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ABSTRACT: This study introduces a statistical model that guides decentralized infrastructure restora-
tion processes aligned with field practices. In particular, we make more analytically tractable the pre-
viously proposed Judgment Call method to simulate real-world decisions under time and resource con-
straints. The Judgment Call method explicitly models the largely ignored feature of decentralization in
the restoration planning across interdependent networks. The method solves the Decentralized Interde-
pendent Network Design Problem (D-INDP) while acknowledging the lack of proper communication
among decision making agents, and hence, the lack of essential information. Here, we use a Bayesian
Hierarchical Model (BHM) to simulate the agents’ practical use of their field expertise and judgments to
compensate for essential information shortage. We train the model using synthetic restoration plans that
emphasize the local preferences of the agents. The method is applied to the interdependent infrastructure
network of Shelby County, TN, and the results show that the performance of BHM-aided restoration
plans is close to the conceptual upper bound.

Decisions for real-world interdependent networks
are typically made by multiple distributed agents.
Modeling such a decision-making environment
must be decentralized and probabilistic. The for-
mer reflects the interaction of several potentially
selfish agents, and the latter accounts for the uncer-
tainties of real environments. However, most math-
ematical methods for decision-making in interde-
pendent networks rely on centralized or determin-
istic formulations. In a previous study (Talebiyan
and Duenas-Osorio, 2018), we proposed the Judg-
ment Call method, which accounts for the decen-
tralized nature of the realistic decision-making pro-
cesses guiding the restoration of interdependent
networks. Judgment Call recognizes the fact that
human decision-makers use their field expertise and
judgment to compensate for their bounded rational-
ity (Sarma, 1994) as well as the lack of necessary
information stemming from poor or no communi-
cation among agents. In this paper, we employ
a Bayesian Hierarchical Model (BHM) to proba-
bilistically study the intuitive decisions and utiliza-

tion of expert opinion on the part of agents, and
therefore, push the Judgment Call method closer
to realism. As for the formulation of the network
restoration problem, we adopt the Interdependent
Network Design Problem (INDP), a family of cen-
tralized optimization problems concerned with the
restoration of disrupted networked systems subject
to budget and operational constraints, which serves
as baseline for quantifying the effects of decen-
tralization. Like the general problem of decentral-
ized decision-making (Tsitsiklis, 1984), the lack of
proper communications among agents is a crucial
aspect of the new Decentralized-INDP (D-INDP)
class. Judgment Call assumes that agents use
their field expertise about the potential decisions of
other agents to compensate for scant communica-
tions. To model such compensation, we explored
several simple assumptions such as optimistic and
pessimistic agents (Talebiyan and Duenas-Osorio,
2018). In this study, we replace these simple as-
sumptions with a BHM, which aims to simulate the
decision process of agents when they make judg-
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ments in a more realistic way. Also, using statis-
tical models is relevant given the current trend of
artificial intelligence tools for agents to make more
informed decisions. In particular, we select BHM
as our modeling framework because it is known
to be an apt paradigm to model spatio-temporal
data (Cressie and Wikle, 2015), such as restora-
tion strategies. Moreover, BHMs accommodate the
fact that agents update their mindset when they face
discrepancy between their judgment and actual de-
cisions by other agents. We employ our model to
study the interdependent infrastructure networks in
Shelby County, TN disrupted by hypothetical earth-
quakes.

In the next section, the relevant literature is re-
viewed. Then, we briefly explain INDP and the
Judgment Call method as the basis of the pro-
posed approach in this paper. Thereafter, we intro-
duce BHM and particularly the model we use for
restoration plans. Next, we apply the method to
the restoration planning of infrastructure networks
of Shelby County, TN. Finally, we present conclu-
sions and ideas for future work.

1. LITERATURE REVIEW

The problem of decentralized decision-making has
been tackled from a general and abstract percep-
tive via Markov decision process (MDP). In partic-
ular, the extension of MDP to the multi-agent set-
ting is called the decentralized partially observable
MDP (DEC-POMDP), which is known to be com-
putationally hard; specifically, it is NEXP-complete
(nondeterministic exponential time) even with just
two agents (Bernstein et al., 2002). Also, approxi-
mation algorithms, which are tailored to the struc-
ture of specific subclasses of DEC-POMDP, can
only solve small problems (Seuken and Zilberstein,
2008), and are not scalable to the size of practical
instances.

