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ABSTRACT: Recovery processes across infrastructure systems after disasters are critical to improve
their resilience, yet poorly understood. The common assumption of prioritizing the size of the
reconnected network as the goal for recovery in many algorithms today is impractical, given that
satisfaction of demands is more important for the functional recovery of infrastructure systems such as
power grids. Mixed-integer programming formulations that guarantee optimality under practical
resource and time constraints continue advancing, but become computationally intractable even for
systems with only hundreds of elements. Algorithms approximating the optimal solution with lower
computational cost are in need, including competitive percolation or surrogate models. We propose a
method based on statistical mechanics that exhibits phase transitions, as when restoring networked
systems. Our importance-based multicentric percolation recovery strategy for spatially distributed
engineered networks, approximates optimal restoration solutions with a substantially lower
computational cost. Small tree-like clusters form first in the network, which then interconnect into
bigger components gradually mirroring optimal restoration and aligning with field practices. A key
observation is that the formation of large connected components is suppressed during the recovery
process, which enables balancing computational efficiency and accuracy. The proposed strategy is very
close to optimization-based methods and methods based on competitive percolation, particularly when
load is homogeneous and the fraction of generators is small; illustrative examples showcase the
adequate trade-off between computation cost and accuracy relative to competing alternatives.

Catastrophic disasters, such as earthquakes and hur-
ricanes, put modern society at tremendous risk of
losing resources and lives if recovery is not expe-
dient. Timely recovery from catastrophic damage
is thus crucial to communities, including their life-
lines such as transportation, water, power, and com-
munications, as well as their overall well-being.
Particular to engineered systems, lifelines usually
connect or affect each other, shaping them into truly
interdependent networks.

The functions of many networked systems rely

on connectedness or the existence of a giant con-
nected component (GCC), which is a subset of the
entire network that spans its global scale. Examples
of this object exist across transportation systems (Li
et al., 2015) and communication networks (Glauche
et al., 2003), among others. Hence, many proposed
topology-based methods aim at recovering systems
by firstly forming a GCC (Hu et al., 2016; Shang,
2016). However, for some other systems, such as
water distribution networks and power grids, the
principal goal is not to form a GCC, but to satisfy
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demands with supplies in the absence of a dominant
component, except at local scales (Rudnick et al.,
2011). In such systems, customers can be served if
they are connected to some local sources, such as
the ‘islanding’ technique in power grids (Duefias-
Osorio and Kwasinski, 2012; Panteli et al., 2016)
and sectorization in water distribution networks (Di
Nardo et al., 2013).

In commodity transport systems, commodity
deficit usually costs the most. Optimization-based
recovery strategies, such as the time-dependent in-
terdependent network design problem (td-INDP)
(Gonzélez et al., 2016a,b) guarantee the optimal-
ity of the recovery process, but fail on systems
of practical size, due to their expensive computa-
tional complexity (at least NP-complete). A recent
decentralized recovery method based on competi-
tive percolation (Smith et al., 2018) approximates
the optimal solutions well, with a much cheaper
computational cost. It selectively restores com-
ponents, based on their contributions to reducing
commodity deficit. Results from leading methods,
such as INDP and competitive percolation, indicate
that when demand satisfaction becomes the primary
concern of the recovery process, the formation of a
GCC is suppressed until demands are mostly sat-
isfied locally. This is consistent with field con-
straints, as both, awareness of the overall situation,
and distant transportation of resources, are usually
not available at the early stages of system restora-
tion.

To recognize limited global information and dif-
ficulty in resource mobilization, we propose an
importance-based multicentric (local) percolation
recovery (IMPR) process to mimic the restoration
of systems as seen in the field. This strategy ap-
proximates the solutions given by optimization-
based methods, based on the principles of ‘demand
satisfaction first’ and ‘suppression of the GCC’,
which are common in both optimal recovery solu-
tions and practical recovery experience. In the pro-
posed IMPR process, we first partition the original
network into several clusters with single supplier.
Next, the importance of the links are evaluated by
efficient load-weighted betweenness. Then, clus-
ters are restored locally in a multicentric local per-
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colation way according to the importance of links,
before trees in a graph forest are connected into a
spanning tree of the original network.

