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ABSTRACT: This paper explores the use of variability response function (VRF) for risk assessment of 
geotechnical system under spatially variable soil properties, where the properties exhibit a range of 
possible autocorrelation characteristics. VRF only requires a single set of analysis, but traditional 
Monte Carlo simulation (MCS) requires separate sets of analyses. VRF can be estimated through a 
simple regression procedure, which does not require random field simulation. In a footing displacement 
analysis, the reliability assessments by VRF match well with those of MCS, when the soil property has 
relatively low variance. 

 
For a geotechnical system with spatially variable 
soil properties, the response uncertainty depends 
heavily on the spatial autocorrelation distances. 
For example, the uncertainty in footing 
displacement increases monotonically with the 
vertical autocorrelation distance of Young’s 
modulus (Al-Bittar and Soubra 2014). According 
to a recent study of pile group reliability by 
Leung and Lo (2018), there exists a horizontal 
autocorrelation distance of soil modulus that 
corresponds to the largest uncertainty in 
differential settlements across the foundation. 

However, due to limited geotechnical 
investigation data, accurate determination of 
autocorrelation distances of soil properties is 
difficult. The values suggested in literature (e.g., 
Phoon and Kulhawy 1999) entail a wide range. 
Even if there are soil samples obtained at the site, 
the values derived from the samples will involve 
substantial statistical uncertainty, as noted in 
Ching et al. (2016). Therefore, a comprehensive 
reliability assessment of geotechnical structure 
should involve a range of possible values of 
autocorrelation distances. The traditional Monte 
Carlo Simulation (MCS) approach is able to 

accomplish this task, but the associated 
computational effort is unpractically high, 
because a separate set of simulation is required 
for each autocorrelation distance. A certain set of 
simulation cannot be reused to analyze the 
reliability under another autocorrelation distance. 
Therefore, in this paper, the possibility of using 
only a single set of simulation to assess the 
reliability under different autocorrelation 
distances will be explored. 

A potential approach for this problem is to 
define a response function, which is independent 
of spatial autocorrelation, in order to transfer the 
random soil profile into the random model 
response. For statically determinate structures, 
the transfer function can be analytically derived. 
In the study of Shinozuka (1987), a bar is 
subjected to an axial force, with the flexibility 
(inverse of Young’s modulus) of the bar 
modelled as a random field. The derived 
response function for the bar displacement only 
depends on the mean flexibility, the bar 
geometry and the axial force, and does not 
depend on the spatial variation of flexibility. For 
statically indeterminate structures, the existence 
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of response function has not been proven, but it 
is possible to assume that it does, and then 
numerically test the effectiveness of the 
approach. Papadopoulos and Kokkinos (2012) 
and Manitaras et al. (2017) applied the response 
function approach to analyze statically 
indeterminate structures such as structural frames 
and 2-dimensional elastic soils, with the 
flexibility modelled as random fields. The 
reliability computed from response function 
matched with that from MCS, when the 
coefficient of variation for flexibility is 
sufficiently small. 

While previous studies on response 
functions mainly focused on building structures, 
this paper will examine the applicability of 
response functions on shallow footing 
displacements. It begins with the theory of 
response function, followed by a simulation 
scheme to determine the function. The 
framework will then be illustrated through 
analyses of footing displacements. 

1. INTRODUCTION TO VARIABILITY 
RESPONSE FUNCTION 

A variance response function (VRF) can be 
defined to transform the spectral density of soil 
profiles into the variance of the response 𝑔. For a 
1-dimensional soil profile varying in 𝑥-direction: 

Var(𝑔) = � VRF(𝜔𝑥)𝑆(𝜔𝑥)𝑑𝜔𝑥
∞

−∞
 (1) 

where 𝜔𝑥 is the spatial frequency in 𝑥-direction. 
𝑆(𝜔𝑥) is spectral density, which is the Fourier 
transform of spatial autocovariance function 
𝐶(Δ𝑥), Δ𝑥 being the spatial lag: 

𝑆(𝜔𝑥) =
1

2𝜋
� 𝑒−𝑖𝜔𝑥Δ𝑥𝐶(Δ𝑥)
∞

−∞

𝑑Δ𝑥 (2) 

Table 1 and Figure 1 show the spectral densities 
of two common autocorrelation functions. 