Decentralized restoration planning can be
thought as a decentralized (or distributed) opti-
mization. The main body of work in this class
of optimization is devoted to convex, continuous
problems, as pioneered by Tsitsiklis (1984). A
short review of these methods can be found
elsewhere (Nedic et al., 2010). Few studies
have addressed the decentralized optimization for

discrete problems. Nemhauser et al. (1978) intro-
duced the distributed maximization of submodular
functions subject to cardinality constraints, and
solution methods for this problem are proposed
by Mirzasoleiman et al. (2013). Karabulut (2017)
studied the integer programming problems in
which agents are coupled by resource constraints.
INDP differs from this problem mainly because it
includes coupling interdependency constraints. In
a more general setting, Feizollahi (2015) proposed
decentralized mixed-integer programming for
the unit-commitment problem in electric power
systems. Also, Sharkey et al. (2015) and Singh and
O’Keefe (2016) solved the decentralized schedul-
ing problem. These studies assume an unbounded
number of communications among agents during
the process of decision-making, which is hardly
possible in real-world settings of the network
restoration. The authors propose a method that
accounts for the more realistic case of delayed and
limited communications among agents (Talebiyan
and Duenas-Osorio, 2018). This heuristic method
is improved in the current study by using BHM as
a more realistic and analytically tractable model
of the decision-making process for restoration of
interdependent networks.

2. JUDGMENT CALL

The most critical issue in decentralized decision-
making is communication (Tsitsiklis, 1984). In
real-world decision-making environments, the
communications among agents are usually noisy or
delayed. However, decisions that these agents make
are affected by other agents’ because of the inter-
dependency between different parts of the system.
Due to communication problem, agents cannot so-
licit enough, timely information (pertinent to their
decisions) from other agents. Therefore, as a prac-
tical human approach, agents use their expertise
and judgment to compensate for lack of informa-
tion (Sarma, 1994). Previously, the authors intro-
duced the Judgment Call methodology to recognize
and model this human approach to decision-making
for the restoration of interdependent network.

The main goal of Judgment Call is to solve the
Interdependent Network Design Problem (INDP)
(González et al., 2016) in a decentralized fashion
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while taking the lack of communication into ac-
count. INDP, a family of Mixed Integer Program-
ming (MIP) problems, finds the restoration strate-
gies for disrupted networked systems with limited
budgets and operational constraints. INDP mini-
mizes the sum of four types of cost that the interde-
pendent network incurs during the restoration pro-
cess: 1) flow cost (of commodities), 2) reconstruc-
tion cost of arcs and nodes, 3) penalties due to the
unbalance of supply and demand at nodes, and 4)
and geographical co-location cost. INDP finds the
minimized sum of the costs while satisfying five
types of constraints:

C1. Flow balance constraints at nodes, which
compare inflow, outflow, and demand/supply of
commodities at each node, and record potential
unbalance among them.
C2. Capacity constraints on commodity flow in
arcs, which ensure that flows in functional arcs are
not more than their capacities, and also, damaged
arcs do not carry any flow.
C3. Resource constraints, which prevent employ-
ing more resources than the Resource cap, Rc,
which is the number of available resources.
C4. Physical interdependency constraints, which
make sure a node will not be functional if their de-
pendee nodes are not functional. Dependee nodes
are in other networks, and the node in question
relies on them for its functionality. For example,
when a power substation provides electricity to
a water pump, the substation is a dependee node
with respect to the pump.
C5. Co-location constraints, which ensure any
given area has to be prepared only once even if
several agents carry out reconstruction tasks inside
the area.