The rest of the paper is organized as follows:
Section 1 describes the proposed (IMPR) process.
Section 2 provides results of recovery experiments
on actual power transmission grids in the United
States. Section 3 concludes the paper and provides
ideas for future research.

1. IMPORTANCE-BASED MULTICEN-
TRIC LOCAL PERCOLATION RECOV-
ERY PROCESS

Power grid
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Figure 1: Flowchart of proposed IMPR strategy.The
green, yellow and blue boxes represent network parti-
tion, link importance evaluation and percolation recov-
ery, respectively.

The proposed IMPR strategy consists of three
stages: network partition, link importance evalua-
tion and percolation recovery (see Figure 1). We
perform an example simulation on the topology of
the power transmission grid in Amarillo, TX (47
nodes and 62 links as in Figure 2). The four large
nodes in blue are generators assigned manually.
Generators are assumed to have the same capacity,
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and the demands of consumers vary uniformly in
[8,12], as a generic example. Performance com-
parison under different levels of load variations are
shown later. This unitless choice reflects the fact
that systems are sensitive to the relative demand
variation.

@® Supply
© Demand

Figure 2: Power transmission network topology of
Amarillo, TX.

1.1.  Network partition

1.1.1. Tails contraction

We contract the tails in the network before parti-
tioning it. Tails are sequences of degree-two nodes
with a degree-one extremity and a degree greater
than two for the other. Figure 3 shows an exam-
ple of tail contraction. The tail in the green box on
the left is contracted into a single meganode E’ on
the right. The demand of meganode E’ equals to
the sum of demands of node E, F, G. Contracting
the tails facilitates the network partition. Note that
when a tail contains suppliers, only the outer part of
the tail is contracted to the outermost suppliers.
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Figure 3: Contraction of tails. The tail consist of nodes
E, F and G, contracted into a single meganode E’.

1.1.2.  Cluster growth

The cluster growth is the first step to assign demand
nodes to suppliers. It is completed in the following
steps:

Seoul, South Korea, May 26-30, 2019

1. Find the cluster with the smallest total demand
in the cluster list as Cy,,. Stop when the cluster
list is empty.

2. Find all the neighbor demand nodes of clus-
ter C,,, and remove the ones with ‘too big’ de-
mand. The demand node is ‘too big” if the total
demand of cluster C,, after the demand node is
assigned to the cluster, is greater than the ca-
pacity of the supplier in the cluster.

3. If there is no eligible neighbor demand node,
remove the cluster from the cluster list and go
back to 1. Or find the demand node with the
largest demand L,,.

4. If G, 1s the closest cluster(s) to L, assign L,
to Cy,, update the total demand of C,,, and go
back to 1. If not, remove L,, temporarily and
find the next largest demand node.

5. If C,, is the closest cluster to none of the de-
mand nodes in step 4, find the demand node
having farthest distance to its closest cluster,
assign it to C,,, update the total demand of C,,,,
and go back to 1.

During the above cluster growth process, both of
the connectivity of clusters and the total demand
limit are ensured (so as to not exceed the capacity
of the supplier).

1.1.3. Remaining node assignment

After the cluster growth, demand nodes may still
be unassigned. We iteratively assign the demand
nodes with the largest demand to the nearest suppli-
ers among all the clusters its neighbors come from.
This is to promote that large demand nodes are as-
signed to the cluster closest to them at least in the
initial partition stage. The larger the demand of a
node is, the faster we want to connect it to a cluster,
to reduce commodity deficit as much as possible.
So it will be better if large demand nodes are close
to suppliers.