 
 
 

Table 1: Two common autocorrelation functions and 
their spectral densities. 𝜎2=random field variance; 
𝜃𝑥=autocorrelation distance. 

 𝐶(Δ𝑥) 𝑆(𝜔𝑥) 
Single 
exponential 𝜎2exp �−

Δ𝑥
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� 𝜎2𝜃𝑥
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Squared 
exponential 𝜎2exp�−
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𝜃𝑥2
� 
𝜎2𝜃𝑥
2√𝜋

exp�−
𝜔𝑥2𝜃𝑥2

4 � 

 

 
Figure 1: Spectral densities of two autocorrelation 
functions with 𝜎2 = 1 and 𝜃𝑥 = 1. 
 

According to Eq. (1), VRF indicates the 
amount of response variance contributed by each 
sinusoid that comprises the random field. This 
concept can be made clearer by rewriting Eq. (1) 
in discrete form: 

Var(𝑔) = lim
𝑛→∞

� VRF(𝜔𝑛)𝑆(𝜔𝑛)Δ𝜔
𝐾

𝑛=−𝐾

 
 

(3) 

In Eq.(3), 𝑆(𝜔𝑛)Δ𝜔 is the variance of the 𝑛-th 
sinusoid that comprises the random field. The 
variance of the 𝑛-th sinusoid is transformed into 
the variance of the response, by multiplying with 
the VRF. The response variance contributed by 
each sinusoid can be added independently to 
yield the total response variance. 

A mean response function (MRF) can be 
similarly defined to transform the spectral 
density of soil profile into the mean response: 
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E(𝑔) = � MRF(𝜔)𝑆(𝜔)𝑑𝑑
∞

−∞
 (4) 

Finally, the definition of VRF or MRF can be 
extended to 2-dimensional or 3-dimensional 
problems. For a 2-dimensional VRF: 

Var(𝑔)

= � � VRF�𝜔𝑥,𝜔𝑦�𝑆�𝜔𝑥,𝜔𝑦�𝑑𝜔𝑥𝑑𝜔𝑦
∞

−∞

∞

−∞
 (5) 

2. SIMULATION SCHEME TO ESTIMATE 
VRF AND MRF 

The analytical form of VRF can only be derived 
for simple structures. For practical applications 
to geotechnical problems, VRF can be estimated 
by simulation instead. The scheme proposed in 
this section is extended from the works of 
Papadopoulos and Kokkinos (2012) and 
Manitaras et al. (2017). Extra elements include 
modeling of the system response by cosine 
equation, and estimating VRF from the mean and 
amplitude of the cosine equation. The extended 
scheme is shown later to be more accurate, when 
estimating VRF in the low frequency region.  

The proposed steps for the simulation 
scheme would be: 

1. Set a positive frequency range [0,𝜔𝑢]  for 
VRF determination. The cut-off frequency 
𝜔𝑢  depends on the smallest autocorrelation 
distance 𝜃𝑠 (i.e. the autocorrelation distances 
to be analyzed range from 𝜃𝑠  to ∞ ). To 
preserve 𝛼% of random field variance, 

� 2𝑆(𝜔)𝑑𝑑
𝜔𝑢

0
=

𝛼
100

𝜎2 (6) 

where 𝑆(𝜔)  is the spectral density 
corresponding to 𝜃𝑠. 

2. Partition the range [0,𝜔𝑢]  into (𝑀 + 1) 
intervals. A simple method is to partition into 
equal intervals: 𝜔𝑖 = 𝑖Δ𝜔, with 𝑖 = 0,1, …𝑀 
and Δ𝜔 = 𝜔𝑢/𝑀. 

3. For a particular frequency 𝜔𝑖 , simulate 
𝑁 ≈ 5 to 10 soil profiles with cosine spatial 
variation: 

𝑧(𝑥) = 𝜇 + √2𝜎 cos(𝜔𝑖𝑥 + 𝜙𝑛) (7) 

𝜙𝑛  is the center of intervals �2𝜋𝜋
𝑁

, 2𝜋(𝑛+1)
𝑁

� 
for 𝑛 = 0, 1, … ,𝑁 − 1. 

