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ABSTRACT: Seismic reliability evaluation is of great importance in nuclear power engineering. The 

task remains an open challenge since it will involve the dynamic reliability analysis of large-scale 

complex structures of nuclear power plants on a global structure level under random seismic excitations, 

and in particular in the presence of structural uncertainties. The traditional random vibration methods 

with coupling treatment of the physical and the probabilistic evolution mechanism are hardly capable 

of executing such a difficult task. In this study, the explicit time-domain method (ETDM) developed in 

recent years is applied to the seismic global reliability analysis of complex nuclear power plants in 

consideration of structural uncertainties. The time-domain explicit expressions of the critical responses 

involved are first constructed based on the impulse response functions, and on this basis, the 

subsequent random vibration and reliability analysis can then be conducted just focusing on the 

selected critical responses. The uncoupling treatment of the two sets of mechanism in ETDM will lead 

to a real-sense dimensional reduction in terms of degrees of freedoms and time instants involved in 

random vibration analysis of structures, and thus a high efficiency in dynamic reliability analysis even 

in the presence of large-scale structural models. The engineering application to a nuclear power plant 

with over 2 million degrees of freedom, which is now being built in China, shows the feasibility of the 

present approach. 

 

1. INTRODUCTION 

The safety problems of nuclear power plants 

exposed to seismic hazard have always received 

considerable attention because a failure of such a 

special structure can lead to catastrophic 

consequences. In view of the importance of 

nuclear power plants, there is a growing need for 

conducting the seismic reliability analysis of 

such complex structures. However, this remains 

an open challenge since the nuclear power plants 

are usually characterized by a huge number of 

degrees of freedom, leading to an unacceptable 

computational cost. The problems will be even 

more complicated when the uncertainties of 

structural parameters such as material properties 

and geometrical properties are considered. 

Therefore, it has been a focus to find an effective 
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method for seismic reliability analysis of large-

scale structures involving random structural 

parameters. 

The direct Monte Carlo simulation (MCS) 

has been widely accepted as a versatile method 

for dynamic reliability assessment of general 

structures (Schüeller and Pradlwarter, 2009). 

However, it is still intractable for large-scale 

structures when small failure probability is of 

interest, because the method requires a large 

number of runs of large-scale model. The 

importance sampling technique (Au and Beck, 

2001a) and the subset simulation (Au and Beck, 

2001b) are usually employed to reduce the 

sample size. To further enhance the efficiency 

for seismic reliability analysis by MCS, a high-

efficient sample analysis method of large-scale 

structures is needed. 

In recent years, Su et al. have proposed and 

developed a family of explicit time-domain 

method (ETDM), which is mainly devoted to 

solving the nonstationary random vibration 

problems of linear and nonlinear large-scale 

structures (Su and Xu, 2014; Su et al., 2016; Hu 

et al., 2016; Su et al., 2018a; Su et al., 2018b). 

Unlike the traditional coupled physical-statistical 

random vibration methods, the ETDM is capable 

of manipulating the physical and the statistical 

evolution separately, which will lead to a real-

sense dimensional reduction in terms of degrees 

of freedoms and time instants involved in 

random vibration analysis of structures, and thus 

a high efficiency in dynamic reliability analysis 

even in the presence of large-scale structural 

models. The time-domain explicit expressions of 

the critical responses involved are first 

constructed based on the impulse response 

functions, and on this basis, the subsequent 

random vibration and reliability analysis with 

MCS can then be conducted just focusing on the 

selected critical responses. In conjunction with 

the total probability theorem in probability 

theory, the method for deterministic structures is 

further extended to the seismic reliability 

analysis of stochastic structures. The engineering 

application to a nuclear power plant with over 2 

million degrees of freedom, which is now being 

built in China, shows the feasibility of the 

present approach. 

2. EXPLICIT EXPRESSIONS OF DYNAMIC 

RESPONSES 

For a generic linear structural system subjected 

to seismic excitations, the equation of motion can 

be expressed as 

 ( )X t  MU CU KU L  (1) 

where M , C  and K  denote the mass, damping 

and stiffness matrix of the structure, respectively; 

U , U  and U  denote the time-dependent nodal 

displacement, velocity and acceleration vector of 

the structure, respectively; L  denotes the 

orientation vector of the seismic excitation; and 

( )X t  denotes a random process of the ground 

motion acceleration. 