After we assign remaining nodes, each demand
node is linked to a connected cluster, where there
is only one supplier. However, the total demand of
clusters might be significantly changed in this step,
so we refine the initial partition in the next stage
by a heuristic node exchanging algorithm, to make
the supply and demand balance properly in every
cluster.
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1.2.  Partition refinement

After the initial partition of the network, the dis-
tribution of total demand of clusters can be uneven.
Some clusters may have disproportionately high to-
tal demands, yet others may have insufficient de-
mand. Refinement of the initial partition is hence
necessary to make the distribution of total demands
of clusters more uniform.
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Figure 4: Clusters after network partition (Section 1.2)

The partition refinement is done on the cluster
graph, where each cluster in the original network is
represented with a node. A directed link exists from
cluster A to cluster B, when some demand nodes
in cluster A is connected to any node in cluster B.
Thus, a directed link means possible demand node
exchange between clusters. The following steps are
based on both, the cluster graph and the original
network:

1. For each pair of clusters in the cluster graph,
find the shortest path from the cluster with
largest total demand to the closer with smallest
total demand.

2. Transfer a demand node between clusters
along the shortest path. At each transfer, the
demand node with smallest demand is used.
Record the network partition with the smallest
average total demand.

3. Partition the network with the recorded net-
work partition (smallest average total demand
across clusters). If the recorded network parti-
tion is not superior, stop the algorithm. Other-
wise, go back to 1.

After the partition refinement, the clusters are ad-

justed to have similar total demands, and each has
an almost-balanced supply and demand.

Seoul, South Korea, May 26-30, 2019

An example partition is shown in Figure 4. Note
that there is only one supplier in each cluster. The
distribution of total demand is shown in Figure 5.

Sum of load

Cluster

Figure 5: Distribution of total demand across clusters.

1.3.  Link importance evaluation

This step ranks the importance of links inside each
cluster according to a demand-weighted between-
ness, so as to prioritize for recovery in the next
stage. Importance is calculated as follows:

1. Within each cluster, find all the shortest paths
from the (only) supplier to all its demand
nodes.

2. Multiply all shortest paths with their demand,
which is the amount of ‘traffic or flow packets’
that all the links on the shortest path will gain,
due to this demand node.

3. Sum up all the traffic that each link obtained
from each demand node, as the importance of
the link.

To maximally reduce the total demand deficit
cost, we need to recover the consumers with large
demands as early as possible, which is consistent
with practice (Liu et al., 2016). Then links on the
path from the supplier to large demand consumers
should have relatively high recovery priority. How-
ever, connecting distant consumers with large de-
mands to the suppliers requires the links on the path
from the supplier to the consumers to be recovered
first. The demand-weighted betweenness happens
to meet both of the criteria, because it considers not
only the distance of demand nodes from the sup-
plier, but also how much demand will pass through
each individual link. The higher the traffic on a link
has, the more important the link is, and the higher
priority it gets for the next stage. This mechanism
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aims to minimize the demand deficit cost by satis-
fying large demands early enough.

1.4.  Multicentric percolation recovery

In this stage, all the clusters are recovered inter-
nally by forming a spanning tree in each cluster.
At each step, find all in-cluster links connecting a
failed node and the restored part within all clus-
ters. Then, we randomly recover one of the in-
cluster links, based on the probability distribution
proportional to the importance of those links. Links
with higher importance will be recovered earlier in
a probabilistic perspective.

The multicentric percolation recovery mimics
the early restoration in reality, when the network is
mostly recovered locally to satisfy demands of con-
sumers. Given that the importance of links are eval-
uated by demand-weighted betweenness, the links
with higher demand ‘traffic’ will be restored ear-
lier in probability, thus reducing total commodity
deficit as much as possible. In this step, a spanning
tree is recovered in each cluster, and all the trees
forms a forest in the whole network.

1.5.  Clusters re-connection
After all the local clusters are recovered internally

, imbalance still exists since each cluster has un-
equal demand and supply. This imbalance can
only be reduced by reconnecting clusters together
to form a spanning component in the entire net-
work. Links between clusters are selected to be re-
covered consecutively. To minimize demand deficit
cost, at each step, only the between-cluster link
that reduces the most overall imbalance is recov-
ered.In this way, we link the sub-trees in the forest
into a minimum spanning tree at the network level,
achieve the balance of supply and demand over the
whole network. The total number of links restored
from the very beginning till then equals to n — 1,
where 7 is the number of nodes.

