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ABSTRACT: The 3-D spatial variability of soils has significant impacts on the failure mechanism and 

reliability of geotechnical structures and deserves a quantitative characterization through site 

investigation. This study develops a probabilistic approach for characterizing the 3-D spatial variability 

of soils within the framework of maximum likelihood estimation, whose computational problem is 

addressed through a matrix decomposition technique. The sampling strategy to minimize the statistical 

uncertainty is explored systematically based on virtual site analysis. The empirical distance criterion and 

density criterion are proposed to control the statistical uncertainty to a practically acceptable low level. 

 

1. INTRODUCTION 

Subject to various natural processes, soil 

properties vary in 3-D space and preserve strong 

anisotropy in vertical and horizontal directions. 

The 3-D spatial variability of soils has significant 

impacts on the failure mechanism and reliability 

of geotechnical structures (Fenton and Griffiths, 

2005; Xiao et al., 2016), which cannot be fully 

captured by the conventional 1-D/2-D spatial 

variability modeling (Li et al., 2016a; Xiao et al., 

2017; Papaioannou and Straub, 2017). In spite of 

the importance on the quantification of 3-D spatial 

variability, works on direct characterization make 

slow progress (Liu and Leung, 2018), due to the 

scarcity of geotechnical data and a satisfactory 

characterization method. Most previous studies 

thus simplify the 3-D characterization as two 

individual parts, including a vertical spatial 

variability characterization along the depth of 

borehole/sounding (Fenton, 1999; Wang et al., 

2010) and a horizontal spatial variability 

characterization in a transverse plane (DeGroot 

and Baecher, 1993; Ching et al., 2018). Such a 

treatment cannot make full use of the information 

contained in the limited geotechnical data.  

Among the 3-D spatial variability, the 

characterization of horizontal spatial variability is 

relatively more difficult and less investigated than 

the vertical part, because of the scarcity of test 

soundings for a majority of projects. Researches 

should pay more attentions to the horizontal 

spatial variability characterization, since it plays 

an essential role in site mapping that extends site-
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specific knowledge from limited soundings to the 

whole site. Considering the high cost of site 

investigation, it is necessary to design a proper 

sampling strategy (or testing strategy) to optimize 

the amount and location of soundings. This idea is 

not new, and previous probabilistic studies mainly 

focus on minimizing the mapping uncertainty (Li 

et al., 2016b) or maximizing the value of 

information (Yoshida et al., 2018). Both of them 

highly rely on the results of spatial variability 

characterization. In the presence of limited 

geotechnical data, the characterization is usually 

associated with large statistical uncertainty and, in 

turn, makes itself and the sampling strategy less 

robust. Rare studies investigate the sampling 

strategy from a perspective of minimizing the 

statistical uncertainty in spatial variability 

characterization, where this paper would make an 

effort. The uncertainties involved in the model 

selection (Cao and Wang, 2014; Ching and 

Phoon, 2017), such as selection of probabilistic 

distribution, trend function and correlation 

function, will not be considered in this study. 

This study develops a probabilistic approach 

for characterizing the 3-D spatial variability of 

soils within the framework of maximum 

likelihood estimation (MLE). The vertical and 

horizontal spatial variabilities are simultaneously 

characterized based on multiple cone penetration 

tests (CPTs). A matrix decomposition technique 

is proposed to bypass the computational problem 

that hinders the practical application of MLE for 

high-dimensional and spatially correlated data. 

With the help of proposed approach, the sampling 

strategy to minimize the statistical uncertainty is 

explored and two empirical design criteria are 

proposed based on virtual site analysis. 

2. CHARACTERIZATION OF 3-D SPATIAL 

VARIABILITY 

2.1. Maximum Likelihood Estimation 

The 3-D spatial variability of soils is commonly 

described by random field theory (Vanmarcke, 

2010). In the context of MLE, the log-likelihood 

of n observations, X (e.g., normalized cone tip 

resistance Qtn of CPT) can be written as (DeGroot 

and Baecher, 1993; Fenton, 1999), 
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where F and β = trend function matrix and 

coefficient vector, respectively; σ = standard 

deviation; and R = [ρ] = n×n spatial correlation 

matrix, in which the correlation coefficient ρ is 

described by a prescribed correlation function. 