For the linear equation of motion shown in 

Eq. (1), define the state vector as 
T T T[  ]V U U . 

Then, with the assumption that 0 (0) V V 0 , 

the explicit expression of the state vector at each 

time instant can be derived as 

 
,0 0 ,1 1 ,

                               ( 1, 2, , )

i i i i i iX X X

i n

   



V A A A
 (2) 

where n  is the number of time steps for time-

history analysis; ( )i itV V  and it i t   with t  

being the time step; ( )( 0,1, , )j jX X t j i   are 

the seismic excitations at different time instants; 

and ,0 ,1 ,, , ,i i i iA A A  are the corresponding 

coefficient vectors, which are associated with the 

structural parameters and reflect the influence of 

structural parameters on dynamic responses. The 

coefficient vectors can be expressed in closed 

forms as 
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where T , 
1Q  and 

2Q  can be derived based on 

the Newmark-β integration scheme as (Su and 

Xu, 2014; Su et al., 2016) 

111 12 2

1 2

321 22 4

1 1

11 1 3

1 1

12 2 3

1

21 3 11 5

1

22 3 12 4 5

1 1 1

1 3 2

1

3 3 1 5 4 3 2

0 3

1 0 3 2

,  ,  

ˆ ( ) 

ˆ ( )

( )

ˆ ˆ,  

,  

ˆ

,  

a a

a a a

a a a

a a

a a

 

 





  



    
      
    

 

 

  

  

 

  

  

 

RH H R
T Q L Q L

RH H R

H K S S M K

H K S S M C

H H Ι M K

H H I M C

R K S M R K

R R M R R

K K M C

S M C S 1 4 3 2 5

0 1 22

3 4 5

,  

1 1 1
,  ,  1 

2

,  1,  ( 2)
2

a a a a

a a a
tt

t
a a a

t

 

  

  


















    

    
 


     
 

M C S M C

 (4) 

in which I  denotes the unit matrix, and   and 

  are two parameters that can be determined 

according to integration stability. In this study, 

0.5   and 0.25   are used and the 

Newmark-β integration scheme will be 

unconditionally stable. 

According to Eq. (3), the coefficient vectors 

can be arranged in the form shown in Table 1, 

from which it can be seen that only the 

coefficient vectors ,0iA  and ,1( 1,2, , )i i nA  in 

the first two columns need to be calculated and 

stored, while the other coefficient vectors in the 

rest columns can be directly obtained from those 

in the second column. 

 
Table 1: Coefficient vectors for each time instant. 

Time 

instant 

Coefficient vector 

0X  1X  2X   2nX   1nX   nX  

1t  1,0
A  

1,1
A       

2t  2,0
A  

2,1
A  

1,1
A      

        

2nt   2,0n
A  

2,1n
A  

3,1n
A   1,1

A    

1nt   1,0n
A  

1,1n
A  

2,1n
A   2,1

A  
1,1

A   

nt  ,0n
A  

,1n
A  

1,1n
A   3,1

A  
2,1

A  
1,1

A  

Besides using Eq. (3), the coefficient 

vectors ,0iA  and ,1( 1,2, , )i i nA  can also be 

determined through two deterministic time-

history analyses of the structure subjected to two 

unit impulse excitations 0 ( )p t  and 1( )p t , as 

shown in Figure 1 and Figure 2, respectively. It 

can be easily observed from Eq. (2) that the 

coefficient vectors 
,0iA  and 

,1( 1,2, , )i i nA  

are exactly the corresponding solutions 0

iV  and 

1( 1,2, , )i i nV  with respect to the two load 

cases, as also illustrated in Figure 1 and Figure 2, 

respectively. Therefore, the computational cost 

of all the coefficient vectors is equivalent to that 

required by two deterministic time-history 

analyses of the structure. 

 
Figure 1: The unit impulse excitation 0 ( )p t . 

 
Figure 2: The unit impulse excitation 1( )p t . 

 

For the purpose of seismic reliability 

analysis, not all structural responses are required, 

and only a certain number of critical responses 

need to be focused on. Suppose is  is a critical 

response component of interest in iV . Then, 

from Eq. (2), the explicit expression of is  can be 

directly obtained as 

0 ( )p t

0t 1t 2t 3t 4t nt
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1
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,0 0 ,1 1 ,  

                         ( 1, 2, , )

i i i i i is a X a X a X

i n

   


 (5) 

where 
,i ja  are the corresponding elements of 

, ( 0,1, , )i j j iA  with respect to is . 