4. For a particular frequency 𝜔𝑖 , the model 
response 𝑔 due to different phases 𝜙𝑛 should 
be periodic around an average level of  
𝑔̅(𝜔𝑖) . If  𝑔   varies with 𝜙𝑛  in a cosine 
equation, the amplitude of the wave can be 
denoted as 𝐴(𝜔𝑖) . 𝑔̅(𝜔𝑖)  and 𝐴(𝜔𝑖)  can be 
empirically estimated by linear regression: 
 

�
𝑔̅�(𝜔𝑖)
𝛽1
𝛽2

� = (𝐗𝑇𝐗)−1𝐗𝑇𝒈 

where  𝐗 = �
1 cos(𝜙1) sin(𝜙1)
⋮ ⋮ ⋮
1 cos(𝜙𝑁) sin(𝜙𝑁)

�  

𝒈 = �
𝑔(𝜔𝑖,𝜙1)

⋮
𝑔(𝜔𝑖,𝜙𝑁)

� 

𝐴̂(𝜔𝑖) = �𝛽12 + 𝛽22 

 
(8) 

5. The MRF and VRF at frequency 𝜔𝑖 are given 
by 

MRF(𝜔𝑖) =
𝑔̅�(𝜔𝑖)
𝜎2

 

VRF(𝜔𝑖) =
𝐴̂2(𝜔𝑖)

2𝜎2
 

(9) 

6. Repeat Steps 3-6 for all frequencies 𝜔𝑖, with 
𝑖 = 0,1, …𝑀. 

7. Use spline interpolation to interpolate VRF 
and MRF values at other frequencies. 

Once the VRF(𝜔) and MRF(𝜔)  are 
determined, Var(𝑔)  and E(𝑔)  under arbitrary 
spatial autocorrelation distance 𝜃  can be 
evaluated by integrating Eq. (1) and Eq. (4) 
numerically. To check whether the chosen 
frequency range [0,𝜔𝑢]  is adequate in 
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representing the entire VRF  or MRF  curve, 
VRF(𝜔) should decay to zero at large 𝜔, where 
the spatial variation is too rapid that its effect to 
the model response would be averaged out. 
Meanwhile,  𝜎2MRF(𝜔)  should decay to the 
deterministic model response. If such decay is 
not observed, more simulations should be done 
to find out the VRF or MRF at higher frequency 
ranges. 
Using Eq. (4) alone to evaluate E(𝑔) will result 
in a slight underestimation, in the order of 
several percent, since MRF(𝜔) decays to a non-
zero value. This can be avoided by adding an 
adjustment term, which is the truncated random 
field variance times the MRF asymptote (i.e. 
value of MRF as 𝜔 → ∞). The truncated random 
field variance is 

𝜎2 − � 2𝑆(𝜔)𝑑𝑑
𝜔𝑢

0
 (10) 

where 𝑆(𝜔) is the spectral density corresponding 
to 𝜃 , the autocorrelation distance under 
investigation. 

3. FOOTING DISPLACEMENT ANALYSIS 
BY VRF AND MRF 

The proposed simulation scheme is applied to 
analyze footing displacements, using the FLAC 
software. The FLAC model is 15 m wide, 6 m 
deep, with a rigid strip footing of width 𝐵=2 m 
located at the ground surface. The footing is 
subjected to a vertical load of 514 kPa, and the 
soil-footing interface is perfectly rough. The 
Young’s modulus of the soil is modelled as a 
vertical normal random field with mean value 
60 MPa and standard deviation of 9 MPa, 
corresponding to coefficient of variation (CV) of 
0.15. The Poisson’s ratio is a constant of 0.499. 
Figure 2 shows the footing geometry. 