2. EXPERIMENTS AND RESULTS
The performance of the proposed IMPR strategy is
compared against competitive percolation recovery
(CP), iterative-INDP (i-INDP), and random recov-
ery (RR).

For the competitive percolation recovery, 20%
of links in the network are selected as candidates,
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among which the one that yields maximum demand
deficit reduction is recovered (Smith et al., 2018).

The i-INDP method is an iterative variation of
td-INDP (Gonzilez et al., 2016a). Instead of seek-
ing a global optimal solution over the whole recov-
ery process as in td-INDP, i-INDP iteratively finds
the local optimal solution within ¢ time-steps to ap-
proximate to td-INDP. The solution by i-INDP ap-
proaches the optimal solution, and at the same time
significantly reduces the computational cost. In this
simulation, ¢ = 1 is used, and the solution is equiv-
alent to competitive percolation when at each step,
the selection is performed among all of the links.

For the random recovery, one link is selected ran-
domly from all the failed links to be recovered.

For the random recovery, one link is selected ran-
domly from all the failed links to be recovered.

We perform different recovery process on the
topology of the power transmission grid in Amar-
illo, TX in the United States (see Figure 2). We
assume that the network suffers a catastrophic con-
tingency, after which all the links in the network
are damaged (the most challenging case for an opti-
mizer). The comparison of component excess sup-
ply, total commodity deficit and size of GCC by
different recovery strategies are shown in Figure 6,
Figure 7 and Figure 8. Figure 6 shows the compo-
nent excess supply during different recovery pro-
cess. The excess supply of most components is re-
duced at the early stage when the proposed IMPR
recovery is used, which is similar to i-INDP and
competitive percolation. However, in the proposed
IMPR strategy, there is hardly any component with
big excess supply after the early stages, which is
not the case in i-INDP and competitive percolation.
This shows that i-INDP and competitive percola-
tion optimize the recovery process based on total
excess surplus without much attention to local dy-
namics. But the proposed IMPR also takes care of
local situations. Figure 7 shows the total commod-
ity deficit during recovery processes. The proposed
IMPR strategy is hardly different from the compet-
itive percolation and i-INDP. To compare the re-
covery performance, we define the cost ratio cr be-
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Figure 6: Component excess supply (CES): (A) Pro-
posed IMPR strategy. (B) Competitive percolation re-
covery (CP), where 20% of the total number of links
are selected as candidates per step. (C) i-INDP with
window length t = 1. (D) Random recovery (RR).

tween two recovery processes as below:

o ftS]

o fl‘S]]

cr (1)

where ¢s7 and 7577 are the total commodity deficit
function over time. The cost ratio between two
recovery processes show how much more cost
method / induced, compared to method //. The
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Recovery timesteps

Figure 7: Total commodity deficit (TCD) during recov-
ery.

closer cr is to 1, the more similar the performance
of the two recovery processes is. When cr is smaller
than 1, method [ is better than method /1, and vice
versa.

The cost ratio between IMPR and CP for this re-
alization is 0.9925, slightly smaller than 1, indicat-
ing that the proposed IMPR strategy outperforms
competitive percolation in this realization. The cost
ratio between IMPR and i-INDP (r = 1) is 1.0098,
meaning that the cost of IMPR is slightly higher (by
0.98%) than the time-constrained optimal cost in
this realization. As is also seen in Figure 7, IMPR
is significantly better than random recovery, with a
cr of 0.6974.

Recovery of the function relies on the recovery
of topology. We find that the formation of the GCC
is delayed in leading algorithms such as such as
INDP and competitive percolation, corresponding
to field practices such as islanding. We investigate
the formation of GCC in Figure 8, showing the re-
lationship between topology and function. The for-
mation of the GCC is suppressed until the last 3
stages, later than both of competitive percolation
and i-INDP, demonstrating the similarity of IMPR
to the local recovery practice in practice (Panteli
et al., 2016; Rudnick et al., 2011).