Obviously, only a small number of elements 

in the coefficient vectors ,0iA  and 

,1( 1,2, , )i i nA  with respect to the critical 

responses need to be stored. If sn  critical 

responses are required in time-history analysis 

with n  time steps, the total number of 

coefficients that need to be stored is s s2N n n , 

which is independent of the number of degrees of 

freedom of the structure. Therefore, even for a 

complex structure with a large number of 

degrees of freedom, for instance, the nuclear 

power plant, the storage of the coefficients can 

be easily accomplished for construction of the 

explicit expressions of the required responses. 

Thus far, the manipulation of the physical 

evolution mechanism of the structural system has 

been accomplished and the evolution of the 

critical response can be reflected using the 

closed-form expression shown in Eq. (5), which 

will lead to a real-sense dimensional reduction in 

terms of degrees of freedoms and time instants 

involved when random vibration and reliability 

analysis of structures are conducted. 

3. SEISMIC RELIABILITY ANALYSIS FOR 

DETERMINISTIC STRUCTURES 

Using the first passage failure criterion with 

symmetric double boundary value, the seismic 

reliability of the structural system described in 

Eq. (1) can be defined as 

 r

( )
( ) P{ 1,  [0, ]}

s t
P T t T

b
    (6) 

where P{ }  indicates the probability of the 

random event; T  is the duration of the seismic 

excitation; b  is the value of the symmetric 

boundary; and ( )s t  is the critical response that 

controls the structural failure. Note that the 

uncertainties of the seismic excitation duration T  

and the symmetric boundary value b  are not 

considered in the current study. 

The expression of (6) is equivalent to 

 r
[0, ]

( )
( ) P{max 1}

t T

s t
P T

b
   (7) 

Generally speaking, the failure of the 

structural system is controlled by several critical 

responses rather than only one critical response. 

In this case, with the weakest link assumption, 

the seismic reliability of the structural system 

can be defined as 

 
s

r
1,2, , [0, ]

( )
( ) P{ max [max ] 1}

j

j n t T
j

s t
P T

b 
   (8) 

where sn  is the number of critical responses that 

control different structural failure modes, and 

( )js t  and s( 1,2, , )jb j n  are the critical 

responses and the corresponding boundary 

values, respectively. Then, the failure probability 

of the structural system can be obtained as 

f r( ) 1 ( )P T P T  . 

It can be seen from Eq. (5) that the structural 

dynamic responses can be expressed as a linear 

function of excitation values at different time 

instants. Based on the explicit expression of 

dynamic responses, the MCS can be easily 

conducted for seismic reliability analysis of 

structures without the need for repetitively 

solving the equation of motion shown in Eq. (1), 

leading to a high computational efficiency. 

For the sake of clarity, the procedures of the 

ETDM-based MCS for seismic reliability 

analysis of structural systems are summarized as 

follows: 

(1) Determine the critical responses that control 

the failure modes of the structural system. 

Assume sn  critical responses are considered. 

Then, the critical responses and the 

corresponding values of symmetric boundary 

are taken as ( )js t  and s( 1,2, , )jb j n , 

respectively. 
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(2) Generate a sufficient number of samples of 

seismic excitations with the given power 

spectral density function of ground motion 

acceleration through numerical simulation. 

Suppose N  samples of seismic excitations 

are obtained. 

(3) For a given sample of seismic excitation, 

calculate the critical responses 

s( )( 1,2, , )js t j n  using Eq. (5). If 

s1,2, , [0, ]

( )
max [max ] 1

j

j n t T
j

s t

b 
 , a failure of the 

structural system is observed. Repeat the 

above calculation for each sample of seismic 

excitation until all samples have been 

considered. Suppose the number of structural 

failure is 0N . Then, the failure probability of 

the structural system can be obtained as 

f 0( )P T N N . 

4. SEISMIC RELIABILITY ANALYSIS FOR 

STOCHASTIC STRUCTURES 

In general stochastic dynamic systems, structural 

random parameters and random excitation 

parameters are regarded as mutually independent 

due to the influence of various physical 

phenomena. Although random responses of the 

structure are complex functions of structural 

random parameters and random excitation 

parameters, the two sets of random parameters 

can be decoupled in the probability sense. 