For the detailed mathematical formulation of INDP,
readers are referred to the original study (González
et al., 2016). Here, we adopt the iterative INDP
(iINDP) in which we solve INDP iteratively until
all demands across the network are met. On each
iteration (equivalent to a time step), the problem is
solved to optimality to find the minimum-cost strat-
egy. Figure 1 shows a schematic of the procedure
of iINDP.

Solving INDP for the whole interdependent net-

time
t t+1

The Agent
(Entire Network) Damaged 

Elements
Restoration 
Plan (INDP)
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Elements

Update

Performance 
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Figure 1: Procedure of iINDP (Talebiyan and Duenas-
Osorio, 2018).

work is equivalent to considering a single agent
deciding for the entire network. The more real-
istic assumption is to consider several interacting
agents, each of them deciding for one layer of the
network. The Judgment Call method embodies this
assumption by letting each agent solve a subprob-
lem of INDP that pertains to its respective layer.
To this end, agents need information about the de-
pendee nodes, but they usually lack such informa-
tion. Therefore, they assign a Restoration Probabil-
ity, Pr, to each dependee node in other networks. Pr
captures the chance that the dependee node is going
to be repaired during the current time step. Then,
the agent carries out a Bernoulli experiment with
the probability of success equal to Pr for each node.
If the result is one, then the agent assumes that the
dependee node is repaired and solves his/her INDP
subproblem accordingly. The procedure of Judg-
ment Call is depicted in Figure 2. In the figure,
the double-lined arrows show the communication
among agents.

Agents may take different approaches to deter-
mine Pr. For example, the agents may be pes-
simistic and assume that other agents will not re-
pair dependee nodes or Pr = 0. On the other hand,
an optimistic approach is to assume that agents will
repair all dependee nodes until the next time step
or Pr = 1. These two can be thought as extreme
schemes, and there can be different assumptions
that fall in between (Talebiyan and Duenas-Osorio,
2018). In the next section, we propose using BHMs
—trained on historical data and suitable for tak-
ing real-time evidence— to guide assigning Pr and
making a judgment.

3. BAYESIAN HIERARCHICAL MODEL

In this section, we introduce and employ the
Bayesian Hierarchical Model (BHM) as a realis-
tic model of the judging process by decentralized
decision-makers. We assume that agents use BHM
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Figure 2: Procedure of Judgment Call (Talebiyan and
Duenas-Osorio, 2018).

to represent their knowledge about the history of the
restoration process. In particular, we train a BHM
using restoration strategies devised during histori-
cal events or hypothetical disruption scenarios. The
agents run the model whenever they want to make
a judgment about other agents’ decisions, and the
output of the model is the judgment. In other words,
we assume that the domain expertise and judgment
of the agents is embedded in the BHMs. Here,
we aim to fit the model to restoration plans, which
are temporal data over spatially-distributed enti-
ties (networks), and BHM is known to be suitable
to model spatio-temporal data (Cressie and Wikle,
2015).

BHM is a class of hierarchical statistical model-
ing, which is an approach to quantify uncertainties
in a dataset using levels of conditional probabili-
ties. In accordance with Berliner (1996), a hierar-
chical model consists of three levels: data, process,
and parameter. At the top level, the data model de-
scribes the conditional probability of data given a
hidden process. The middle level is the process
model, which captures the true phenomenon of in-
terest. The process model, in turn, may be condi-
tioned on several parameter models, which are the
distributions of parameters of the process model.
Formally, a BHM is

Pr(Z,Y,θ) = Pr(Z|Y,θ)×Pr(Y |θ)×Pr(θ) (1)

where Z = data, Y = the quantity or process of in-
terest, and θ = parameters of the model.