For example, a 3-D single exponential correlation 

function is defined as, 

  2 2exp 2 2x y h z v          (2) 

where τx, τy, and τz = relative distance of two 

locations in x- (horizontal), y- (horizontal) and z- 

(vertical) directions; and δh and δv = horizontal 

and vertical scales of fluctuation, respectively. 

By maximizing the log-likelihood function, 

estimates of the four random field parameters (β, 

σ, δv, δh) can be determined. Among them, 

estimates of β and σ can be derived analytically as 

functions of R, which reduces the number of 

optimized parameters to only two, namely δv and 

δh. Note that repeated calculation of ln|R| and R−1 

is needed during the optimization. This is not 

trivial for high-dimensional CPT data. For 

example, forty CPTs at a penetration interval of 

20 mm and a depth of 20 m contain n = 

40×20/0.02 = 40,000 data records. Consequently, 

the matrix size of R is as large as 40,000×40,000 

and extremely high computational effort should 

be paid for evaluating ln|R| and R−1. 

Once the maximum likelihood estimates are 

found, the associated statistical uncertainty can be 

represented by covariance or coefficient of 

variation (COV). By definition, the covariance 

equals, approximately and asymptotically, the 

inverse of observed information matrix evaluated 

at the maximum likelihood estimates, and the 

COV takes the ratio of the corresponding standard 

deviation to the maximum likelihood estimates. 
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(a) Spatial distribution of CPT data 

 
(b) Global correlation matrix 

Figure 1: Spatial distribution and correlation of CPT 

data. 

2.2. Correlation Matrix Decomposition 

To bypass the aforementioned computational 

problem of MLE, the CPT data records are 

deliberately arranged one sounding after another, 

as shown in Figure 1(a). By this means, the global 

correlation matrix R is a block matrix as shown in 

Figure 1(b), and it can be decomposed as 

h v R R R , where   = Kronecker product; Rv 

= vertical correlation matrix for data within a 

sounding; and Rh = horizontal correlation matrix 

for data at the same depth. As a result, |R| and R−1 

can be written as,  

 ln ln lnv h h vn n R R R  (3) 

 1 1 1

h v

   R R R  (4) 

where nv = number of data within a sounding; nh 

= number of soundings; and nv×nh = n. 

Calculations for determinants and inverses of 

Rv and Rh are much easier than those of R. To save 

computational memory and further improve 

computational efficiency, avoiding the assembly 

of R−1 is necessary, and it can be achieved with 

the aid of Kronecker product (Xiao et al., 2018).  

Table 1: Scenarios of virtual site analysis. 

 δv 

(m) 

δh 

(m) 

A 

(m2) 

D 

(m) 

nh 

Value 

0.5 10 50×50 5 4 

1 20 100×100 10 8 

1.5 30 150×150 15 12 

2 40 200×200 20 16 

 

Specifically, the R−1 related matrix multiplication 

ATR−1B reads as 

  
TTT 1 1 1tr v h

   
  

A R B A R B R  (5) 

where A and B = n×1 vectors; and A and B = nv×nh 

matrices reshaped from A and B, respectively. 

The matrix decomposition technique decomposes 

the large global correlation matrix into smaller 

vertical and horizontal correlation matrices. 

Considering the nature of CPT that nv >> nh, it 

makes the computational effort for 3-D spatial 

variability characterization almost comparable 

with that for 1-D vertical spatial variability 

characterization, and facilitates the practical 

application of MLE in 3-D spatial variability 

characterization. 

3. SAMPLING STRATEGY 

3.1. Virtual Site Analysis 

To make a proper sampling strategy, the impact of 

sampling plan on the statistical uncertainty in 3-D 

spatial variability characterization is explored 

systematically through virtual site analysis.  