Therefore a sensible strategy for seismic 

reliability analysis of stochastic structures is to 

address the random excitation parameters first 

and then the structural random parameters. The 

conversion relationship between conditional 

probability and total probability in probability 

theory provides the mathematical tools to solve 

the seismic reliability of stochastic structures 

from the seismic reliability of deterministic 

structures. 

For the linear structural system shown in Eq. 

(1), assume that the uncertain structural 

parameters are denoted by an 
pn -dimensional 

random vector 
p

T

1 2[    ]nΘ Θ ΘΘ . Then, the 

equation of motion (1) can be rewritten as 

( ) ( ) ( ) ( ) ( )X t  M Θ U C Θ U K Θ U L Θ  (9) 

According to the total probability formula 

(Wang, 2007), the seismic reliability r ( )P T  of 

the stochastic structural system shown in Eq. (9) 

can be expressed as 

 r r( ) ( | ) ( )dP T P T f



  Θθ θ θ  (10) 

where r ( | )P T θ  is the conditional seismic 

reliability under Θ θ  and ( )fΘ θ  is the joint 

probability density function of the random vector 

Θ . The solution of r ( | )P T θ  falls into the 

seismic reliability problem of deterministic 

structures, which can be directly obtained 

through the solution procedures described in 

Section 3. 

As the analytical form of r ( | )P T θ  with 

respect to θ  is difficult to derive, it is obtained 

by numerical fitting using the response surface 

method in this study. By a limited number of 

numerical experiments, r ( | )P T θ  can be 

expressed in quadratic polynomial form in terms 

of the structural random parameters 

p

T

1 2[    ]nΘ Θ ΘΘ  as 

 
p p

2

r

1 1

( | )

n n

j j j j

j j

P T a b c 
 

   θ  (11) 

where a , jb  and jc
p( 1,2, , )j n  are 

undetermined coefficients. To determine the 

p(2 1)n   coefficients in Eq. (11), the same 

number of experimental points or seismic 

reliability analyses of deterministic structures are 

needed. The specific procedures are described as 

follows: 

(1) Select 
p(2 1)n   numerical experimental 

points according to the experimental design 

method suggested by Bucher and Bourgund 

(1990). They include the mean point 
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p1 2( , , , )n    and p2n  axial points 

p1 p( , , , , )( 1,2, , )j j nf j n     , in 

which j  and j  are the mean and the 

standard deviation of the j-th structural 

random parameter p( 1,2, , )jΘ j n , 

respectively, and f  is generally taken as 2 - 

3. In the present study, f  is assumed to be 

2.5. For convenience, these 
p(2 1)n   

numerical experimental points are denoted by 

p( 1,2, ,2 1)k k n θ . 

(2) Calculate the mass matrices ( )kM θ , the 

damping matrices ( )kC θ , the stiffness 

matrices ( )kK θ  and the orientation vectors 

( )kL θ  with respect to the numerical 

experimental points p( 1,2, ,2 1)k k n θ . 

Then, the conditional seismic reliabilities 

r p( | )( 1,2, ,2 1)kP T k n θ  can be obtained 

by the solution procedures stated in Section 3. 

(3) Solve for the undetermined coefficients in Eq. 

(11) by the known conditional seismic 

reliabilities r p( | )( 1,2, ,2 1)kP T k n θ , and 

obtain the expression of r ( | )P T θ . 

(4) Substitution of the expression of r ( | )P T θ  

into Eq. (10) yields the seismic reliability of 

the stochastic structural system as 

p p

p p

2

r

1 1

2 2

1 1

( ) ( ) ( )d

          = ( )

n n

j j j j

j j

n n

j j j j j

j j

P T a b c f

a b c

 

  




 

 

  

  

 

 

Θ θ θ

 (12) 

It can be seen from the above procedures 

that the seismic reliability analysis of stochastic 

structures is based on that of deterministic 

structures. 

5. ENGINEERING APPLICATION 

To demonstrate the feasibility of the present 

approach for complex nuclear power plants, a 

seismic reliability analysis is conducted for the 

Huaneng high-temperature gas-cooled reactor 

nuclear power plant now being built in China. 

The nuclear power plant considered herein is 

composed of the reactor plant, the spent fuel 

plant and the nuclear auxiliary plant. 