We assume that the Markov assumption holds for
the restoration process so that the state of a node is
affected only by its state at the previous time step.
We presume that it is difficult for an agent to keep
track of the entire history given time and cogni-
tive constraints. Also, the assumption follows the

sequential nature of iINDP. To materialize this as-
sumption, we define the levels of BHM as follows,

Data model: wv
t ∼ Bernoulli(pv

t )

Process model: pv
t = M (pv

t−1 + ε
v)

M (x) =
1

1+ e−x

Parameter model: pv
0 ∼ Beta(α = 2,β = 2)

ε
v ∼ Gaussian(0,1)

(2)

The first level of the model describes the state tran-
sition of node v at time step t, wv

t , as a Bernoulli dis-
tribution with success probability pv

t . A state tran-
sition wv

t is unity if a damaged node at time t − 1
is repaired at time t, and zero otherwise. This defi-
nition is consistent with the Judgment Call method
in which agents care and speculate about the state
transition of damaged dependee nodes. In other
words, they use their judgment to guess if the state
of the damaged node will change or not during each
step of decision-making. The process model em-
beds the Markov assumption by conditioning pv

t on
pv

t−1 and an stationary error term εv. We apply a lo-
gistic function, M (x), to confine the probabilities
pv

t in [0,1]. One can observe that, to find any pv
t ,

we only need pv
0 and εv, which are the parameters

of the model. We choose a beta prior for pv
0 to keep

them in [0,1]. To model the non-informative prior
knowledge, the initial shape parameters, α and β

are chosen so that the prior becomes symmetric
around the mode at 0.5. The non-informative prior
of εv is a zero-mean Gaussian distribution with a
relatively large standard deviation.

The goal of training a statistical model is to find
the posterior distribution of parameters. To this
end, one has to sample from the prior distributions,
and likelihood functions; the later is a conditional
probability. For this purpose, we use the Markov
Chain Monte Carlo (MCMC) method (Metropolis
et al., 1953) which efficiently generates samples
from conditional probabilities. In particular, we use
No-U-Turn Sampler (NUTS) (Hoffman and Gel-
man, 2011), which avoids random walk behavior,
and needs minimal tuning on the user’s part. In this
context, the main issue of MCMC is convergence.
We employ Scale Reduction Factor (R̂) (Gelman
and Rubin, 1992), which compares the variance be-
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tween multiple chains to the variance within each
chain. If these variances are identical or R̂≈ 1, then
MCMC has converged. Also, we use 1000 samples
to tune the sampler, and then, draw 4000 samples
to find the posterior distribution.

The model has to be trained on a dataset of his-
torical restoration plans. To the best of our knowl-
edge, such a dataset is not available for the infras-
tructure network in Shelby County, TN, which we
study in the Application section. Therefore, we use
INDP to build up the dataset in accordance with
seismic scenarios by Wu (2017). In particular, we
use these scenarios and INDP to find restoration
plans for each layer of the infrastructure network
while ignoring interdependencies among layers. In
other words, we let agents separately solve the sub-
problem of INDP that is related to their respective
layer. The decoupled nature of the solutions re-
sults in restoration plans that are purely based on
the local preferences of each agent, which is of in-
terest to other agents during the judgment process.
Note that each agent speculates about other agents’
preferences when he/she makes a judgment. Solv-
ing the subproblems, we obtain a host of restoration
plans. In many seismic scenarios, no node is dam-
aged, and therefore we select a subset of plans in
which at least one node is damaged in the entire
network. These are 508 damaging scenarios, which
are 11% of a total of 4800 scenarios, whose cor-
responding restoration plans are employed to train
the model and find posterior distributions of param-
eters.

The mean and standard deviation (sd) of poste-
rior distributions of parameters are computed and
presented in Table 1 for two nodes. Node 65 cor-
responds to a relatively high number of state tran-
sition samples (average 21 per time step), while
the model for Node 83 is trained on a relatively
small number of 10 samples per time step on aver-
age. The number of samples decreases with time
because there is a smaller chance that a node is
still damaged in later time steps. Table 1 also
presents R̂ of different estimated parameters which
are fairly close to unity and indicate MCMC con-
vergence. This observation holds for all estimated
variables. The other piece of information in Table 1

is the Monte Carlo standard error (MCSE). If we as-
sume that the difference between an estimated value
and its exact value is distributed according to a
zero-mean Gaussian distribution, MCSE shows the
standard deviation of the distribution. To compute
MCSE while accounting for non-independent sam-
ples, the sample pool is divided into batches, and
the standard deviation of batch means are calcu-
lated. Small values of MCSE show that our model
fits the input data.
Table 1: Estimated values of parameters of models for
Nodes 65 and 83.