Several virtual sites of CPT parameter Qtn are 

first simulated using the 3-D random field 

generation approach (Xiao et al., 2018). For 

simplicity, this study only considers: (1) a square 

sampling area A; (2) a CPT penetration interval of 

50 mm; and (3) a Gaussian random field with a 

mean μ = 100 (i.e., F = 1 and β = μ), a standard 

deviation σ = 40, and a 3-D single exponential 

correlation (i.e., Eq. (2)). Four δv values and four 

δh values, as shown in Table 1, are assumed to 

represent different degrees of the 3-D spatial 

variability. Besides, different sampling schemes 

are adopted, with four sampling areas A, four 

sampling depths D, and four sounding numbers  
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Table 2: Spatial variability characterization results. 

Parameter μ σ δv δh 

True value 100 40 1 20 

Example I 
MLE 103.13 41.15 1.12 19.85 

COV 0.08 0.08 0.17 0.12 

Example II 
MLE 98.45 35.23 0.82 0 

COV 0.05 0.07 0.15 Inf 

 

 
(a) Example I 

 
(b) Example II 

Figure 2: Examples of virtual site and sampling plan. 

 

nh, as shown in Table 1. There is a total of 45 = 

1024 scenarios in the virtual site analysis. In each 

scenario, 100 sampling plans, each of which 

contains nh randomly distributed CPTs, are used 

to characterize the 3-D spatial variability of Qtn 

using MLE.  

Figure 2 presents two examples of virtual site 

with δv = 1 m and δh = 20 m. The corresponding 

sampling plans contain four CPTs performed at a 

same depth of 10 m, but in different sampling 

areas of 50×50 m2 and 100×100 m2, respectively. 

By applying MLE with the proposed matrix 

decomposition technique, the results of 3-D 

spatial variability characterization for the two 

examples are given in Table 2. Figure 3 illustrates  

  
(a) Example I (b) Example II 

Figure 3: Optimization of likelihood function in MLE. 

 

the optimization of likelihood function in MLE. In 

Example I, the maximum likelihood estimates 

agree well with the corresponding true values and 

the COV values are relatively small for all 

parameters. This indicates that such a sampling 

plan can properly characterize the 3-D spatial 

variability and is effective to control the statistical 

uncertainty to a low level. In other words, it is 

possible to characterize the 3-D spatial variability 

with relatively limited data, as long as a proper 

characterization method and a proper sampling 

scheme are adopted. With respect to Example II, 

the estimates of (μ, σ, δv) are still reasonable, but 

the horizontal scale of fluctuation δh is 

unidentifiable, as shown in Figure 3(b). In this 

study, unidentifiable parameter refers to the 

parameter that is observationally equivalent (i.e., 

having the same likelihood) in a certain range. 

Particularly for δh, such a range usually covers 

zero and leads to a zero estimate of δh and an 

infinite COV. Unidentifiable sampling plan like 

Example II is what engineers should avoid in site 

investigation. 

3.2. Design Criteria 

To find out the reason why the two examples have 

opposite performances, the 3-D spatial variability 

are repeatedly quantified for all the 1024×100 

sampling plans. Previous experience shows the 

largest statistical uncertainty mainly comes from 

δv and δh (Xiao et al., 2018). Therefore, this 

section adopts COV = [COV(δv)
2+COV(δh)

2]1/2 as 

an integrated indicator of statistical uncertainty. 

3.2.1. Distance criterion 

As observed by Xiao et al. (2018), a small 

sounding distance facilitates the 3-D spatial 

variability characterization. It is rational because  
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Figure 4: Effect of normalized minimum horizontal 

distance on statistical uncertainty.  

 

 
Figure 5: Effect of number of short horizontal 

distance pair on statistical uncertainty and 

identifiable ratio.  

 

the spatial correlation for two locations in a large 

separation distance is almost negligible and 

unidentifiable.  