The finite element model of the nuclear 

power plant is established using the general-

purpose finite element software ANSYS. The 

whole model consists of 7,122 beam elements, 

265,523 shell elements and 179,058 solid 

elements, leading to 474,432 nodes and a total 

number of 2,141,352 (about 2.14 million) 

degrees of freedom for the whole structure. A 

total number of 150 mode shapes are considered 

with the damping ratio of each mode being 

0.07  . 

The nonstationary ground acceleration 

process ( )X t  is assumed to be a uniformly 

modulated nonstationary zero-mean random 

process expressed as 

 ( ) ( ) ( )X t g t x t  (13) 

with ( )g t  being a modulation function and ( )x t  

being a stationary random process with zero 

mean. The modulation function is set to be 

 

2

( )

( ) 0

( ) 1

e b

a a

a b

t t

b c

t t t t

g t t t t

t t t
 

  


  
  

 (14) 

with 3.0 sat  , 11.0 sbt  , 25.0 sct   and 

0.15  . 

Consider a level of earthquake with the 

average peak ground acceleration being 
24.5m s . The corresponding design acceleration 

response spectrum is shown in Figure 3. The 

power spectral density function of ( )x t  

compatible with the design acceleration response 

spectrum is presented in Figure 4, by which one 

can generate a set of samples using the spectral 

representation method of a stochastic process 

(Shinozuka, 1972). Substitution of the samples 

of ( )x t  into Eq. (13) yields the samples of 
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nonstationary ground acceleration process ( )X t , 

one of which is presented in Figure 5. As the 

compatible power spectrum of ground motion 

acceleration is used, the average acceleration 

response spectrum corresponding to such seismic 

excitation samples will be identical to the 

prescribed design acceleration response spectrum. 

 
Figure 3: The design acceleration response spectrum. 

 
Figure 4: The compatible power spectrum of ground 

motion acceleration. 

 
Figure 5: A sample of ground acceleration. 

 

The critical responses of the nuclear power 

plant are taken as the shear forces per length of 

the 664 shear wall elements, as shown in Figure 

6. The structural failure occurs when any of the 

critical responses exceeds its corresponding 

boundary value, which is set to be the bearing 

capacity of the corresponding shear wall element. 

Both cases of deterministic and stochastic 

structure are taken into account in this example. 

For the case of stochastic structure, the Young’s 

modulus E  and the density   of concrete are 

assumed to be mutually independent random 

variables with the probabilistic information listed 

in Table 2, while for the case of deterministic 

structure, the Young’s modulus and the density 

of concrete are taken to be the mean values in 

Table 2. The seismic reliability analyses of the 

deterministic and the stochastic structure are 

conducted using the present methods described 

in Section 3 and Section 4, respectively. For the 

above two cases, the number of samples of 

seismic excitations is taken as 100,000N   and 

the duration of the time-history analysis is set to 

be 25 sT   with the time step being 0.01 st  . 

 

 
Figure 6: The highlighted shear wall elements for 

seismic reliability analysis. 

 
Table 2: Probabilistic information of the random 

structural parameters. 

Random 

parameter 

Distribution 

type 
Mean COV 

 (GPa)E  Normal 31.5 0.167 
3 (kg m )  Normal 2,400 0.167 

Note: COV = coefficient of variation 

 

The failure probabilities of the structural 

system corresponding to the two cases are shown 

in Figure 7. It can be observed that the statistical 

variations of structural parameters tend to 

increase the failure probability of the structural 

system. It is worth noting that, for seismic 
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reliability analysis of this complex nuclear power 

plant with over 2 million degrees of freedom, the 

elapsed times of the present approach are around 

1.5 hours and 7.5 hours for the cases of 

deterministic and stochastic structure, 

respectively, which is acceptable in practice for 

seismic reliability analysis of such a large-scale 

structure. 

 
Figure 7: System failure probability under seismic 

excitations. 

6. CONCLUSIONS 

The ETDM-based MCS has been developed for 

the seismic reliability analysis of complex 

nuclear power plants in consideration of the 

uncertainties of both seismic excitations and 

structural parameters. Using ETDM, the explicit 

expressions of the critical responses are 

constructed through two impulse response time-

history analyses of the structure, and on this 

basis, the MCS can be readily carried out just 

focusing on the critical responses, leading to a 

high computational efficiency. In conjunction 

with the total probability theorem, the method for 

seismic reliability analysis of the deterministic 

structures is extended to that of the stochastic 

structures. The engineering application to a 

nuclear power plant with over 2 million degrees 

of freedom shows the feasibility of the present 

approach. 
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