The smallest vertical autocorrelation 
length considered in the analyses is 𝜃𝑠 =
0.4 𝑚 = 0.2𝐵 . With the squared exponential 
autocorrelation function, the cutoff frequency 𝜔𝑢 
is 7𝑚−1 , in order to preserve 95% of random 
field variance. Since a high frequency spatial 
variation in Young’s modulus leads to smaller 

variation in footing displacement, when deciding 
the frequencies for VRF estimation, the lower 
frequency points are more closely spaced. In this 
study, 𝜔 =(0, 0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.5, 1.75, 
2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7) 𝑚−1, amounting to a 
total of 𝑀 = 18  frequency points. For each 
frequency point, 𝑁 = 10  Young’s modulus 
profiles are simulated, with each profile being a 
cosine wave of different phase. Therefore, the 
total number of analyses is 18 × 10 = 180. 
 

 
Figure 2: Footing geometry. 
 

Figure 3 shows the footing displacement at 
different spatial frequencies 𝜔  and phases 𝜙 . 
When 𝜔  is zero (soil is homogeneous), the 
amplitude of displacement (i.e. 𝐴(𝜔) ) is the 
largest. When 𝜔  increases, 𝐴(𝜔)  decreases. 
Figure 4 compares the displacement fitted by the 
cosine equation with the displacement computed 
by FLAC. The cosine equation can fit the 
displacement data satisfactorily, with goodness 
of fit 𝑅2 = 0.993. 
Figure 5 shows the VRF computed from 𝐴(𝜔) 
by Eq. (9). VRF can also be estimated 
empirically by directly calculating the variance 
using the displacements of the same spatial 
frequency. This empirical VRF is also plotted in 
Figure 5. From the figure, it appears that 
empirical estimation of VRF may lead to 
overestimation. To verify this proposition, 
another set of analysis is performed using 𝑁=20 
phases, and the empirical VRF is also plotted. 
When the number of phase increases, the 
empirical VRF approaches the regression VRF. 
Therefore, the regression-based VRF should be 
the more robust estimate. 
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Figures 6 and 7 show the computed VRF 
and MRF points through linear regression, 
overlapped with the spline interpolated curves. 
According to the VRF curves, most of the 
variance of footing displacement is contributed 
by Young’s modulus variation with frequency 
smaller than 2 m−1 , or a spatial period larger 
than 2𝜋/𝜔 = 3.14 m ≈ 1.5𝐵 . Meanwhile, the 
normalized MRF curve shows a decay from the 
peak value to the value of deterministic footing 
displacement (11.08 mm).  

 

 
Figure 3: Footing displacement at different spatial 
frequencies and phases. 
 
 

 
Figure 4: Comparison of fitted displacement and 
original displacement data by FLAC. 
 

 
Figure 5: Comparing VRF estimated by regression 
and empirical approach 

 
Figure 6: Computed VRF points overlapped with 
spline interpolated curves. 

 
Figure 7: Normalized MRF points with spline 
interpolated curves. 
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To calculate the variance of footing 
displacement under a certain autocorrelation 
length of Young’s modulus, the spectral density 
is multiplied with the VRF, and then numerically 
integrated. Figures 8 and 9 show the standard 
deviation and mean of footing displacements 
under various autocorrelation lengths, 
normalized by the footing width 𝐵. To validate 
the accuracies of the obtained statistics, Monte 
Carlo Simulations are conducted for three 
autocorrelation lengths (𝐵/𝜃 = 1, 2, 3) . Each 
MCS consists of 300 simulations. The MCS 
results are also plotted in Figures 8 and 9, which 
closely match with that obtained by VRF. 
 

 
Figure 8: Standard deviation of footing displacement 
under different autocorrelation distances.  
 

 
Figure 9: Mean of footing displacement under 
different autocorrelation distances. 

The VRF approach slightly underestimates 
the response SD at large autocorrelation distance, 
and there is slight overestimation at low 
autocorrelation distance. Meanwhile, the mean 
responses obtained from both approaches match 
almost exactly, provided that the adjustment term 
is added when using the MRF approach. The 
validation also demonstrates significant saving in 
computational cost. Three separated sets of 
MCS, or a total of 900 analyses are required to 
compute 3 discrete points in Figure 8, whereas 
only a single set of 180 analyses can produce a 
continuous curve using VRF approach.  