To further validate this observation, all 

pairwise horizontal distances between every two 

CPTs in one sampling plan are calculated, and the 

minimum one is selected as a representative 

distance of the sampling plan and normalized by 

the corresponding true horizontal scale of 

fluctuation. For instance, the six pairwise 

horizontal distances in Example I are 19.4, 21.1, 

29.7, 6.3, 21.2 and 27.5 m, respectively, and the 

normalized minimum horizontal distance Δh,min is 

0.32, between CPT-2 and CPT-3. Similarly, Δh,min 

= 2.56 for Example II, also between CPT-2 and 

CPT-3. 

Figure 4 plots the normalized minimum 

horizontal distances Δh,min and the corresponding 

COV values for all sampling plans. For reference, 

the median line and the 95% confidence interval 

are also plotted in Figure 4 by red and black 

dashed lines, respectively. It is clear that the COV 

of estimated random field parameters is positively 

correlated with Δh,min and there is an obvious 

turning point around Δh,min = 1. When Δh,min ≤ 1, 

the COV remains at a practically acceptable low 

level; and it significantly increases when Δh,min > 

1. This is consistent with the observation in Xiao 

et al. (2018). The criterion that Δh,min ≤ 1 is 

referred to as the distance criterion in this study. 

Since the actual horizontal scale of fluctuation is 

unknown in reality, it is suggested to carry out at 

least two closely located CPTs (e.g., 10 m) in 

practice. 

In addition, Figure 5 presents the COV and 

the identifiable ratio against the number of short 

horizontal distance pair in one sampling plan. 

Herein, short horizontal distance pair refers to 

those distances less than the corresponding 

horizontal scale of fluctuation. The number is two 

and zero for Examples I and II, respectively. As 

shown in Figure 5, when the number is zero (i.e., 

Δh,min > 1), approximately 28% sampling plans 

confront the unidentifiable curse as Example II 

does. In contrast, almost all are identifiable for 

plans containing at least one short horizontal 

distance pair. Although such a ratio may vary 

considering different scenarios of virtual site and 

sampling scheme, the majority of unidentifiable 

sampling plans are certainly the ones with no short 

horizontal distance pair. Thus, it is undoubted that 

these plans are associated with a large statistical 

uncertainty, as shown in Figure 5.  

On the other hand, Figure 5 also indicates 

that a great many short horizontal distance pairs 

would not help to reduce the COV significantly. 

More specifically, the median COV slightly 

decreases from 0.20 to 0.11, as the number of 

short horizontal distance pair increases from 1 to 

10. In other words, for the investigated simplified 

scenarios, one short horizontal distance pair is 

sufficient to guarantee the identifiability and to  
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Figure 6: Effect of sampling density on statistical 

uncertainty.  

 

remain COV at a practically acceptable low level. 

There is no need to do many CPTs in a small 

region since a lot of information is redundant. 

3.2.2. Density criterion 

More intuitively, the simplest way that contributes 

to a smaller statistical uncertainty of 3-D spatial 

variability characterization is to increase the 

number or depth of CPT to collect more data 

records. The site investigation cost undoubtedly 

rises by this means. How to achieve the trade-off 

between the uncertainty reduction and cost is what 

engineers are concerned about. 

For the purpose of comparison, define a 

sampling density as the product of sounding 

number nh and sounding depth D over the 

sampling area A, i.e., ε = nh×D/A, in which the 

depth accounts for the impact of nv. According to 

this definition, ε = 0.016 and 0.004 in Examples I 

and II, respectively.  

Figure 6 demonstrates the effect of sampling 

density on the statistical uncertainty in 3-D spatial 

variability characterization. As expected, a higher 

sampling density results in a lower COV. 

Particularly when ε ≥ 0.01, the 0.975 quantile of 

COV (i.e., the upper bound of 95% confidence 

interval) significantly falls to a practically 

acceptable low level. This means that the COV is 

highly likely to be small in such a case. The 

criterion that ε ≥ 0.01 is referred to as the density 

criterion in this study. 

With the increase in sounding number, the  

 
Figure 7: Region partition by two design criteria.  

 

 
Figure 8: Cumulative probability of COV for 

different regions of sampling plan.  

 

minimum horizontal distance either unchanges or 

decreases. Hence the two design criteria, namely 

the density criterion and the distance criterion, 

have a negative correlation to a certain degree. 