To demonstrate the performance of the IMPR
more generally, we perform sensitivity analysis on
a larger network, the power transmission grid of
Columbia, TN, with 163 nodes and 240 links.

Recall the generator fraction is the ratio between
generators and all the nodes. Generators are se-
lected at random with the same capacity. The to-
tal supply of generators balance the total demand
of consumers in the network.
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Figure 8: GCC size during the recovery processes.

The demands of consumers are uniformly dis-
tributed in [(1 —98) - Ly, (1 +0) - Ly, where 0 is
the demand variation and L, is the average demand.
For each pair of parameters, the results are averaged
over 100 realizations (Figure 9).
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Figure 9: Cost ratio between IMPR and i-INDP (t = 1).

Figure 9 shows the cost ratio between IMPR and
i-INDP (t+ = 1). The cost ratio is very close to
1, meaning the proposed IMPR is almost as effi-
cient as i-INDP, the step-wise optimal solution, it-
self a good approximator to the global optimal so-
lution. Moreover, the IMPR strategy requires much
less computation. IMPR resembles field practices
in that it suppresses the formation of the GCC the
most (prioritizing local stability). In particular, the
performance of IMPR approaches local optimal so-
lutions when both generator fractions and demand
variations are small, around 0.1. This value is close
to realistic power transmission grids, such as 0.112
for the eastern interconnect (EI) and 0.183 for the
western one (WECC) in North America (Birchfield
et al., 2017).

Overall, the proposed IMPR strategy shows al-
most as good efficiency as the i-INDP (r = 1)
benchmark. According to additional sensitivity
analyses, the IMPR strategy is particularly suitable
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to solve problems with small demand fraction and
small demand variation. We suggest that it is be-
cause small demand fractions and demand varia-
tions create regular topological properties for ap-
propriate network partitions. However, we will
need to quantify (and proof) in future work how
close the performance of the proposed strategy can
be to the optimal solution, especially with respect to
networks with specific topological and graph theo-
retic characteristics, such as infrastructure systems
(Karger, 2001; Rosenthal, 1977).

3. CONCLUSIONS

In this paper, we propose an importance-based mul-
ticentric (local) percolation recovery (IMPR) strat-
egy for the recovery of engineered systems from
catastrophic hazards. This method mimics the
recovery processes observed for engineered net-
works in the field, which is consistent with local-
level recovery priority to satisfy customer demands
quickly. Then, it connects the local clusters into a
spanning component as time progresses. We show
and compare the restoration evolution patterns of
component excess supply, the total commodity
deficit and the GCC size with i-INDP, competitive
percolation and random recovery. We demonstrate
that the proposed IMPR strategy approximates the
step-wise mixed-integer optimal solution well, with
much lower computational cost and a more realis-
tic recovery logic relative to other approximation
methods. Furthermore, through sensitivity analy-
ses on generator fraction and demand variation, we
find that IMPR is ever closer to optimal recovery as
supplier fractions and demand variation get smaller.
These parameters tend to be small across realistic
engineered systems. Hence, carefully selecting the
locations for suppliers and consumers, and assign-
ing proper capacity to suppliers, one can promote
small demand variation and supplier fractions to
naturally enhance systems’ resilience.

Small supplier fractions and demand variations
render topological regularities, which are exploited
in the partition of the networks. They also make is-
landing feasible to prevent cascading failures, and
facilitate local recovery. Interestingly, the best gen-
erator fraction we found is consistent with balanced
sizes of clusters, which brings the power of the par-
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tition and importance evaluation into full play. The
proposed IMPR method is meaningful in support-
ing decision making for the recovery of infrastruc-
ture systems after catastrophic natural or deliveate
hazards. Due to its realistic restoration patterns,
it also provides ideas for decentralized restoration
strategies to expedite performance recovery. Fi-
nally, network partition is critical in solving sig-
nificant problems in many systems, such as trans-
portation systems, water distribution systems, and
supply chain systems. It also makes network sci-
ence techniques applied to engineering desirable
for their good compromise between computational
cost and accuracy.
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