Parameter Mean sd MCSE R̂
ε65 −1.116 0.2310 0.0038 0.9999
p65

0 0.4188 0.2063 0.0033 1.0003
ε83 −1.2327 0.4024 0.0324 1.0146
p83

0 0.4946 0.2412 0.0193 1.0129

To test the prediction quality of the model, we
run a 10-fold cross-validation where the training
set contains 85% of data (chosen randomly), and
the test set has the remaining 15%. In each itera-
tion of cross-validation, the trained model predicts
the state of node v at different time steps t given
the initial damages from the test dataset as well as
the estimated pv

0 and εv. Then, the predicted val-
ues are compared to the exact values from test data.
Figure 3 shows the mean value of the absolute er-
ror between predicted and exact values over all test
scenarios for each iteration of cross-validation for
Nodes 65 and 83. The figure shows a maximum
cross-validation error of 0.065, which means that at
most 6.5% of the predicted values do not match the
exact value.

We construct BHM only when there are enough
sample points for a node. In particular, some of
the nodes are damaged in a small number of 508
damaging scenarios if any, and therefore, there are
few samples of state transition for that node to train
the model. For example, 53% of nodes in the power
network show little or no damage. However, it also
shows that the subset of nodes are not vulnerable,
and therefore, we assume that pv

t = 1.0 for all time
steps. Thus, the agents do not need to run the model
to judge the state of such nodes. Next, we apply
above methodology to a real-world application.
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Figure 3: Mean absolute error of cross-validation itera-
tions for Nodes 65 (top) and 83 (bottom).

4. APPLICATION

In this section, we employ our method to model
the decentralized decision-making process for the
restoration of interdependent infrastructure net-
works in Shelby County, TN, as disrupted by earth-
quake. The interdependent network comprises
power, water, and gas networks, whose node and
arc sets are presented in Table 2. This application
features two types of interdependency: 1) physical
interdependency between the water and the power
network since water pumping stations depend on
power stations to provide them with electricity, and
2) geographical interdependency which means wa-
ter and gas networks share the site preparation cost
if their elements are co-located. We generate the
initial damage scenarios using the hazard analy-
sis of Shelby County by Wu (2017). These haz-
ard maps are computed based on a more compre-
hensive set of seismic scenarios (regarding magni-
tudes, rupture locations, etc.) compared to previ-
ous studies. They select a representative subset of
scenarios, which captures the spatial variability of
ground motion intensity (Miller and Baker, 2015),
and is hazard-consistent and network-response-

consistent. Based on each of these seismic sce-
narios, we compute initial damage to the network.
Then, we find restoration plans for the network
using centralized and decentralized methods and
compare them.

To compare two restoration plans, we check their
performance (fraction of the total demand that is
met) and total cost over all time steps. We use areas
corresponding to the performance curve and total
cost curve as defined in Figure 4, which are related
to the resilience of a networked system (Hosseini
et al., 2016). We define the Universal Relative Mea-
sure, λU , as the average of Relative Performance
and Relative Total Cost,

λU ,
1
2

(
Ac−Ad

Ac
+

Bc−Bd

Bc

)
(3)

Theoretically, λU ∈ (−∞,1], but we expect λU to
be negative. In other words, we expect that Ac ≤ Ad
and Bc ≤ Bd because the centralized plan is optimal
and has to be superior to the decentralized one. A
more negative λU indicates a worse performance of
the decentralized plan. In the example shown in
Figure 4, λU = 1

2(−0.58−0.63) =−0.605.
We study the performance of decentralized plans

when the damage to the network is severe by com-
puting mean λU over the most damaging seismic
scenarios. These are scenarios with more damaged
elements than 95% of the whole set of damaging
scenarios, which happens to be those with 18 dam-
aged elements or more. There are 54 scenarios in
the most damaging subset, which is the most strin-
gent test to our method. Also, the average number
of damaged elements in the subset is 30.8. Figure
5 shows mean λU for this subset along with confi-
dence intervals for optimistic and pessimistic judg-

Table 2: Number of elements in the layers of the net-
work. |V | and |E | denote the cardinality of the node
and arc sets respectively.