Next, the same set of 180 analyses is used 
again to examine the footing behavior under 
single exponential autocorrelation function. 
Although the cutoff frequency under single 
exponential function is significantly higher 
(ω𝑢 = 32 m−1 to preserve 95% of random field 
variance), no extra FLAC analyses are required, 
because from the VRF curve at Figure 6, the 
variance contributed by 𝜔 > 7𝑚−1 is negligible, 
while the underestimation in mean can be 
compensated by the mean adjustment term. 
Figure 8 and 9 also show the SD and mean of 
footing displacement under single exponential 
autocorrelation. Compared to squared 
exponential function, the SD of footing 
displacement is larger when 𝜃 < 0.5𝐵.  

To investigate whether VRF can be applied 
to cases when the variance of the soil property is 
large, the analysis is repeated with the CV of 
Young’s modulus being 0.4, or standard 
deviation of 24 MPa, with other problem settings 
being unchanged. The obtained VRF and MRF 
curves are plotted in Figures 6 and 7. Unlike 
statically determinate system, the VRF is higher 
when the random field variance is larger, which 
means the variance of footing displacement 
increases in a faster rate than the soil property 
variance.  

Figures 10 and 11 show the SD and mean of 
footing displacements obtained from VRF and 
MRF, with three sets of MCS verification. 
Compared to small CV case, the discrepancies 
with the MCS results become more severe, 
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especially for the mean of footing displacement. 
A possible explanation is that the principle VRF 
method is to sum up the contribution of each 
random field sinusoid independently (Eq. (3)). 
Meanwhile, for statically indeterminate system, 
the interaction between the random field 
sinusoids can be influential, when the Young’s 
modulus has a large variance. However, VRF 
method has not included this effect. 
 

 
Figure 10: Standard deviation of footing 
displacement under different autocorrelation 
distances and soil models. 
 

 
Figure 11: Mean of footing displacement under 
different autocorrelation distances and soil models. 
 

Apart from linear elastic analysis, footing 
displacement analysis under Tresca soil is also 
performed, to examine whether VRF is still 
applicable when the soil displays non-linear 

stress strain behavior. The footing geometry and 
characteristics of random field of Young’s 
modulus are the same (with CV=0.15), with the 
only modification being the addition of 
undrained shear strength s𝑢 , which is perfectly 
correlated to Young’s modulus by 𝐸𝑢 = 300s𝑢. 
The loading is also 514kPa, which corresponds 
to a deterministic factor of safety of 2, according 
to the bearing capacity formula 𝑞 = (2 + 𝜋)𝑠𝑢 . 
The same 𝜔  points and phases are selected, 
leading to 180 FLAC analyses. Again, Figures 6 
and 7 show the computed VRF and MRF points 
with the interpolated curves, and Figures 10 and 
11 show the displacement statistics under 
different 𝜃 , with three sets of MCS validation. 
The MCS statistics match well with the VRF 
statistics, hence VRF method can be applied to 
soils with non-linear stress strain behavior. Both 
VRF and MRF under Tresca soil have larger 
values then the elastic soil, due to the plastic 
strains developed. As a result, the mean and SD 
of footing displacement are both higher than the 
linear-elastic soil.  

4. CONCLUSIONS 
This paper outlines the framework of the VRF 
method, which can analyze the reliability of 
geotechnical system, when the soil properties 
exhibit a range of spatial autocorrelation 
distances and functions. VRF only requires a 
single set of analysis, while conventional MCS 
requires separate set of analysis for each spatial 
autocorrelation setting. In the footing 
displacement analysis, there is a satisfactory 
match between the VRF and MCS results, when 
the soil property has relatively low variance. 

Further studies can be pursued to validate 
and enhance the usefulness of the VRF method. 
The applicability of VRF should be investigated 
for strength mobilization problems such as slope 
stability and bearing capacity. Conceptually, 
VRF can be applied to 2D and 3D random fields, 
with the random field being spatially anisotropic, 
meaning autocorrelation distances are different 
in each direction. Therefore, VRF has the 
potential for assessing the system reliability 
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under spatial anisotropy of soil properties, with 
minimal computational cost. Meanwhile, when 
the soil property has a large variance, extensions 
on the VRF method are necessary, as to 
incorporate the interaction between the sinusoids 
that comprise the random field. 
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