0 is the time instant when
the event strikes; th is the time horizon of the anal-
ysis; S is the number of random samples.

t

Q(t) 
[%]

t0 th

100

0

Functionality recovery samples

Q1(t) Qi(t) QS(t)

𝑅𝐼𝑖 =
𝑡0׬
𝑡ℎ𝑄𝑖 𝑡 𝑑𝑡

𝑡ℎ − 𝑡0

Figure 2: Functionality recovery samples and illustra-
tion of resilience index.

3. RESTORATION PLANNING MODELS
3.1. The policy-based model
Table 4 presents an example of the policy-based
model, called “Scheme 3A”, for structural com-
ponents in every system. This study neglects the

damage potential for power plants because of their
very low vulnerability. Restorations of other com-
ponents in the power system follows the policy-
based priority ranking, starting from electric sub-
stations to power lines, and then transmission tow-
ers. Similarly, restoration of damaged components
in the communication system follow the ranking
from central offices to communication lines, and
then communication towers. Damaged compo-
nents of the same type have the restoration prior-
ity rank based on their capacity; damaged compo-
nents of the same capacity are randomly restored
in sequence. For example, electric substations at
a high voltage level are restored ahead of those at a
low voltage; electric substations at the same voltage
level are randomly restored. These priority policies
and the ranks themselves are assumed to be defined
pre-event by appropriate decision makers, and then
followed blindly in the post-event restoration.

3.2. The optimization-based model
“Scheme 3B” is an example of a decision model
rigorously following the outcome of an optimiza-
tion, with specific objective(s) and constraints. In
this study, the criterion of minimal restoration com-
pletion time (Karamlou et al., 2017; Sun et al.,
2018a) has been chosen, along with resource and
dependency constraints. This formulation is a
resource-constrained project scheduling problem.

Find binary decision variables

x jt =

{
1, if task j finishes at the period t,
0, otherwise

∀ j ∈ J and t ∈ [EFj,LFj]

(3)

that will reach the objective of finishing all restora-
tion tasks as soon as possible

minimize(
LFn

∑
EFn

t · xnt) (4)

and also satisfy the following constraints:

LFj

∑
t=EFj

x jt = 1 (5)
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LFj

∑
t=EFj

(t−d j) · x jt−
LFi

∑
t=EFi

t · xit ≥ 0,

∀ j ∈ J and i ∈ Pj

(6)

∑
j

u jr ·
min(t+d j−1,LFj)

∑
q=max(t,EFj)

x jq ≤ ar,

∀r ∈ R and t = [1,2, ..., th]

(7)

where x jt is a binary decision variable, x jt = 1 when
task j ( j = 1,2, ...,n) is finished at end of period t,
x jt = 0 otherwise; d j is the duration of task j; EFj
and LFj are the earliest possible finishing time and
the latest possible finishing time of task j; th is the
time horizon that the analyst is interested in; u jr is
the required amount of the rth type of renewable re-
source when conducting task j; [ar] is the available
amount of the rth type of renewable resource in R;
Pj is the set of predecessor tasks for task j; J is the
entire set of restoration tasks, including a dummy
end task n. In particular, Equation 4 is the objec-
tive of minimizing the finishing time of the dummy
end task, which is to minimize the completion time
of all restoration tasks. Equation 5 requires that ev-
ery task is executed once. Equation 6 enforces the
precedence requirement for every task. Equation 7
enforces that the amount used for every type of re-
source does not violate the resource availability.

4. APPLICATION EXAMPLE
4.1. The Lehigh Valley testbed
The Lehigh Valley testbed covers a region of
Lehigh and Northampton Counties in eastern Penn-
sylvania, United States. This study focuses on the
post-earthquake performance of two infrastructure
systems: power and communication. Figure 3(a)
presents a hypothetical earthquake scenario, in term
of peak ground acceleration (PGA), in the unit of g,
with an approximate return period of 80,000 years.
This rare earthquake scenario is used in this study,
simply for demonstrating how PRAISys can predict
possible consequences and infrastructure recovery
in case of an extreme hazard. The power system
consists of 6 power plants and 67 electric substa-
tions, shown in Figure 3(b). The communication

system consists of 40 central offices and 89 com-
munication towers in Figure 3(c). Table 1 presents
the amount of electric substations at different volt-
age levels. Tables 2 and 3 show central offices and
communication towers of different companies.

(a)

(b)

(c)

Figure 3: The Lehigh Valley testbed: (a) Earthquake
scenario in terms of peak ground acceleration (PGA),
(b) Power system, and (c) Communication system.