Layer Symbol |V | |E | Total
Water Gw 49 71 120
Gas Gg 16 17 33
Power Gp 60 76 136
Interconnections I 45 45
Whole network G ∗ 125 209 334
∗ G = Gw∪Gg∪Gp∪I

6



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

M
e
t 

D
e
m

a
n
d

Time Horizon

Centralized

Decentralized

Ad

Ac

Relative performace =
𝐴𝑐 − 𝐴𝑑

𝐴𝑐
= −0.58

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

T
o
ta

l 
C

o
st

B
il
li
on
s

Time Horizon

Centralized

Decentralized

Bd

Bc

Relative total cost =
𝐵𝑐 − 𝐵𝑑

𝐵𝑐
= −0.63
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area under the total cost curve of centralized (decentral-
ized) plan.

ments (Talebiyan and Duenas-Osorio, 2018) as well
as the informed case and BHM-aided judgments. In
the ideal informed case, agents have complete in-
formation about other agents’ decisions. This case
serves as a conceptual upper bound for the col-
lective performance of decentralized agents. Note
that our assumption here is that centralized agents
can use resources only limited by their cap, while
each of three decentralized agents gets a third of
the resources as they are compelled to take ac-
tion. The figure shows that with six units of re-
sources (two for each agent) the performance of
BHM-aided judgment is 32.4% worse than the cen-
tralized plan, which is close to the performance of
the ideal informed case. The performance of BHM-
aided Judgment Call is worse than the optimistic;
however, BHM is a more realistic way of modeling
the judgment process. The current BHM model can
be thought of as a decision tool because its perfor-
mance is close to the upper bound, and our future
direction is to make it even closer by refining the
model. The model may be refined by taking the
spatial relation between nodes into account.

Figure 5: Mean λU for scenarios with more damaged
elements than 95% of the whole set of damaged scenar-
ios. Error bars show 95% confidence interval of mean
values.

5. CONCLUSIONS

This paper puts forward a Bayesian hierarchical
model to realistically capture the practical use of
field know-how and expert judgment in the restora-
tion decision-making of interdependent networks.
Proposing the Judgment Call method, we first break
the barrier of centralized models in resilience en-
gineering and enter into the decentralized arena.
Then, here, the proposed model enhances the re-
alism of the Judgment Call method, which is de-
signed to consider the poor communication among
agents in real-world decentralized decision-making
environments. Judgment Call assumes that agents
use their intuition and expert judgment to com-
pensate for the lack of communication, and solves
INDP in a decentralized way based on this assump-
tion. BHM adds a tool to Judgment Call that im-
itates the decision processes of agents more rig-
orously than previous studies. In particular, the
Bayesian aspect of BHM imitates the accumula-
tion of experience which constantly corrects and
updates a person’s mindset and shapes his/her in-
tuition and expertise. Also, BHM is a rigorous way
of modeling spatio-temporal data, which decom-
poses the uncertainty and helps us quantify differ-
ent sources of it. Furthermore, as artificial intel-
ligence and data-driven tools become prevalent in
real-world decision-making environments, the pro-
posed method will show even more resemblance
to reality. The results show that guiding Judgment
Call by the BHM-aided judgment leads to restora-
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tion strategies with realistic and acceptable perfor-
mance.

Our next step is to improve the model form to
include the spatial relations between state transi-
tions of nodes. In particular, we can relate the
restoration of nodes based on the connectivity or
demand/supply values. Also, we will compare
the model to other methods of approximating dy-
namics in layered networks (Alemzadeh and Mes-
bahi, 2018). Moreover, in the decentralized restora-
tion planning, several agents are competing or co-
operating to maximize their own utility and cost,
which offers an opportunity to utilize game theo-
retic methods. In particular, we aim to improve
previous studies on network recovery games (Smith
et al., 2017) based on insights and tools from the
Judgment Call method.
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