Figure 7 is the trivariate scatter diagram of Figure 

4 and Figure 6. The space is divided into four 

regions by the two design criteria. As shown in 

Figure 7, the red region contains sampling plans 

satisfying both criteria; the blue and green regions 

contains those only within distance criterion and 

density criterion, respectively; and the black 

region contains those out of both criteria. Taking 

target COV = 0.3 as an example, the probabilities 

of COV ≤ 0.3 are equal to 99.9%, 93.6%, 65.3% 

and 28.3% for the red, blue, green and black 

regions, respectively. Likewise, the cumulative 

probability of COV for the four regions, as shown 

in Figure 8, can be obtained by setting different  
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Figure 9: Effect of sounding number and depth on 

statistical uncertainty.  

 

COV values. It is clear that the distance criterion 

is more effective than the density criterion to 

control the statistical uncertainty to a low level. 

By satisfying the two criteria simultaneously, the 

COV of 3-D spatial variability characterization 

can be well controlled to a low level (e.g., less 

than 0.3). Recall the two examples in the previous 

section. The sampling plan of Example I with 

Δh,min = 0.32 and ε = 0.016 is located at the red 

region, while the one of Example II with Δh,min = 

2.56 and ε = 0.004 is located at the black region. 

It is not surprising that the first sampling plan 

performs much better than the second one. 

Regarding the consistent sampling density, 

the impacts of sounding number nh and sounding 

depth D may still be different. Figure 9 shows the 

scatters of COV(δv) and COV(δh) for all sampling 

plans. The sampling plans having the same values 

of nhD are represented by their median and 50% 

confidence interval using the same color. For a 

given nhD, a larger sounding number would bring 

about a slight decrease of COV(δv) as well as a 

significant decrease of COV(δh). This may be 

because a larger sounding number is more likely 

to have a shorter minimum horizontal distance, 

thus is easier to satisfy the distance criterion. 

Simply from the perspective of data utilization, a 

larger sounding number is more preferable than a 

deeper sounding depth, if the cost of drilling a new 

sounding is not considered. However, this only 

validates for sites with relatively homogenous 

soils. Some deeper CPT soundings are still 

required to facilitate the identification of 

complicated soil stratifications. 

To sum up, for making a proper sampling 

scheme in spatial variability characterization, 

engineers can first determine a sounding number 

according to the density criterion, then conduct at 

least two closely located CPTs to fulfill the 

distance criterion. The remaining CPTs can be 

separated far to reduce the mapping uncertainty in 

the subsequent site mapping analysis (Li et al., 

2016b). Such a sampling scheme is similar to so-

called nested sampling proposed by DeGroot and 

Baecher (1993). 

4. SUMMARY AND CONCLUSIONS 

This paper proposes a matrix decomposition 

technique for MLE-based 3-D spatial variability 

characterization of soils. Results indicate that it is 

possible to characterize the 3-D spatial variability 

with relatively limited data, as long as a proper 

characterization method and a proper sampling 

scheme are adopted.  

With the help of proposed approach, the 

sampling strategy to minimize the statistical 

uncertainty is explored. Through the virtual site 

analysis, two empirical design criteria are found, 

namely the distance criterion that the normalized 

minimum horizontal distances Δh,min ≤ 1 and the 

density criterion that the sampling density ε ≥ 

0.01. The distance criterion is more effective than 

the density criterion. By satisfying the two criteria 

simultaneously, the statistical uncertainty of 3-D 

spatial variability characterization can be well 

controlled to a practically acceptable low level. 

Engineers can first determine a sounding number 

according to the density criterion, then conduct at 

least two closely located CPTs to fulfill the 

distance criterion. 

In addition, it is also found that there is no 

need to do many CPTs in a small region, and a 

larger sounding number is better than a deeper 

sounding depth given the same total data amount. 

These observations are helpful to make a proper 

sampling scheme. More efforts on taking the 

uncertainties in model selection into the design of 

sampling strategy are still warranted. 
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