Substation type Transmission-level Distribution-level
Voltage (kV) 500 230 138 115 69

Amount 5 4 14 1 43

Table 1: Electric substations at different voltage levels

PRAISys simulates system functionality recov-
ery under resource constraints and dependency con-
straints, using the two restoration schemes de-
scribed in Section 3. The time horizon is set
as th = 90 days. Under each scheme, a total of
1,000 samples are computed for this example. The
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Company Verizon SET CTC Sprint RCN Others
Count 17 11 6 1 1 4

Note: SET = Service Electric Telephone, CTC = Commonwealth Telephone Company, RCN =
RCN Corp., formerly Residential Communications Network Corporation.

Table 2: Central offices of different companies

Company Amount
AT&T 16
Verizon 5

T-mobile 7
Sprint 2
RCN 4

Capstar 9
American Towers 12

Others 35

Table 3: Communication towers of different companies

platform considers that there are four types of re-
newable resources, representing crew, equipment,
truck, and tool in each of the two systems. Re-
source constraints are set as [ar]P = [15,25,20,20]
for the power system and [ar]C = [15,25,20,20] for
the communication system. The following section
presents simulation results using the two schemes.

4.2. Results
Figure 4 presents the functionality recovery sam-
ples of the two systems using Schemes 3A and
3B, respectively. Based on every functionality re-
covery sample, the restoration completion time is
computed. Figure 5 shows the distributions of the
restoration completion time for the two systems.
The power system shows a slightly stretched dis-
tribution under priority planing (3A), with similar
mean completion times under both schemes. Con-
versely, the communication system recovers 3 days
faster on average if planning the restoration through
optimization (3B), rather than policy (3A).

Figure 6 shows the probability of the two sys-
tems having achieved or exceeded a certain func-
tionality threshold over time. The power system is
most likely to have the functionality over 80% af-
ter 7 days and being fully functional after 12 days
when using Scheme 3A. Conversely, the power sys-
tem is fully functional after 7 days while optimiz-
ing the completion time. For the communication
system, it is most likely to having the functional-
ity over 80% after 6 days and being fully func-
tional after 31 days while using the policy-based
decision making. However, it only takes 29 days

Scheme 3A Ranking Power Communication

Policy
based

1 Substation Central office
2 Power line Co. line
3 Tr. tower Co. tower

Note: Tr. tower = transmission tower; Co. line = communication line; Co. tower =
communication tower.

Table 4: Priority ranking in Scheme 3A

0 20 40 60 80
40

60

80

100
(a) Scheme 3A - Priority

0 20 40 60 80
40

60

80

100
(b) Scheme 3B - Optimization

Figure 4: The functionality recovery samples of two
systems: (a) Scheme 3A, and (b) Scheme 3B.

to fully recover under Scheme 3B. This is probably
because Scheme 3B simulates restoration decisions
that make full use of available resources at all time
steps to complete restorations as soon as possible.
Instead, Scheme 3A may sometimes lead to idling
resources that are not used for tasks of low priority
components.

For every functionality recovery sample, the re-
silience index is computed using Equation 2 at
th = 90 days. Figure 7 presents mean values and
standard deviations of the resilience index for the
two systems. The power system has the mean re-
silience index of 0.9799 under Scheme 3A, lower
than 0.9851 under Scheme 3B. A similar increas-
ing trend from 0.9801 in Scheme 3A to 0.9806 in
Schme 3B is found for the communication system.

5. CONCLUSIONS
Using PRAISys, this study investigates how two
restoration planning models yield different func-
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(a) Scheme 3A - Priority
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(b) Scheme 3B - Optimization
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Figure 5: Distributions of completion time for the two
systems: (a) Scheme 3A, and (b) Scheme 3B.

tionality and resilience predictions for interdepen-
dent systems, with the following major findings.

(1) Functionality recovery samples from the two
schemes show quite different trends, under the
same resource and dependency constraints. The
power system shows similar means of completion
time, but the communication system takes 3 days
longer using Scheme 3A than using Scheme 3B to
fully recover on average. In addition, both systems
show smaller mean values of resilience when us-
ing the policy-based decision model than when op-
timizing for the restoration completion time.

(2) The PRAISys platform can predict proba-
bilistic restoration functions and system resilience
for interdependent infrastructures. It is a gener-
alized simulator, applicable to different infrastruc-
ture systems and different types of hazards. Un-
certainties in damage assessment, restoration, and
functionality dependencies are considered through
fragility analyses, random distributions of restora-
tion duration, and probabilistic dependency rela-
tions. To simulate human decision making in devel-
oping restoration plans under resource and depen-
dency constraints, the platform provides two cate-
gories of restoration models, allowing the analyst to

Figure 6: Probabilistic restoration function of the two
systems: (a) Scheme 3A, and (b) Scheme 3B.

choose at the initial input. It can compare disaster
restoration plans with different decision criteria to
support informed decision-making.
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